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Abstract

The basics of superconductivity are outlined with special
emphasis on the features which are relevant for the appli-
cation in magnets and radio frequency cavities for high
energy particle accelerators. The special properties of su-
perconducting accelerator magnets are described in de-
tail: design principles, magnetic field calculations, mag-
netic forces, quench performance, persistent magnetiza-
tion currents and eddy currents. The design principles
and basic properties of superconducting cavities are ex-
plained as well as the observed performance limitations
and the countermeasures. The ongoing research efforts
towards maximum accelerating fields are addressed and
the coupling of radio frequency power to the particle
beam is treated.

1 Introduction

1.1 Advantages and limitations of super-
conductor technology in accelerators

The vanishing electrical resistance of superconducting
coils as well as their ability to provide magnetic fields
far beyond those of saturated iron is the main motivation
for using superconducting (sc) magnets in all new large
proton, antiproton and heavy ion accelerators2. The
first machine of this kind, the Tevatron [2] at the Fermi
National Accelerator Laboratory (FNAL) near Chicago,
USA, has been operating as a proton-antiproton collider
for many years, featuring centre-of-mass energies of 1800
GeV with excellent luminosity. The successful dipole and
quadrupole magnets developed at FNAL have strongly
influenced the design of the superconducting magnets
for the proton-electron collider HERA [3] at DESY, the
Large Hadron Collider LHC [4] at CERN and the Rel-
ativistic Heavy Ion Collider RHIC [5] at Brookhaven.
Superconductivity does not only open the way to much
higher particle energies but at the same time leads to a
substantial reduction of operating costs. In the normal-
conducting Super Proton Synchrotron SPS at CERN a
power of 52 MW is needed to excite the machine to an
energy of 315 GeV while at HERA a cryogenic plant with
6 MW electrical power consumption is sufficient to pro-
vide the cooling of the superconducting magnets with
a stored proton beam of 920 GeV. Hadron energies in

1Expanded version of a review article in Prog. Part. Nucl.
Phys. 49 (2002) issue 1

2The parameters of high energy lepton and hadron colliders are
summarized in [1].

the TeV regime are practically inaccessible with stan-
dard magnet technology. Another important application
of superconducting materials is in the large experiments
at hadron or lepton colliders where superconducting de-
tector magnets are far superior to normal magnets.

In the case of accelerating cavities the advantage of su-
perconductors is not at all that obvious. In fact three of
the proposed linear electron positron colliders are based
on copper acceleration structures (the ‘Next Linear Col-
lider’ NLC [6] at Stanford, USA, the ‘Japanese Linear
Collider’ JLC [7] at Tsukuba, Japan and the ‘Compact
Linear Collider’ CLIC [8] at CERN, Switzerland) while
only the international TESLA project [9, 10] uses sc nio-
bium cavities. The traditional arguments against super-
conductor technology in linear colliders have been the
low accelerating fields achieved in sc cavities and the high
cost of cryogenic equipment. Superconducting cavities
face a strong physical limitation: the microwave mag-
netic field must stay below the critical field of the su-
perconductor. For the best superconductor for cavities,
niobium, this corresponds to a maximum accelerating
field of about 50 MV/m while normal-conducting cavi-
ties operating at high frequency (above 5 GHz) should
in principle be able to reach 100 MV/m or more. In
practice, however, sc cavities were often found to be lim-
ited at much lower fields of some 5 MV/m and hence
were totally non-competitive for a linear collider. Great
progress was achieved with the 340 five-cell cavities of the
Continuous Electron Beam Accelerator Facility CEBAF
[11] at Jefferson Laboratory in Virginia, USA. These 1.5
GHz niobium cavities were developed at Cornell Univer-
sity and produced by industry. They exceeded the de-
sign gradient of 5 MV/m and achieved 8.4 MV/m after
installation in the accelerator (in several specially pre-
pared cavities even 15-20 MV/m were reached). Building
upon the CEBAF experience the intensive R&D of the
TESLA collaboration has succeeded in raising the accel-
erating field in multicell cavities to more than 25 MV/m.
There is a realistic chance to reach even 35 MV/m, and
to reduce substantially the cost for the cryogenic instal-
lation.

Superconducting magnets operated with direct current
are free of energy dissipation, however, this is not the
case in microwave cavities. The non-superconducting
electrons (see sect. 2) experience forced oscillations in
the time-varying magnetic field and dissipate power in
the material. Although the resulting heat deposition is
many orders of magnitude smaller than in normal cavi-
ties it constitutes a significant heat load on the refrigera-
tion system. As a rule of thumb, 1 W of heat deposited at
2 K requires almost 1 kW of primary ac power in the re-
frigerator. There is now a worldwide consensus that the
overall efficiency for converting primary electric power
into beam power is about a factor two higher for a super-
conducting than for a normal-conducting linear collider
with optimized parameters in either case [12]. Another
definite advantage of a superconducting collider is the
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low resonance frequency of the cavities that can be cho-
sen (1.3 GHz in TESLA). The longitudinal (transverse)
wake fields generated by the ultrashort electron bunches
upon passing the cavities scale with the second (third)
power of the frequency and are hence much smaller in
TESLA than in NLC (f = 11 GHz). The wake fields
may have a negative impact on the beam emittance (the
area occupied in phase space) and on the luminosity of
the collider.

1.2 Characteristic properties of super-
conducting accelerator magnets

Superconducting magnets have a number of properties
which are not found in normal magnets and must be
taken into consideration when designing the dipoles,
quadrupoles and correction magnets of a superconduct-
ing accelerator.

Field quality. A high field quality is needed in the
magnets of a hadron storage ring if one wants to store
an intense particle beam for many hours. The relative
deviation from the ideal dipole or quadrupole field must
not exceed a few parts in 104. This poses no particular
problem with normal magnets whose field distribution is
determined by accurately shaped iron yokes. In a super-
conducting coil, however, the field pattern is governed by
the arrangement of the current conductors and a precise
coil geometry is of utmost importance. The positional
accuracy required for the conductors in the coil is in the
20 µm range. This precision must be maintained in spite
of the huge Lorentz forces acting on the current conduc-
tors: the two halves of a dipole coil repel each other with
a typical force of 106 N (100 tons) per metre length at a
field of 5 Tesla. The coils are confined by strong clamps
which take up the Lorentz forces and define the exact
geometry.

Quenches and magnet protection. A quench is the
transition from the superconducting to the normal state.
Such a transition will invariably occur if any of the three
parameters: temperature, magnetic field or current den-
sity exceeds a critical value. The origin may be heating
by beam losses or by a conductor motion under the in-
fluence of Lorentz forces. At high coil currents a motion
of a few µm may be sufficient since only a tiny energy
deposition, in the order of 1 mJ/g, is needed to heat the
conductor beyond the critical temperature. The reason
for this extreme sensitivity is the very low heat capac-
ity of metals at low temperature (C ∝ T 3 in the limit
T → 0). Liquid helium is the only substance with an
appreciable heat capacity in the 2–4 K range. A good
thermal contact between the superconducting cable and
the helium coolant is essential for the stability of the coil.

If a quench happens in a large dipole the current in the
coil must be reduced to zero in a short time interval (typ-
ically in less than a second at 5 T) to avoid overheating
and possible destruction of the normal conducting part
of the coil. A fast and reliable quench detection and mag-

net protection system is one of the most important safety
features of a superconducting accelerator. It is equally
important to construct the magnets in such a way that
they have a high inherent stability against quenches.

Persistent magnetization currents. The advantage of
superconducting coils turns into a drawback at low fields.
Any field variation induces bipolar magnetization cur-
rents in the superconductor which – in contrast to the
eddy currents in conventional electromagnets – do not
decay exponentially but flow indefinitely. These ‘persis-
tent currents’ generate field distortions which may be-
come intolerably large at low excitation. A well-known
example is the sextupole component measured in all su-
perconducting dipoles. In a machine with very low in-
jection energy like HERA even multipoles of higher or-
der play a role and require a compensation by correction
coils. The persistent currents are not exactly constant
but exhibit a slow, nearly logarithmic time dependence.
The current in the correction coils has to be adjusted to
compensate the drift.

1.3 Characteristic properties of super-
conducting cavities

The fundamental advantage of superconducting niobium
cavities is the extremely low surface resistance of about
10 nΩ at 2 Kelvin as compared to several mΩ in cop-
per cavities. The quality factor Q0 (2π times the ratio
of stored energy to energy loss per cycle) is inversely
proportional to the surface resistance and may exceed
1010. Only a tiny fraction of the incident radio fre-
quency (rf) power is dissipated in the cavity walls, the
lion’s share is transferred to the beam. The physical
limitation of a sc resonator is given by the requirement
that the rf magnetic field at the inner surface has to
stay below the critical field of the superconductor (about
200 mT for niobium), corresponding to an accelerating
field of Eacc = 50 MV/m. In principle the quality fac-
tor should stay constant when approaching this funda-
mental superconductor limit but in practice the curve
Q0 = Q0(Eacc) ends at considerably lower values, of-
ten accompanied with a strong decrease of Q0 towards
the highest gradient reached in the cavity. The main
reasons for the performance degradation are excessive
heating caused by impurities on the inner surface or by
field emission of electrons. The cavity becomes partially
normal-conducting, associated with strongly enhanced
power dissipation. Because of the exponential increase
of surface resistance with temperature this may result in
a run-away effect and eventually a quench of the entire
cavity.

Field emission of electrons from sharp tips is the most
severe limitation in high-gradient superconducting cav-
ities. Small particles on the cavity surface act as field
emitters. By applying the clean room techniques devel-
oped in semiconductor industry it has been possible to
raise the threshold for field emission in multicell cavi-
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ties from about 10 MV/m to more than 20 MV/m in
the past few years. The preparation of a smooth and
almost mirror-like surface by electrolytic polishing is an-
other important improvement.

1.4 Superconducting materials

Both magnets and cavities would profit from a super-
conductor of as high a critical temperature as possible.
Technological difficulties have up to now prevented the
usage of the ceramic high-Tc conductors, hence helium-
cooled niobium and its alloys are still the best choice.
The most common superconductor used in magnets is
niobium-titanium alloy. NbTi magnets are limited to
about 6.5 T at a helium temperature of 4.4 K (pressur-
ized normal helium) and about 8.5 T at 2 K (superfluid
helium). In principle niobium-tin (Nb3Sn) would be a
better conductor for high-field magnets but the material
is very brittle and leads to high costs in the coil produc-
tion.

The demands on the superconductor in a microwave
cavity are rather different. Magnetic flux pinning must
be avoided as it is coupled with hysteretic losses in al-
ternating magnetic fields. This excludes an alloy like
NbTi, and pure niobium turns out the best sc material.
Secondly, a high heat conductivity is needed to guide
the heat generated at the inner cavity surface through
the wall to the liquid helium coolant. There remain two
choices for the cavity layout: the cavity is made from
copper and the inner surface is coated with a thin layer
of Nb or, alternatively, the cavity is made from solid
Nb. The former approach has been taken with great
success with the 350 MHz cavities of the Large Electron
Positron ring LEP [13] at CERN. In the TESLA linear
collider, however, gradients of more than 25 MV/m are
needed, and these are presently only accessible with cav-
ities made from solid niobium. The material must be of
extreme purity with contaminations in the ppm range to
achieve a high heat conductivity at 2 K.

1.5 Outline of the article

The main goal of this article is to present an introduc-
tion into the physical principles and technological chal-
lenges of superconducting magnets and cavities for high
energy particle accelerators. It is not my intention to give
a complete survey of all types of magnets and cavities
built in various laboratories and industries. The paper
is organized as follows. In Sect. 2 the basics of super-
conductivity are outlined with special emphasis on the
features which are relevant for magnets and microwave
cavities. Sect. 3 deals with field calculations of sc accel-
erator magnets. The layout and performance of practical
magnets are described in Sect. 4, the persistent current
effects in Sect. 5. The effect of eddy currents in the cop-
per matrix of the superconducting cable and their inter-
play with the persistent currents are addressed in Sect.

6. Many other interesting and important aspects of su-
perconducting magnets had to be left out. For further
reading I refer to the text books Superconducting Magnet
Systems by H. Brechna [14], Superconducting Magnets by
M.N. Wilson [15], Superconducting Accelerator Magnets
by K.-H. Mess, P. Schmüser and S. Wolff [16] and to
various review articles [17, 18, 19, 20, 21, 22].

The design principles and basic properties of sc cavi-
ties are described in Sect. 7. The observed performance
limitations are discussed as well as the measures taken
to overcome them. In Sect. 8 the fabrication, prepa-
ration and test of practical cavities are presented and
the ongoing research and development towards the high-
est possible accelerating fields is addressed. A topic of
considerable interest for practical accelerators is the cou-
pling of rf power into the cavity and the energy transfer
to the particle beam. An introduction to these issues is
given in Sect. 9. A short appendix deals with thermo-
dynamic properties of superconductors.

For further reading the book RF Superconductivity for
Particle Accelerators by H. Padamsee, J. Knobloch and
T. Hays [23] and several review articles [24, 25, 26, 27]
are recommended.

Within the scope of this article it is impossible to fully
cover the enormous amount of work in the field of sc
magnets and cavities. I hope my selection was fair. A
thorough description of superconductor technology at ac-
celerators can be found in the proceedings of the CERN
Accelerator Schools 1988 and 1995 on Superconductivity
in Particle Accelerators [28]. Moreover, the Handbook
of Accelerator Physics and Technology (A. W. Chao, M.
Tigner Ed.) [29] and the proceedings of recent US Par-
ticle Accelerator Conferences (PAC) and European Par-
ticle Accelerator Conferences (EPAC) contain a wealth
of information on new magnet and cavity developments.

2 Basics of Superconductivity

The unusual features of superconducting magnets and
cavities are closely linked to the physical properties
of the superconductor itself. For this reason a basic
understanding of superconductivity is indispensable for
the design, construction and operation of superconduct-
ing accelerator components. Only the traditional ‘low-
temperature’ superconductors are treated since up to
date the use of ‘high-temperature’ ceramic superconduc-
tors in these devices is rather limited [30, 24]. For more
comprehensive presentations I refer to the excellent text
books by W. Buckel [31] and by D.R. Tilley and J. Tilley
[32].

2.1 Overview

Superconductivity - the infinitely high conductivity be-
low a ‘critical temperature‘ Tc - is observed in a large va-
riety of materials but, remarkably, not in some of the best
normal conductors like copper, silver and gold, except at
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very high pressures. This is illustrated in Fig. 1 where
the resistivity of copper, tin and the ‘high-temperature‘
superconductor YBa2Cu3O7 is sketched as a function of
temperature. Table 2.1 lists some important supercon-
ductors together with their critical temperatures at van-
ishing magnetic field.

Al Hg Sn Pb Nb Ti NbTi Nb3Sn
1.14 4.15 3.72 7.9 9.2 0.4 9.4 18

Table 1: Critical temperature Tc in K of selected supercon-

ducting materials for vanishing magnetic field.

There is an intimate relation between superconductiv-
ity and magnetic fields. W. Meissner and R. Ochsenfeld
discovered in 1933 that a superconducting element like
lead completely expels a weak magnetic field from its
interior when cooled below Tc, while in stronger fields
superconductivity breaks down and the material goes to
the normal state. The spontaneous exclusion of magnetic
fields upon crossing Tc cannot be explained in terms of
the Maxwell equations of classical electrodynamics and
indeed turned out to be of quantum-theoretical origin.
In 1935 H. and F. London proposed an equation which
offered a phenomenological explanation of the field ex-
clusion. The London equation relates the supercurrent
density Js to the magnetic field:

~∇× ~Js = −nse
2

me

~B (1)

where ns is the density of the super-electrons. In combi-
nation with the Maxwell equation ~∇× ~B = µ0

~Js we get
the following equation for the magnetic field in a super-
conductor

∇2 ~B − µ0nse
2

me

~B = 0 . (2)

For a simple geometry, namely the boundary between
a superconducting half space and vacuum, and with a
magnetic field parallel to the surface, Eq. (2) reads

d2By

dx2
− 1

λ2
L

By = 0 with λL =
√

me

µ0nse2
. (3)

Here we have introduced a very important superconduc-
tor parameter, the London penetration depth λL. The
solution of the differential equation is

By(x) = B0 exp(−x/λL) . (4)

So the magnetic field does not abruptly drop to zero
at the superconductor surface but penetrates into the
material with exponential attenuation (Fig. 2). For typ-
ical material parameters the penetration depth is quite
small, namely 20 – 50 nm. In the bulk of a thick super-
conductor the magnetic field vanishes which is just the
Meissner-Ochsenfeld effect.

The justification of the London equation remained ob-
scure until the advent of the microscopic theory of super-
conductivity by Bardeen, Cooper and Schrieffer in 1957.
The BCS theory is based on the assumption that the su-
percurrent is not carried by single electrons but rather by
pairs of electrons of opposite momenta and spins, the so-
called Cooper pairs. The London penetration depth re-
mains invariant under the replacements ns → nc = ns/2,
e → 2e and me → mc = 2me.

Figure 2: The exponential drop of the magnetic field and

the rise of the Cooper-pair density at a boundary between a

normal and a superconductor.

The BCS theory revolutionized our understanding of
superconductivity. All Cooper pairs occupy a single
quantum state, the BCS ground state, whose energy is
separated from the single-electron states by an energy
gap 2∆(T ). The critical temperature is related to the
energy gap at T = 0 by

1.76 kBTc = ∆(0) . (5)

Here kB = 1.38 · 10−23 J/K is the Boltzmann constant.
The magnetic flux through a superconducting ring is
found to be quantized, the smallest unit being the el-
ementary flux quantum

Φ0 =
h

2e
= 2.07 · 10−15 Vs . (6)

These and many other predictions of the BCS theory,
like the temperature dependence of the energy gap and
the existence of quantum interference phenomena, have
been confirmed by experiment and often found practical
application.

A discovery of enormous practical consequences was
the finding that there exist two types of superconduc-
tors with rather different response to magnetic fields.
The elements lead, mercury, tin, aluminium and others
are called ’type I‘ superconductors. They do not ad-
mit a magnetic field in the bulk material and are in the
superconducting state provided the applied field stays
below a critical field Hc (Bc = µ0Hc is usually less than
0.1 Tesla). All superconducting alloys like lead-indium,
niobium-titanium, niobium-tin and also the element nio-
bium belong to the large class of ’type II‘ superconduc-
tors. They are characterized by two critical fields, Hc1
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Figure 1: The low-temperature resistivity of copper, tin and YBa2Cu3O7.

and Hc2. Below Hc1 these substances are in the Meissner
phase with complete field expulsion while in the range
Hc1 < H < Hc2 they enter the mixed phase in which
the magnetic field pierces the bulk material in the form
of flux tubes. Many of these materials remain supercon-
ductive up to much higher fields (10 Tesla or more).

2.2 Energy balance in a magnetic field

A material like lead makes a phase transition from the
normal to the superconducting state when it is cooled be-
low Tc and when the magnetic field is less than Hc(T ).
This is a phase transition comparable to the transition
from water to ice below 0◦C. Phase transitions take place
when the new state is energetically favoured. The rele-
vant thermodynamic energy is here the so-called Gibbs
free energy G (see appendix A). Free energies have been
measured for a variety of materials. For temperatures
T < Tc they are found to be lower in the superconducting
than in the normal state while Gsup approaches Gnorm

in the limit T → Tc, see Fig. 3a. What is now the impact
of a magnetic field on the energy balance? A magnetic
field has an energy density µ0/2 · H2, and according to
the Meissner-Ochsenfeld effect the magnetic energy must
be pushed out of the material when it enters the super-
conducting state. Hence the free energy per unit volume
in the superconducting state increases quadratically with
the applied field:

Gsup(H) = Gsup(0) +
µ0

2
H2 (7)

while the normal-state energy remains unaffected. The
material stays superconductive as long as Gsup(H) <
Gnorm. Equation (7) implies the existence of a maximum
tolerable field, the ‘critical field’, above which supercon-
ductivity breaks down. It is defined by the condition
that the free energies in the superconducting and in the
normal state be equal

Gsup(Hc) = Gnorm ⇒ µ0

2
H2

c = Gnorm−Gsup(0) . (8)

Figure 3b illustrates what we have said. For H > Hc

the normal phase has a lower energy, so the material
goes to the normal state. Equation (8) is also meaningful
for type II superconductors and defines in this case the

Figure 3: (a) Free energy of aluminium in the normal and

superconducting state as a function of T (after N.E. Phillips).

The normal state is achieved by applying a magnetic field

larger than Bc. (b) Schematic sketch of the free energies

Gnorm and Gsup as a function of the applied magnetic field.

thermodynamic critical field which lies between Hc1 and
Hc2. The quantity µ0/2 ·H2

c = Gnorm −Gsup(0) can be
interpreted as the Cooper-pair condensation energy per
unit volume.

2.3 Coherence length and distinction be-
tween type I and type II supercon-
ductors

In very thin sheets of superconductor (thickness < λL)
the magnetic field does not drop to zero at the centre.
Consequently less magnetic energy needs to be expelled
which implies that the critical field of a thin sheet may be
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much larger than the Hc of a thick slab. From this point
of view it might appear energetically favourable for a
thick slab to subdivide itself into an alternating sequence
of thin normal and superconducting slices. The magnetic
energy is indeed lowered that way but there is another
energy to be taken into consideration, namely the energy
required to create the normal-superconductor interfaces.
At the boundary between the normal and the supercon-
ducting phase the density nc of the super-current carri-
ers (the Cooper pairs) does not jump abruptly from zero
to its value in the bulk but rises smoothly over a finite
length ξ, called coherence length, see Fig. 2.

The relative size of the London penetration depth λL

and the coherence length ξ decides whether a material
is a type I or a type II superconductor. Creation of
a boundary means a loss of Cooper-pair condensation
energy in a thickness ξ but a gain of magnetic energy in
a thickness λL. There is a net energy gain if λL > ξ. So
a subdivision of the superconductor into an alternating
sequence of thin normal and superconducting slices is
energetically favourable if the London penetration depth
exceeds the coherence length.

A more refined treatment is provided by the Ginzburg-
Landau theory (see e.g. [32]). Here one introduces the
Ginzburg-Landau parameter

κ = λL/ξ . (9)

The criterion for type I or II superconductivity is found
to be

type I: κ < 1/
√

2
type II: κ > 1/

√
2.

The following table lists the penetration depths and
coherence lengths of some important superconducting
elements. Niobium is a type II conductor but close to
the border to type I, while indium, lead and tin are
clearly in the type I class.

material In Pb Sn Nb
λL [nm] 24 32 ≈ 30 32
ξ [nm] 360 510 ≈ 170 39

The coherence length ξ is proportional to the mean free
path of the conduction electrons in the metal. In alloys
the mean free path is generally much shorter than in pure
metals hence alloys are always type II conductors.

In reality a type II superconductor is not subdivided
into thin slices but the field penetrates the sample in the
form of flux tubes which arrange themselves in a trian-
gular pattern which can be made visible by evaporating
iron atoms onto a superconductor surface sticking out of
the liquid helium. The fluxoid pattern shown in Fig. 4a
proves beyond any doubt that niobium is indeed a type
II superconductor. Each flux tube or fluxoid contains
one elementary flux quantum Φ0 which is surrounded by
a Cooper-pair vortex current. The centre of a fluxoid
is normal-conducting and covers an area of roughly πξ2.
When we apply an external field H fluxoids keep moving

into the specimen until their average magnetic flux den-
sity is identical to B = µ0H. The fluxoid spacing in the

triangular lattice d =
√

2Φ0/(
√

3B) amounts to 20 nm
at 6 Tesla. The upper critical field is reached when the
current vortices of the fluxoids start touching each other
at which point superconductivity breaks down. In the
Ginzburg-Landau theory the upper critical field is given
by

Bc2 =
√

2 κ Bc =
Φ0

2πξ2
. (10)

For niobium-titanium with an upper critical field Bc2 =
14 T this formula yields ξ = 5nm. The coherence length
is larger than the typical width of a grain boundary in
NbTi which means that the supercurrent can freely move
from grain to grain. In high-Tc superconductors the co-
herence length is often shorter than the grain boundary
width, and then current flow from one grain to the next
is strongly impeded.

2.4 Flux flow resistance and flux pinning

For application in accelerator magnets a superconducting
wire must be able to carry a large current in the presence
of a field of 5 – 10 Tesla. Type I superconductors are def-
initely ruled out because their critical field is far too low
(below 0.1 Tesla). Type II conductors appear promising
at first sight: they feature large upper critical fields, and
high currents are permitted to flow in the bulk material.
However there is the problem of flux flow resistance. A
current flowing through an ideal type II superconductor,
which is exposed to a magnetic field, exerts a Lorentz
force on the flux lines and causes them to move through
the specimen, see Fig. 4b. This is a viscous motion and
leads to heat generation. So although the current itself
flows without dissipation the sample acts as if it had an
Ohmic resistance. The statement is even formally cor-
rect. The moving fluxoids represent a moving magnetic
field which, according to theory of special relativity, is
equivalent to an electric field ~Eequiv = ~B × ~v/c2 . It is
easy to see that ~Eequiv and ~J point in the same direction
just like in a normal resistor. Flux flow resistance has
been experimentally established [33].

To obtain useful wires for magnet coils flux flow has to
be prevented by capturing the fluxoids at pinning cen-
tres. These are defects or impurities in the regular crystal
lattice. The most important pinning centres in niobium-
titanium are normal-conducting titanium precipitates in
the so-called α phase whose size is in the range of the
fluxoid spacing (≈ 10 nm at 6 Tesla). Figure 5 shows a
microscopic picture of a conductor with very high current
density (3700 A/mm2 at 5 T and 4.2 K).

A type II superconductor with strong pinning is called
a hard superconductor. Hard superconductors are very
well suited for high-field magnets, they permit dissipa-
tionless current flow in high magnetic fields. There is a
penalty, however: these conductors exhibit a strong mag-
netic hysteresis which is the origin of the very annoying
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Figure 4: (a) Fluxoid pattern in niobium (courtesy U. Ess-

mann). The distance between adjacent flux tubes is 0.2 µm.

(b) Fluxoid motion in a current-carrying type II supercon-

ductor.

Figure 5: Micrograph of NbTi. The α-titanium precipitates

appear as lighter strips. The area covered is 840 nm wide and

525 nm high. Courtesy P.J. Lee and D.C. Larbalestier.

’persistent-current‘ multipoles in superconducting accel-
erator magnets.

2.5 Magnetization of a hard supercon-
ductor

A type I superconductor shows a reversible response3 to
a varying external magnetic field H. The magnetization
is given by the straight line M(H) = −H for 0 < H < Hc

and then drops to zero. An ideal type II conductor with-
out any flux pinning should also react reversibly. A hard
superconductor, on the other hand, is only reversible in
the Meissner phase because then no magnetic field en-
ters the bulk, so no flux pinning can happen. If the
field is raised beyond Hc1 magnetic flux enters the sam-
ple and is captured at pinning centres. When the field
is reduced again these flux lines remain bound and the
specimen keeps a frozen-in magnetization even for van-
ishing external field. One has to invert the field polarity
to achieve M = 0 but the initial state (H = 0 and no
captured flux in the bulk material) can only be recovered
by warming up the specimen to destroy superconductiv-

3This statement applies only for long cylindral or elliptical sam-
ples oriented parallel to the field.

ity and release all pinned flux quanta, and by cooling
down again.

A typical hysteresis curve is shown in Fig. 6. There
is a close resemblence with the hysteresis in iron except
for the sign: the magnetization in a superconductor is
opposed to the magnetizing field because the physical
mechanism is diamagnetism. The magnetic hysteresis is

Figure 6: Measured magnetization M of a multifilamentary

niobium-titanium conductor [34]. Shown is the initial excita-

tion, starting at B = µ0H = 0 and M = 0, and the magnetic

hysteresis for an external field B varying between +0.5 T and

-0.5 T. Note that the hysteresis curve is not exactly symmet-

ric with respect to the horizontal axis. The slight asymmetry

is due to surface currents (Meissner-Ochsenfeld effect) whose

magnetic moment is always opposed to the applied field.

associated with energy dissipation. When a hard super-
conductor is exposed to a time-varying field and under-
goes a cycle like the loop in Fig. 6, the energy loss is
given by the integral

Qhyst =
∮

µ0M(H)dH . (11)

It is equal to the area enclosed by the loop. This en-
ergy must be provided by the power supply of the field-
generating magnet and is transformed into heat in the
superconductor when magnetic flux quanta are moved
in and out of the specimen.

2.6 Critical current density

For a hard superconductor, not only temperature T and
magnetic field H have to be specified but also current
density J . The material can be conveniently character-
ized by its critical surface in a (T, H, J) coordinate sys-
tem. For the most important conductor used in mag-
nets, niobium-titanium, this surface is depicted in Fig.
7. Superconductivity prevails everywhere below the sur-
face and normal conductivity above it. A hard super-
conductor is not exactly free of any resistance. The crit-
ical current density (at a given temperature and field)

7



is usually defined by the criterion that the resistivity be
ρ = ρc = 10−14 Ωm. In the vicinity of this point the
resistivity is a very steep function of current density. It
can be parametrised with a power law

ρ(J) = ρc

(
J

Jc

)n

. (12)

The exponent n is a quality index which may be as large
as 50 for a good multifilamentary NbTi conductor.

Figure 7: Sketch of the critical surface of NbTi. Also indi-

cated are the regions where pure niobium and pure titanium

are superconducting. The critical surface has been truncated

in the regime of very low temperatures and fields where only

sparse data are available.

2.7 Superconductors in microwave fields

Superconductivity in microwave fields is not treated ade-
quately in standard text books. For this reason I present
in this section a simplified explanation of the important
concepts. A similar treatment can be found in [23]. Su-
perconductors are free from energy dissipation in direct-
current (dc) applications, but this is no longer true for al-
ternating currents (ac) and particularly not in microwave
fields. The reason is that the high-frequency magnetic
field penetrates a thin surface layer and induces oscil-
lations of the electrons which are not bound in Cooper
pairs. The power dissipation caused by the motion of
the unpaired electrons can be characterized by a surface
resistance. In copper cavities the surface resistance is
given by (see sect. 7.4.3)

Rsurf =
1
δσ

(13)

where δ is the skin depth and σ the conductivity of the
metal.

The response of a superconductor to an ac field can
be understood in the framework of the two-fluid model 4.

4A similar model is used to explain the unusual properties of

An ac current in a superconductor is carried by Cooper
pairs (the superfluid component) as well as by unpaired
electrons (the normal component). Let us study the re-
sponse to a periodic electric field. The normal current
obeys Ohm’s law

Jn = σn E0 exp(−iωt) (14)

while the Cooper pairs receive an acceleration mc v̇c =
−2eE0 exp(−iωt), so the supercurrent density becomes

Js = i
nc 2 e2

meω
E0 exp(−iωt) . (15)

If we write for the total current density

J = Jn + Js = σE0 exp(−iωt) (16)

we get a complex conductivity:

σ = σn + iσs with σs =
2 nce

2

me ω
=

1
µ0λ2

L ω
. (17)

We know already that the rf magnetic field penetrates
a superconductor much less than a normal conductor,
namely only to a depth λL. The surface resistance is the
real part of the complex surface impedance

Rsurf = Re

(
1

λL(σn + iσs)

)
=

1
λL

· σn

σ2
n + σ2

s

. (18)

Since σ2
n � σ2

s at microwave frequencies one can dis-
regard σ2

n in the denominator and obtains Rsurf ∝
σn/(λLσ2

s). So we arrive at the surprising result that
the microwave surface resistance is proportional to the
normal-state conductivity.

The conductivity of a normal metal is given by the
classic Drude expression

σn =
nne2`

mevF
(19)

where nn is the density of the unpaired electrons, ` their
mean free path and vF the Fermi velocity. The nor-
mal electrons are created by thermal breakup of Cooper
pairs. There is an energy gap Eg = 2∆(T ) between the
BCS ground state and the free electron states. By anal-
ogy with the conductivity of an intrinsic (undoped) semi-
conductor we get nn ∝ exp(−Eg/(2kBT )) and hence

σn ∝ ` exp(−∆(T )/(kBT )) . (20)

Using 1/σs = µ0λ
2
Lω and ∆(T ) ≈ ∆(0) = 1.76kBTc we

finally obtain for the BCS surface resistance

RBCS ∝ λ3
L ω2 ` exp(−1.76 Tc/T ) . (21)

This formula displays two important aspects of mi-
crowave superconductivity: the surface resistance de-
pends exponentially on temperature, and it is propor-
tional to the square of the rf frequency.

liquid helium below 2.17 K in terms of a normal and a superfluid
component.
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3 Field Calculations for Acceler-
ator Magnets

The field calculation for superconducting magnets is
quite different from that of normal magnets with iron
yokes. The mathematical methods are elegant and of
general interest, so I present them in some detail.

3.1 Multipole expansion for a single cur-
rent conductor

A schematic view of a superconducting dipole for a large
accelerator is given in Fig. 8. The length of the magnet

Figure 8: Schematic view of a superconducting dipole coil.

is much larger than its aperture and the current conduc-
tors run parallel to the beam over the longest part of
the magnet, except for the short coil heads. The dipole
magnets follow the beam orbit but the deviation from a
straight line is small so one can consider the magnetic
field essentially as two-dimensional and apply the theory
of analytic functions. In a region in space which is free
of any currents and magnetized materials, the magnetic
field fulfils the following two equations

~∇ · ~B = 0, ~∇× ~B = 0 . (22)

This implies that we can express ~B either as the curl of
the familiar vector potential ~A or as the gradient of a
scalar magnetic potential V

~B = ~∇× ~A , ~B = −~∇V . (23)

For our two-dimensional problem the vector potential
has only a z component. The x and y components of the
magnetic field vector can be computed in two ways

Bx = −∂V

∂x
=

∂Az

∂y
, By = −∂V

∂y
= −∂Az

∂x
. (24)

The complex potential function

Ã(x, y) = Az(x, y) + iV (x, y) (25)

is an analytic function of the complex variable ζ = x+ iy
since the equations (24) are identical with the Cauchy-
Riemann conditions for the real and imaginary part of

an analytic function. So one can expand Ã in a power
series about the origin

Ã(x, y) =
∞∑

n=0

cn(x + iy)n (26)

which converges in the largest circle which contains nei-
ther current nor magnetized material. Taking the deriva-
tives of (26), we obtain the multipole expansions for the
components of the magnetic field vector5.

Having shown that any two-dimensional field in vac-
uum can be expanded in a multipole series, we now com-
pute this series explicitely for a very simple case, namely
a single current-carrying wire. The magnet axis is cho-
sen as the z direction of a cylindrical coordinate system
(r, θ, z), shown in Fig. 9a. In the almost straight sec-
tion of the magnet all current conductors are parallel to
the z axis and can be considered as infinitely long since
the transverse dimensions are small. Consider first a line
current in the positive z direction which flows exactly on
the z axis. The magnetic field lines are concentric circles
around the z axis, so the field is purely azimuthal and
has the familiar form Bθ = µ0I/(2πr). The vector po-
tential generated by the current has only a z component:
Az(r, θ) = −µ0I ln r/(2π).

Take now a current parallel to the z axis but located
at an arbitrary point (r = a, θ = φ) in the (r, θ) plane,
see Fig. 9b. The vector potential has almost the same
form:

Az(r, θ) = −µ0I

2π
ln

(
R

a

)
(27)

with R =
√

a2 + r2 − 2ar cos(θ − φ) the distance be-
tween the current and the point P = (r, θ) at which
we want to evaluate Az . Let us consider the case r < a.

Figure 9: (a) Coordinate system for the multipole expan-

sion. (b) Field calculation for a line current.

Then we write with α = θ − φ

R2 = a2[1− (r/a) exp(iα)][1− (r/a) exp(−iα)]

5Another frequently used possibility is to define an analytic
function by B̃ = By + iBx. We prefer the vector potential since
a single scalar quantity, Az in this case, is sufficient to compute
the magnetic field pattern. For current-dominated magnets the
vector potential is in fact very practical [14] because the vector ~A

is parallel to the current density ~J . For conventional magnets the
scalar potential is more adequate because the iron pole shoes are
equipotential surfaces for µ� 1.
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ln(R/a) =
1
2

ln[1−(r/a) exp(iα)]+
1
2

ln[1−(r/a) exp(−iα)]

Now we use the Taylor expansion of the logarithm

ln(1− ξ) = −ξ − 1
2
ξ2 − 1

3
ξ3 − . . .− 1

n
ξn − . . .

which converges for arbitrary complex numbers ξ with
|ξ| < 1. The vector potential for r < a is then given by
the multipole expansion

Az(r, θ) =
µ0I

2π

∞∑
n=1

1
n

( r

a

)n

cos[n(θ − φ)] . (28)

A single line current produces multipole fields of all or-
ders n.

3.2 Generation of pure multipole fields

We consider now an arrangement of current conductors,
running parallel to the z direction, which are mounted
on a cylinder of radius a. A pure multipole field, con-
taining just the single order n = m, is obtained inside
the cylinder if the current distribution as a function of
the azimuthal angle φ is given by

I(φ) = I0 cos(mφ) . (29)

The statement is easily proved by computing the vector
potential resulting from the current distribution (29):

Az(r, θ) =
µ0I0

2π

∞∑
n=1

1
n

( r

a

)n
∫ 2π

0

cos(mφ) cos[n(θ − φ)]dφ .

From cos[n(θ − φ)] = cos(nθ) cos(nφ) + sin(nθ) sin(nφ)
and the orthogonality of the trigonometric functions fol-
lows immediately that the integral vanishes unless n =
m, so only a single term in the sum remains:

Az(r, θ) =
µ0I0

2
· 1
m

( r

a

)m

cos(mθ) . (30)

The magnetic field components are

Bθ(r, θ) = −∂Az

∂r
= −µ0I0

2a

( r

a

)m−1

cos(mθ) ,

Br(r, θ) =
1
r

∂Az

∂θ
= −µ0I0

2a

( r

a

)m−1

sin(mθ) .(31)

For m = 1 and 2 we obtain dipole and quadrupole fields.
The coils are shown in Fig. 10, together with the iron
yokes of the corresponding normal magnets. The fields
(31) are called normal multipole fields. If we rotate the
current distribution (29) by an angle of π/(2m), we ob-
tain a sin(mφ) distribution leading to skew multipole
fields. A skew dipole, for instance, has a horizontal
field. Such magnets are needed to correct the particle
orbit in the vertical plane. All other skew multipoles are
quite undesirable in an accelerator. Skew quadrupole
fields arise from an angular misalignment of the normal
quadrupoles. They have the unpleasant feature of cou-
pling horizontal and vertical betatron oscillations. A few
correction quadrupoles, rotated by 45◦ around their axis,
are usually needed to eliminate the coupling.

Figure 10: Generation of pure dipole and quadrupole fields

by cos(φ) resp. cos(2φ) current distributions and by conven-

tional magnets with iron pole shoes.

3.3 Approximation of pure multipole
coils by current shells

Current distributions with a cos(mφ) dependence are dif-
ficult to fabricate with a superconducting cable of con-
stant cross section. They can be approximated with suf-
ficient accuracy by current shells or current blocks.

The quality of such an approximation can be judged
from the general multipole expansion:

Bθ(r, θ) = Bref

∞∑
n=1

(
r

r0

)n−1

[bn cos(nθ)− an sin(nθ)] ,

Br(r, θ) = Bref

∞∑
n=1

(
r

r0

)n−1

[an cos(nθ) + bn sin(nθ)] .

(32)
Here r0 is a reference radius, which should be in the
same order as the maximum deviation of the particles
from the centre axis of the magnet. The quantity Bref

is a reference field, namely the magnitude of the main
field at the reference radius, so Bref = B1 for a dipole
and Bref = B2(r0) = g · r0 for a quadrupole (g is the
gradient). The bn are called the normal multipole coeffi-
cients, the an are the skew coefficients6. With the above
choice of Bref the main coefficient is normalized to unity:
b1 = 1 in a dipole, b2 = 1 in a quadrupole. The remain-
ing coefficients should be very small for a good magnet,
typically |an|, |bn| < 1 · 10−4.

6In the American literature it is convention to start the mul-
tipole series with n = 0: By + iBx = Bref

∑∞
n=0

(bn +

ian) (x + iy)n /rn
0 . The multipole indices are therefore lower by

one unit, so a normal dipole, quadrupole, sextupole is denoted by
b0, b1, b2, respectively, and similarly for the skew multipoles.
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We observe that the ideal multipole coils of Fig. 10
have well defined symmetries. In a dipole coil, for any
line current +I at an angle φ, there exist three more
currents: +I at −φ and −I at π − φ and π + φ, see Fig.
11a. The vector potential of these four currents, using
Eq. (28), is

Az(r, θ) =
2µ0I

π

∑
n=1,3,5,...

1
n

( r

a

)n

cos(nφ) cos(nθ) .

(33)
Only the cos(nθ) terms remain, hence we can draw an
important conclusion: a coil with dipole symmetry pos-
sesses only normal multipoles of odd order. Even orders
and skew multipoles are absent. Similarly, a coil with
quadrupole symmetry has only normal multipoles and
the ‘allowed’ orders are odd multiples of the lowest order
2: n = 2, 6, 10, 14, . . ..

Figure 11: (a) Four line currents with dipole symmetry.

(b) Simplest current-shell arrangement for a dipole coil.

The simplest current shell arrangement with dipole
symmetry is shown in Fig. 11b. We take a constant
current density J and compute the vector potential in-
side the coil using Eq. (33)

Az(r, θ) = C
∑

n

cos(nθ)
n

∫ a2

a1

( r

a

)n

a da

∫ φl

0

cos(nφ) dφ

with C = 2µ0J/π. The limiting angle of the current shell
is denoted by φl and the radii are a1, a2. The integra-
tions can be done analytically. For a thin current shell
with ∆a = a2 − a1 � a = 1

2 (a1 + a2) the result is

Az(r, θ) =
2µ0Ja∆a

π

∑
n=1,3,5,...

1
n2

( r

a

)n

sin(nφl) cos(nθ) .

(34)
The multipole coefficients of this coil are

bn =
1
n

(r0

a

)n−1 sin(nφl)
sin(φl)

, n = 1, 3, 5, ... (35)

Choosing a limiting angle of φl = 60◦ the sextupole term
b3 vanishes. Then the first non-vanishing higher multi-
pole is the decapole n = 5. For typical coil dimensions
b5 is a few percent, two orders of magnitude larger than
is tolerable. A single-layer current shell with constant

current density is therefore too rough an approximation
for a dipole coil. With two current shells, the sextupole
and decapole can both be made to vanish by choosing
a limiting angle of about 72◦ in the inner and of 36◦

in the outer layer. The Tevatron dipoles are built this
way. There remain higher coefficients (b7, b9) which are
in the order of 10−3. A further reduction of these and
all higher multipoles below the 10−4 level is possible by
placing wedge-shaped insulators into the inner and outer
coil layer. The HERA and LHC magnets are constructed
in this manner (Fig. 12a).

Figure 12: (a) A two-shell dipole coil with longitudinal

wedges in the inner and outer layer for improved field homo-

geneity. The coil is confined by non-magnetic collars. Coils

of this type are used in the HERA and LHC magnets.

(b) Cross section of a quadrupole coil (Tevatron, HERA).

A single-layer quadrupole coil has a vanishing 12-pole
(n = 6) but a b10 of about 2%. In the Tevatron and
HERA quadrupoles two shells with additional wedges are
used (Fig. 12b), and then most of the higher multipoles
are in the 10−4 range or lower.

3.4 Iron yoke

The dipole and quadrupole magnets are equipped with
an iron yoke with a cylindrical inner bore which con-
fines the magnetic field. Its influence on the field at the
particle beam can be analyzed with the method of im-
age currents provided the iron is not saturated and the
permeability µ is uniform. Consider a current I at a ra-
dius a inside a hollow iron yoke whose inner surface is a
cylinder of radius Ry. The effect of the iron on the inner
field is equivalent to that of an image current I ′ which is
located at the image radius a′ = R2

y/a:

I ′ =
µ− 1
µ + 1

· I , a′ =
R2

y

a
. (36)

The image current I ′ flows parallel to the real current I
and enhances the inner field. Fig. 13 shows the images
of a single line current and of a current shell. In the
latter case the image current density is lower due to the
increased area.
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J ′ =
µ− 1
µ + 1

· J ·
(

a

Ry

)4

with a =
√

a1a2 . (37)

Figure 13: (a) Image of a line current inside a hollow iron

yoke. (b) Image of a single-shell dipole coil.

For a single-layer dipole coil with concentric iron yoke
the dipole component is

B1 =
2µ0 sin(φl)

π
(J∆a + J ′∆a′) . (38)

Here the first term in the bracket is the coil contribution
and the second term the iron contribution. Now J ′∆a′ =
(µ− 1)/(µ + 1) · J∆a · (a/Ry)2 . So for µ � 1

(B1)iron/(B1)coil = (a/Ry)2 . (39)

As a simple example we consider the inner coil shell in
the HERA dipole with an average radius a = 42.5 mm
and a yoke radius Ry = 88.4 mm. In this case the relative
iron contribution to the total dipole field on the axis is
19%.

For higher multipole orders n the iron contribution is
much smaller:

(Bn)iron/(Bn)coil = (a2/R2
y)n . (40)

For the sextupole field B3 this amounts to about 1.3% in
the above example. The normalized sextupole coefficient
b3 = B3/B1, however, is reduced by about 18% because
of the 19% iron contribution to the dipole field. Note that
in a two-layer coil the sextupole and the allowed higher
poles are modified by the yoke because the mirror image
inverts the inner and outer coils. The limiting angles
of the coil shells are adjusted in such a way that the
sextupole vanishes when the coil is mounted inside the
yoke. An important observation is that an unsaturated
iron yoke does not create any new multipoles.

3.5 Iron yoke saturation

The image current method fails when the iron yoke
approaches saturation and the permeability µ becomes
position-dependent. Finite element programs are needed
to compute the field pattern. With iron saturation the
relation between dipole field B1 and current I is no longer

linear and current-dependent sextupole and decapole co-
efficients arise. The saturation effects depend strongly
on the proximity between coil and yoke. Three typical
cases shall be considered.

3.5.1 ‘Warm-iron’ dipole

In the Tevatron magnets (Fig. 14) the yoke is outside the
cryostat and thus fairly far away from the coil. In this
type of magnet saturation is almost negligible up to the
critical current of the conductor. The iron contribution
to the dipole field is about 10%; the field depends linearly
on the current and no higher multipoles are observed.

Figure 14: The Tevatron ‘warm-iron’ dipole [17].

3.5.2 ‘Cold-iron’ dipole

For the RHIC collider a dipole was developed type whose
coil is surrounded by a soft-iron yoke that is contained in
the liquid helium cryostat. The yoke contributes about
35% to the central field, so a substantial saving in su-
perconductor is possible. In the first version of the
RHIC dipole strongly current-dependent sextupole and
decapole coefficients were present but in the final design
considerable progress has been achieved by increasing
the thickness of the glass-phenolic spacer between coil
and yoke and by punching holes into the iron yoke lam-
inations at suitable positions. In the range of operation
the saturation-induced multipoles deviate from the aver-
age by only ±2.5 · 10−4 for b3 and ±0.4 · 10−4 for b5 , see
Fig. 15.

3.5.3 ‘HERA-type’ dipole

A third type, devised at DESY, combines the coil of
the warm-iron design, confined by non-magnetic clamps,
with an iron yoke inside the cryostat (Fig. 16). Here,
the non-linearity in field versus current is quite moder-
ate (< 0.5% at 6 T) and the sextupole variation stays
below 1 · 10−4.
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In the Large Hadron Collider LHC the two counter-
rotating proton beams are bent and focused by twin-
aperture magnets, having two coils of opposite polarity in
a common iron yoke. A cross section is shown in Fig. 17.
At the design field of 8.36 T, corresponding to a proton
energy of 7000 GeV, there is significant iron saturation
in the centre region. The resulting normal quadrupole
component is minimized by a suitable hole pattern in
the iron yoke. The remaining b2 of about 2 · 10−4 at
high field is compensated by the quadrupole magnets in
the LHC ring which are powered independently from the
dipoles.

Figure 15: The current dependence of b3 and b5 in the first

design (dotted curves) and in the final design (solid curves) of

the RHIC dipole. The persistent-current contributions have

been subtracted (R. Gupta, private communication).

Figure 16: Cross section of the HERA dipole magnet. The

coil is clamped by an aluminium-alloy collar and then sur-

rounded by a cold-iron yoke.

3.6 End field

Due to the complexity of the current distribution the
field calculation at the coil end can only be done numer-
ically. For long magnets the end fields play a minor role
but the perturbations may be strong enough to require a
compensation in the straight section. A simple coil end
without spacers between the windings yields a large neg-
ative sextupole field. In the Tevatron dipoles this end-
field sextupole is compensated by a purposely introduced
positive sextupole in the straight section. In more recent
designs the windings in the coil head are spread out by

Figure 17: A cross section of the twin-aperture LHC dipole

with computed field lines in the iron. One can see very clearly

that the field pattern is influenced by the arrangement and

size of the holes in the iron yoke. For the RHIC and LHC

magnets great care was taken to optimize the hole pattern in

the yoke for minimum field distortions. This cannot be done

analytically but needs numerical optimization codes. (Cour-

tesy S. Russenschuck).

epoxy-fibreglass spacers. This is shown schematically in
Fig. 18a. With a suitable choice of spacers the sextupole
produced by the coil ends has both positive and negative
values (Fig. 18b) and averages to zero. The spacers have
the additional benefit of preventing local field enhance-
ments.

4 Layout and Properties of Prac-
tical Accelerator Magnets

4.1 Superconducting cable

Of the large variety of superconducting alloys and com-
pounds only two materials are commercially available for
large scale magnet production, niobium-titanium NbTi
and niobium-tin Nb3Sn. The ‘work horse’ is niobium-
titanium in spite of the fact that its upper critical field
is only 10 T at 4.2 K. The outstanding feature of NbTi
is its extreme ductility which permits effective and sim-
ple fabrication methods for wires and cables. For this
reason it is widely used in magnets of moderate field
strength (up to 6.5 T at 4.2 K). Cooling with superfluid
helium of 2 K increases the field level to about 9 T. The
optimum titanium proportion in the alloy is 46.5% (by
weight). For higher fields Nb3Sn with an upper criti-
cal fields of about 18 T at 4.2 K is used. Niobium-tin
is an intermetallic compound of well-defined stoichiome-
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Figure 18: (a) Schematic view of coil head with spacers.

(b) Measured dipole and sextupole end field of a HERA dipole

for a current of 10 A in the normal state.

try. Because of its brittleness Nb3Sn cannot be drawn to
thin filaments but must be formed in the final shape by
a long heat treatment at 700◦C. Multifilamentary Nb3Sn
strands are very sensitive to mechanical stress; bending
with a small radius of curvature such as needed in the
coil heads of accelerator magnets leads to a severe loss
in current-carrying capacity.

The cables used in the coils of accelerator magnets con-
sist of 20–40 wires (strands) of about 1 mm diameter. It
is impossible to use wires made from pure superconduc-
tor. They would be extremely vulnerable against flux
jumps during magnet excitation, the release of magnetic
flux bundles from their pinning centres. Such flux jumps
are accompanied with a heating of the material, often
beyond the critical temperature. Since NbTi has a fairly
high resistivity in the normal state the transport current
would then cause a quench of the coil. Only thin su-
perconductor filaments (diameter below 50 µm for NbTi
at 5 T and 4.2 K) are stable against flux jumps [15].
Therefore one uses multifilamentary wires which consist
of a large number of thin filaments embedded in a copper
matrix which provides mechanical stability and serves as
an electrical bypass of high conductivity. Cross sections
of two typical strands are shown in Fig. 19.

If a filament should be heated beyond the critical tem-
perature, for instance by a small flux jump, the current
is taken over by the copper, allowing the NbTi to cool
down and recover superconductivity. In order to fulfil
these tasks the copper must be in as good an electrical
and thermal contact with the superconductor as possible.
High purity copper with excellent electrical and thermal
conductivity at 4.2 K is needed. The so-called residual
resistivity ratio RRR, the ratio of the resistivities at 300
K and 10 K, should exceed 100.

The most stringent constraint on the filament size de-
rives from the field distortions due to persistent magne-
tization currents which are proportional to the filament
diameter. With present technology, NbTi filament di-
ameters of 5–6 µm are an optimum. A further reduction
is costly and will eventually lead into the wrong direc-

Figure 19: Cross sections of two NbTi multifilamentary

strands made by Vacuumschmelze. Left side: strand used

in the HERA quadrupoles, 636 filaments of 19 µm diameter.

Right side: prototype strand for an LHC dipole with 10164

filaments of 5 µm diameter, made by a two-stage extrusion

and stacking procedure. (Courtesy H. Krauth).

tion because at very small inter-filament spacings a prox-
imity coupling occurs, basically a quantum-mechanical
tunnelling of Cooper pairs through the normal material
between adjacent filaments. In the coupling regime the
superconductor magnetization grows with decreasing fil-
ament diameter.

The filaments in a strand are twisted with a pitch of
typically 25 mm to suppress induced currents between
different filaments during a field sweep. Also the strands
in the cable are transposed with a pitch length of about
100 mm. The ramp rate in proton storage rings is small,
for instance 0.01 T/s in HERA. In this case it is unnec-
essary to insulate the strands in the cable against each
other. In the Tevatron magnets, every second strand is
covered with an oxide layer to permit higher ramp rates.

Most superconducting accelerator magnets are made
from a multi-strand cable of the so-called Rutherford
type, sketched in Fig. 20. The wires are twisted and
compressed into a flat two-layer cable. The cable insu-
lation is permeable to liquid helium so the surface of all
strands is wetted with the coolant. Owing to its high
heat capacity the helium acts as a heat sink and stabi-
lizes the conductor in case of transient heat production
caused by wire motion.

Figure 20: (a) Rutherford cable with Kapton and glass-fibre

insulation such as used in the Tevatron and HERA magnets.

The glass-fibre tape is pre-impregnated with B-stage epoxy

which cures at temperatures above 120◦C. In the RHIC and

LHC coils the second insulation layer is also made from Kap-

ton. (b) Cross section of the cable.
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Ideally the cable should have a trapezoidal cross sec-
tion matching an appropriate azimuthal subdivision of
the current shells. This is technically possible for mag-
nets with an inner diameter of 75 mm or more (Tevatron,
HERA, RHIC) but meets some difficulties at smaller di-
ameters (LHC). The cable design has to ensure tight
packing of the strands to prevent wire motion during
excitation.

4.2 Coil production

The superconducting coil is the most critical component
of a magnet and a sound design is the prerequisite for
achieving a high field level. The presently favoured de-
sign has evolved over the past 25 years. The basic princi-
ples stem from the dipoles and quadrupoles of the Teva-
tron. The demanding task of fabricating long magnets
with cross sectional accuracies in the order of a few hun-
dredths of a millimetre was first solved at Fermilab with
the introduction of laminated tooling. The basic idea is
that the coil has to conform with such tight tolerances
at any cross section whereas in longitudinal direction the
requirements are more relaxed. Attempts to produce
solid mandrels and moulds for coil winding and curing
by standard machining techniques turned out too costly
and did not comply with the required precision. Precise
laminations can be punched at moderate cost and are
then assembled to long units of tooling.

Here I shortly describe the fabrication of the half coils
of the HERA dipoles. The winding mandrel is stacked
from punched steel laminations providing a geometri-
cal accuracy of 0.02 mm at any coil cross section. The
Rutherford cable is wound with an electronically con-
trolled tension of 200 N. First, the inner half-coil com-
prising 32 turns is wound. It is covered with a mould,
transferred to a hydraulic press and heated to 90◦C.
When the B-stage epoxy in the glass-fibre insulation has
become soft the coil is compressed to the required shape
and afterwards cured at 160◦C. The assembly is shown
in Fig. 21. The outer half-coil with 20 turns is wound
on top of the cured inner half-coil and then the whole
assembly is baked out again. A 100-mm-long solder
joint serves as an electrical connection. The resistance of
about 10−9 Ω is sufficiently low that the produced heat
is easily conducted away by the liquid helium. The inner
and outer coil are separated by a 0.5 mm thick epoxy-
fibreglass layer with slots for helium passage.

The two half coils are put together and surrounded
with clamps or ‘collars’ which provide the precise coil
geometry and, most importantly, the large pre-stress in
the coil needed for good performance at high field. Also
the collars are assembled from precision-stamped lami-
nations. The material is aluminium alloy or stainless-
steel (316 LN, Nitronic 40 or DIN 1.4429). Care must be
taken that material preserves its low magnetic suscepti-
bility when cooled to liquid-helium temperature.

Figure 21: The inner half coil of a HERA dipole after com-

pression and curing. For clarity the curing mould has been

shifted upwards.

4.3 Mechanical accuracies

In Sect. 3 we have shown that the ideal cos φ current dis-
tribution of a dipole can be approximated by using two
coil layers with properly adjusted limiting angles and by
spreading the current distribution with the help of longi-
tudinal wedges. Theoretical multipole coefficients below
10−4 are easy to achieve. There is not much use to strive
for smaller harmonics since in real magnets the man-
ufacturing tolerances readily outweigh these theoretical
numbers. For a single-layer dipole coil whose field is eas-
ily computed analytically we want to discuss two typical
geometrical errors and evaluate their influence on field
quality. If the limiting angle φl of the current shell dif-
fers from 60◦ the sextupole coefficient is no longer zero.
It can be computed from Eq. (35)

b3 =
1
3

(r0

a

)2 sin(180◦ + 3δφl)
sin(60◦ + δφl)

(41)

where δφl is the angular error. The condition that
|b3| ≤ 1 · 10−4 requires δφl ≤ 0.25 mrad, i.e. the arc
length of a half coil must be accurate to 10 µm for an av-
erage coil radius of 40 mm. The position of the mid-plane
between the top and bottom half coil of a magnet may
move as a consequence of fabrication tolerances. During
assembly of the clamps under high pressure the half-coils
are compressed like two springs. The mid-plane adjusts
itself depending on the relative size and spring constants
of the half-coils. A typical displacement of 20 µm pro-
duces a skew quadrupole a2 = 1.3 · 10−4.

In the general case, various conceivable distortions of
the coil geometry can be characterized by a transfor-
mation matrix which deforms an ideal coil in such a way
that the matrix elements influence either only the normal
multipoles bn or the skew poles an. From the measured
multipole coefficients of a magnet one can then compute
by matrix inversion the geometrical errors in the coil and
apply appropriate corrections, for instance by shimming,
that is by placing thin stainless-steel strips between the
insulated coil package and the confining structure.
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From a comprehensive analysis one concludes that me-
chanical accuracies in the 20 µm range are needed to sat-
isfy the field homogeneity requirements. The best qual-
ity control on the coil accuracy is provided by multipole
measurements. Figure 22 shows the normal and skew
multipole coefficients of the HERA dipoles at a field of
4.7 T. Most of the coefficients are very small and well
within the limits of ±0.5 · 10−4, which were used in the
particle tracking programs for determining the dynamic
aperture (maximum stable beam size) of the HERA stor-
age ring. Two coefficients show a larger scattering: the
normal sextupole b3, which is particularly sensitive to
slight changes in the limiting angles of the coil shells,
and the skew quadrupole a2, which may arise from an
up-down asymmetry of the coil.

Figure 22: The normal (bn) and skew (an) multipole co-

efficients of the HERA dipoles at 4.7 T, corresponding to a

proton energy of 800 GeV. Plotted are the average values with

their rms standard deviations from 200 magnets of Italian and

German production. The data have been averaged over the

whole length of the magnets, including the coil heads. The

dipoles from Italian and German production are mounted in

different sections of the HERA ring to permit a compensation

of the systematic sextupole by means of sextupole correction

coils. Moreover, the dipoles have been sorted in the accel-

erator in order to minimize the effects of random sextupole

variations.

4.4 Magnetic forces

In a dipole coil large radial and azimuthal Lorentz forces
act on the superconducting cable. Summed over all
windings we obtain a horizontal force of 1.5 · 106 N for a
1-m-long coil section of the HERA coil at a field of 6 T.
The clamps have to be stiff enough to sustain the huge
force. Figure 23 shows the computed deformation of the
aluminium-collared HERA dipole coil in two states: at
room temperature and zero field and in the supercon-
ducting state at 6 Tesla. Close to the limiting angles of
the coil shells, the forces are mainly azimuthal and di-
rected towards the median plane. To prevent a motion
of the coil, which would usually be accompanied with

frictional heating, the coil package is mechanically pre-
stressed by a such a high pressure (60 MPa or more) that
the highest magnetic force per unit area is exceeded. The
high prestress is a potential danger for the Kapton in-
sulation which starts to yield at about 70 MPa at room
temperature. However, more than a decade of experience
at the Tevatron and HERA has shown that the insula-
tion is stable if the magnets are kept at 4 Kelvin most of
the time.

Figure 23: Calculated deformation of the collared HERA

coil. Left side: room temperature, vertical deformation of

collar by the precompressed coil. Right side: superconducting

state, horizontal deformation of collar by the magnetic forces

at 6 T. The collar material is aluminium alloy AlMg4.5Mn

with a yield strength of 350 MPa.

4.5 Quenches and magnet protection

4.5.1 Quench origins

Basically one can distinguish two types of quenches. A
‘natural’ quench occurs when the critical surface of the
superconductor is crossed. This happens in magnet tests
where quenches are initiated on purpose by raising cur-
rent and field simultaneously until the critical values are
exceeded. The other type, a ‘disturbance’ quench, may
occur with the nominal working point below the critical
surface. The origin is usually a local overheating be-
yond the critical temperature. One reason can be heat-
ing by beam loss in an accelerator, another one conduc-
tor motion under the influence of the magnetic forces.
At typical operating conditions, the critical temperature
of NbTi is significantly lower than 9.2 K, for instance
Tc(B, J) ≈ 5 K at B = 5 T and J = 2000 A/mm2. The
heat capacity of metals is extremely small in the 4 K
regime. An energy input of a few milli-Joules per cm3 is
sufficient to raise the temperature of the conductor be-
yond Tc if no helium cooling is present. This tiny energy
corresponds to the work done by the Lorentz force if the
conductor moves by just a few µm. This illustrates how
small the safety margin against quenches is. Conductor
motion under the action of the huge magnetic forces can
only be prevented if the coil is manufactured with high
precision and clamped with a large pre-stress.
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4.5.2 Stability

The stability of a coil is a measure of its ability to re-
cover superconductivity after a disturbance. We can dis-
tinguish two limiting cases:

- each wire is surrounded with liquid helium so that
produced heat is directly transferred to the coolant;

- the wires are embedded in an insulating medium like
epoxy and cooling of a hot spot is only possible via
heat conduction along the wire.

In accelerator magnets the first mechanism dominates
but heat conduction plays also a role.

We consider now a multifilamentary conductor of ra-
dius r immersed in a liquid helium bath of temperature
T0 , and we assume that the wire carries a current just
above the critical current at T0 . Then the NbTi fila-
ments become slightly resistive and the current is shared
between the NbTi and the copper. The conductor tem-
perature rises to T > T0. The heat generation per unit
length is found to be [16]

G = ρCu J2
c

η2

(1− η)
· T − T0

Tc − T0
· πr2 (42)

where ρCu is the resistivity of the copper matrix and η
the fraction of superconductor in the strand. The heat
flow to the helium bath is

Q = 2π r h (T − T0) (43)

where h is the heat transfer coefficient. Superconductiv-
ity is recovered if the power generated is less than the
power removed, G < Q. The ratio of the two quantities
is called the Stekly parameter [35]:

αSt =
G

Q
=

η2J2
c ρCu r

2 (1− η) h (Tc − T0)
. (44)

Complete cryogenic stability is achieved for αSt < 1.
A coil complying with this criterion can basically not
quench since the copper alone can carry the current
with the available helium cooling. For a strand with
NbTi filaments in a copper matrix, cryogenic stability
would require a superconductor fraction η of less than
10%. The large superconducting solenoid coils in stor-
age ring experiments are often built as cryostable mag-
nets by cladding the Rutherford cable with high purity
aluminium which features a thousandfold increase in con-
ductivity when cooled to 4.2 K. In accelerator magnets a
much higher superconductor proportion must be chosen
since otherwise the coils would become extremely bulky
and expensive. So αSt is much larger than unity (e.g.
αSt = 22 in the HERA dipoles) which means that these
magnets are definitely not cryostable and may quench,
for instance as a consequence of beam losses.

The helium inside a Rutherford-type cable has nev-
ertheless a beneficial effect on a not fully stabilized
conductor. Baynham et al. [36] initiated quenches

in superconducting wires by inductive heating. For a
conductor in vacuum an energy deposition of a few
mJ/cm3 was sufficient to produce a quench while with
liquid helium around the wire the energy had to be ten
times higher. The Rutherford-type cable with helium-
transparent Kapton and glass tape insulation (see Fig.
20) provides optimum cooling as each wire is surrounded
by liquid helium. Moreover, the enclosed helium in-
creases the overall heat capacity of the Rutherford cable
by nearly two orders of magnitude.

4.5.3 Quench propagation

The stored magnetic energy in a large accelerator dipole
may be in the Mega-Joule range. When the coil quenches
at some localized spot, a rapid propagation of the nor-
mal zone is of great importance. The huge magnetic
energy must be distributed over a sizeable fraction of
the coil volume to prevent local overheating and possible
destruction of the conductor7. The quench propagation
velocity is therefore an important property of a super-
conducting coil. The quench propagates mainly along
the cable; transverse propagation is impeded by the in-
sulation and the helium contents in the cable. The lon-
gitudinal quench propagation velocity in the adiabatic
limit, neglecting heat transfer to the helium surrounding
the strands, is given by the expression [16]

v ≡ vadiab =
J

C

√
ρλ

Tc − T0
. (45)

Here the heat capacity C and the longitudinal heat con-
ductivity λ of the cable have been treated as indepen-
dent of T . Inserting reasonable numbers yields velocities
in the order of 50 – 100 m/s. Extensive measurements of
the propagation of heater-induced quenches were carried
out on prototype dipoles for the former SSC (Supercon-
ducting Super Collider) project. Figure 24a shows that
velocities of more than 200 m/s were observed. The sur-
prisingly high speeds near the critical current cannot be
explained in terms of an adiabatic model and are prob-
ably caused by a supersonic pressure wave in the liquid
helium.

4.5.4 Heating of the coil after a quench

We have seen that economic and spatial reasons preclude
the use of a cryostable conductor in accelerator mag-
nets. It is then mandatory to investigate how much the
coil may heat up after a quench. A conservative limit is
100 K because then the thermal expansion is very small
and mechanical stress in the coil and support structure
is avoided. Common practice is to admit heating well
beyond room temperature, and the experience with hun-
dreds of magnets has shown that this causes no damage.

7In laboratory magnet tests one extracts most of the stored
energy and dissipates it in an external dump resistor. This is not
possible in the accelerator where many magnets are connected in
series. Here each coil has to be able to absorb its own field energy.
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Figure 24: (a) Longitudinal quench propagation velocity in

SSC dipoles as a function of I/Ic. (b) Time evolution of

the hot-spot temperature during a quench induced at 6500

A on turn 1 of the inner coil of an SSC dipole (Courtesy A.

Devred).

Once a quench has been detected the power supply is
switched off and the stored magnet energy is dissipated
in a dump resistor and in the normal-conducting part of
the coil. The current decays with a typical time constant
of a few 100 ms. A relation can be established between
the time dependence of the current after a quench and
the highest temperature in the coil. The power density
in a normal coil section is ρ(T )J2(t). During a time
interval dt the section is heated by dT = ρ(T )

C(T )J
2(t)dt.

Separation of variables and integration yields∫ ∞

0

J2(t)dt =
∫ Tmax

T0

C(T )
ρ(T )

dT = F (Tmax) . (46)

From the temperature-dependent material properties the
integral on the right hand side can be evaluated as a
function of the maximum temperature Tmax. The inte-
gral on the left hand side can be measured. This way it
is possible to establish a relation between the time inte-
gral of J2 and the so-called hot spot temperature Tmax ,
the highest temperature in the coil. The temperature
rise of a quenched coil section is plotted in Fig. 24b as
a function of time after the quench has been detected
and the power supply switched off. Within 200 ms the
temperature reaches a plateau of 150 K. The data agree
well with model calculations.

4.5.5 Protection of a string of magnets

An accelerator contains a large number of magnets which
are connected in series and constitute a large inductance
(25 Henry in HERA). Magnet protection is a serious chal-
lenge since it is impossible to discharge this large induc-
tance fast enough that overheating of a quenched coil is
avoided. If one tried to extract the stored magnetic en-
ergy via a single external resistor within a few hundred
milliseconds the induced voltage would exceed 250 kV
and cause spark discharges all around the ring. The so-
lution is to reduce the current in the string slowly but
guide it around a quenched magnet by means of a thyris-
tor (Tevatron) or a diode (HERA, RHIC, LHC). Cotting-
ham [37] first proposed to mount silicon diodes inside the

liquid helium cryostat. This concept has proven very re-
liable.

4.5.6 Quench performance of practical magnets

It cannot be taken for granted that superconducting
magnets reach the upper critical field of the supercon-
ductor. Historically, premature quenching has been quite
common, see [15] for a discussion. Accelerator magnets
can fortunately be built so well that the critical field is
achieved with little if any ’training’. There are two pre-
requisites for such an optimal performance:

- the Rutherford-type cable features excellent me-
chanical stability with good fixation of the strands,
and the Kapton insulation is transparent to liquid
helium,

- the clamps provide a mechanical compression of the
coil in excess of the Lorentz forces such that motion
of a winding turn is inhibited.

The RHIC dipoles exhibited very little training and fea-
ture an ample safety margin. The same applies for the
HERA magnets. All dipoles passed 5 Tesla at the first
attempt, and for the majority one or two steps sufficed
to arrive at the critical field of 6 T (the test temperature
was 4.75 K).

The LHC magnets with a design field of 8.4 T enter
a new regime. The magnetic forces are a factor af two
larger than in 5 – 6 T magnets and important structural
materials like Kapton or even the soft copper matrix in
the cable are close to their plastic limit. Nevertheless,
the quench performance achieved with prototypes leaves
no doubt that dipoles of the LHC type can be operated
reliably and with sufficient safety margin.

5 Persistent Magnetization Cur-
rents

5.1 Superconductor magnetization

Persistent magnetization currents in the superconduc-
tor filaments are the source of severe field distortions at
low excitation of a superconducting accelerator magnet.
These bipolar currents generate all multipoles which are
allowed by coil symmetry: b1, b3, b5, b7, . . . in a dipole,
b2, b6, b10, b14, . . . in a quadrupole. A distinct hysteresis
behaviour is observed: the multipole fields are of oppo-
site sign for increasing and decreasing main field, respec-
tively.

We can distinguish three types of bipolar currents
which are induced in the coil by the time-varying mag-
netic field: eddy currents between different strands in
the cable, coupling currents between different filaments
inside a strand, and finally the magnetization currents
inside individual filaments. To suppress the eddy and
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coupling currents the strands in the cable are trans-
posed with a pitch length of about 100 mm and the fil-
aments in the strands are twisted with a twist length
of typically 25 mm. These currents decay exponentially
with typical time constants in the order of a second or
less. It should be mentioned, however, that there exist
so-called ‘boundary-induced’ currents with life times of
many hours [38], see sect. 6.4.

Truly persistent currents occur only within individual
filaments. Their computation is based on the ’critical
state model‘ [39] according to which a hard supercon-
ductor tries to shield itself from any external field varia-
tion by generating a bipolar current distribution with the
highest possible density, namely the critical current den-
sity. Jc(B, T ) depends on the local field in the coil and
on temperature. Let us study the response of a super-
conductor filament to a homogeneous external field Bext

which is first raised from zero and then lowered again.
With increasing Bext , a cos φ-like current distribution is
induced (Fig. 25a) producing a homogeneous shielding
field Bshield which just cancels Bext in the current-free
region of the filament. Following Wilson [15] we approxi-
mate the boundary of the current-free region by an ellipse
with large half axis a = rf (filament radius), small half
axis b and eccentricity ε =

√
1− (b/a)2. The shielding

field can be computed analytically (see e.g. [16] )

Bshield = −2µ0Jcrf

π

(
1−

√
1− ε2 · arcsin ε

ε

)
. (47)

The highest field which can be shielded from the in-
terior of the filament is called the ‘penetrating’ field
Bp = 2µ0Jcrf/π and is obtained for an ellipse shrunk
to a line, i.e. ε = 1. Figure 25b shows the currents in
the ‘fully penetrated’ filament. The applied field may be
raised to much larger values than Bp which is only about
0.13 T for the HERA conductor. In that case the same
current pattern is obtained as in Fig. 25b but with a
non-vanishing field throughout the filament. If now the
field is decreased again, persistent currents with opposite
polarity are superimposed because again the supercon-
ductor tries to avoid a change of its inner field. A more
complicated current pattern arises as indicated in Fig.
25c. The current loops are assumed to be closed at the
coil ends.

The magnetization of the NbTi filament, defined as
the magnetic moment per unit volume, is given by [16]

M = − 4
3π

Jcrf ε2 . (48)

It assumes its peak value Mp = |M |max = 4Jcrf/(3π)
for the fully penetrated filament (Fig. 25b). Note that
Mp is not a constant but decreases proportional to the
critical current density Jc(B, T ) when the external field is
raised beyond the penetrating field. The field-generating
transport current density Jt in the superconducting coil
reduces the filament area available for the magnetization

currents by the factor (1 − (Jt/Jc)2). This correction
is negligible near the injection field where Jt � Jc but
becomes significant at high excitation of the magnet.

Figure 26: The normalized magnetization M/Mp of a NbTi

filament as a function of the external field. (i): initial curve,

(u): up-ramp branch, (d): down-ramp branch. Also shown

are the current distributions in the filament. The field de-

pendence of Jc has been neglected.

The magnetization as a function of the external field
is plotted schematically in Fig. 26. We observerve a hys-
teresis with three different states: Starting at the virgin
state the magnetization follows an initial curve (i) and
reaches its peak value at Bext = Bp . After going up to
high field the ramp direction is reversed and M follows
the ‘down-ramp’ branch (d). At a certain minimum cur-
rent the field is increased again and the magnetization
follows the ‘up-ramp’ branch (u) which has the remark-
able feature that M changes its sign from positive to
negative values. This is exactly what is observed in the
6-pole and 12-pole coefficients (see Fig. 28 below). In
Fig. 26 also the current pattern in the filament is indi-
cated at different positions of the hysteresis loop.

5.2 Calculation of persistent-current
multipole fields and comparison
with data

The field distortions from persistent currents have been
computed by various authors [40, 41, 42]. In the fol-
lowing we describe a program [43] developed at DESY
to model the persistent-current multipoles of the HERA
magnets with high accuracy. We start with four sym-
metrically arranged filaments in the dipole coil in which
bipolar currents have been induced by the increasing
main field (see Fig. 27a). The current distribution in
each filament can be replaced by a pair of line currents
+I and −I whose strength equals the integrated current
density and whose separation d is adjusted to yield the
computed filament magnetization (the result is d ≈ rf ).
Since d � R the vector potential of the four current pairs
in Fig. 27b can be derived by first-order Taylor expan-
sion from the vector potential A of four single currents
(use Eq. (33) with a replaced by R):

Apair =
∂A

∂R
∆R +

∂A

∂φ
∆φ .
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Figure 25: Schematic view of the persistent currents which are induced in a superconducting filament by a varying external

field. (a) The external field is raised from zero to a value Bext less than the penetrating field Bp. (b) A ‘fully-penetrated’

filament, i.e. Bext ≥ Bp. (c) Current distribution which results when the external field is first increased from zero to a value

above Bp and then decreased again. (d) Same as (b) but with a large transport current.

Figure 27: (a) Magnetization currents induced by the time-

varying main field in four symmetrically arranged filaments

inside the dipole coil. (b) Equivalent pairs of line currents.

The separation d between the positive and negative currents

is grossly exaggerated.

With the relations ∆R = d cos α, ∆φ = −d sinα/R we
obtain

Apair(r, θ) = C
∑

n=1, 3,...

( r

R

)n

cos(nθ) cos(nφ+α) . (49)

with C = −2µ0(I · d)/(πR). For the product (I · d)
we insert the magnetic moment of the filament per unit
length πr2

fM = −4Jcε
2r3

f/3. Expression (49) has to be
summed over all NbTi filaments in one quarter of the
dipole coil and divided by the main dipole field to obtain
the multipole coefficients.

With Eq. (49) we have derived a remarkable result:
the bipolar persistent currents generate exactly the same
‘allowed’ multipoles as the unidirectional transport cur-
rent, namely the normal multipoles bn of the orders
n = 1, 3, 5, . . .. The even orders n = 2, 4, . . . are absent
and so are the skew multipoles an . ‘Unallowed’ poles
can only be present when the superconductor properties,
for instance the critical current density, are not uniform
over the coil cross section. An important ingredient to
the model is the critical current density Jc(B, T ) at low
fields which is derived from magnetization measurements
with an uncertainty of about 10%. This is the dominant
error in the calculation of persistent-current multipoles,

the filament diameter is known to about 5%.

Figure 28: The averaged sextupole coefficients b3 with rms

errors from 315 HERA dipoles (12-pole coefficients b6 from

236 quadrupoles) as a function of coil current. The curves

represent absolute model predictions. The ramp direction

of the current is indicated by arrows. Before starting the

measurements, a current cycle 50 A → 6000 A → 50 A was

performed to establish a well-defined initial condition for the

superconductor magnetization.

The averaged sextupole data of 315 HERA dipoles and
the 12-pole data of 236 quadrupoles are shown in Fig. 28
for increasing and decreasing main field. The predictions
of the model, shown as continuous curves, are in excel-
lent agreement with the measurements. Note that these
are absolute predictions without adjustable parameters,
the only input is the critical current density as a function
of field. The persistent currents have also a significant
influence on the main dipole field and quadrupole gra-
dient. Again a hysteresis is observed and the data are
in good agreement with the model prediction. At the
HERA injection energy the main dipole field (quadrupole
gradient) is 0.5% (0.2%) lower than the value computed
from the coil current. Of course a correction is needed
to match HERA to the energy of the pre-accelerator.
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The superconductor magnetization and the resulting
multipoles are proportional to the filament diameter.
When the HERA superconductor was specified in 1984,
an optimization of costs and critical current resulted in
a filament diameter above 10 µm. In recent years great
progress has been made towards finer filaments. In the
LHC magnets, the diameter is 6 µm.

5.3 Time dependence of persistent-
current effects

Since the magnetization currents flow entirely within the
superconducting filaments it came as a total surprise
when a time dependence of the sextupole component was
observed in the Tevatron dipoles [44]. The data could
not be described in terms of a single exponential but re-
quired two or more time constants. Similar observations
were made on HERA magnets and it was found that the
multipole fields are much better described by a logarith-
mic instead of an exponential time dependence. As an
example we show in Fig. 29a the time dependence of
the sextupole coefficient in a dipole magnet. The drift is
well represented by a function of the form A−R log t. A
curious observation is that the ‘decay rate’ R, measured
at low field, depends strongly on the previous excitation
level of the magnet.

A logarithmic time dependence in hard supercon-
ductors was first observed in 1962 and attributed to
thermally-activated flux creep [45], [46]. This flux creep
is indeed visible in a sample of the HERA conductor, see
Fig. 29b, but in contrast to the magnet measurement the
logarithmic time variation of the cable magnetization is
comparatively small and totally independent of the pre-
ceding field cycle. From the data in Fig. 29 it is obvious

Figure 29: (a) Decay of the sextupole in a HERA dipole at

a field of 0.23 T for different values of the maximum field

in the initializing cycle 0 → Bmax → 0.04T → 0.23 T [47].

(b) Magnetization decay at zero field in a long sample of

HERA cable for different values of the maximum field in the

initializing cycle 0→ Bmax → 0 [48].

that thermally activated flux creep can explain only part
of the time dependence of multipoles in magnets. The
decay rates measured in magnets are usually much larger
than those in cable samples, and there is a considerable
variation from magnet to magnet. In 1995 experimental
results [38] and model calculations [49] were presented
showing that the time dependence is due to a complex
interplay between magnetization currents in the NbTi
filaments and eddy currents among the strands of the
cable. Quantitative predictions are not possible because
of too many unknown parameters. For a more detailed
discussion see Sect. 6.

5.4 Longitudinal periodicity of multipole
fields

In a measurement of the time-varying persistent-current
sextupole at various positions in a HERA dipole the sur-
prising discovery was made [50] that the sextupole field
exhibits a pronounced periodic pattern along the axis
of the magnet. Similar observations were subsequently
made in other magnets.

Figure 30: Top: Longitudinal periodicity of the sextupole in

an SSC dipole at 650 A and 7000 A [51] ( c© 1993 IEEE). Bot-

tom: (a) Simplest model for the generation of longitudinally

periodic field perturbations. A two-strand Rutherford cable

is considered in which one stand carries more current than

the other. (b) Subtracting the average transport current, a

bipolar current pattern is obtained which is equivalent to a

periodic sequence of alternating magnetic moments.

The oscillation is particularly pronounced when the
magnet has been excited to high field, as can be seen
from Fig. 30, where the sextupole in a prototype dipole
for the terminated SSC project is plotted for magnet
currents of 650 and 7000 A [51]. At 7000 A the oscillation
amplitude is much larger than the average value of the
sextupole field. An interesting observation is that the
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large oscillation amplitude persists when the current is
afterwards reduced to a low value.

Figure 31: Periodicity of the skew (An) and normal (Bn)

multipole fields at r0 = 25 mm in a HERA quadrupole. The

data were taken at coil current I = 0 after a current cycle 0

→ 6000 A → 0 had been perfomed. Note the large average

values of the allowed multipole fields B2 and B6. Remark for

experts: The skew quadrupole field A2 could not be measured

since the rotating pick-up coil system was not equipped with

an absolute angle sensor.

In Fig. 31 we show data from a HERA quadrupole
taken with a 20-mm-long rotating pick-up coil. Not only
the allowed multipole fields B2, B6, . . . are found to be
modulated but all An and Bn exhibit the periodic pat-
tern. This proves that the currents responsible for this
pattern do not obey any coil symmetries. Note, however,
that the unallowed multipoles average to zero while the
average values of the allowed multipoles agree with the
persistent-current induced multipole fields.

A clue to an understanding of the longitudinal period-
icity is the observation that the wavelength of 94 mm in
the HERA magnets agrees with the transposition pitch of
95± 2 mm in the Rutherford cable. These findings were
confirmed at Brookhaven and CERN. The periodic pat-

tern can be qualitatively explained by assuming a current
imbalance between the strands of the cable. The simplest
model is that of a two-strand cable in which one wire
carries a higher current than the other. This is sketched
schematically in Fig. 30. The resulting zig-zag pattern
of currents leads to a sequence of alternating magnetic
moments and to an almost sinusoidal field perturbation
along the axis. The origin of the current imbalance are
the ‘boundary-induced’ currents [38] mentioned above,
see Sect. 6 for further discussion.

It is worth mentioning that the oscillating multipole
fields have a negligible effect on the proton beam emit-
tance because their period is orders of magnitude smaller
that the betatron oscillation wavelength.

6 Eddy Current Effects in Super-
conducting Magnets

Most superconducting accelerator magnets are made
from the Rutherford-type cable described in Sect. 4. The
cable consists of 20 to 40 strands of 0.7 to 1.3 mm diame-
ter which are twisted around each other and shaped into
a two-layer flat cable. Usually the cable is compressed
to a trapezoidal cross section and its average thickness is
less than twice the strand diameter. At their cross-over
points, the strands are indented and have a fairly large
contact area which, in combination with the high pre-
stress in the collared coil, leads to small inter-strand re-
sistances of about 10 µΩ. The two layers of strands thus
form an arrangement of loops in which eddy currents
of sizeable strength can be induced by a time-varying
magnetic field. These eddy currents between different
strands will be referred to as cable eddy currents. An-
other type are the coupling currents between different
filaments inside a strand. Additional eddy currents arise
in the copper wedges of the coil, in the collars, the yoke
and other conducting materials.

6.1 Coupling currents within a strand

The filaments inside a strand are strongly coupled
through the copper matrix. An effective means to re-
duce the filament coupling is provided by twisting the
wire. Thereby the length of the loop that is exposed
to the time-varying magnetic field is considerably short-
ened and the contributions from adjacent loops alternate
in sign. In a multifilamentary twisted superconducting
wire, the eddy currents run in a zig-zag fashion along
the wire. The path is partly superconductive (inside the
filaments), partly normal (in the copper matrix). A very
clear analysis of the problem can be found in the book by
Wilson [15]. The screening currents obey a cos φ depen-
dence and thus produce a homogeneous shielding field
Bshield. The inner field Bint = Bext −Bshield is also ho-
mogeneous. In case of a constant ramp rate, the strand
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magnetization resulting from the coupling

Mstrand = 2Ḃintτ/µ0 . (50)

Here, τ is a time constant that is related to the twist
pitch length ltwist of the strand and the effective trans-
verse resistivity ρt of the copper-NbTi composite:

τ =
µ0

2ρt

(
ltwist

2π

)2

. (51)

A typical value for the twist pitch is 25 mm, a typical
time constant is 10 ms. So the strand magnetization re-
sulting from the intra-strand eddy currents is quite short-
lived and its contribution to the field distortions during
the acceleration of the particle beam is small in compar-
ison with that of the persistent-currents. The dissipated
power P per unit volume is derived from the formula

Pdt = MstranddBint =
2ḂintτdBint

µ0
=

2Ḃ2
intτ

µ0
dt ,

from which follows

P =
2Ḃ2

intτ

µ0
. (52)

The ramp time Tramp from zero to the maximum field is
large compared to the time constant τ , so Ḃint ≈ Ḃext =
Bmax/Tramp. The intra-strand energy dissipation per
unit volume and per ramp cycle is thus

Qstrand =
B2

max

µ0
· 4τ

Tramp
. (53)

This is part of the a.c. loss of the magnet.
From the equations (50) to (53) it is obvious that an

untwisted superconductor (ltwist typically > 1000 m)
would be totally useless for accelerator application.

6.2 Cable eddy currents

6.2.1 One dimensional model

Following a model originally developed by Morgan ([52]
and expanded by Devred and Ogitsu [53], we replace the
Rutherford cable by a two-layer network of wires that are
connected by small resistors at the cross-over points. A
schematic drawing of a cable with six strands is given in
Fig. 32. Let N be the total number of strands. Across
the cable we can distinguish N − 1 different loops, la-
belled by the letter n (1 ≤ n ≤ N−1). The magnetic flux
through loop n is denoted by Φn. Let Rn be the resis-
tance at the nth transition and in the cross-over current.
Neglecting a dependence on the longitudinal coordinate
we get the following set of equations for the inner loops
(2 ≤ n ≤ N − 2)

dΦn

dt
= 2Rnin −Rn−1in−1 −Rn+1in+1 (54)

while at the edges of the cable we have

dΦ1

dt
= 2R1i1 −R2i2 ,

dΦN−1

dt
= 2RN−1iN−1 −RN−2iN−2 . (55)

Let In be the induced current flowing in the wire sec-
tion between the cross-over points n − 1 and n. From
Kirchhoff’s law we get

In = In+1 + in . (56)

The sum of all currents In must vanish since the time-
varying field is unable to induce a net current in the z
direction, hence

N∑
n=1

In = 0 . (57)

The equations (54) to (57) lead to a set of N−1 indepen-
dent equations for the N−1 unknowns in. The solutions
are for n = 1 resp. 2 ≤ n ≤ N − 1

i1 =
1

NR1

N−1∑
m=1

m∑
k=1

dΦk

dt
,

in =
1

Rn

[
nR1i1 −

n−1∑
m=1

m∑
k=1

dΦk

dt

]
. (58)

With the simplifying assumptions that the contact resis-
tances at the cross-over points are all identical, Rn = Rc,
and that moreover the magnetic flux across the cable is
uniform, it is easy to express the solution in closed form

In =
1

24Rc

[
N3 −N − 2(n2 − n)(3N − 2n + 1)

] dΦ
dt

in =
n

2Rc
(N − n)

dΦ
dt

. (59)

Figure 32 shows schematically the resulting current
pattern in our model cable with six strands. The induced
branch currents flow in a zig-zag fashion with different
directions in the lower and upper half of the cable. It is
obvious that this bipolar current distribution represents
a magnetic moment and will contribute to the multipole
contents of the magnet.

The contact resistances lead of course to Ohmic heat
generation in time-varying magnetic fields. If we call
lp the transposition pitch length of the cable, the overall
heat generation per metre of cable (the a.c. loss) is given
by the expression

G =
N−1∑
n=1

Rc i2nN/lp =
N

4Rc lp

(
dΦ
dt

)2 (N4 − 1)N
30

(60)

The time derivative of the flux is
dΦ
dt
≈ wlp

N2

dB

dt

where w is the cable width. For N � 1 Eq. (60) reduces
to

G ≈ w2lpN
2

120Rc

(
dB

dt

)2

. (61)
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Figure 32: Equivalent resistive network of a Rutherford cable with N = 6 strands. The cross-over resistances are indicated as

black dots. Also shown are the branch currents In along the strands as computed by Eq. (59). A single loop with the cross-over

currents in is shown on the right-hand side.

6.2.2 Two dimensional model

Akhmetov, Devred and Ogitsu [54] have extended the
above analysis to the case that the inter-strand resis-
tances and the branch currents are allowed to vary along
the magnet axis. They subdivide the cable into columns
along the axis which are labelled by an index k. This is
sketched in Fig. 33.

Figure 33: Resistive network with a longitudinal and trans-

verse variation of the cross-over currents. Indicated are the

5 cross-over currents corresponding to the longitudinal index

k.

The induced cross-over currents ik,n depend now on
the longitudinal index k and the transverse index n. The
most general case can be treated only numerically. With
the assumption of a uniform cross-over resistance both
across and along the cable and a uniform magnetic flux
along the cable, but allowing for a flux variation trans-
verse to the cable (which is indeed the case in all mag-
net coils), one arrives at an interesting observation: the

cross-over currents ik,n exhibit a longitudinal periodicity:

ik+N,n = ik,n .

The periodicity interval is identical with the cable twist
pitch length lp. We illustrate this again by studying the
model cable with six strands. The equations (54) and
(55) for the cross-over currents have to be modified to
encorporate the longitudinal dependence.

ik,1 + ik+1,1 − ik,2 = f1

ik,2 + ik+1,2 − ik+1,1 − ik+1,3 = f2

ik,3 + ik+1,3 − ik,2 − ik,4 = f3 (62)
ik,4 + ik+1,4 − ik+1,3 − ik+1,5 = f4

ik,5 + ik+1,5 − ik,4 = f5 .

Here we have used the abbreviation fn =
1

Rc

dΦn

dt
. From

these equations one can compute the currents at position
k + 1 from the values at position k. For this purpose it
is convenient to use matrix notation. We define a 5 × 5
(generally (N − 1)× (N − 1)) matrix A by

A =


−1 1 0 0 0
−1 1 −1 1 0

0 1 −1 1 0
0 1 −1 1 −1
0 0 0 1 −1

 (63)

and the vectors

Ik =


ik,1

ik,2

ik,3

ik,4

ik,5

 , F =


f1

f1 + f2 + f3

f3

f3 + f4 + f5

f5

 . (64)

Then the equations (62) read

Ik+1 = A · Ik + F . (65)
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The matrix A has two important properties which are
easily verified by direct computation:

AN = 1 ,
N−1∑
k=0

Ak = 0 .

Applying equation (65) repeatedly and using these rela-
tions we get

Ik+N = AN · Ik +
N−1∑
k=0

AkF = Ik . (66)

This shows explicitly that the cross-over currents are
periodic in the longitudinal index k with a period N , the
number of strands in the cable. This conclusion rests on
the assumption that the cross-over resistances and the
magnetic flux are independent of the z coordinate. In
the previous section the eddy currents have been taken
as independent of the longitudinal coordinate z. The
present treatment shows that this is a special case which
will be realized only if the appropriate initial conditions
are satisfied. In general the cross-over currents will vary
periodically with z with a period lp.

In addition to the cross-over resistances Rc one can
also take into account the resistances Ra between adja-
cent strands which, however, are of minor importance
concerning field distortions and a.c. losses. The most
general case can only be studied in a computer simula-
tion, see e.g. [55].

6.3 Effect of cable eddy currents on field
quality and magnet performance

The small-loop cable eddy current create a bipolar cur-
rent pattern as sketched in Fig. 32 and this will certainly
generate multipole fields. In contrast to the filament
magnetization currents, the eddy currents do not obey
any coil symmetry because the cross-over resistances can
vary from turn to turn and also in longitudinal direction.
For this reason all allowed and unallowed multipoles are
expected to appear during a ramp of the magnetic field,
and their strength has to be proportional to the time
derivative of B. Numerous measurements, especially
from the former SSC laboratory, confirm this expecta-
tion. A good example are the strongly ramp-rate depen-
dent quadrupole and sextupole fields in an SSC dipole
(Fig. 34). The skew multipole fields A2, A3, A5, A5

are influenced in a similar manner. The time constants
for the eddy-current multipoles are in the order of a
second. It is interesting to note that the eddy-current
induced sextupole is of opposite sign as the sextupole
due to superconductor magnetization. The same has
been observed in HERA dipoles. The apperance of ‘for-
bidden’ multipoles (normal quadrupole and skew mul-
tipoles) proves that the cable eddy currents do indeed
violate the dipole coil symmetry, as stated above.

The multipoles can be correlated with measured a.c.
losses and with a strong decrease of quench current at

high ramp rates. In Fig. 35 the energy loss per cur-
rent cycle 500 A → 5000 A → 500 A is plotted as a
function of current ramp rate dI/dt. The reduction in
quench current at a given ramp rate, say dI/dt = 90 A/s,
is found to be correlated with the loss per cycle which
proves that eddy-current heating of the coil is responsible
for the premature quenches at higher ramp rates. The
magnets with a particularly strong ramp rate sensitivity
were characterized by unusually low contact resistances
of about 2 µΩ.

All SSC magnets were made from cables with bare
copper surface. It has been suspected that in problem-
atic magnets like DCA312 the oxide layer formed dur-
ing cable and coil production was too thin. Magnets
with such an extreme ramp rate sensitivity are practi-
cally useless for an accelerator. Control of interstrand
resistance is thus an important aspect of cable produc-
tion. At ramp rate zero, the loss curves extrapolate to
finite values which represent the hysteretic loss of the su-
perconductor (compare Eq. (11)). For the current cycle
chosen this loss is in the order of 600 to 800 J for the
15-m-long SSC magnets.

In Table 2 we reproduce part of a table from [53]
showing predicted field distortions and power dissipa-
tion due to cable eddy currents in various dipole designs.
The numbers refer to a uniform interstrand resistance
Rc = 10 µΩ and a ramp rate dI/dt = 10 A/s. The
dipole, sextupole and decapole fields are given in 10−4

Tesla at a reference radius r0 = 25 mm.

Loss measurements on a HERA dipole with ramp rates
between 5 and 28 A/s and a current cycle 1500 A→ 5500
A→ 1500 A revealed a linear relationship between energy
loss Q and ramp rate dI/dt (H. Brück and M. Stolper,
private communication):

Q = Qhyst + Q′ dI

dt
.

The constant term Qhyst = 360 J represents the hys-
teretic loss, while the slope Q′ = 7.5 J/(A/s) describes
the eddy-current loss. The instantaneous power, dissi-
pated by the eddy currents, is thus about 90 mW in
the 9-m-long magnet for a ramp rate of 10 A/s. Us-
ing this value and Table 2 the average cross-over resis-
tance is found to be Rc ≈ 10 µΩ. Then, for the standard
HERA ramp rate of 10 A/s, the predicted field distor-
tions caused by eddy currents should be in the order of
1.5 · 10−4 T for the dipole and 0.4 · 10−4 T for the sex-
tupole term. Both numbers are in fairly good agreement
with direct determinations of ramp-rate dependent mul-
tipoles. It is interesting to note that the hysteretic loss
exceeds the eddy-current loss for the low ramp rates used
in storage rings.
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Figure 34: Hysteresis of the normal quadrupole and sextupole coefficients as a function of magnet current for ramp rates of

4 and 32 A/s. The ramp direction is indicated by arrows. The width of the hysteresis curves is proportional to dI/dt which

proves that eddy currents are the source. The measurements were performed at Brookhaven on dipole DCA312.

Figure 35: (a) Energy loss Q per cycle as a function of current ramp rate dI/dt for various SSC dipoles. Five dipoles with

small losses are indicated by black dots. The three dipoles with particularly large losses are labelled by their serial numbers.

(b) Correlation between quench current reduction ∆Iq and energy loss Q per cycle (both at dI/dt = 90 A/s) [56].

6.4 Eddy currents in longitudinally vary-
ing fields

6.4.1 Theoretical model

It is suggestive to search for a relation between the peri-
odic cross-over currents in the cable and the longitudinal
periodicity observed in the persistent-current multipole
fields. Krempaski and Schmidt [49] and independently
Verweij and ten Kate [38] have investigated the possibil-
ity that the time derivative of the magnetic field varies
along the cable direction. In accelerator magnets this
is indeed realized since in the coil heads and at the cur-
rent leads the magnetic field and hence dB/dt differ from
the values in the straight section. Also when going from
one winding turn to another the local field and its time
derivative will change.

Following the lucid treatment in [49] we consider a two-
strand Rutherford cable whose length l0 is much larger
than the transposition pitch length lp. We assume that
Ḃ is nonzero in a limited length b around the centre
z = l0/2 and vanishes elsewhere. The arrangement is
sketched in Fig. 36. The two wires are connected every
half pitch by the contact resistance Rc . Since lp � l0
we may treat the two-wire system as a continuous trans-
mission line and introduce a transverse conductance and

Figure 36: A two-strand cable subjected to a time-varying

magnetic field in the centre region and the equivalent electric

circuit.

an inductance per unit length:

G′ = 2/(Rc lp) , L′ = (µ0/π)(ln(w/ds) + 0.25) .

Here w is the cable width and ds the strand diameter.
The maximum induced voltage is obtained if the length b
is an odd multiple of half the transposition pitch length:
U = Umax = lp w Ḃ/4 for b = (2k + 1)lp/2 while U = 0
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Table 2: Predicted field distortions and power dissipation

due to cable eddy currents for various superconducting

dipole magnet designs [53]. The numbers refer to a uniform

cross-over resistance Rc = 10 µΩ and a ramp rate dI/dt = 10

A/s.

HERA RHIC Tevatron

B(I)/I (T/kA) 0.935 0.709 0.953

Inner cable
width (mm) 10 9.73 7.8
twist pitch (mm) 95 74 57
number of strands 24 30 23

Outer cable
width (mm) 10 — 7.8
twist pitch (mm) 95 — 57
number of strands 24 — 23

Field distortions
B1 (10−4 T) 1.5 0.5 0.6
B3 (10−4 T) +0.4 +0.2 0.2
B5 (10−4 T) -0.05 -0.02 -0.01

Power dissipation
P (10−3 W/m) 9 3 4

for b = k · lp.
The currents ± I(z, t) in the wires must fulfill the dif-

ferential equation of a transmission line.

∂2I

∂z2
= L′C ′ ∂

2I

∂t2
+ (R′C ′ + L′G′)

∂I

∂t
+ R′G′I . (67)

For vanishing longitudinal resistance and transverse
capacitance (R′ = 0, C ′ = 0) the equation reduces to

∂2I

∂z2
= L′G′ ∂I

∂t
. (68)

This is a diffusion-like equation with diffusivity D =
1/(L′G′). In the steady state, when t is large compared
to the time constant of the system, the right-hand side of
the equation is zero and the current is obviously a linear
function of z which vanishes at z = 0 and z = l0. The
maximum Imax = UG′l0/4 occurs around z = l0/2. For
a short extension of the magnetic field region, b � l0,
this is a triangle-like function8 which can be expanded
in a Fourier series of period 2l0.

I(z) =
8Imax

π2

∑
n=1,3,5...

(−1)(n−1)/2

n2
sin

(
nπz

l0

)
.

8The more general case of an extended region with Ḃ 6= 0 is
treated in [49].

The solution I(z, t) for the decay from the steady state
is easy to construct. When the field increase is stopped
at t = 0, which means that Ḃ vanishes for t > 0, one has
to multiply the nth Fourier term with exp(−t/τn). From
Eq. (68) follows that the time constant τn of the Fourier
term n is given by

τn = τ/n2 with τ =
L′G′ l20

π2
. (69)

The time constant τ = τ1 can be quite large. If we con-
sider a single winding turn in a 10-m-long dipole and
assume a cross-over resistance Rc = 5µΩ and a trans-
position pitch length of lp = 0.1 m then τ ≈ 160 s.
The time constant grows with the square of the cable
length. Moreover, in a multistrand Rutherford cable
there are many more cross-over points than in our two-
strand model, so the transverse conductance is much
larger. As a consequence the time constant of a com-
plete subcoil of the dipole may be in the order of many
hours or even days.

The solution for the charging period is found in a sim-
ilar way. If Ḃ is switched on at t = 0 the current as a
function of time is

I(z, t) = Î
∑

n=1,3,5...

(−1)(n−1)/2

n2
sin

(
nπz

l0

)
(1− exp(−t/τn))

(70)
with Î = 8Imax/π2. If charging is stopped at t = t1
the components In(z, t1) of the sum in Eq. (70) decay
with their respective time constants τn = τ/n2 and the
current for t > t1 is

I(z, t) =
∑

n=1,3,5...

In(z, t1) exp(−(t− t1)/τn) . (71)

Of particular interest for the accelerator is a linear
ramp cycle 0 → Bmax → 0 as sketched in Fig. 37a. We
assume a ramp-up time t1 = τ/10 and take the same
interval for the dwell time at high field and the ramp-
down time. Using equations (68) to (71) the current
I(z, t) can be computed at all times. The parameters
chosen are: cable length l0 = 20 m, magnetic field region
b = lp/2 = 0.05 m, contact resistance Rc = 5µΩ, field
ramp rate Ḃ = 0.05 T/s. The results are plotted in Figs.
37b, c. When the magnetic field has undergone the ramp
cycle and is kept at B = 0 afterwards (t > t3) there is still
a considerable time dependence in the current. Eventu-
ally of course the current I approaches zero but the decay
time may be many hours for a complete magnet coil. It
is obvious that the zig-zag current pattern generates a
magnetic field with a longitudinal periodicity.

It should be noted that the induced currents are in the
50 – 100 A range and thus not negligible in comparison
with the typical transport current carried by a strand.
This effect contributes to the ramp rate dependence of
quench current, shown in Fig. 35, because the sum of
transport and induced current may exceed the critical
current of a strand. Eddy-current heating of the coil
leads to an additional reduction of quench current.
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Figure 37: (a) Ramp cycle of magnetic field. (b) Position dependence of the current I(z, t) for the times t1, t2 = 2t1, t3 = 3t1.

(c) Time dependence of I(z, t) at various positions.

An experiment has been performed [38] to study the
effect on a 1.3-m-long Rutherford cable. The cable was
clamped with 15 MPa over a length of 1.1 m to achieve
a low cross-over resistance and was subjected to a time-
varying magnetic field at one end. The magnetic field
along the cable, measured with a Hall probe arrange-
ment, exhibits indeed an oscillatory pattern with the ca-
ble transposition pitch as its period (see Fig. 38).

Figure 38: Experimental study of ‘boundary-induced’ eddy

currents in a Rutherford cable [38]. The time-varying mag-

netic field (Ḃ = 0.016 T/s) is concentrated around z = 0.

At the left end the cable has been soldered (labelled by s in

the drawing) to simulate the effect of an internal solder con-

nection in a dipole coil. The eddy-current field Be along the

cable is measured with an array of Hall probes. Continuous

curve: model calculation.

6.5 Influence on the persistent-current
effects in magnets

The induction effect caused by the variation of Ḃ along
the cable of a coil can qualitatively account for the lon-
gitudinal periodicity seen in all magnets. The observed
multipole field pattern results from a complex superposi-
tion of the bipolar currents induced in any pair of strands

and in all turns of the coil. Since the cross-over resis-
tances and the number of pitch lengths between the coil
heads will vary from turn to turn and from magnet to
magnet, rather different oscillation patterns of the var-
ious multipoles must be expected for different magnets.
For this reason a quantitative analysis appears not very
meaningful and predictions for a new magnet will be dif-
ficult.

Nevertheless, some important features can be un-
derstood in a qualitative way. We have seen in Fig.
30 that the oscillation amplitude is very small at the
initial excitation of a magnet but grows considerably
with increasing field. This is obvious from the factor
(1− exp(−t/τn)) in Eq. (70): if the ramp time is much
shorter than the characteristic time constant τ or, alter-
natively, if Ḃ is very small, the induced current will be
tiny. On the contrary, long ramps at sufficiently large
dB/dt will generate strong oscillations. Even if the field
is reduced to zero afterwards or to a small value, the
oscillations remain large as is evident from Fig. 37c.

These ‘boundary-induced’ eddy currents offer also a
qualitative explanation why the decay rates of persistent-
current multipoles depend so much on the pre-cycle
(compare Fig. 29). If a large field sweep has been
performed, significant eddy currents will be flowing in
the strands whose decay times are in the order of many
hours. The total current Is in a strand is the sum of the
transport current It and the respective eddy current Ie; it
may decrease or increase in the course of time depending
on the sign of Ie. What is the effect of this time depen-
dence on the superconductor magnetization? We make
the important observation that any change of the strand
current, either positive or negative, is accompanied with
a reduction of the overall strand magnetization. This can
be understood as follows. A current change +∆Is cre-
ates an azimuthal magnetic field change ∆Bφ inside the
strand. From the large previous field sweep all filaments
in the strand have been left fully magnetized. In one
hemisphere of the strand, ∆Bφ has a component parallel
to the field that magnetized the strand. The filaments in
this region keep their magnetization because they are al-
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ready saturated. In the other hemisphere, however, ∆Bφ

opposes the previous magnetizing field and here the fila-
ment magnetization is reduced.

For a negative current change −∆Is the two hemi-
spheres are interchanged but the overall strand magne-
tization is reduced as well. Our conclusion is that the
strong magnetization decay, observed after large field
sweeps, is caused by a current redistribution among the
strands in the cable. The above model provides the un-
derlying physical mechanism. Again quantitative pre-
dictions appear difficult because of the many unknowns
in the problem. The large magnet-to-magnet variation
in the decay rates is most likely caused by large varia-
tions in cross-over resistances and different numbers of
transposition pitch lengths between the coil ends.

6.6 Transmission line characteristics of a
long string of magnets

6.6.1 Equivalent circuit of a dipole

A superconducting dipole cannot be considered as a pure
inductance, in spite of the vanishing resistance of the
conductor. We have seen above that eddy current losses
play a significant role. In an equivalent circuit they
correspond to a frequency-dependent real part of the
impedance. Furthermore, the tight compression of the
windings, provided by the collars, introduces a sizeable
capacitance. Following R. Shafer [57] we consider as a
simple model a dipole equipped with an electrically con-
ducting beam pipe and neglect for the moment eddy cur-
rents in the cable or collars. Let L1 be the d.c. induc-
tance of the magnet coil (measured in the limit of van-
ishing frequency), l1 its length and a its average radius.
The beam pipe is influenced by the time-varying field
over the same length l1. The inductance and resistance
for induced eddy currents are

L2 = µ0l1/(4π) , R2 =
2l1ρ

π b t
.

Here b is the pipe radius, ρ its resistivity and t the wall
thickness. The mutual inductance of coil and pipe is
given by the expression

M =
b

a

√
L1L2 .

Connecting the coil to an a.c. voltage U1 exp iωt we ob-
tain the equations

U1 = iωL1I1 + iωMI2 0 = (R2 + iωL2)I2 + iωMI1 .

The impedance of the magnet coil with inserted beam
pipe is

Zcoil(ω) =
U1

I1
=

(
iωL1 +

ω2M2

R2 + iωL2

)
.

Separating real and imaginary parts this can be written
as

Zcoil(ω) =
κL1τω2

1 + ω2τ2
+ iω

[
(1− κ)L1 +

κL1

1 + ω2τ2

]
.

(72)
Here κ = b2/a2 and τ = L2/R2 = µ0bt/(2ρ). The
impedance of Eq. (72) corresponds to the circuit drawn
in Fig. 39a.

Figure 39: (a) Equivalent circuit for a dipole with inductively

coupled conducting beam pipe. (b) Equivalent circuit of SSC

dipole including cable capacitance [58].

The capacity between windings can be replaced by an
equivalent capacitance against ground potential. If all
eddy currents are taken into consideration one arrives
at the equivalent circuit in Fig. 39b. The frequency
response of a superconducting dipole is indeed that of a
damped resonance circuit, see Fig. 40. The parameters

Figure 40: The measured resistance (real part of the

impedance) and inductance (imaginary part divided by ω)

of an SSC dipole as a function of frequency. The prediction

based on the equivalent circuit of Fig. 39b is shown for com-

parison [58].

of the equivalent circuit have been adjusted to yield the
best agreement with the measurement.

6.6.2 String of magnets

A long string of dipoles can be considered as a transmis-
sion line. In the low-frequency limit, ω � 1/τ , the string
has a characteristic impedance and a phase velocity

Z =

√
L′

C ′ ≈ 900 Ω , v =
1√

L′C ′

where L′ and C ′ are the inductance and capacitance
per unit length. The phase velocity is in the order of
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Figure 41: Observed resonance behaviour in a 96-magnet

string in the Tevatron. Shown is the absolute value of the

impedance and the phase as a function of frequency for the

undamped and the damped case. Curves: model calculation.

Dots: measured data [58]

.

100 km/s or about 10.000 to 20.000 magnets per sec-
ond. At frequencies ω > 1/τ transmission line effects
become significant. Figure 41 shows data from a section
of the Tevatron comprising 96 magnets. The absolute
magnitude of the impedance and the phase are plotted
as a function of frequency. A pronounced resonance is
observed at 100 Hz and some higher resonances in ad-
dition. Measurement and model calculation agree very
well. Such a resonance is very undesirable as it may
lead to voltage enhancements during a magnetic field
ramp or to a variation of the dipole field along the chain
if power supply ripple excites the resonance frequency.
Fortunately it can be strongly damped by an external
resistors of some 100 Ω which is connected parallel to
the thyristor or diode used for quench protection (see
sect. 4.5.5). The transmission-line properties of the su-
perconducting magnet chain are a potential danger in the
case of magnet quenches. Large voltage transients may
propagate along the magnet chain leading to enhanced
coil-to-ground voltages.

7 Design Principles and Proper-
ties of Superconducting Cavi-
ties

7.1 Choice of superconductor

In principle the critical temperature of the supercon-
ductor should be as high as possible. However, cop-
per cavities coated with a high-Tc superconductor layer
have shown unsatisfactory performance [24], therefore
the helium-cooled low-Tc superconductors are applied.
In contrast to magnets were hard superconductors with
large upper critical field (10–20 T) are needed, the su-
perconductor in microwave applications is not limited by
the upper critical field but rather by the thermodynamic

critical field (or possibly the ‘superheating field’) which
is well below 0.5 T for all known superconducting ele-
ments and alloys. Moreover, strong flux pinning appears
undesirable as it is coupled with hysteretic losses. Hence
a ‘soft’ superconductor must be used, and pure niobium
is the best candidate although its critical temperature is
only 9.2 K and the thermodynamic critical field about
200 mT. Niobium-tin (Nb3Sn) looks more favorable at
first sight since it has a higher critical temperature of
18 K and a superheating field of 400 mT; however, the
gradients achieved in Nb3Sn coated copper cavities were
below 15 MV/m, probably due to grain boundary effects
in the Nb3Sn layer [59]. For these reasons pure niobium
has been chosen in all large scale installations of sc cav-
ities. Here two alternatives exist: the cavities are fabri-
cated from solid niobium sheets, or a thin niobium layer
is sputtered onto the inner surface of a copper cavity.
Both approaches have been successfully applied, the for-
mer one at Cornell (CESR), KEK (TRISTAN), DESY
(PETRA, HERA, TESLA Test Facility TTF), Darm-
stadt (S-DALINAC), Jefferson Lab (CEBAF) and other
laboratories, the latter one in particular at CERN in the
electron-positron storage ring LEP9.

The microwave surface resistance is according to the
Bardeen Cooper Schrieffer theory

RBCS ∝ λ3
L ω2 ` exp(−1.76 Tc/T ) . (73)

This formula applies if the mean free path ` of the un-
paired electrons is much larger than the coherence length
ξ. In niobium this condition is usually not fulfilled and
one has to replace λL in the above equation by [60]

Λ = λL

√
1 + ξ/` . (74)

Combining equations (73) and (74) we arrive at the sur-
prising statement that the surface resistance does not
assume its minimum value when the superconductor is
of very high purity (` � ξ) but rather in the range
` ≈ ξ. Experimental results [61] and theoretical models
[62] confirm this prediction. The effect is also observed
in copper cavities with a thin niobium sputter coating in
which the electron mean free path is in the order of ξ. At
4.2 K the quality factors in the LEP cavities are indeed
a factor of two higher than in pure niobium cavities [63].

In addition to the BCS term there is a residual resis-
tance caused by impurities, frozen-in magnetic flux or
lattice distortions.

Rsurf = RBCS + Rres . (75)

Rres is temperature independent and amounts to a few
nΩ for a clean niobium surface but may readily increase
if the surface is contaminated.

9The parameters of the colliders CESR, TRISTAN, PETRA,
HERA, LEP are summarized in [1]. The S-DALINAC and the
Continuous Electron Beam Accelerator Facility CEBAF [11] are
recirculating superconducting linacs for nuclear physics and free
electron laser application.
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For niobium the BCS surface resistance at 1.3 GHz
amounts to about 800 nΩ at 4.2 K and drops to 15 nΩ
at 2 K, see Fig. 42. The exponential temperature depen-
dence is the reason why operation at 2 K is essential
for achieving high accelerating gradients in combination
with very high quality factors. Superfluid helium is an
excellent coolant owing to its high heat conductivity.
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Figure 42: The surface resistance of a 9-cell TESLA cavity

plotted as a function of Tc/T . The residual resistance of 3 nΩ

corresponds to a quality factor Q0 = 1011.
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Figure 43: Measured heat conductivity in niobium samples

with RRR = 270 and RRR = 500 as a function of tempera-

ture [65].

7.2 Heat conduction in niobium and
heat transfer to the coolant

The heat produced at the inner cavity surface has to
be guided through the cavity wall to the superfluid he-
lium bath. At 2 - 4 K, impurities have a strong im-
pact on the thermal conductivity of metals. Niobium of
very high purity is needed (contamination in the ppm

range). The heat conductivity drops by about an order
of magnitude when lowering the temperature from 4 to
2 K, as shown in Fig. 43. The residual resistivity ra-
tio RRR = R(300K)/R(10K) is a good measure for the
purity of the material: large RRR means high electrical
and thermal conductivity at low temperature.

Low frequency cavities (350-500 MHz) have a small
BCS surface resistance at 4.2 K and are effectively cooled
by normal liquid helium. The heat flux should not ex-
ceed a few kW/m2 to obtain nucleate boiling with a close
contact between liquid and metal. At higher heat fluxes
one enters the film boiling regime where a vapour film
covers the surface. Here the cavity may easily warm up
beyond Tc at areas of excessive heating. The f2 depen-
dence of the BCS resistance implies that for cavities of
higher frequency superfluid helium at 1.8 - 2 K is more
appropriate. At the metal-helium interface a temper-
ature jump is observed which is attributed to phonon
mismatch. The so-called Kapitza resistance amounts to
about 1.5 ·10−4 m2K/W [64] for a clean niobium surface
in contact with superfluid helium.

7.3 Influence of magnetic fields

7.3.1 Limitation of gradient

Superconductivity breaks down when the microwave
magnetic field at the cavity surface exceeds a critical
value which is close to the thermodynamic critical field
Bc (200mT for niobium at 2 Kelvin). The corresponding
accelerating field on the cavity axis is about 50 MV/m.
It has been claimed that rf superconductivity persists up
to a so-called ’superheating field’, exceeding Bc by 20%
in the case of Nb [23], [66]. However it remains to be
proven that rf cavities cooled by superfluid helium can
be reliably operated near or even beyond Bc .

7.3.2 Trapped magnetic flux

Niobium is a soft type II superconductor without strong
flux pinning, however, weak magnetic dc fields are not
expelled upon cooldown but remain trapped in the nio-
bium. Each flux line contains a normal-conducting core.
Trapped magnetic dc flux therefore results in a surface
resistance [60]

Rmag =
Bext

2Bc2
Rn (76)

where Bext is the externally applied field, Bc2 the upper
critical field and Rn the surface resistance in the nor-
mal state. At 1.3 GHz the surface resistance caused by
trapped flux amounts to 3.5 nΩ/µT for niobium. Cavi-
ties from solid niobium which are not shielded from the
Earth’s magnetic field are limited to Q0 values below
109. However, copper cavities with a thin niobium sput-
ter coating are found to be quite insensitive to magnetic
fields and must not be shielded. The reason is that the
sputter layer has a larger Bc2 than bulk niobium because
of impurities and defects.
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7.4 Pill box cavity

The simplest model of an accelerating cavity is a hollow
cylinder which is often called pill box. When the beam
pipes are neglected the field pattern inside the resonator
and all relevant cavity parameters can be calculated an-
alytically.

7.4.1 Field pattern

For particle acceleration we need a longitudinal electric
field on the axis, hence we look for TM (transverse mag-
netic) eigenmodes of the cylindrical resonator. The field
lines are sketched in Fig. 44. We use cylindrical co-

Figure 44: Electric and magnetic field in a pillbox cavity

for the accelerating mode TM010.

ordinates (r, θ, z) where z denotes the beam direction
(cavity axis), r =

√
x2 + y2 and θ the azimuthal angle.

We search for an eigenmode with cylindrical symmetry
(independence of θ) and with longitudinal electric and
azimuthal magnetic field. The wave equation for the
electric field reads

∂2Ez

∂r2
+

1
r

∂Ez

∂r
=

1
c2

∂2Ez

∂t2
. (77)

For a harmonic time dependence Ez(r) cos(ωt) and with
the new variable u = rω/c one obtains

∂2Ez

∂u2
+

1
u

∂Ez

∂u
+ Ez(u) = 0 . (78)

This is the Bessel equation of zero order with the solution
J0(u). Hence the radial dependence of the electric field
is

Ez(r) = E0J0(
ωr

c
) . (79)

For a perfectly conducting cylinder of radius R the
longitudinal electric field must vanish at r = R, so
J0(ωR/c) = 0. The first zero of J0(u) is at u = 2.405.
This defines the frequency of the lowest eigenmode (we
call it the fundamental mode in the following):

f0 =
2.405c

2πR
, ω0 =

2.405c

R
. (80)

In a cylindrical cavity the frequency does not depend on
the length Lc. The magnetic field can be computed from
the equation

∂Ez

∂r
= µ0

∂Hθ

∂t
. (81)

Hence we obtain for the fundamental TM mode

Ez(r, t) = E0J0(
ω0r

c
) cos(ω0t) ,

Hθ(r, t) = − E0

µ0c
J1(

ω0r

c
) sin(ωt) . (82)

Electric and magnetic field are 90◦ out of phase. The az-
imuthal magnetic field vanishes on the axis and assumes
its maximum close to the cavity wall.

7.4.2 Stored energy

The electromagnetic field energy is computed by inte-
grating the energy density (ε0/2)E2 (at time t = 0) over
the volume of the cavity. This yields

U =
ε0

2
2πLcE

2
0

∫ R

0

J2
0 (

ω0r

c
)rdr

=
ε0

2
2πLcE

2
0

(
c

ω0

)2 ∫ a

0

J2
0 (u)udu (83)

where a = 2.405 is the first zero of J0. Using the relation∫ a

0
J2

0 (u)udu = 0.5(aJ1(a))2 we get for the energy stored
in the cavity

U =
ε0

2
E2

0(J1(2.405))2 πR2Lc . (84)

7.4.3 Power dissipation in the cavity

We consider first a cavity made from copper. The rf
electric field causes basically no losses since its tangen-
tial component vanishes at the cavity wall while the az-
imuthal magnetic field penetrates into the wall with ex-
ponential attenuation and induces currents within the
skin depth10. These alternating currents give rise to
Ohmic heat generation. The skin depth is given by

δ =
√

2
µ0ωσ

(85)

where σ is the conductivity of the metal. For copper
at room temperature and a frequency of 1 GHz the skin
depth is δ = 2µm. Consider now a small surface element.
From Ampere’s law

∮
~H · ~ds = I follows that the current

density in the skin depth is related to the azimuthal mag-
netic field by j = Hθ/δ. Then the dissipated power per
unit area is

dPdiss

dA
=

1
2σδ

H2
θ =

1
2
RsurfH2

θ . (86)

Here we have introduced a very important quantity for
rf cavities, the surface resistance:

Rsurf =
1
σδ

. (87)

In a superconducting cavity Rsurf is given by equa-
tions (73) to (75). The power density has to be in-
tegrated over the whole inner surface of the cavity.

10For a very careful discussion of the skin effect see J.D. Jackson,
Classical Electrodynamics, chapt. 8.
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This is straightforward for the cylindrical mantle where
Hθ = E0

µ0cJ1(ω0R/c) is constant. To compute the power
dissipation in the circular end plates one has to evalu-
ate the integral

∫ a

0
(J1(u))2udu = a2(J1(a))2/2 . Again

a = 2.405 is the first zero of J0. The total dissipated
power in the cavity walls is then

Pdiss = Rsurf ·
E2

0

2 µ2
0 c2

(J1(2.405))2 2πR Lc (1 + R/Lc) .

(88)

7.4.4 Quality factor

The quality factor is an important parameter of a res-
onating cavity. It is defined as 2π times the number of
cycles needed to dissipate the stored energy, or, alterna-
tively, as the ratio of resonance frequency f0 to the full
width at half height ∆f of the resonance curve

Q0 = 2π · U f0

Pdiss
=

f0

∆f
. (89)

Using the formulas (84) and (88) we get the important
equation

Q0 =
G

Rsurf
with G =

2.405 µ0 c

2(1 + R/Lc)
(90)

which states that the quality factor of a cavity is obtained
by dividing the so-called ‘geometry constant’ G by the
surface resistance. G depends only on the shape of the
cavity and not on the material. A typical value is 300
Ω. We want to point out that the quality factor Q0

defined here is the intrinsic or ‘unloaded’ quality factor
of a cavity. If the cavity is connected to an external
load resistor by means of a coupler another quality factor
(Qext) has to be introduced to account for the energy
extraction through the coupler (see Sect. 8).

7.4.5 Accelerating field, peak electric and mag-
netic fields

A relativistic particle needs a time c/Lc to travel through
the cavity. During this time the longitudinal electric field
changes. The accelerating field is defined as the average
field seen by the particle

Eacc =
1
Lc

∫ Lc/2

−Lc/2

E0 cos(ω0z/c)dz , Vacc = Eacc Lc .

(91)
Choosing a cell length of one half the rf wavelength, Lc =
c/(2f0), we get Eacc = 0.64 E0 for a pill box cavity.

The peak electric field at the cavity wall is E0. The
peak magnetic follows from eq. (82). We get

Epeak/Eacc = 1.57 , Bpeak/Eacc = 2.7 mT/(MV/m) .
(92)

If one adds beam pipes to the cavity these number in-
crease by 20 - 30%.

7.5 Cavity shape

The first sc cavities were built in the late 1960’s with the
conventional pill-box shape. They showed unexpected
performance limitations: at fields levels of a few MV/m
a phenomen called multiple impacting (or multipacting
for short) was observed. The effect is as follows: stray
electrons which are emitted from the wall (for instance
by cosmic rays) gain energy in one half-period of the elec-
tromagnetic field and return to their origin in the next
half period were they impinge with a few 100 eV onto
the wall and release secondary electrons which repeat
the same procedure. This way an avalanche of electrons
is created which absorbs energy from the rf field, heats
the superconductor and eventually leads to a breakdown
of superconductivity. It was found out many years later
that this problem is avoided in cavities having the shape
of a rotational ellipsoid. When electrons are emitted near
the iris of an elliptical cavity and accelerated by the rf
field, they return to a point away from their origin in
the next half period, and the same applies for the possi-
ble next generations of electrons. Thereby the daughter
electrons move more and more into the equator region
where the rf electric field is small and the multiplication
process dies out. For a thorough discussion I refer to
[23].

Liquid helium is provided by two 600 W refrigerators
supplying 2000 liter storage dewar.  Rigid transfer lines
transport liquid helium, cold gaseous He, and liquid
nitrogen between the refrigerator and storage dewar to a
centrally located main distribution valve box.  From the
main valve box, rigid transfer lines lead to satellite valve
boxes or directly to the superconducting elements
supplying: 1) a pair of SRF cryomodules in the East RF
station via a station VB; 2) a pair of SRF cryomodules in
the West RF station via a station VB; 3) a SRF module
in the PA via processing area VB; 4) the CLEO detector
superconducting solenoid; 5) a pair of superconducting
quadrupole magnets to be installed in the CESR IR as a
part of the Phase III upgrade.

The rigid transfer lines have a heat leak of <0.5 W/m,
contributing about 12 W per cavity feed.  The largest
heat leak is in the valves and flexible lines, contributing
about 50 W per cavity feed.  Thus, delivering liquid
helium to four cryomodules consumes about 250 W of
refrigeration power, which does not include the
cryomodule heat load.

Figure 1.  Layout of the B-cell cryomodule.

 2.2  B-cell Cryomodule Layout, Preparation,
and Tests

 Some parameters of the Cornell B-cell cryomodule [7]
are listed in Table 1, the cryomodule layout is shown in
Figure 1.  The 500 MHz single-cell niobium cavity
resides inside a liquid helium vessel.  The helium vessel
is suspended inside the cryostat vacuum vessel by four ½
inch diameter Invar rods.  The space between the helium
vessel and the vacuum vessel walls serves as vacuum
insulation.  It also contains a thermal radiation shield
maintained at liquid nitrogen temperature, two layers of
magnetic field shielding, and layers of superinsulation.
 The bell-shaped cavity has a big, 24 cm diameter,
aperture.  The big aperture beam pipes and “flutes” on

one of them allow HOMs to escape the cavity.  There are
three main structural/thermal transitions between the
cavity and external environment: a “fluted” beam tube
(FBT), a round beam tube (RBT), and the rectangular
waveguide RF feed.  Ferrite-lined room temperature
HOM loads are outboard of each beam pipe thermal
transition.  The FBT HOM load has a ring around which
the cavity tuner clamps.  The tuner mechanically adjusts
cavity frequency via longitudinal elastic deformation
allowed by bellows between the beam pipe and cryostat,
with a large sliding joint outboard of the HOM load.
The cavity round pipe is anchored to both helium and
vacuum vessels.

Table 1:  Parameters of the B-cell cryomodule.

 Frequency  499.765 MHz
 Accelerating field  6 - 10 MV/m
 Effective cell length  0.3 m
 Total RF voltage per cavity  1.8 - 3 MV
 Cryomodule length  2.86 m
 R/Q  (R=V2/P)  89 ohm
 Q0 at operating field (4.5 K)  >109

 Qext of RF coupler  2×105

 Cryostat static heat losses  30 W
 Cryostat liquid He volume  520 liters
 Loss factor of a module with
one taper at σz = 13 mm

 
 0.48 V/pC

 HOM power at 1 A beam
current

 13.7 kW

 RF power delivered to 1 A
beam

 325 kW

 Number of cavities in CESR  4

 Following the large sliding joint is a large 24 cm
aperture inter-cavity gate valve, which maintains big
aperture between two cryomodules.  This reduces the
cryomodule impedance since a significant portion of it is
contributed by the tapers to CESR beam pipe [8, 9, 10].
 The rectangular waveguide section immediately
exterior to the helium vessel (HEX) is cooled by cold
helium gas flowing through the tracing welded to the
waveguide walls.  Next is a waveguide double E-bend
elbow similarly cooled by liquid nitrogen.  Following
this is a short thermal transition to room temperature, a
waveguide vacuum pumping section, and finally the
waveguide vacuum RF window.  This waveguide path
was dictated by tight space considerations in the CESR
tunnel.
 Prior to assembly, all major cryomodule components
are subjected to acceptance tests.  The cavity must
achieve accelerating gradient greater than 6 MV/m with
Q0>109 in a vertical test [11].  All five our cavities passed
acceptance test.  In different tests five cavities reached
maximum accelerating gradients of 12 MV/m, 11 MV/m,
10 MV/m, 10 MV/m and 7.8 MV/m.  The cavity with

RF window

Pump-out box

Elbow
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 gate valve

Tuner
Nb cavity

HEX

Ion pump

Nb waveguide

HOM absorber

LHe vessel

RBT transition

LN  shield2Vacuum insulation Small
gate valve

Figure 45: A 500 MHz 1-cell niobium cavity used in the

CESR storage ring at Cornell University. The cavity is

equipped with a wave guide power coupler and cooled by

normal liquid helium.

In electron-positron storage rings quite often single-
cell cavities are used. These are particularly well suited
for the large beam currents of up to 1 A in the high lumi-
nosity ’B meson factories’. Figure 45 shows a 500 MHz
cavity of the CESR machine which is made from solid
niobium and equipped with a waveguide input coupler.
At larger energies like in LEP (104 GeV per beam) mul-
ticell cavities are more efficient to compensate for the
huge synchrotron radiation losses (3 GeV per revolution
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in LEP). In a linear collider almost the full length of
the machine must be filled with accelerating structures
and then long multicell cavities are mandatory. There
are, however, several effects which limit the number of
cells Nc per resonator. With increasing Nc it becomes
more and more difficult to tune the resonator for equal
field amplitude in every cell. Secondly, in a very long
multicell cavity ’trapped modes’ may be excited by the
short particle bunches. These are coupled oscillations at
high frequency which are confined to the inner cells and
have such a low amplitude in the beam pipe sections that
they cannot be extracted by a higher-order mode cou-
pler. Trapped modes have a negative influence on the
following bunches and must be avoided. The number
Nc = 9 chosen for TESLA appears a reasonable upper
limit. The TESLA cavity [67] is shown in Fig. 46.

stiffening ring HOM couplerpick up antenna

HOM coupler power coupler

1036 mm

1256 mm

Figure 46: Top: Schematic cross section of the 1 m long

9-cell TESLA cavity with electric field lines. The resonance

frequency is 1.3 GHz and the cavity is operated in the π mode

with 180◦ phase advance of the rf wave from cell to cell. The

cell length equals 1/2 the rf wavelength so that relativistic

electrons recieve the same energy gain in each cell. Bottom:

Technical layout of the TESLA cavity with stiffening rings

between neighbouring cells, two higher-order mode (HOM)

couplers and flanges for mounting the rf power coupler and

the pick-up antenna.

Superconducting cavities are always operated in
standing-wave mode11. The fundamental TM010 mode

11In normal-conducting linacs like SLAC the travelling wave
mode may be chosen. Basically the electrons ’ride’ on the crests of
the rf wave which propagates with the speed of light. In a super-
conducting linac a travelling wave is not attenuated by wall losses,
and in order to preserve the basic advantage of superconductivity
- almost no rf power is wasted - one would have to extract the rf
wave after some length and feed it back through a superconducting
wave guide to the input coupler. The required precision in rf phase
would be extremely demanding and would make such a system far
more complicated than a standing-wave linac.

is chosen with longitudinal electric field on the axis. In a
cavity with Nc cells the fundamental mode splits into Nc

coupled modes. The π mode with 180◦ phase difference
between adjacent cells transfers the highest possible en-
ergy to the particles. The cell length Lc is determined
by the condition that the electric field has to be inverted
in the time a relativistic particle needs to travel from
one cell to the next, so Lc = c/(2f0). For nonrelativistic
protons or ions the cell length is Lc = v/(2f0). The iris
radius influences the cell-to-cell coupling parameter kcell

which is in the order of 1 - 2 %. The frequencies of the
coupled modes are given by the formula

fm =
f0√

1 + 2 kcell cos(mπ/Nc)
, 1 ≤ n ≤ Nc . (93)

7.6 Choice of frequency

The losses in a microwave cavity are proportional to the
product of conductor area and surface resistance. For
a given length of a multicell resonator, the area scales
with 1/f while the surface resistance scales with f2 for
RBCS � Rres (see eq. (73)) and becomes independent
of f for RBCS � Rres. At T = 2 K the BCS term
dominates above 3 GHz and here the losses grow lin-
early with frequency, whereas below 300 MHz the resid-
ual resistance dominates and the losses are proportional
to 1/f . To minimize power dissipation in the cavity
wall one should therefore select f in the range 300 MHz
to 3 GHz. Cavities in the 350 to 500 MHz regime are
commonly used in electron-positron storage rings. Their
large size is advantageous to suppress wake field effects
and losses from higher order modes. However, for a linac
of several 10 km length the niobium and cryostat costs
would be prohibitive for these bulky cavities, hence a
higher frequency has to be chosen. Considering material
costs f = 3 GHz might appear the optimum but there
are compelling arguments for choosing about half this
frequency.

• The wake fields generated by the short electron
bunches depend on radius as 1/r2 for longitudinal
and as 1/r3 for transverse wakes. Since the iris ra-
dius of a cavity is inversely proportional to its eigen-
frequency, the wake field losses scale with the second
resp. third power of the frequency. Beam emittance
growth and beam-induced cryogenic losses are there-
fore much higher at 3 GHz.

• The f2 dependence of the BCS resistance makes a
3 GHz cavity thermally unstable at gradients above
30 MV/m12, hence choosing this frequency would
preclude a possible upgrade of the TESLA collider
to 35 MV/m [68].

12See Fig. 11.22 in [23].
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7.7 Technical limitations of sc cavities

The fundamental advantage of superconducting cavities
is their extremely low surface resistance of about 10 nΩ
at 2 K leading to rf losses which are 5 to 6 orders of
magnitude lower than in copper cavities. The drawback
is that even tiny surface contaminations are potentially
harmful as they decrease the quality factor and may even
lead to a thermal breakdown (quench) of the supercon-
ductor due to local overheating.

7.7.1 Thermal instability and field emission

Field emission of electrons from sharp tips has been a
notorious limitation of high-gradient sc cavities. The
typical indication is that the quality factor drops ex-
ponentially above a certain threshold field, and X rays
are observed. Temperature mapping at the outer cavity
wall usually reveals that the heating by rf losses is not
uniform over the whole surface but that certain spots
exhibit larger temperature rises, often beyond the criti-
cal temperature of the superconductor. Hence the cav-
ity becomes partially normal-conducting, associated with
strongly enhanced power dissipation. Because of the ex-
ponential increase of surface resistance with temperature
this may result in a run-away effect and eventually a
quench of the entire cavity. Analytical models and nu-
merical codes are available to describe this effect. The
tolerable defect size depends on the purity of the ma-
terial. As a typical number, the diameter of a normal-
conducting spot must be less than 50 µm to avoid a ther-
mal instability at 25 MV/m.

The field emission current density is given by the
Fowler-Nordheim equation [69], adapted for rf fields:

jFE ∝
E2.5

loc

Φ
exp(−CΦ3/2/Eloc) . (94)

Here Φ is the work function of the metal, C a constant
and Eloc the local electric field which may be several 100
times larger than the accelerating field at sharp tips on
the surface. The exponential behaviour can be observed
by plotting the temperature rise at a ‘hot spot’ as a func-
tion of the reciprocal accelerating field. Perfect cleaning
by rinsing with high-pressure ultrapure water is the most
effective remedy against field emission. Using the clean
room techniques developed in semiconductor industry it
has been possible to raise the threshold for field emission
in multicell cavities from about 10 MV/m to more than
20 MV/m in the past few years. Thermal instabilities
and field emission are discussed at much greater detail
in [23].

7.7.2 Lorentz-force detuning and microphonics

The electromagnetic field exerts Lorentz forces on the
currents which are induced in a thin surface layer. The
resulting pressure acting on the cavity wall leads to a
deformation of the cells in the µm range and a shift in

resonance frequency which grows quadratically with the
accelerating field. For a nine-cell 1.3 GHz cavity with
2.5 mm wall thickness the frequency shift at 25 MV/m
amounts to about 800 Hz and exceeds the width of the
resonance curve of the cavity equipped with the main
power coupler (see sect. 8.3). To reduce the detuning
by a factor of two the TESLA cavities are mechanically
reinforced by stiffening rings joining adjacent cells, see
Fig. 46.

When the rf power is not applied continuously but
in pulsed mode there is a time dependent detuning of
the cavity. A measurement [70] is shown in Fig. 47.
By using a piezo-electric actuator to adjust the cavity
length appropriately the cavity eigenfrequency can be
kept constant during the time interval used for beam
acceleration.3.5/ Mechanical Resonances of TESLA 9-cell Cavity 23
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Figure 3.5: Compensation of the Lorentz-force induced frequency shift during the 
at-top
in pulsed mode cavity operation. Shown is the frequency detuning of the accelerating
mode with and without compensation by the piezoelectric tuner. The accelerating 
at-
top gradient in the TESLA 9-cell cavity is 23.5 MV/m. The pulse structure is shown in
�gure 2.1.

of mechanical modes by the repetitive Lorentz-forces. For a 10 Hz pulse repeti-
tion rate and 1.3 ms long RF pulses the Lorentz-force excitation spectrum has lines
every 10 Hz up to frequencies beyond 1 kHz. Accordingly there is potential to reso-
nantly drive a mechanical resonance of the cavity with an amplitude, that depends
on the quality factor of the mode. This can result in a signi�cant modulation of
the accelerating mode frequency, thus increasing the detuning within the RF pulses.
Since piezotranslators can also be used for measuring vibrations they provide a tool
to study the excitation of mechanical modes. In an initial experiment the voltage
induced in the piezo-element by the vibrations has been monitored during pulsed
operation of a 9-cell cavity at high gradients. Figure 3.7 shows the induced voltage
at 30 MV/m and 10 Hz pulse repetition rate. As can be seen, a damped oscillation
is excited which persists until the next pulse. The pattern of the vibration is largely
repetitive from pulse to pulse with a slight modulation, which can be attributed
to microphonics. The frequency spectrum of the Lorentz-force excited vibration is
shown in �gure 3.8 (30 MV/m gradient with 2 Hz pulse repetition rate). Beside two
microphonics vibration frequencies (caused by the He-system and pumps) mechan-
ical resonances around 280 Hz and 450 Hz are excited. However, the dominating
resonance frequencies are not exact multiples of 10 Hz, thus they are not excited
resonantely in a pulsed operation with 10 Hz RF pulse repetition rate.
For more detailed investigations we plan to repeat these measurements with an ad-

Figure 47: Frequency detuning of a TESLA cavity in pulsed

operation at 23.5 MV/m. Also shown is the frequency stabi-

lization by means of a piezo-controlled tuner.

Mechanical vibrations of the cavity (so-called micro-
phonics) result in random fluctuations of the cavity
eigenfrequency. The rms frequency spread measured at
the TESLA Test Facility is in the order of 10 Hz and well
below the cavity bandwidth of ≈ 500 Hz. It should be
noted that microphonics becomes a critical issue in the
multicell cavities foreseen for proton or ion acceleration
at β = v/c = 0.5− 0.8 since the cells are flatter than in
β = 1 cavities and vulnerable to longitudinal oscillations.

8 Performance of Practical Cavi-
ties

8.1 Cavity fabrication

As a typical example, I describe the fabrication of the
TESLA cavities. Similar procedures were previously ap-
plied for the 340 five-cell resonators of the Continuous
Electron Beam Accelerator Facility CEBAF [11]. In the
first step, half-cells are produced from 2.8 mm thick nio-
bium discs by deep-drawing. The half-cells are machined
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at the iris, cleaned by ultrasonic degreasing, 20 µm chem-
ical etching and clean water rinsing. Two half-cells are
then joined at the iris by electron-beam (EB) welding
to form a dumb-bell structure. The welding at the iris
is usually done from the inside to ensure a smooth weld
seam at the location of the highest electric field in the
resonator. Since niobium is a strong getter material for
oxygen it is important to carry out the EB welds in a vac-
uum of better than 5 · 10−5 mbar. The next step is the
welding of a stiffening ring. Frequency measurements are
made on the dumb-bells to determine the correct amount
of machining at the equators. After proper cleaning (a
few µm etching followed by clean water rinsing and clean
room drying), eight dumb-bells and two end half-cells
with attached beam-pipe sections are stacked in a pre-
cise fixture. The EB welds at the equators are made from
the outside. A reliable method for obtaining a smooth
weld seam of a few mm width at the inner surface is to
raster a slightly defocused electron beam in an elliptic
pattern and to apply 50% of beam power during the first
weld pass and 100% of beam power in the second pass.

8.2 Cavity treatment

Experience has shown that a damage layer in the order of
100 µm has to be removed from the inner cavity surface
to obtain good rf performance in the superconducting
state. The standard method is called Buffered Chemi-
cal Polishing (BCP), using an acid mixture of HF (48%),
HNO3 (65%) and H3PO4 (85%) in the ratio 1:1:2 or 1:1:1.
Afterwards the cavities are rinsed with ultra-clean water
and then annealed at 800◦C in an Ultra High Vacuum
(UHV) oven to remove dissolved hydrogen from the nio-
bium and to relieve mechanical stress. Many TESLA
cavities have been tested after this step but the majority
is subjected to a 1400◦C heat treatment in another UHV
furnace. At this high a temperature, heavier dissolved
gases (oxygen, nitrogen) diffuse out of the material and
the residual resistivity ratio RRR as well as the heat con-
ductivity increase by a factor of two. To bind the oxygen
diffusing out of the niobium and to prevent oxidation by
the residual gas in the oven (pressure < 10−7mbar) a
thin titanium layer is evaporated on the inner and outer
cavity surface, Ti being a stronger getter than Nb. The
titanium layer is removed afterwards by chemical etch-
ing. A severe drawback of the 1400◦C treatment is a
considerable grain growth accompanied with a softening
of the niobium. The cavities are vulnerable to plastic
deformation and must be handled with great care.

8.3 Results on cavity performance

In this section I restrict myself to multicell cavities
which are more demanding than single cell resonators.
The 9-cell cavities developed for the TESLA collider are
the most advanced structures concerning high gradients.
Figure 48 shows the ‘excitation curve’ of a very good
TESLA resonator. Plotted is the quality factor Q0 as

Figure 48: Excitation curve Q0 = Q0(Eacc) of an excellent

TESLA 9-cell cavity, cooled by superfluid helium of 2 K.

a function of the accelerating electric field. An almost
constant and high value of 2 · 1010 is observed up to 25
MV/m beyond which Q0 decreases until the cavity be-
comes thermally unstable at 31 MV/m. It is by no means
easy to achieve such a good performance. Various treat-
ment steps to prevent a degradation are illustrated in the
next figure. A strong decrease in quality factor is usu-
ally observed if a foreign particle is sticking on the cavity
surface, leading either to field emission of electrons or to
local overheating in the rf field. At Cornell University
a method for destroying field emitters was invented [71],
called ‘high power processing’, which in many cases can
improve the high-field capability, see Fig. 49a. Removal
of field-emitting particles by high-pressure water rinsing,
a technique developed at CERN [72], may dramatically
improve the excitation curve (Fig. 49b). After the water
rinsing the cavity must be dried and handled in a clean
room to avoid a new contamination. The beneficial ef-
fect of a 1400◦C heat treatment, first tried out at Cornell
[73] and Saclay [74], is seen in Fig. 49c. The cavity per-
formance is very poor if the titanium getter layer is not
completely removed after this treatment (Fig. 49d).

By combining all mentioned steps – heat treatment
at 800◦C and 1400◦C, rinsing with ultra-pure water at
high pressure, assembly in a class 100 clean room – it
has been possible to achieve a dramatic improvement in
the performance of industrially manufactured multicell
cavities, see Fig. 50. In the most recent production of
24 nine-cell cavities the average gradient is 26±2 MV/m,
safely above the design gradient of 23.5 MV/m needed
for a centre-of-mass energy of 500 GeV in TESLA.

8.4 Niobium-coated copper cavities

Copper cavities with a thin niobium layer on the inner
surface offer two advantages: a considerable cost saving
and a much higher thermal conductivity of the wall and
thereby better thermal stability of the cavity, see [27] for
a detailed discussion. The most successful method for
thin film deposition is magnetron sputtering for about
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FIG. 13. Improvement in cavity performance due to various treatments: (a) high power processing (HPP), (b) high pressure water
rinsing (HPR), (c) successive application of 800 ±C and 1400 ±C heat treatment (HT), and (d) removal of surface defects or titanium
in grain boundaries by additional BCP.

a size of 0.2–0.3 mm was seen [Fig. 16(b)] indicating an
inclusion of foreign material with a higher nuclear charge
than niobium. Neutron absorption measurements at the
Forschungszentrum GKSS in Geesthacht gave no signal,
indicating that the neutron absorption coefficient of the un-
known contamination was similar to that of Nb. The identi-
fication of the foreign inclusion was finally accomplished
using x-ray fluorescence at the Hamburger Synchrotron-
strahlungslabor (HASYLAB) at DESY. Fluorescence was
observed at photon energies corresponding to the charac-
teristic x-ray lines of tantalum L1 � 11.682 keV, L2 �
11.136 keV, and L3 � 9.881 keV.

The synchrotron radiation fluorescence analysis method
features sufficient sensitivity to perform a scan of the
tantalum contents in the niobium by looking at the
lines TaKa1 � 57.532 keV, TaKa2 � 56.277 keV, and
TaKb � 65.223 keV. The average Ta content in the bulk

Nb was about 200 ppm but rose to 2000 ppm in the spot
region. The RRR dropped correspondingly from 330 to
about 60.

The six cavities in class 3 were produced by one com-
pany and exhibited premature quenches at gradients of
10–14 MV�m and a slope in the Q�E� curve (Fig. 17).
Two of the resonators were investigated in greater de-
tail [28]. Temperature mapping revealed strong heating
at several spots on the equator weld [Fig. 18(b)]. The
temperature rise as a function of the surface magnetic
field is plotted in Fig. 18(c) for one sensor position above
the weld and three positions on the weld. In the first
case a growth proportional to B2 is observed as expected
for a constant surface resistance. On the weld, how-
ever, a much stronger rise is seen ranging from B5 to
B8. This is clear evidence for a contamination of the
weld seam.
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FIG. 14. (a) Excitation curves of the best 9-cell resonator of each of the four manufacturers. (b) Distribution of maximum gradients
for the resonators of class 1, requiring a quality factor Q0 $ 5 3 109.
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Figure 49: Impact on cavity performance of various treatment steps: (a) high power processing (HPP), (b) high-pressure water

rinsing (HPR), (c) successive application of 800◦C and 1400◦C heat treatments (HT), (d) degradation by remainders of the

titanium getter layer and improvement after complete removal of this layer.
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duced 9-cell cavities for the TESLA Test Facility (TTF) ac-

celerator for the three production series. The error bars rep-

resent the rms spread of the distribution.

4 hours in an argon atmosphere of 1.5 · 10−3 mbar and
at a temperature of the clean copper substrate of 180 -
200◦C. The niobium film has a thickness of a few mi-
crometers and is usually not homogeneous but consists
of rod-like grains with a diameter below 100 nm. The
residual resistivity ratio is rather low, RRR ≥ 10. The
four-cell 350 MHZ cavities of LEP were made this way
and showed excellent performance [13] at moderate gra-
dients (7.2 MV/m), allowing to raise the centre-mass-
energy beyond 200 GeV and opening the way to highly
interesting investigations on pair production of W bosons
and searches for the Higgs particle.

Considerable effort has been spent at CERN and
Saclay to determine the high-field capability of single
cell 1.3 - 1.5 GHz copper cavities with a niobium sputter
layer. Various sputter gases were tried out and many sys-
tematic studies on magnetic field depedencies were made
[75], [76]. Some test results are shown in Fig. 51. For
the best sputter layer 25 MV/m have been reached but
with a monotonous decrease of the quality factor as a
function of the accelerating field. One possible origin of
this ‘Q drop’ are grain boundary effects in the niobium
layer.

8.5 Quest for highest gradients

The energy upgrade of TESLA to 800 GeV requires ac-
celerating fields of 35 MV/m, and therefore a substantial
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Fig 2: Q0 versus accelerating field curves at 1.7 K for the 5 cavities juste after
HPR rinsing.

All curves show an exponential decrease of the Q0 when
the accelerating field increases. The surface resistance
deduced from the relation Q0=G/Rs follows the relation
Rs=Rs0*exp[C*Eacc]   (Rs0 and C are given in table 2).

Table 2: values of Rs0 (nΩ) and C (m/MV) calculated from
the fit of fig.2 curves.

S1-10-A2 S1-10-B1 S1-11-A1 S1-11-B1 S1-08-C1
Rs0 18.9 86.2 32.3 20.5 12.5
C 0.0952 0.157 0.122 0.140 0.174

The difference between the five cavities behavior may be
due to several causes as described in paragraphs 3.B, and
3.C.

B. Case of S1-10-A cavity

Fig.3 represents the two curves obtained during the first
RF test of  S1-10-A cavity (called S1-10-A1), which was
done after a 30 bars HPR rinsing.
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The initial curve was limited by an accident with a flash of
electrons, which occurred at Eacc = 20.5 MV/m and
Q0=4.5 109. The second curve corresponding to the degraded

cavity was stable. We tried to suppress the defect by 85 bars
HPR rinsing, but the second measurement gave exactly the
same results with higher accelerating fields because of a
longer incident power antenna (S1-10-A2 curve on fig.2).
Rs0 and C parameters of the initial curve are respectively
14 nΩ and 0.06 m/MV.

No defect was rigorously identified inside the cavity after
a meticulous observation. However we may suspect the
creation of a point defect on the coating surface, or the
pollution of a part of the cell surface by vaporization of a
defect. Calculations of the thermal effects of these two types
of defects, localized or large, on a niobium coating deposited
on copper, may show which one is effective and describes
these curves. This analysis is undertaken in our laboratory,
but is not yet conclusive for presenting the results in this
paper. The experimental surface resistance of this defect,
deduced from the difference between the two curves, is also
an exponential function of the accelerating field.

Paragraph 3.C presents RF measurements of S1-11-B
cavity showing that other defects than point defects also lead
to an exponential increase of the surface resistance.

C. Effect of the coated cavity baking.

The method described in [12] for lowering the Q-slope at
high field observed on bulk Nb cavities was applied to
cavities S1-11-B and S1-08-C. After the first RF
measurements (fig.2) the two cavities were let inside the
cryostat vacuum and baked at 90 °C during 20 hours with
internal pumping. The following RF tests showed the
different effect of this operation for each cavity. Nothing
happened for S1-08-C (the S1-08-C2 curve is exactly the
same than S1-08-C1 on fig.2). At the opposite, for S1-11-B2
an increase of the Q0 accompanied by a drastic reduction of
the Q-slope was observed (fig.4). Unfortunately a helium
leak occurred when the accelerating field exceeded
10 MV/m, and measurements were limited at 16.5 MV/m.

The improvement of the quality factor may be related to
water adsorbed on the cell surface. No precise quantitative
analysis of the water release during baking was done. As
long as this water layer is not well characterized it is
difficult to evaluate RF dissipation inside its volume.
Nevertheless the surface resistance of the "defect" removed
by heating at 90°C can be deduced from the difference
between the two curves of fig.4, and it is also an exponential
function of the RF field.

The inefficiency of the baking on S1-08-C1 cavity shows
that the performances limitations have not the same origin
than for S1-11-B1 cavity. This behavior may be connected to
the history of the copper cavity which had been
mechanically polished by tumbling before deposition of the
two previous Nb coatings S1-08-A and S1-08-B (results not
presented in this paper). These two coatings had very bad
performances

Flash of electrons

l Initial Curve

s Final curve

Fig.3: Q0 versus the accelerating field for S1-10-A1 cavity

Figure 51: Quality factor as a function of accerating field for

various niobium sputter coatings in a 1.3 GHz 1-cell copper

cavity.

increase in field capability is needed. The main obsta-
cles in approaching the theoretical limit of 50 MV/m in
multicell niobium cavities are foreign material contam-
ination in the niobium and an insufficient quality and
cleanliness of the inner rf surface.

8.5.1 Quality improvement of niobium

Niobium for microwave resonators has to be of extreme
purity, for two reasons. Dissolved gases like hydrogen,
oxygen and nitrogen reduce the heat conductivity at 2
K, and contamination by normal-conducting or weakly
superconducting clusters close to the rf surface may cause
a premature breakdown of the superconducting state.
The TTF cavities have been made from niobium with gas
contents in the few ppm range and an RRR of 300. The
niobium sheets were scanned with an eddy-current device
to exclude sheets with foreign material contamination
from the cavity production [77].

Ten 9-cell cavities were tested before and after the heat
treatment at 1400◦C. The average gain in gradient was
4 MV/m which means that this heat treatment is an
essential prerequisite for achieving the TESLA-500 goal,
at least with the present surface preparation by chemical
etching. From tests at the KEK laboratory in Tsukuba,
Japan there is some evidence that the tedious and costly
1400◦C heat treatment may not be needed in electropol-
ished cavities (see below).

A promising new development are cavities made by hy-
draulic forming from a seamless tube with an inner 0.5
mm thick niobium layer and an outer 3 mm thick copper
layer [78]. The two metals were tightly joined by explo-
sion bonding. In a 1-cell cavity 38 MV/m were reached
after chemical etching (BCP). While this technique needs
still more R&D it has the potential of a considerable sav-
ings in material cost. Another advantage is the high heat
conductivity of copper allowing for a large wall thickness

to suppress Lorentz-force detuning and microphonics.

8.5.2 Electrolytic polishing

Buffered Chemical Polishing (BCP) produces a rough
niobium surface with strong etching in the grain bound-
aries. An gentler method to remove the damage layer
is ‘electropolishing’ (EP). Sharp edges and burrs are
smoothed out by EP and a shiny surface can be obtained,
see Fig. 52. Since 1995 gradients of more than 35 MV/m
have been obtained at KEK in electropolished 1-cell nio-
bium cavities [79]. In cooperation with Saclay it has been
convincingly demonstrated [80] that EP raises the accel-
erating field by more than 7 MV/m with respect to BCP
while electropolished cavities suffer a strong degradation
when they are subjected to a subsequent BCP13. In a
joint R&D program of CERN, DESY, KEK and Saclay
many 1-cell cavities have been electropolished yielding
gradients between 35 and 42 MV/m [81], see Fig. 52.

The transfer of the EP technology to multicell cavi-
ties is in progress. Preliminary results are available from
several 9-cell TESLA resonators which first went through
the standard BCP treatment and were then electropol-
ished by a Japanese company. The best cavity is shown
in Fig. 53. By exciting the various coupled modes in
the 9-cell structures it is possible to drive selected cells
to higher field than the others. This way one can deter-
mine the high-field capability of individual cells14. The
single-cell statistics derived from this mode analysis (Fig.
53) proves that a large number of cells exceeds 35 MV/m.

Based on the test results presented in this section there
is confidence that the gradient of 35 MV/m needed for
800 GeV in TESLA can be achieved in multicell cavi-
ties within the next few years, but continuous effort will
be needed to avoid field emission at these field levels.
According to present knowledge, only solid niobium cav-
ities or possibly cavities made from bonded NbCu tubes
will be suitable for such high-field applications, while
niobium-sputtered copper cavities are an economic solu-
tion for medium energy machines.

9 Coupling of RF Power into the
Cavity and Energy Transfer to
the Beam

The purpose of an accelerating cavity is to transfer radio
frequency power to the particle beam. The rf cavities
in a storage ring are necessarily operated in the con-
tinuous wave (cw) mode while in a high energy linear
accelerator usually a pulsed operation is needed. In a
normal conducting linac like SLAC the rf pulses must

13It should be mentioned that P. Kneisel of Jefferson Lab. has
reached a world record of 45 MV/m in a BCP treated 1-cell cavity
[82] but very high gradents were repeatedly seen only in EP treated
cavities.

14There is a ambiguity in the procedure: the cells 1 and 9, 2 and
8, 3 and 7, 4 and 6 cannot be distinguished.
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of three 1-cell cavities prepared by electrolytic polishing.

be quite short, in the order of microseconds, to prevent
overheating of the copper structures, in the supercon-
ducting TESLA machine the pulse duration may be a
millisecond. Thereby the heat load on the refrigeration
system is kept within tolerable limits. In the following I
consider first the cw mode.

9.1 Equivalent circuit diagram for a cav-
ity coupled to an rf power source

We represent the sc cavity by an LCR circuit (Fig.
55a) where the parallel resistor R0, called the shunt
impedance15, is very large (> 1012 Ω at T = 2 K). The

15The ratio (R/Q) = R0/Q0 = V 2
acc/(2ω0 U) is an important

cavity parameter which depends only on the cavity shape but not
on its absolute size nor on the wall material. An alternative con-
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Figure 53: Results from electropolished 9-cell cavities. Top:

excitation curve of the best cavity at 2 K. Bottom: distribu-

tion of the highest acceleration fields obtained in the individ-

ual cells of two 9-cell cavities.

incorporation of the rf power source into this circuit di-
agram requires some care because the rf wave is guided
to the cavity through a transmission line, and reflections
may occur at the input to the cavity. The standard rf
power sources for sc cavities used for particle accelera-
tion are klystrons with a power rating of typically a MW,
while in cavity tests without beam solid state amplifiers
of 100 -1000 W can be used. The rf wave is transported
to the cavity through a transmission line (waveguide at
high power, coaxial cable at low power) and coupled into
the resonator by means of an input coupler. This can be
a waveguide coupler or a coaxial coupler. The simplest
input coupler, which is commonly used in the acceptance
test of an sc cavity, is a coaxial antenna in the beam
pipe section of the cavity (Fig. 54). The radius of the
pipe is chosen such that its cut-off frequency is above
the resonant frequency of the cavity. Hence the stand-
ing wave in the resonator is exponentially attenuated in
the pipe. This means that the electric field amplitude at
the tip of the coaxial antenna depends strongly on the
antenna position and can be varied by several orders of
magnitude when the antenna is moved longitudinally by
just a few cm. Effectively, the input coupler acts as a
transformer with a variable transformation ratio 1 : N
(usually N � 1).

It often happens that the rf wave is partly reflected
at the input coupler and travels back to the rf source.
Klystrons but also amplifiers may be destroyed by re-

vention is to call Ra = 2R0 the shunt impedance.

39



circulator

load
Z1

coupler

Z1

1:N

transmission
line

L C
R

cavity

transmission
line

RF
generator

Z1

Pg ~
Zcav

1 2

0

3

a)

transmission line

Klystron~IKlystron

Z1
Z1

b)  

c) 

L  CRext Ib

~
Ib

~
R0

Figure 47: (a) Equivalent circuit diagram for an rf cavity with accessories:
rf generator (klystron or amplifier), transmission line (wave guide or coaxial
cable), circulator, input coupler, LCR circuit. (b) Circuit diagram as seen
from the klystron. (c) Circuit diagram as seen from the cavity side. The
impedance of the terminated wave guide has been transformed to the cavity
side and is represented by the resistor Rext. Also shown is the beam current.
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Figure 54: Schematic drawing of a pill box cavity with coax-

ial input coupler in the beam pipe section. The bottom curve

shows the amplitude of the electric field along the cavity axis.

The field decays with exponential attenuation in the beam

pipe. The antenna is movable in axis direction to permit

adjustment of the coupling strength.

flected rf waves. For that reason a circulator is intro-
duced into the wave guide section between klystron and
cavity, see Fig. 55a. The circulator has the following
property: an rf wave entering at port 1 leaves the cir-
culator at port 2, while a wave entering at port 2 leaves
at port 3. This port is terminated with a load resistor
having the characteristic impedance Z1 of the transmis-
sion line. The wave reflected at the cavity input is thus
guided into the load resistor at port 3 and completely ab-
sorbed there. Seen from the klystron, the wave guide is
therefore always properly terminated, see the simplified
circuit diagram of Fig. 55b. A simplified circuit diagram
which does not contain transmission line components can
also be drawn for the cavity side, see Fig. 55c. The wave
guide with its termination Z1 at port 3 of the circulator
is transformed into the circuit as a parallel external re-
sistance Rext = N2 · Z1. The klystron is represented as
an alternating current source.

The intrinsic quality factor of the cavity reads in terms
of the lumped-circuit components

Q0 =
R0

ω0L
with ω0 =

1√
LC

. (95)

The external load causes an additional damping of a
free oscillation in the LC circuit. The corresponding
quality factor is called the external Q of the cavity,
Qext = Rext/(ω0L). The parallel resistors R0 and Rext

can be replaced by Rload = (1/R0 + 1/Rext)−1 which
then defines the loaded quality factor

Qload =
Rload

ω0L
,

1
Qload

=
1

Q0
+

1
Qext

. (96)

Now we consider a driven oscillation of the circuit by

applying a harmonic current. For simplicity we assume
that the generator frequency coincides with the cavity
eigenfrequeny. Kirchhoff’s rule yields

C
dV

dt
+

V

Rload
+

1
L

∫
V dt = Ig cos(ω0t) . (97)

Taking the derivate with respect to time we get the equa-
tion of a driven harmonic oscillator

d2V

dt2
+

ω0

Qload

dV

dt
+ ω2

0 V = −Igω0

C
sin(ω0t) . (98)

The stationary solution is

V (t) = IgRload cos(ω0t) . (99)

When the current is switched off we get a damped free
oscillation with the time constant

τ =
2Qload

ω0
. (100)

The voltage transients in pulsed operation are discussed
below.

9.2 Test of cavity without beam

The ideal condition is that the rf generator frequency
equals the cavity eigenfrequency, ωg = ω0 , and that no
power is reflected at the input coupler. This is realized
if the transformed cavity impedance is equal to the char-
acteristic impedance of the wave guide:

Zcav/N2 = R0/N
2 = Z1 . (101)

Note that for ωg = ω0 the impedance of the LCR cir-
cuit is purely real and given by Zcav = R0. Under these
conditions Qload = Q0/2, and from the time decay of
the oscillation after switching off the rf generator one
can easily determine the intrinsic quality factor Q0. The
generator power is fully transmitted into the cavity and
dissipated in the walls, so Pg = Pdiss. Measuring Pg with
a power meter allows one then to compute the stored en-
ergy U = Q0Pdiss/ω0 and the accelerating field in the
cavity (in case of a pill box cavity with the help of Eqs.
(84) and (91), for other cavity shapes by means of nu-
merical codes).

It is convention to define a coupling parameter βc by

βc =
R0

N2Z1
. (102)

Proper termination of the transmission line means βc =
1. If this is not the case, the incident rf generator power
Pg will be partly reflected at the input coupler, partly
transmitted through the coupler and dissipated in the
cavity walls:

Pref =
(βc − 1)2

(βc + 1)2
Pg , Ptrans = Pdiss =

4βc

(βc + 1)2
Pg .

(103)
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For unity coupling (βc = 1) the klystron power Pg is
fully transmitted and dissipated in the resistance R0. In
the simplified circuit diagram of Fig. 55c, however, the
generator current flows not only through the cavity shunt
impedance R0 but also through the external resistance
Rext. Hence the generator current Ig is a fictitious quan-
tity and different from the real klystron current. It can
be computed for arbitrary βc from the generator power
in the following way: According to Fig. 55c the power
dissipated in R0 is I2

gR0/(2(βc + 1)2). Comparing with
Eq. (103) and using Eq. (102) we obtain

Ig = 2
√

2βcPg

R0
=

2
N

√
2Pg

R1
= 2

Iklyst

N
(104)

which means that the fictitious current Ig is twice the
transformed klystron current Iklyst/N .

9.3 Acceleration of a bunched beam

A radio frequency cavity cannot transfer energy to a
continuous beam because half of the time the field is
decelerating. On the contrary, the particles must be
grouped in short bunches which are synchronized with
the rf wave to pass the cavity always at the desired rf
phase. Respresenting the accelerating electric field by
Ez(t) = E0 cos(ωgt), the nominal phase for a relativistic
beam in a linear accelerator is φ0 ≈ 0, i.e. the particles
are accelerated ‘on crest’.

A bunch train consists of many equally spaced bunches
whose repetition time Trep is an integer multiple of the
rf period, Trep = h Tg = h 2π/ωg (the integer h is called
the harmonic number). The rms bunch length is small,
σb � Tg. In good approximation one can treat the bunch
train as a periodic sequence of δ-function pulses whose
Fourier component at the rf frequency (ωg = h ωrep) in-
teracts with the rf wave in the cavity. This Fourier com-
ponent is twice the dc component I0 of the beam. In the
lumped-circuit diagram of figure 55c the beam is repre-
sented by a current whose direction is chosen opposite to
the generator current because the beam extracts energy
from the cavity. The generator and beam currents are
respectively

Ĩg exp(iωgt) , Ĩb exp(iωgt) (105)

where Ĩg and Ĩb are complex phasors with |Ĩg| = Ig and
|Ĩb| = 2 I0. We consider here only the case that the
generator frequeny and cavity eigenfrequency are equal,
ωg = ω0 , and that the bunches are accelerated ‘on crest’.
The generator-induced and beam-induced voltages in the
LCR circuit are

Ṽg = Ĩg
R0

βc + 1
, Ṽb = Ĩb

R0

βc + 1
(106)

The accelerating voltage is the vectorial sum of these two
voltages

Ṽacc = Ṽg + Ṽb . (107)

It is this quantity which changes the particle energy. For
on-crest acceleration, the generator- and beam-induced
voltages point in opposite direction and the net accel-
eration voltage is Vacc = Vg − Vb . Using Eq. (104) to
express the fictitious generator current Ig by the genera-
tor power Pg (i.e. the klystron power) and replacing the
Fourier component of the beam current at ωg by the dc
component (Ib = 2I0) we get the following expression for
the accelerating voltage

Vacc =
2
√

2βcPgR0

βc + 1
·(1− K√

βc
) , K = I0

√
R0

2Pg
. (108)

The dimensionless quantity K is called the beam loading
parameter. The power transferred to the beam is

Pb =
IbVacc

2
= I0 Vacc . (109)

The efficiency of power transfer from generator
(klystron) to beam is

ηg =
Pb

Pg
=

4K
√

βc

βc + 1
(1− K√

βc
) . (110)

Finally, the power reflected at the input coupler is given
by

Pref = Pg−Pb−Pdiss =
(βc − 1− 2K

√
βc)2

(βc + 1)2
·Pg . (111)

Without beam (I0 = 0 and K = 0) we recover the
condition βc = 1 for zero power reflection at the input
coupler. With beam, however, the coupling parameter
of a superconducting cavity must be chosen much
larger than 1 in order to achieve zero reflection. As
an example we consider the 9-cell TESLA cavity at
25 MV/m. The intrinsic quality factor at T = 2 K
is Q0 ≈ 1010. For a bunched beam with a dc current
I0 = 8 mA the generator power is Pg = 200 kW. This
yields a coupling parameter βc = 3330. The efficiency
of power transfer from generator to beam is very large,
ηg = 99.97%. Hence almost the full generator power of
200 kW is transferred to the beam and only about 60 W
are dissipated in the cavity walls, see also Table 3. In a
copper cavity, more than 50% of the generator power is
wasted in heating the walls.

In a circular accelerator the nominal phase for a rela-
tivistic beam (v ≈ c) must be chosen on the falling slope
of the rf wave (0 < φ0 < π/2) in order to achieve lon-
gitudinal focusing. In that case there is a phase angle
between the generator voltage Ṽg and the accelerating
voltage Ṽacc which would lead to reflections at the input
coupler of the cavity. It can be shown [23] that the re-
flection is suppressed when the generator frequency ωg

is detuned with respect to the cavity frequency ω0 by

ωg − ω0 = ω0
I0 R0

Q0 Vacc
sinφ0 . (112)
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Figure 56: Top: Accelerating voltage of a TESLA cavity in

pulsed-mode operation. The generator-induced voltage rises

exponentially towards an asymptotic value of 50 MV. The

injection of the bunched beam starts when 25 MV have been

reached. From then on the generator- and beam-induced volt-

ages balance each other so that the accelerating voltage is

maintained at the constant value of 25 MV. Bottom: En-

larged view of the plateau region. Each bunch causes a rapid

decrease in cavity voltage which is replenished by the incident

generator power until the arrival of the next bunch.

Table 3: Typical parameters of the 1.3 GHz superconduct-

ing 9-cell TESLA cavity in cw operation: dc component I0 of

beam current, external quality factor Qext , bandwidth ∆f ,

coupling parameter βc , time constant τ , klystron power Pg ,

dissipated power Pdiss . In pulsed operation with a duty fac-

tor of 0.01 the average dissipated power is less than 1 W.

I0 Qext ∆f βc τ Pg Pdiss

0 1010 0.26 Hz 1 1.2 s 60 W 60 W
8 mA 3 · 106 433 Hz 3330 734 µs 200 kW 60 W

One gets ωg > ω0. This is in accordance with the Robin-
son criterion for avoiding collective instabilities in the
synchrotron oscillations [29].

9.4 Pulsed cavity operation

Although the dissipated power in an sc cavity amounts
to only 0.02 − 0.03% of the generator power, a heat de-
position of about 50 W would require a primary electric
power of 40 kW in the cryogenic plant to cool a 1 metre
long cavity. This is far too big for a long linac. To reduce
the heat load the cavities are operated in pulsed mode
with a duty factor of less than 1%. In pulsed operation
the rf power is switched on at time t = 0, kept con-
stant during the interval 0 ≤ t ≤ tend and then switched
off. The generator-induced voltage rises exponentially
towards an asymptotic value Vasymp = Ig R0/(βc + 1)

Vg(t) = Vasymp(1− exp(t/τ)) . (113)

The injection of the bunched beam starts at a time tinj =
τ ln 2 when the generator-induced voltage has reached
Vacc = Vasymp/2 (see Fig. 56). Each bunch of charge q0

acts as a δ-like current pulse, inducing the voltage vb =
−q0/(2C). For a periodic train of bunches these voltages
add up and yield the beam-induced voltage shown in
Fig. 56. The accelerating voltage is the vectorial sum of
the generator- and beam-induced voltages and remains
nearly constant from t = tinj until t = tend at which
time both generator power and beam are switched off.
Then the cavity voltage decays according to

Vcav(t− tend) = Vacc exp(−(t− tend)/τ) . (114)

A closer look at the plateau of the accelerating volt-
age reveals a sawtooth structure: each bunch causes an
almost instantaneous drop of the cavity voltage which
is then restored by the rising generator-induced voltage
until the next bunch arrives. The beam energy spread
caused by the sawtooth structure and by wake field ef-
fects is well below 0.1% for the example shown in Fig. 56.
It can be further reduced by lowering the bunch charge
and increasing the number of bunches in the train corre-
spondingly.
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Figure 56 illustrates how important it is to choose
the proper cavity time constant τ for obtaining a
constant accelerating voltage over the entire bunch
train. Since Qext � Q0 one gets in good approximation
τ = 2Qext/ω0 so the coupling strength of the input
coupler (i.e. the winding ratio N of the equivalent
transformer of Fig. 55) must be properly adjusted for
the given accelerating field and beam current. The
TESLA input coupler is of the coaxial type and mounted
on a flange at the side of the beam pipe (see Fig. 46).
The central antenna is movable to permit adjustment of
the coupling strength.

The short bunches excite not only the fundamental
mode of the cavity but a large number of higher-order
modes (HOM’s). These must be damped quickly to pre-
vent a detrimental effect on subsequent bunches. In
the 500 MHz Cornell cavity, for example, microwave-
absorbing material is installed in the beam pipe (Fig.
45), while in the TESLA cavities two HOM couplers ex-
tract the HOM power and guide it to damping resistors.

10 Closing Remarks

Superconducting magnets for high energy hadron accel-
erators have reached a high degree of maturity and can
be considered superior to normal magnets in almost ev-
ery aspect: field capability, operational costs and relia-
bility. Proton colliders in the TeV regime are impossible
to realize with conventional magnet technology. Super-
conducting cavities for particle acceleration need still re-
search and development to arrive at a similar level of
maturity, but the progress achieved in recent years gives
confidence that these devices will play a major role in
future accelerators.

The ideas and results outlined in this paper represent
the work of many scientists at various laboratories. I am
very grateful to my friends and colleagues at Brookhaven,
CERN, Cornell, DESY, FNAL, INFN, Jefferson Lab.,
Orsay and Saclay for numerous fruitful discussions. Spe-
cial thanks go to Lutz Lilje for his help in preparing
the manuscript and to Matthias Liepe for valuable com-
ments.

A Gibbs Free Energy

To illustrate the purpose of the free energy I consider
first an ideal gas. The internal energy is the sum of the
kinetic energies of all atoms

U =
N∑

i=1

m

2
v2

i =
3
2

N kBT (115)

and depends only on temperature but not on volume.
The first law of thermodynamics describes energy con-
servation:

dU = δQ + δW . (116)

The internal energy increases either by adding heat δQ
or mechanical work δW = −p dV to the gas. For a re-
versible process one has δQ = T dS where S is the en-
tropy. Now consider an isothermal expansion of the gas.
Thereby the gas transforms heat into mechanical work:

dU = 0 for T = const ⇒ δQ = −δW = p dV . (117)

The gas extracts heat from a reservoir and transforms it
into mechanical work. However its internal energy does
not change, hence U is not an adequate variable to de-
scribe the process. What is the correct energy variable?
We will see that this is the Helmholtz free energy, given
by

F = U − T S ⇒ dF = dU − SdT − TdS = δW − SdT .
(118)

For an isothermal expansion (dT = 0) we get dF = δW ,
i.e. −dF = pdV : the work produced by the gas is iden-
tical to the reduction of its free energy.

Now we consider a magnetic material of permeability
µ inside a coil which generates a field H. The magneti-
zation is ~M = (µ − 1) ~H. Its potential energy (per unit
volume) in the magnetic field is

Epot = −µ0
~M · ~H . (119)

If the magnetization changes by ~dM the work is δW =
µ0

~dM · ~H. Defining again the Helmholtz free energy by
eq. (118) we get by analogy with the ideal gas dF = δW ,
hence F can in fact be used to describe the thermody-
namics of magnetic materials in magnetic fields. One
drawback is, however, that the magnetization of a sub-
stance cannot be directly varied by the experimenter.
What can be varied at will is the magnetic field H,
namely by choosing the coil current. For this reason
another energy function is more appropriate, the Gibbs
free energy

G = F − µ0
~M · ~H = U − T S − µ0

~M · ~H . (120)

For an isothermal process we get dG = −µ0
~M · ~dH.

Let us apply this to a superconductor in the Meissner
phase. Then µ = 0 and ~M = − ~H from which follows
dGsup = µ0 M(H)dH = µ0

2 d(H2) and therefore

Gsup(H) = Gsup(0) +
µ0

2
H2 . (121)

This equation is used in sect. 2.2.
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