
DESY 04-233

Requirements Engineering Patterns

An Approach to Capturing and Exchanging
Requirements Engineering Experience

Working Group on Requirements Engineering Patterns (WGREP)
of Section 2.1.6 “Requirements Engineering” in the German Informatics Society (GI)

Kathrin Lappe1 (Speaker), Thorsten Cziharz2, Heinrich Dreier3, Ralf Fahney4,

Dorina Gumm5, Lars Hagge1, Gerit Höhne6, Frank Houdek7, Jan Ittner8, Dirk Janzen9,
Barbara Paech10

1 Deutsches Elektronen-Synchrotron, Hamburg, Germany
2 SOPHIST GmbH, Nürnberg, Germany
3 innovative systems GmbH, Hamburg, Germany
4 Independent consultant, München, Germany
5 University of Hamburg, Germany
6 Deutsche Post ITSolutions, Dresden, Germany
7 DaimlerChrysler Research Center, Ulm, Germany
8 method park, Erlangen, Germany
9 Harman/Becker, Karlsbad, Germany
10 University of Heidelberg, Germany

Page 2

 Page 3

Abstract
The special interest group on requirements engineering1 of the German Informatics Society
has established a working group on “Requirements Engineering Patterns”. The group has
demonstrated the applicability of the concept of patterns for collecting and exchanging re-
quirements engineering (RE) experience, especially for project teams which are in the process
of adopting RE. This report presents an overview of the work and a summary of the results of
the working group. It describes a method for comparing case studies and extracting patterns
of recurring successful requirements engineering activities, and it contains a catalogue of
fourteen RE patterns which have been identified by that method. A Web-based RE pattern
repository is being developed to make patterns available for project teams on the job.

1 “Requirements engineering” describes a systematic approach to obtaining a complete project specification. It
involves requirements elicitation, analysis, negotiation and verification and covers requirements management
and documentation.

Page 4

 Page 5

Table of Content
Abstract .. 3
About the Members of the ”Working Group on Requirements Engineering Patterns” 6
1 Introduction .. 7
2 Collecting RE Patterns: Method and Example... 8

2.1 The Need for Making RE Experience Accessible.. 8
2.2 Why Patterns? .. 8
2.3 Requirements on Requirements Engineering Patterns ... 9
2.4 The RE Pattern Structure.. 10
2.5 The Pattern Mining Procedure ... 13
2.6 An Example.. 15

3 A Collection of Requirements Engineering Patterns ... 21
3.1 Introduction and Overview... 21
3.2 Use Prototypes for Specifying Innovative Products .. 26
3.3 Evaluate Existing Documentation.. 29
3.4 Bundle Requirements to Features .. 30
3.5 Use Requirements Index Cards .. 33
3.6 Write Reusable Common Requirements .. 36
3.7 Build an Abstract Model to Integrate Fragmented Specifications 39
3.8 Provide Statements of Objective .. 41
3.9 Generate Approval Checklists.. 43
3.10 Detail the Specification by Writing Test Cases ... 46
3.11 Organize Specification along Project Structure ... 49
3.12 Employ a Requirements Engineer as a Care Taker.. 53
3.13 Use a Central Issue List.. 56
3.14 Synchronize Change Requests ... 59
3.15 Create a Specification Guideline by Tracking How an Analyst Works.................. 62

4 Experience.. 65
4.1 Collecting Case Studies.. 65
4.2 Analyzing Observations ... 65
4.3 Discovering Patterns .. 66
4.4 Using the Patterns... 66

5 Conclusion and Outlook... 67
References .. 68

Page 6

About the Members of the
”Working Group on Requirements Engineering Patterns”

Kathrin Lappe (Speaker) is an engineer in the information management department at the
Deutsches Elektronen-Synchrotron (DESY). She is currently working as a requirements engi-
neer in a plant construction project.
Contact her through the requirements engineering pattern repository, http://repare.desy.de, or
by e-mail at kathrin.lappe@desy.de for questions about and feedback on the WGREP.
Thorsten Cziharz is a consultant and trainer at SOPHIST GmbH. His main focus lies in sup-
porting clients in their system analysis with methods and procedures from requirements engi-
neering and business process analysis.
Heinrich Dreier is a quality manager at innovative systems GmbH, part of the Harman Be-
cker Automotive Group. In addition he was leader of the process action team that worked out
the CMMI requirements engineering processes of the entire group. Innovative systems is de-
veloping navigation software for embedded systems.
Ralf Fahney offers his consulting services as an independent consultant throughout Germany
and internationally since 2003. Before, he was employed at several IT consultancies. He has
been engaged in requirements and project management for more than 15 years. His main fo-
cus is in logistics, tourism, banking and insurance.
Dorina Gumm is a scientific assistant and Ph.D. student at the department of Computer Sci-
ence, University of Hamburg. Her research fields are requirements engineering and distrib-
uted project settings.
Lars Hagge is a senior scientist at the Deutsches Elektronen-Synchrotron (DESY) in Ham-
burg, Germany. He is heading the information management department, which supports proc-
ess optimization and provides information systems for lifecycle management.
Gerit Susann Höhne is a graduate in information systems at DP ITSolutions GmbH. She has
been collecting practical experiences in software engineering and consulting for some years.
Her assignments are consulting, business process and system analysis in various IT projects
and the establishment of methods in the requirements engineering domain.
Frank Houdek is a senior researcher at the DaimlerChrysler research centre in Ulm, Ger-
many. He is currently leading a large requirements engineering research and transfer project
with the aim of introducing and improving requirements engineering practices in various
DaimlerChrysler automotive business units.
Jan Ittner is a computer scientist at method park Software AG in Erlangen. At present, he is
working part-time on his doctorate in the field of requirements engineering.
Dirk Janzen is an electrical engineer at Harman/Becker. He has worked on database design,
technical documentation, information architecture and requirements engineering for the last
years in the area of automotive electronic control units.
Barbara Paech is a professor at the Institute of Computer Science at the University of Hei-
delberg. Her research area is Software Engineering, especially methods and processes for
achieving quality with reasonable effort. She has been active in the field of Requirements En-
gineering for many years and has conducted many national and international industrial re-
search and transfer projects with her group.

 Page 7

1 Introduction
At the 2002 annual meeting of the special interest group on requirements engineering (FG-
RE) of the German Informatics Society (GI) in Ulm, four presentations reported experience of
introducing and promoting requirements engineering in different projects. The projects cov-
ered [SIG04] [STT03]

• Embedded real-time systems in an automotive multi-supplier environment
• A management information system product line of a global IT company
• The planning of an interdisciplinary plant construction project
• A control software for conveyor belt systems

Although the presented projects were of different nature, it turned out that all of them were
facing similar challenges, e.g.

• Stakeholders had to be convinced of the necessity and benefits of RE
• Cultural differences of stakeholders had to be accommodated
• RE methods and tools had to be established
• Suspicions against processes and transparency had to be overcome

The subsequent discussion revealed that the challenges were resolved with comparable meas-
ures, and it was concluded that sharing experience of successful RE activities would be feasi-
ble across projects and business sectors. Furthermore, it turned out that there is a demand for
such an exchange, especially from small and medium organizations which do not afford dedi-
cated resources for RE.
One year later, a working group was initiated with the goal of developing a mechanism for
facilitating the exchange of RE experience between projects. The “Working Group on Re-
quirements Engineering Patterns (WGREP)” selected the format of patterns, as they are estab-
lished and successfully used by a variety of communities for collecting and exchanging engi-
neering experience. The intended work packages included:

• Develop a concept for capturing engineering experience using patterns
• Collect RE case studies from different domains
• Identify and publish recurring observations from different case studies as patterns
• Investigate the feasibility of the approach
• Publish a final report after a one year period

The WGREP started its work in January 2004 with members from academia, industry and
consulting. During nine meetings, the WGREP has developed a method for comparing practi-
tioners’ reports and extracting patterns of recurring successful RE activities. More than a
dozen RE patterns have been collected from fourteen case studies which contain descriptions
of more than eighty individual project situations. Based on these results, two workshops on
requirements engineering patterns were organized at the IEEE Conference on Requirements
Engineering (REP’04 [HHP04]) and at the 2004 annual FG-RE meeting.
This report presents an overview of the work and a summary of the results of the WGREP.
Chapter 2 introduces the developed pattern format and the procedure for collecting patterns
from case studies, and chapter 3 presents the identified requirements engineering patterns.
The report concludes with experience gained and perspectives for future work.

Page 8

2 Collecting RE Patterns: Method and Example

2.1 The Need for Making RE Experience Accessible
Practitioners often encounter project teams or environments with no or only little experience
in requirements engineering. Especially in small and medium enterprises introducing and
gaining acceptance for RE methods and tools is a prevalent challenge for practitioners. Typi-
cal characteristics of such environments include:

• The customer organization is not used to the interplay of IT systems and business
processes and does not have established engineering processes

• The resources for RE are limited, and customers and their users have to be convinced
of the necessity of RE

• RE has to be adopted within the project as the project manager generally has no or
only little influence on the higher-level customer organization

Methods and tools for handling these challenges are available, but they are difficult to access
for newcomers or “part time” requirements engineers who need advice in a specific project
situation:

• RE draws from various areas of knowledge, including organizational, methodological
and technological subjects.

• Knowledge sources are hardly ever organized in a way that enables information access
according to a project’s current circumstances.

• RE experts to ask for advice are rare, and project teams too often have to find out on
their own which method or tool to choose and how to implement it.

A collection of RE patterns could bridge this gap between existing RE knowledge and its
successful application in different kinds of projects by improving accessibility.

2.2 Why Patterns?
Patterns are an established and well-known format for exchanging experience. They have
been used in different disciplines for capturing engineering knowledge and for providing rules
for generating successful engineering solutions:

• The idea originated in civil engineering in a series of books from Christopher Alexan-
der [AIS77] [Ale79]. He observed that well-accepted buildings – he calls those build-
ings “alive” – have common characteristic structures, and from this observation he de-
veloped a set of rules for architects on how to construct buildings which are alive.

• The pattern format has been extended to software design by the “Gang of Four”
[GHJV95]. These patterns had a tremendous success in the software design commu-
nity as they formalized implicit design knowledge that had not been documented be-
fore and thus made it available for communicating insight about design problems and
solutions.

• Using patterns for knowledge transfer spread to further domains, including software
architecture [BMR+96], business processes [EP00] and many more. The adopted for-
mats to describe patterns vary slightly with the habits of the particular communities.

• On the Internet, pattern collections can be found for various domains [CH01] [BE00].
The pattern homepage (see http://hillside.net/patterns/) contains exhaustive material
on patterns.

Patterns are characterized by presenting engineering knowledge in self-contained units that
address a particular context. They provide guidelines for good engineering, engineering being

 Page 9

the “art of applying scientific and methodological knowledge to practical problems”. This
easily adoptable engineering knowledge is what practitioners are interested in [Kau04].

2.3 Requirements on Requirements Engineering Patterns
The requirements engineering patterns are intended for project teams that are in the process of
adopting RE. It is assumed that those teams have a basic background in RE (e.g. from text
books), but need to build up practical knowledge from projects. Most of the WGREP mem-
bers have personal experience in working in, for or with such teams, and the requirements on
RE patterns were collected based on this experience.
Patterns shall provide proven practical experience from projects. They are expected to be
relevant, reliable and applicable, meaning

• Relevant: patterns should refer to “typical” project situations which are “frequently”
encountered by the intended target group, rather than dealing with exotic situations.

• Reliable: patterns should provide guidelines which have proven successful under sev-
eral comparable circumstances.

• Applicable: patterns should be written in an instructive and intuitive way and contain
guidelines which the project managers can implement within their responsibility.

Project A

Project B

Pattern Candidate Pattern
Description

!

project case study =
set of observations of

evaluated RE activities

Figure 1: Similar observations from different projects yield advice for future projects.

Consequently, the working group had to develop, use and evaluate a procedure for eliciting,
recording and comparing RE experience from different projects, and to propose a publication
format for RE patterns. The envisioned pattern extraction procedure is built around four basic
activities (Figure 1):

• Collect case studies from practitioners
• Extract relevant observations (of e.g. decisions, actions …) from the case studies
• Identify similar observations from different projects as pattern candidates
• Generalize, elaborate and publish patterns from pattern candidates

Page 10

The resulting patterns are expected to shorten the RE learning curve for newcomers. Ideally,
reading a pattern would correspond to a discussion with an (absent) RE expert. In particular,
the following requirements were found for RE patterns:
Content: RE Patterns shall describe well-proven solutions for typical RE tasks and thus help
to overcome entry barriers and to reduce initial reluctance against RE introduction.

• RE patterns shall describe solutions and experience from several projects.
• RE patterns shall focus on the introduction of RE in the different project phases..
• RE patterns shall address typical barriers for RE introduction like e.g. limited re-

sources, limited experience, cultural diversity, or suspicions against the method.
• RE patterns shall address different facets of requirements engineering, including proc-

ess, organisational or technical issues.
• RE patterns shall cover different levels of abstraction, ranging from organisational is-

sues down to questions of tool configuration.
Form: RE patterns shall provide advice and guidance for project teams on the job, provide
usable instructions and explanations on how to react on frequently occurring conflicts, and
present guidelines for the concrete implementation.

• RE patterns shall provide guidelines on how to obtain solutions, rather than deliver
blue prints of ready-made solutions. In addition, optional anti-patterns should describe
approaches that have repeatedly delivered negative results.

• RE patterns shall help generating short-term benefits and acceptance for the proposed
measures.

• RE patterns shall contain a context description and proposed solutions. They should
take into account organisational, political and psychological constraints that might
have impact on the usefulness and acceptance of a measure.

Access: RE patterns shall be easily accessible for practitioners with basic RE know-how.
• Practitioners should be able to select, adapt and implement single RE patterns during

project set-up or execution according to their specific situation.
• RE pattern collections shall support a context based selection of applicable patterns

under given project conditions. Ideally, a pattern repository offers access to other pat-
terns addressing related issues.

2.4 The RE Pattern Structure
The structure which has been developed for the RE patterns puts special emphasis on the con-
ditions when a pattern should be used. The structure is best explained using “A Window
Place”, a frequently quoted pattern from Christopher Alexander’s “The Timeless Way of
Building” [Ale79], as an example. It recommends that:

In living rooms where people want to be comfortable, a sitting area should be
located close to the windows. In rooms where the sitting area is not placed near
to the windows, people would be caught in a conflict: they would be drawn to
the chairs to sit down and relax, but at the same time they would also be drawn
towards the windows where the light is. Using the window place pattern would
resolve and prevent the stress situation.

The general idea of this paragraph is that patterns help resolving conflicts or stress situations.
Stress stands in this context for “difficulties that cause worry or emotional tension.”
An analogy from physics is used to further analyze the pattern description. In physics, the
term stress signifies “a pressure or a force that produces strain on a physical body”. It can be
illustrated e.g. with a spring of a certain length and two forces, F and F , which are applied

 Page 11

to its two ends (Figure 2). As a response to the forces, the spring will stretch by a certain dis-
tance ∆ℓ and react with a stress force Fs = k ∆ℓ (k is a constant describing the spring).

dimension of conflict

F F

stress force

Figure 2: Spring metaphor for stress from conflicting forces.

With some imagination one could now see the spring corresponding to the person in the win-
dow place pattern: F and F would stand for the forces pulling the person towards the chairs
and the window, respectively, and Fs ~ ∆ℓ would be a measure for the stress being – literally
– proportional to the distance between window and chairs. Being comfortable would corre-
spond to the spring being relaxed, i.e. Fs ~ 0, and the pattern would simply recommend to
keep ∆ℓ ~ 0, i.e. move the seats to the window to achieve Fs ~ 0.

F
„sit down and relax“

F
„stay in the light“

Action: move seats to the window

inhabitant

chair table window

conflict: space

Figure 3: Christopher Alexander’s “A Window Place” in the proposed pattern format.
Figure 3 illustrates the “Window Place” using the picture of forces. The stress situation has
been efficiently characterized by a quality goal (Fs ~ 0) and two opposing forces. Taking this
as general reasoning, it has been proposed that a pattern should be written as a vector [HL05],

P = (T, F , F , A),

where T is a task with a quality goal, F and F are the opposing forces generating the stress
force, and A is an action compensating the difference of F and F , the stress. This “pattern
vector” is supposed to cover the pattern essence. For the “Window Place”,

• T = “design a comfortable living room”
• F = “people are drawn towards the chairs to sit down and relax”
• F = “people are drawn towards the windows to where the light is”
• A = “move seats to the window”

A generic pattern statement can be created from the pattern vector using

IF F BUT F THEN A TO T.

It provides a short description of patterns that helps readers to decide on the pattern’s rele-
vance and applicability for their purposes at a glance. For the “Window Place”, the descrip-
tion reads:

Page 12

IF people are drawn towards the chairs to sit down and relax
BUT people are drawn towards the windows where the light is
THEN move seats to the window
TO design a comfortable living room

The general nature of the approach is suggested by looking at two further examples from the
RE pattern collection, which can be expressed in the same format without difficulty1:

IF a new technology is available
BUT stakeholders have limited technological experience
THEN introduce a prototype
TO create a specification for innovative functionality

IF high-level requirements are needed for negotiation at management level
BUT detailed requirements are needed for contracts and development
THEN bundle requirements to features
TO create a specification usable for different stakeholder groups

The other RE patterns further encourage the approach. For publication purposes, patterns of
course need to be elaborated similar to the established pattern collections. The full versions of
these and more patterns are presented in Section 3, but their general idea can already be
grasped form the short form. Final RE patterns contain the following elements:

• An abstract providing a brief overview of the pattern
• A statement of objective explaining the pattern’s intention
• A context description of the conditions when the pattern is applicable
• A problem statement explaining the generalized conflict
• The forces characterizing the (two) different influences which make up the problem
• A solution describing the actions to be taken for solving the problem
• An illustration of the pattern’s structure
• A set of instructions and guidelines for using the pattern
• Application areas and constraints for using the pattern
• Direct consequences for the project from using the pattern
• Known uses and experiences gained from those projects
• References to related patterns and further reading

1 Refer to Section 2.6 for a description of how to obtain a pattern vector from a narrative case study.

 Page 13

2.5 The Pattern Mining Procedure
This section describes the procedure which has been developed for extracting patterns from a
set of case studies. It consists of four major activities:

1. In the first step, case studies are collected from real world projects. Case studies con-
tain team members’ accounts of important events and experiences from projects.

2. Next, the case studies are analyzed and reorganized into a set of observations. Obser-
vations describe events in the format of the pattern vector.

3. To identify patterns, the entire set of case studies is searched for identical observations
from different projects. Those observations are marked as pattern candidates.

4. Then, the pattern candidates are elaborated into the pattern description, which is then
made available to practitioners in a central pattern repository.

Pattern
Candidate

Project
Manager

contributes

uses

Collect Case Studies

Analyze Observations

Extract Pattern
Candidates

Elaborate
Patterns

Pattern
Repository

Pattern
Analyst

Case StudyCase StudyObservation
(narrative)

Published
Pattern

Classified
Observation

Classified
Observation
Observation

(vector format)

Case Study

Pattern
Candidate

Project
Manager

contributes

uses

Collect Case Studies

Analyze Observations

Extract Pattern
Candidates

Elaborate
Patterns

Pattern
Repository

Pattern
Analyst

Case StudyCase StudyObservation
(narrative)

Published
Pattern

Classified
Observation

Classified
Observation
Observation

(vector format)

Case Study

Figure 4: Overview of the pattern mining procedure.

Figure 4 illustrates the pattern mining procedure. The following sections contain brief expla-
nations of each activity, and Section 2.6 provides an example of how to use the procedure.

2.5.1 Activity “Collect Case Studies”
Case studies should report noteworthy actions or decisions from projects. Ideally, they are
reported by project managers or people from the project team who experienced the reported
achievements personally. Case studies can be acquired either by interviews or by written con-
tribution. Each case study should give an account of one project only.
A case study should typically contain a general project description and a set of observations
from this project. The general part should contain characteristics of the project size and type
together with the project goals, tasks, risks and constraints, as well as boundary conditions
e.g. from the project organization, the communication infrastructure and the employed tools
and methods. The observations should refer to typical RE tasks and contain a problem state-
ment for the initial situation, a description of the measures taken together with some reason-
ing, an account of the observed results and a final evaluation. Figure 5 illustrates the structure
of a case study.

Page 14

project manager

project descriptioncase study

reports

initial situation measure result evaluation

narrative observation
**

Figure 5: Structure of a case study.

Case studies are best started with the general project information, followed by a set of obser-
vations. The decision of which observations should be included in a case study should be left
to the authors. For pattern extraction observations are useful which

• Describe activities or decisions which have been relevant to the course of the project
• Explain (repeated) changes of original plans or strategies
• Report unusual successes or failures
• Deal with strong external influences
• Are considered important by the observer or for a reader

2.5.2 Activity “Analyze Observations”
In preparation for pattern extraction the observations need to be rephrased in the pattern vec-
tor format. At first glance the process is relatively straightforward – the task description and
the action are usually obvious, and the forces can be derived from the problem statement.
However, pattern extraction searches for comparable observations from different projects, i.e.
for identical vectors from different case studies. Such vectors will only occur if the vector
components are properly classified, hence it has to be made sure that controlled sets of values
are used for T, F and A. Figure 6 illustrates the relation between observations and pattern can-
didates.
The tasks, forces, and actions chosen for the RE patterns in this report are introduced in Sec-
tion 3 preceding the pattern collection.

 Page 15

p : pattern candidate

<- : force -> : forcet : task a : action

o1 : observation o2 : observation

r : result

Figure 6: Patterns use the same basic elements as observations.

2.5.3 Activity “Extract Pattern Candidates”
Once the available set of observations has grown, a search for recurring entries can be started,
and vectors occurring at least twice in the set should be marked as pattern candidates. The
number of occurrences of a pattern candidate vector can be seen as a measure for the pattern’s
quality in terms of reliability and relevance.
It is essential that the pattern candidates are verified with the authors of the corresponding
observations to make sure that the essence of the observation has not involuntarily been
changed in its meaning during the analysis, when reformatting the observation into a vector.

2.5.4 Activity “Elaborate Patterns”
Last but not least, the pattern candidates have to be elaborated into detailed and instructive
descriptions which are suitable for the intended target group. The list at the end of Section 2.4
provides an overview of the elements which should be included in the pattern’s version for
publication. Writing patterns turns out to be an iterative procedure that requires feedback from
the authors of the observations, other RE experts, and the intended target group.

2.6 An Example
This section contains a walk-through of the proposed pattern analysis procedure. It demon-
strates how observations are extracted from case studies and how they are written in the pat-
tern vector format, and it shows how a pattern candidate – the use of prototypes for specifying
innovative functionality – is identified from a set of observations.

2.6.1 Collecting and Analyzing the First Case Study
In this example, a project manager who is interested in exchanging RE experience has agreed
to an informal interview about a recently completed system development project. After some
general information, the interview turns to specific observations from the project. The inter-
view relies on the project manager to select decisions or actions which were relevant to the
project:

“I’m talking about the development of an intranet company information system
for 1000+ infrequent users. In this project, user acceptance was a critical suc-
cess factor …
One of the important things in the project was the introduction of an explora-
tory user interface prototype in a very early project phase, while we were still
envisioning and defining the system.

Page 16

For the tech people, it has been obvious from the beginning that the system
would benefit from advanced graphical user interfaces, including interactive
maps and virtual reality mock-ups. The target user groups on the other hand
had less experience with Web technologies. They were used to native systems
with forms and folder trees and found it hard to imagine other front ends.
Once we had the prototype, we were able to demonstrate the technological ca-
pabilities to different stakeholders. The stakeholders could understand the po-
tential benefits of the new technology, and they could imagine how they would
use the information system in their daily work. As a consequence, they started to
request further innovative functionality from the system which they did not ex-
pect to be feasible before, and in general they specified with better imagination
and motivation.
Another important thing was …”

The case study is now restructured for further analysis. It is assumed that the case study con-
sists of a set of observations, where each observation is an episode from the project. The ob-
servations should include details of the initial situation, an explanation of the selected ap-
proach and why it was chosen, and a description of the obtained result. Table 1 collects these
elements in a compact format:

Initial Situation A specification for an information system using innovative user in-

terface technology had to be created. The stakeholders had only lim-
ited technological experience and thus difficulties in envisioning
new functionality.

Approach An exploratory user interface prototype of the system was created
and introduced to the stakeholders.

Result Evaluating the prototype helped the stakeholders to understand the
benefits they can expect from the new technology. They specified
with better imagination and motivation.

Table 1: Observation O1 from case study “information system”.

The pattern vector can now be extracted to make the observation comparable to other case
studies. The RE task, T, is usually part of the description of the initial situation, which for
practical reasons should be supplemented with a project identifier, Id.

Initial Situation A specification for an information system using innovative user

interface technology had to be created. The stakeholders had only
limited technological experience and thus difficulties in envisioning
new functionality.

Table 2: Retrieving the RE task from observation O1.
Table 2 repeats the description of the initial situation and highlights the relevant keywords,
yielding
 Id = “information system”
 T = “create a specification for innovative functionality”
In the same way, the forces can be retrieved. The forces are describing the conflict which has
been resolved by the described action, so they should also be part of the initial situation.
Highlighting again the relevant passages of the text (Table 3), one finds

F = “a new technology is available”
F = “stakeholders have limited technological experience”

 Page 17

Initial Situation A specification for an information system using innovative user

interface technology had to be created. The stakeholders had only
limited technological experience and thus difficulties in envision-
ing new functionality.

Table 3: Extracting the forces F and F from observation O1.
F , the availability of a new technology, is strictly speaking not a force, but rather a fact,
which leads to the force that the project team tends to use the new technology for achieving
optimum results. In the same way, F is the fact that stakeholders have only limited techno-
logical experience (or to put it nicer: stakeholders are experienced and trusting in conservative
technology), which leads to the force that the project team tends to use conservative technol-
ogy to achieve better involvement and acceptance of the stakeholders. The forces could be
rephrased into

F ’ = “use leading-edge technology for optimum results”
F ’ = “use conservative technology for optimum involvement of inexperienced user”

Both forms of expression are suitable for pattern analysis: F ’ and F ’ are emphasizing the
conflict which has been resolved by the action, while F and F are describing the situation
in which it has been decided to take the action. For this analysis, the fact-oriented description
is used in the pattern vector, as it seemed to be the practitioner’s natural choice, while the pat-
tern description contains both viewpoints.

Approach An exploratory user interface prototype of the system was created

and introduced to the stakeholders.
Table 4: Extracting the action A from observation O1.

To complete the pattern vector, the action has to be stated. It can usually be taken directly
from the approach described in the observation (cf. Table 4),

A = “create a prototype”

Result Evaluating the prototype helped the stakeholders to understand the

benefits they can expect from the new technology. They specified
with better imagination and motivation.

Table 5: Record the achieved result R of observation O1.
To ensure that only actions with the same outcome are considered when searching for pattern
candidates, the pattern vector could be extended to include the observed result (Table 5),
yielding

R = “ “
The vector is now complete, and the observation can be written as,

O1 = (Id, T, F , F , A, R)
 = (information system, create a specification for innovative functionality,

 a new technology is available,
 stakeholders have limited technological experience,
 introduce a prototype,).

Conversely, the observation can be regenerated from the pattern vector by e.g. building a sen-
tence along “In an Id project it has been observed, that when F , but F , A R to T.”:

Page 18

“In an information system project it has been observed, that when a new technology was
available, but the stakeholders had limited technological experience, introducing a prototype
helped to create a specification for innovative functionality.”

2.6.2 More Case Studies
Subsequently, more case studies were collected from different projects. As the case studies
were analysed, more observation vectors became available. Two observations which address
comparable tasks as O1 in the previous section are briefly introduced below in tabular and
vector format:

Initial Situation A legacy system had to be migrated to enable business process op-

timization. The domain experts which had to specify the new system
were mentally tied to the legacy system. Instead of envisioning new
processes and functionality, they were describing the old system.

Approach A metaphor from a related domain was created to discuss essential
business processes independent of the application.

Result The metaphor helped to break up habitual ways of thinking and
shifted the focus from the system to the process. Useful new ideas
and terminologies were created.

Table 6: Observation O2 from case study “legacy system migration”.
The first example refers to a legacy system migration where the key users were mentally too
tied to their old system to be able to envision new ways of working (cf. Table 6). The forces
refer to the same basic conflict as in O1, if the term “technology” is understood in a way that
it includes “processes”: The project team needs to adopt a new technology to achieve the in-
tended optimization, but at the same time it should stay with conservative technology accord-
ing to the stakeholders’ experience. The pattern vector reads1

O2 = (legacy system migration, create a specification for innovative functionality,
 a new technology is available,
 stakeholders have limited technological experience,
 use a metaphor for envisioning,)

The third observation (Table 7) was made in a small enterprise, which was deploying a new
production line.
Initial Situation A specification for the process control system of a new production

line based on innovative technology had to be created. The staff had
only limited experience with this technology and thus difficulties in
detailing the specification.

Approach A prototype environment for the intended production process was
created to learn how the technology works.

Result Working with the prototype helped to understand the technology and
its opportunities and threats. With this knowledge the specification
improved.

Table 7: Observation O3 from case study “process control system”.

1 The definition of the forces is not unambiguous but rather soft, for discussion refer to Section 4.2.

 Page 19

Specifying the process control system required handling an available new technology, thus
the staff had to be trained in a prototype environment prior to specification. The observation
vector reads

O3 = (process control system, create a specification for innovative functionality,
 a new technology is available,
 stakeholders have limited technological experience,
 introduce a prototype,)

2.6.3 Extracting a Pattern Candidate
The observations can be combined into a common database to enable pattern extraction. Col-
lecting all the elements of the previous sections yields

O1 = (Id1, T1, F1, F2, A1,),
O2 = (Id2, T1, F1, F2, A2,),
O3 = (Id3, T1, F1, F2, A1,),

where
Id1 = Project information system,
Id2 = Project legacy system migration,
Id3 = Project process control system,
T1 = Task create a specification for innovative functionality,
F1 = Force a new technology is available,
F2 = Force stakeholders have limited technological experience,
A1 = Action introduce a prototype, and
A2 = Action use a metaphor for envisioning.

Identifying patterns requires discovering recurring observations from different projects, i.e.
vectors containing identical task, force and action components. In this example, O1 and O3
relieved a similar conflict with the same measure in two different projects, which is expressed
in the pattern candidate P1,

P1 = (T1, F1, F2, A1,).

The resulting pattern candidate recommends letting the technology leaders build prototypes
(e.g. mock-ups, test environments, simulations…) when new technologies become available
as an enabler for product innovation. User requirements are needed to assess the potential
benefits for the end user, but without prototypes stakeholders are lacking the ability to envi-
sion new product capabilities and potential applications in their environment. In short:

IF a new technology is available
BUT stakeholders have limited technological experience
THEN introduce a prototype
TO create a specification for innovative functionality.

Observation O2 has been addressing the same conflict as P1, and it may now be speculated
whether a prototype could have been used in project Id2 as well, or if using a metaphor in-
stead of a prototype would have had the same effect in projects Id1 and Id3; but as patterns
are intended to capture reliable experience and are therefore required to be based on at least

Page 20

two independent observations, only the recommendation to introduce a prototype can be ex-
tracted as a pattern candidate from the data.
Figure 7 summarizes the discussion of the prototype pattern, showing the observable facts, the
conflicting forces because of the different skill levels of the technology leader and the project
team, and how the action of introducing a prototype can increase the project team’s level of
technological experience and thus resolve the conflict.

project team technology leader

F
„lack of know-how and

experience in the project team“
rely on domain experts

F
„new technology available“

work with technology leader

A: introduce a prototype

requirements engineer

conflict: skill level

Figure 7: Pattern “Use Prototypes for Specifying Innovative Products” drawn in the
conflict space.

2.6.4 Elaborating the Pattern Description
For publication, the different pieces of information from the previous sections have to be col-
lected, elaborated and illustrated according to the guideline in Section 2.5.4. A complete
description of the resulting pattern can be found in chapter 3.2.

 Page 21

3 A Collection of Requirements Engineering Patterns
Using the method described in the previous section, the WGREP collected fourteen case stud-
ies containing more than eighty observations. Fourteen pattern candidates have been identi-
fied, half of which have already been elaborated into patterns. This section first introduces the
pattern candidates. After that the full versions of the finalized RE Patterns and summaries of
the remaining pattern candidates are presented.

3.1 Introduction and Overview
This section presents an overview of the RE patterns, their relations and their connections to
roles and concepts in the RE domain.

3.1.1 Glossary of Terms
Table 8 presents the main roles and concepts with a short explanation of how they were used
by the working group.

Term Description
Analyst RE role which is responsible for understanding the requirements, their

overlaps and their conflicts.
Author RE role which is responsible for writing specification documents
Client person or organization which requests and pays for (parts of) the prod-

uct that is delivered by a supplier on a contractual basis
Developer engineering role which is responsible for creating the product (i.e. the

implementation)
Domain
Expert

person with knowledge about the application environment of a prod-
uct, i.e. a special kind of stakeholder

Facilitator RE role which is responsible for initiating, maintaining, monitoring, and
concluding structured group activities in the RE process

Management superordinate organization to the project which acts as decision maker,
sponsor and provider of resources for the project

Product deliverable good or service that is developed in a project, in the soft-
ware engineering domain usually a system

Product
Specification

set of requirements that describe the product, frequently formatted in
a specification document

Project a planned undertaking or organized set of services designed to deliver a
product using engineering methods

Project
Manager

engineering role which is responsible for managing a project, i.e. plan-
ning and organizing activities required to develop products requested
by clients

Project Team set of persons assigned as resources to the project who take different
engineering roles to fulfil the project goals

Reader person who uses the specification documents and accesses require-
ments in order to get an understanding of the intended product, usually
affiliated with a stakeholder group

Requirement describes characteristics that the product must possess in order to meet
the stakeholders’ needs and to be acceptable for the client

Page 22

Term Description
Requirements
Engineer

RE role which is responsible for coordinating all the RE activities within
a project.

Requirements
Manager

RE role which is responsible for managing changes to the requirements
[KS98]

Stakeholder person or group or organization which will be affected by the product
and which has a direct or indirect influence on the requirements.
[SS97]

Supplier person or organization which delivers parts of the product to a client
on a contractual basis (synonym: contractor, provider)

Technology
Leader

Person or organization with knowledge on leading edge technologies
which contributes to the specification, i.e. a special kind of stake-
holder

Tester engineering role which is responsible for checking and certifying
product conformity with the product specification

User person from the client organization who will work with the product
in its business processes

Table 8: Project roles used in the pattern descriptions.
The relations between the key terms are illustrated in Figure 8, while Figure 9 adds an over-
view of those roles that actively perform project tasks and therefore are concerned with engi-
neering patterns.

product

project teamproject manager

**

coordinates

project

produces

accounts for
is resource for

management

reports to

initiates

client supplier

product
requests delivers

author reader

requirement

stakeholder

specifies

product
specification

**

writes

describes

Figure 8: Roles related to project management (left) and product specification (right).

 Page 23

RE role

facilitator author requirements
engineer

requirements
manager

analyst

engineering role

project manager developer tester technology leader domain expertuser

stakeholder

Figure 9: Roles which perform tasks within a project.

3.1.2 Patterns Summaries
The RE patterns of this collection address methodological, technical and organizational issues
at different project stages. The following summary offers some orientation in the pattern col-
lection by structuring the patterns around some key RE activities [Som05]: eliciting, analyz-
ing, validating and verifying, negotiating, managing, and documenting requirements. In prac-
tice, the assignment of patterns to these activities is not exclusive, but in this overview pat-
terns are only once summarized in the most appropriate category.
Patterns marked with an asterisk* are pattern candidates which are not yet fully elaborated;
for those patterns, a partial version consisting at least of the pattern vector and the known uses
is provided.

Requirements Elicitation covers acquiring the appropriate stakeholder requirements.
• Use Prototypes for Specifying Innovative Products (Section 3.2) deals with the prob-

lem that users cannot envision the benefits of new technologies for their problem at hand.
• Evaluate Existing Documentation* (Section 3.3) recommends to capture the knowledge,

experience and requirements of stakeholder groups which are no longer directly accessible
from documents they have been using – valuable e.g. for migration from legacy systems.

• Bundle Requirements to Features (Section 3.4) describes how to structure a set of
requirements in a way that it is usable by different target groups, e.g. management who is
interested in high-level descriptions, and developers needing technical details for imple-
mentation.

Requirements Analysis covers understanding the requirements, their overlaps and their con-
flicts.
• Use Requirement Index Cards (Section 3.4) proposes writing and classifying require-

ments as if they were kept on individual index cards. Index cards are natural to many per-
sons in the project team, and the metaphor of index cards eases stakeholder involvement.

• Write Reusable Common Requirements (Section 3.6) suggests relating generic re-
quirements to concrete products instead of managing multiple requirements versions for
different products.

Page 24

• Build an Abstract Model to Integrate Fragmented Specifications* (Section 3.7) states
that if several different sources of information are available, their essence should be ana-
lyzed by creating a common (UML) model.

• Provide Statements of Objective* (Section 3.8) recommends capturing the reason and
objective why a requirement has been raised, which is a helpful ingredient for structuring
a requirements specification.

Validating and Verifying Requirements ensures that the stakeholders really get what they
wanted.
• Generate Approval Checklists (Section 3.9) describes a way to document fulfillment of

reused requirements.
• Detail the Specification by Writing Test Cases (Section 3.10) recommends that if a

specification turns out to need improvement once a project is under way, an alternative to
revising the specification is to provide test cases in addition to the requirements.

Requirements Negotiation ensures that conflicting views are reconciled and a consistent set
of requirements is created.
• Organize Specification along Project Structure* (Section 3.11) recommends taking

advantage of an existing project organization for defining specification responsibilities.

Requirements Management controls changes in the requirements that will inevitably arise.
• Employ a Requirements Engineer as a Care Taker* (Section 3.12) describes a measure

to ensure that RE tasks are not neglected in daily project business.
• Use a Central Issue List* (Section 3.13) suggests tracking changes very early in a de-

fined location.
• Synchronize Change Requests (Section 3.14) proposes a simple change process to stay

in control of efforts that arise from changes.

Last but not least, Documentation concentrates on writing down the requirements in a way
that stakeholders and developers can understand.
• Create a Specification Guideline by Tracking How an Analyst Works (Section 3.15)

proposes a method to transfer modeling skills from method experts to domain experts for
improving their specification skills.

3.1.3 Pattern Relations
This section gives an overview of the relations between the presented patterns. Figure 10
shows the connections between patterns and project roles – the assignments are kept to a
minimum in order to maintain the diagram’s readability – while Figure 11 shows the major
relations between the patterns. Both figures are in UML notation [OMG03].
Figure 10 illustrates for the different project roles from which patterns they would benefit
most. Project roles are represented as actors, patterns are shown as use cases, and relations
define which actor should invoke the use cases, i.e. make use of the patterns.

 Page 25

Use a Central Issue List

Organize Specification Along
Project Structure

developer

Detail the Specification by Writing
Test Casesproject manager

facilitator

tester

requirements
manager

analyst

author

Employ a Requirements Engineer
as a Care TakerBuild an Abstract Model to

Integrate Fragmen...

Use Prototypes for Specifying
Innovative Products

Generate Approval Checklists

Synchronize Change Requests

Provide Statement of Objective

Evaluate Existing Documentation

Write Reusable Common
Requirements

Create a Specification Guideline
by Tracking How an Anal...

Bundle Requirements to Features

Use Requirements Index Cards

requirements
engineer

Figure 10: RE project roles and associated patterns.

Figure 11: Associations between the patterns presented in this report.

Figure 11 shows the relations between patterns which are explained in the elaborated pattern
descriptions. Pattern relations are represented as dependencies, implying that one pattern de-
pends on another pattern being implemented as a basis. Two patterns are not related to other
patterns - this is expected to change as the pattern collection grows. Further investigation in
pattern relations might then yield a pattern language [AIS77] which enables a variety of pat-
tern compositions to suit the individual project needs.

Page 26

Figure 13: A prototype satisfies a
subset of the product specification.

3.2 Use Prototypes for Specifying Innovative Products

REQUIREMENTS ENGINEERING PATTERN
Use Prototypes
for Specifying Innovative Products

Designing innovative products requires stakeholders with strong imagination and good tech-
nical understanding. This pattern recommends using prototypes for improving the project
team’s knowledge and experience in state-of-the-art technologies.

Objective. User requirements for
innovative functionality shall be
elicited.

Context. The availability of new
technologies is an enabler for product
innovation, and user requirements are
needed to assess the potential benefits
for end users and to understand the
underlying business case.

Problem. Stakeholders lack the ability to envision new product capabilities and potential ap-
plications in their environment. In case of technology-driven innovation, this is frequently
caused by the fact that technological know-how and experience has not yet reached the stake-
holders at the time of requirements elicitation.

Forces. The forces in this pattern deal with the ten-
dency of people to be driven by and rely on personal
experience:

• A new technology has become available for
product development.

• Target users and key stakeholders have limited
know-how and experience of the technology

Solution. Let the technology leaders build prototypes
(e.g. mock-ups, test environments, simulations, anima-
tions) in parallel with envisioning and requirements
elicitation. Use the prototypes to let stakeholders build
up know-how, gather experience and grow confidence
in the capabilities of new technologies.

Figure 12: Prototype used for specification
(left) and final product (right).

product prototypeis model of

requirement

product
specification

**

satisfies

satisfies subset of

 Page 27

Structure. Specifying innovative products requires both an understanding of technological
possibilities and users’ necessities. A prototype acts as intermediary between the two worlds.

Instructions.

A prototype can be defined as a partial implementation of a system which allows investigating
and deciding between design alternatives, addressing for example questions of acceptance,
technical feasibility or performance. Prototypes follow different goals, e.g. exploratory proto-
types focus on vision sharing and requirements elicitation, while evolutionary prototypes ad-
dress primarily architecture design. Prototypes can be of different types, including mock-ups,
functional prototypes and pilot systems. Most important, prototypes are to be thrown away.

Prototype development is specific for the type of prototype which is to be constructed and
cannot be generalized in a brief instruction, but an example for building and using an explora-
tory user interface prototype can help to describe the general idea. It can be summarized in
five major steps:

1. Create a UML overview business model which captures the essential (major) business
processes and workflows.

2. Create a UML overview system model which defines the system components which
are necessary to support the business, and which contains some scenarios for exempli-
fying the system usage. The scenarios should contain elements which are correspond-
ing to forms in the user interface.

3. Create prototypes for the user interface elements using HTML or PowerPoint to simu-
late the behavior and the look and feel of the GUI. Establish links between the forms
so that their order of appearance corresponds to the scenarios of the previous step.

4. Demonstrate the prototype to several stakeholders, obtain their feedback, and adapt
the UML model and the prototype iteratively.

5. Evolve the UML model to provide further documentation like e.g. the design specifi-
cation, test cases and material for tutorials. Establish agreement with the stakeholders
on the prototype, then use it as a basis for implementation and quality assurance.

The method for building a concrete prototyping has to be chosen according to the current pro-
ject conditions. It is essential to establish the goal, the target group and intended application
of the prototype first. In case of functional prototypes it has to be ensured that the prototype is
not going to be used for any productive work.

Application Areas. This pattern has so far been observed in product development projects.

Constraints.
• Prototypes require financial and time resources.

Consequences.
 Project decisions are supported by stakeholder experience and feedback.
 Potential product acceptance can be estimated before investments are made.
 Prototypes enable improved cost estimates of later design and implementation.

Page 28

 Prototypes might focus the attention of stakeholders to the demonstrated capabilities only
and thus inhibit the development of further visions and alternative solutions.

 A working prototype might also suggest capabilities which later cannot be achieved (e.g.
if scaling rules were ignored when creating the prototype).

Experiences.
• Efforts for building a prototype are hard to estimate a-priori. Customers might be re-

luctant to finance prototypes as they require resources already during project initiation.
It should therefore be attempted to acquire resources for prototyping outside of the
project, e.g. from R&D departments.

• On the other hand, building early prototypes is not a big additional load to the overall
project budget: prototypes would become necessary at later stages in any case for fea-
sibility studies, cost estimates etc.

• Using prototypes becomes more efficient if they are based on scenarios from the
stakeholders’ environments.

• Functional prototypes are bearing the risk of being taken into and remain in produc-
tion, this way evolving into long-lived systems without any proper previous architec-
ture design.

Known Uses.

• Introduction of COTS-based Information Systems

A technology-driven group developed a vision for an innovative user interface to an in-
formation system. The vision was difficult to communicate and share among system users
and providers as they were unfamiliar with the technology. Partially, the vision was not
understood as its description was on a high level of abstraction, other parts were not
trusted to work as they seemed too far-fetched. On this basis it was impossible to elicit
user requirements. Instead, a diploma student was employed to create a toy version of the
envisioned user interface. The prototype interface could be demonstrated to expert users
and system providers, who then joined the discussions of feasibility and potential benefits
of the initial vision.

• Control System for Innovative Production Process

A tool manufacturer for mechanical workshops intended to develop a new machine which
was based on an innovative manufacturing technology. A control system for the envi-
sioned machine had to be developed. The project team succeeded in creating a functional
specification for the control system, but was unable to define the system details due to
lack of experience with the technology and the corresponding manufacturing process. A
test environment was created in which the project team could manually perform and in-
vestigate the envisioned manufacturing process. After this, the control system specifica-
tion could be detailed.

Related Patterns. none.

 Page 29

3.3 Evaluate Existing Documentation

REQUIREMENTS ENGINEERING PATTERN *CANDIDATE*
Evaluate Existing Documentation

Requirements should be written by their stakeholders, but the stakeholders are sometimes
hard to access. This pattern offers an alternative way of requirements elicitation from users’
viewpoints without contacting stakeholders.

Objective. Acquire complete requirements from the stakeholders’ viewpoints.

Context. A specification should be created for a project with several different groups of
stakeholders. Some stakeholders are unavailable for requirements elicitation, but their de-
mands and experience should be captured in the specification according to their viewpoint.

Problem. Requirements should be phrased by the stakeholders, but for some questions there
are no stakeholders available in the project team. Finding and involving stakeholders could
delay the project.

Forces. The forces address the availability of stakeholders and this way the authenticity and
reliability of the requirements:

• Requirements should be elicited only directly from stakeholders to capture their view-
point and to avoid misunderstandings and interpretations by third parties.

• Requirements should be elicited according to the envisioned system structure and use
cases to ensure complete coverage in the specification.

Solution. Evaluate existing documentation and derive requirements from the described fea-
tures and experiences, especially for topics of interest which are not sufficiently discussed by
stakeholders. User manuals and tutorials of previous products are especially valuable sources
as they provide insights from a user’s perspective. Other sources include legacy systems, de-
sign descriptions and output produced from legacy products.

Known Uses. The pattern has been observed in projects which can build on legacy systems.
In a development project of a new multi-purpose printer, scanner and fax machine, product
descriptions and user manuals from preceding separate products were analyzed to capture
their usability and design experience. In a project which introduced a new integrated business
system, manuals and materials of earlier systems were evaluated to identify the key use cases.

Related Patterns.
• “Build Abstract Model to Integrate Fragmented Specifications” or “Use Requirement

Index Cards” to integrate the information content of different documentations.
• Use this pattern to represent stakeholder groups which are not accessible for specifica-

tion tasks when you “Organize Specification Along Project Structure”.

Credits. The pattern was discovered during discussion at the REP04 workshop [HHP04].

Page 30

3.4 Bundle Requirements to Features

REQUIREMENTS ENGINEERING PATTERN
Bundle Requirements to Features

If a specification needs to contain high-level information for managers as well as technical
details for developers, then the specification should be decomposed using features, i.e. essen-
tial characteristics of the intended project.

Objective. A specification shall be
created and maintained that suites
different reader groups who need ac-
cess to information at different levels
of detail, e.g. readers from manage-
ment and readers from development.

Context. Requirements have been
collected and documented and now
have to be structured and organized
according to the readers’ needs.

Problem. Management and newly
involved stakeholders need high-level
elaborate requirements to understand
the vision in a first step while devel-
opers need detailed technical require-
ments. The specification has to be
structured in a way that it can satisfy
all its readers.

Forces. The pattern addresses the different levels of abstraction in requirements specification.
• A general high-level specification with elaborate requirements has to be provided be-

cause it helps to build a common vision, eases communication and enables efficient
decision making.

• A more specific detailed specifica-
tion has to be elaborated to provide a
reliable basis for contracting and to
guide the developers.

Solution. Identify the essential characteris-
tics of the product under development as
product features and summarize them in a
feature list. Bundle existing and new re-
quirements to the according features. The
result is a hierarchical structure that decom-
poses the product into features that act as a
bridge head to more detailed requirements.

Figure 14: Shielding the detailed requirements
from stakeholders by bundling them to features.

feature clock

feature alarm

feature battery
operation

R1 red hands

R27 hour marks

R30 precision

R4 min. volume

R53 sound quality

R67 robustness

R23 reliability

R63 consumption

R15 portability

Figure 15: Using features to
bundle requirements.

feature

requirement

1..*1..*bundles

feature list
1..*1..*

product specification

product

1..*1..*
characterizes

+is component of

+has component

1

1

1

1

describes

 Page 31

Specification readers can thus access different requirements levels at their command. A com-
plete feature list provides an appropriate project description for communication.

Structure. A product is broken down into a number of features. Every feature bunches to-
gether a number of more detailed requirements. Thus the feature represents an intermediate
level of detail for organizing the specification.

Instructions. The notion of a feature is not commonly defined, but in general a feature is
characterized as:

• A product property which can be experienced by the users
• A static product element which can be tested for presence
• A negotiation topic that impacts the system and its costs

A (functional) feature provides added value to the system, i.e. it makes a considerable differ-
ence whether the feature is present or not. In this sense it is significantly more than, for exam-
ple, a condition.

If properly introduced, features provide a vocabulary for describing a product. It could be
used within the project team for negotiation and communication, as well as outside the team,
for example for marketing purposes. For this reason, one of the first steps of introducing fea-
tures is to create a list of meaningful, self-explaining keywords which are suitable for describ-
ing the product. Associating requirements with these keywords will then explain their mean-
ing and establish a common understanding of the product properties.

The list of features with associated requirements can be hierarchically structured and devel-
oped: requirements which are detailing high-level features can in turn be detailed by further
lower-level requirements, thus treating requirements like features.

If an existing requirements specification is available, identify features by grouping the re-
quirements and modify the specification structure accordingly.

Ideally, feature lists are based on existing lists from previous comparable projects (e.g. in
product lines) and are made available to follow-up projects.

Application Areas. Feature lists are beneficial to
• Projects with many stakeholders that have to read and understand the specification and

therefore need access points to it; or
• Projects which deliver product families and thus can reuse features, which were identi-

fied once, in follow-up projects.

Constraints.
• Handling feature lists is facilitated by a requirements database that stores the relation

between features and requirements.
• Some experience with the domain is required within the project team to identify the

correct features.

Consequences.
 Feature lists give an early idea of the system under development.

Page 32

 A feature is a term with some agreed co-notation, which can be used as a controlled vo-
cabulary (or an “index”) to more detailed specifications. This way, features serve as a
short hand for communication purposes.

 Features may omit important details and thus diverge from their original meaning.
 Maintaining features and their relations requires configuration management efforts.

Experiences.
• A feature list can be used to define the product scope by adding or deleting new fea-

tures.
• Feature lists are a helpful tool for release planning. Features can be assigned to prod-

uct samples or milestones.
• Feature lists can be used for comparison of bids.

Known Uses.

• Automotive multi-supplier environment

A feature list was created based on experience from previous projects. The list was used to
define the project scope internally in the first place and then to ask for external supplier
bids. Both negotiation processes were tracked by assigning open issues to the impacted
features. More detailed requirements were bundled to features that were used to plan im-
plementation and tests. The feature list was reused in subsequent projects to speed up the
process.

• Introduction of COTS-based Information Systems

To suit contractual needs for the introduction of a COTS-based Facility Management Sys-
tem (FMS), the specification had initially been organized to reflect the different system
components. When the implementation team worked according to the specification, it be-
came apparent that the specification put too much emphasis on technical aspects. It could
not transport the vision of the intended system usage to the development team, and system
tests according to the specification were not capturing usability and user acceptance. The
specification was therefore re-structured: features corresponding to portions of system
functionality were introduced, and requirements were assigned to (one or more) features.
The features were successfully used for release planning and provided the guidance which
was needed for system design and test.

Related Patterns.
• “Use Requirements Index Cards” may help to classify requirements in order to relate

them to features.
• “Write Reusable Common Requirements” as a basis for making feature lists reusable.
• Use features for recording the relation of requirements and test cases to “Detail the

Specification by Writing Test Cases”.

Further Reading.
[KCH+90] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson,, Feature-Oriented Domain

Analysis (FODA) Feasibility Study, Technical report CMU/SEI-90-TR-021,
Software Engineering Institute, Carnegie Mellon University, 2000.

 Page 33

Figure 16: Example of a requirements index card.

3.5 Use Requirements Index Cards

REQUIREMENTS ENGINEERING PATTERN
Use Requirements Index Cards

If requirements contributions from different stakeholders need to be unified in style and for-
mat, this pattern recommends using index cards for recording and classifying requirements.

Objective. Requirements contribu-
tions to a common product specifica-
tion from numerous different stake-
holders shall become compatible in
format and level of detail as a basis
for further analysis.

Context. Specifications have to be
analyzed for completeness, contradic-
tion and dependencies as a basis for
negotiation.

Problem. For efficient comparison and correlation, project teams have to specify require-
ments in a unique, preferably text-based format, yet different stakeholders prefer their familiar
individual formats.

Forces. This pattern addresses the diversity of specification formats:
• Communication across organizations and disciplines is facilitated by using a common

format that is easily accessible to all stake-
holders. For efficient comparison and correla-
tion, requirements should be specified in a
unique, preferably text-based format.

• Individual stakeholders have preferred formats
for expressing requirements, which could in-
clude tables, flow charts, sketches, drawings or
other graphics.

Solution. Use the metaphor of index cards for require-
ments to introduce a common text-based format. Index
cards are a simple and well-known tool and hence
usually accepted by the stakeholder groups. Require-
ments on index cards are easily accessible. Sort the
index cards to introduce subject based filter criteria for
requirements access at the same time.

Figure 17: Card box principle to
store requirements index cards.

cost

floor space

safety

gas store

component

requirements
type

requirements
index card

Page 34

Management Info
status
author
priority

Change Record
version
date-of-change
author
change
reason

System
Component

name

Expert Group
name

Requirement
id
title
text

**

*

*

Domain
name*

*

*

*

Structure. Each requirement index card contains a specification statement plus additional
attributes for classification (see Figure 18). Include general attributes for requirements man-
agement and project progress tracking, and customized attributes like e.g. the affected system
component and the relevant expert group(s) for filtering and correlating requirements.

Instructions. Select requirements attributes
that suit the current project’s needs from
reference collections [MFM+96] [RR03] or
other projects to design a requirements in-
dex card. Frequent attributes concern

• Requirements management (like id,
history, author, source, ...)

• Project controlling (like priority,
status, approval criterion, ...)

• Project specific information (like
system components or disciplines for
which the requirement is valid, re-
questing stakeholder, ...)

• Quality assurance (like stability, am-
biguity, testability, ...)

Use the index card format to record all the existing requirements and introduce it as the stan-
dard format for writing down new requirements. Collect them centrally and file the index
cards according to the project’s needs, e.g. classify them by the affected component (see
Figure 17).

Requirements index cards could be kept as “traditional” sheets of paper which are organized
in card boxes at a central office, but a central electronic classification system like filtered
spreadsheets or databases should be used to handle larger collections of requirements. Elec-
tronic filing enables requirements organization according to several criteria at a time.

Application Areas. Benefits have been observed in
• Interdisciplinary projects with different established “cultures” for specification (e.g.

civil engineers are used to technical drawings, safety engineers to schematics, IT staff
to models), which had to agree on a common format, and

• Projects with different interest groups, who want to filter and access the requirements
according to different criteria which are of relevance to them.

Constraints. None observed so far.

Consequences.
 Requirements on index cards are easy to access. Classification enables filtering the speci-

fication and creating domain-specific views.
 Once they are made available in an accessible format communication about requirements

among the stakeholders improves.
 Vague attributes or attributes with overlapping semantics might lead to useless classifica-

tion.

Figure 18: Requirement plus example
attributes for project and requirements

management.

 Page 35

Experiences.
• Index cards are easy to use and flexible in design.
• The required attributes are hard to guess in the beginning, but they are emerging as

different users start accessing the specification. Index card design has to be foreseen as
an incremental procedure.

• A set of index cards can be represented as a table and hence be implemented based on
lightweight office products such as word processors and spreadsheets, as well as data-
bases or sophisticated requirements management systems.

• Stakeholders might find it difficult to express their thoughts in an unused format and
hence deliver specifications of lesser quality.

• If stakeholders have difficulties in using a fixed format, requirements expression can
be carried out in two steps: first, stakeholders create requirements in their preferred
format, then the requirements are adapted to index cards.

Known Uses.

• Interdisciplinary Plant Construction

In a plant construction project, index cards have been used for capturing requirements
along with several domain-specific attributes for classification. The attributes included for
example the affected plant components, the authoring expert group(s), the disciplines and
domains affected by the requirement, and the requirement type. The requirements were
kept in a requirements management system, where they could be filtered by their attribute
values. This way, different viewpoints could be created easily, e.g. by creating lists of re-
quirements which were issued by a specific stakeholder group, or which are relevant to a
certain discipline or plant component. The requirements lists were sent to the responsible
experts for review and this way helped to maintain a good stakeholder involvement.

• Introduction of COTS-based Information Systems

At a COTS-based system introduction, requirements were recorded with additional attrib-
utes for contracting purposes (e.g. vendor estimates of the maximum cost for realizing re-
quirements), for relating functional requirements to work packages in which they should
be realized, and for monitoring the development progress. The requirements were kept in
a requirements management system, but with external companies requirements including
their attributes were exchanged through spreadsheets. The tabular format enabled easy re-
quirements reviews by the different involved stakeholder groups.

Related Patterns.
• “Employ a Requirements Engineer as a Care Taker” for handling the requirements in-

dex cards.
• Electronic index cards may help to identify candidate requirements if you want to

“Write Reusable Common Requirements” or “Generate Approval Checklists”.

Further Reading.
[MFM+96] C. Mazza, J. Fairclough, B. Melton, D. de Pablo, A. Scheffer, R. Stevens, M.

Jones, G. Alvisi, Software Engineering Guides, Prentice Hall Europe, 1996.
[RR03] S. Robertson, J. Robertson, Volere Requirements Specification Template, Edi-

tion 9, 2003, http://www.systemsguild.com/GuildSite/Robs/Template.html

Page 36

3.6 Write Reusable Common Requirements

REQUIREMENTS ENGINEERING PATTERN
Write Reusable Common Requirements

This pattern recommends writing requirements in a general and reusable style to make an
evolving specification robust against modifications of the project scope or structure.

Objective. The evolving specification shall
be stable against changes when the planned
product structure has to be extended or the
configuration has to be changed. By reusing
proven specifications double work shall be
avoided and quality improved.

Context. The specification is based on the
product structure or configuration. The same
requirements apply to different products be-
cause the project forms part of a higher-level
framework, e.g. a product line or program.

Problem. If requirements or the product
structure change, updates have to be per-
formed in many places. Inconsistencies arise
from incomplete updates.

Forces. The forces in this pattern relate to the impact of requirements reuse in case of changes
in the specification:

• Proven specifications describe the individual products and need only little adaptation
in case of changes.

• Requirements are reused in several products so that changes in the requirements or in
the product structure have to be updated at many places.

Solution. Write general requirements and relate them to the concrete product components
which they affect (see Figure 19). Reuse the common requirements and manage the compo-
nent relations instead of creating multiple requirements versions for the different products or
components.

Structure. Figure 20 shows the schema for relating general requirements to product compo-
nents or configurations in a database. Trace objects are used to implement the relation be-
tween requirements and specification and can carry additional information like e.g. explana-
tion or fulfilment status.

general
requirement

trace
explanation1 *1 *

productproduct
specification1* 1*

describes

gas store

office
building

cryogenic
plant 2

cryogenic
plant 1

R11 The size of the gas store
should be at least 60 m2.

R23 Every hall must be fenced
in.

R32 Every building must have at
least two emergency exits.

Reuse: 2

Reuse: 4

Reuse: 1

Reuse: 3

R41 Cryogenic plants must have
separate power supplies.

requirements products

Figure 19: Example for reused common
requirements in a plant construction pro-

Figure 20: Relating common requirements to products using traces.

 Page 37

Instructions. There are several options for relating requirements with product components,
including (static) traces in a requirements database, or requirements attributes containing spe-
cific values, which are used for (dynamically) querying the requirements database. The fol-
lowing example shows a combination of both:

• Provide attributes for relating requirements for example to product components,
events or user groups.

• Check for each requirement if it explicitly contains a term which occurs as a possible
value of one of the requirements attributes (for example a specific product compo-
nent). Examine whether the requirement can be rephrased with general expressions
and the reference be re-established by entering the specific value into the require-
ment’s attribute.

• Obtain the requirements on a product component by filtering the database for example
for those requirements which contain the component’s id in their “component” attrib-
ute. Use the result set to establish static traces from each requirement in the set to the
component.

Application Areas. Requirements reuse has been observed in projects which are part of a
higher-level framework such as e.g. programs or product lines.

Constraints.
• Reusing common requirements for several products or components demands a re-

quirements database that stores the relation between products and requirements.

Consequences.
 Requirements and specifications are adaptable for future extensions and follow-ups.
 Existing quality assured specifications can be extended to new products.
 The proposed implementation of requirements reuse enables product approvals by com-

ponent based checklists and is also convenient for managing different product versions..
 The inner complexity of the specification is increased by implementing the relations.
 Change management has to cover requirements and their relations.

% of
reuse

of
products

25

50

100

1 2 3 4 5 6 10 100

A

B
C

Case Study
Development of
Navigation Systems

Case Study
Interdisciplinary
Plant Construction

Case Study
Automotive multi-
supplier environment

Figure 21: Experience from using the pattern in different settings. The area above the
curve is supposed to result in a positive return on investment (ROI) for this pattern.

Page 38

Experiences.
• Applications of this pattern have been observed in different settings. Benefits depend

on the number of products and the degree of requirements reuse (cf. Figure 21; A and
B are reported in the Known Uses section of this pattern).

• The growing complexity from tracking dependencies suggests the institution of a
dedicated requirements engineer.

Known Uses.

• Development of Navigation Systems (see A in Figure 21)

In the development of navigation systems for different car manufacturers, reuse was an is-
sue both for single requirements and for complete component specifications:
• Certain functionality turned up repeatedly, but was specified only once. A navigation

system offers for example avoidance options for tunnels, freeways and other route
characteristics.

• New functionality was initially implemented only in a lead project. Only after the
functionality has proven successful in the delivered product it was included to follow-
up projects..

Reuse was implemented by dynamic allocation of existing requirements or specifications
to the individual product component.

• Interdisciplinary Plant Construction (see B in Figure 21)

In a plant construction project, legal constraints and technological progress during the pro-
ject were expected to change the number, composition, and configuration of the plant
components compared to the initial plans. Requirements therefore were specified in a gen-
eral style which made them independent of specific plant components. For example,
security requirements read “Every hall must have two emergency exits“, instead of refer-
ring them to particular buildings, and similarly, “In every laboratory the temperature has
to be kept constant within 0.5 degrees Celsius over the day”, rather than naming the labs
explicitly. Reuse was implemented through requirements classification: attributes were
used to assign the requirements to one or more plant components. If new components
were added, the relevant requirements could be retrieved from the database through que-
ries, and additional attribute settings could be added as necessary.

Related Patterns.
• “Use Requirements Index Cards” as a technical basis for implementing reuse by re-

quirement classification.
• “Employ a Requirements Engineer as a Care Taker”, who should trace the relations

between requirements and products.
• “Generate Approval Checklists” to conduct approvals with reused requirements.
• If you “Bundle Requirements to Features” this pattern serves as a basis for making

feature lists reusable.

 Page 39

3.7 Build an Abstract Model to Integrate Fragmented Specifications

REQUIREMENTS ENGINEERING PATTERN *CANDIDATE*
Build an Abstract Model
to Integrate Fragmented Specifications

Requirements from different sources have often been recorded in a variety of formats. This
pattern recommends building an abstract model (for example in UML) to integrate their in-
formation content.

Objective. An integrated view on the information content of a set of specification documents
shall be created.

Context. A set of separate requirements documents, which have been created independently
from different sources, have to be integrated and consolidated into a central product specifica-
tion.

Problem. Contributions to a specification are delivered in various formats; they contain for
example requirements in different styles and terminologies, figures, sketches and flowcharts.
For negotiating and defining the project scope, an integrated view on the specification needs
to be created, but the different contributions are hard to relate due to their diversity.

Forces. This pattern addresses the difficulty of establishing a central specification in distrib-
uted projects:

• Stakeholders should be enabled to specify their requirements with minimum effort.
This could include letting them perform their specification work locally, reusing exist-
ing material.

• A central specification is needed e.g. for requirements analysis and negotiation.

Solution. Build an abstract model – for example in UML – to capture and analyze the infor-
mation content of the different specification fragments, and update or re-write the specifica-
tion based on this model.

Experiences. Re-writing a specification based on a model is more efficient than trying to pro-
duce a text-based specification from the beginning. The model helps to establish consistent
terminologies and effective project structures in a natural way prior to writing the specifica-
tion.

Known Uses. The pattern has been observed in projects which further developed and replaced
existing products. For the design of a new multi-purpose I/O device, user manuals and design
descriptions of preceding products have been expressed and were related in terms of UML. In
the introduction of a business system, process descriptions and system outputs of earlier sys-
tems were analyzed and integrated into a new process model.

Page 40

Related Patterns.
• “Use Requirement Index Cards” as an alternative approach to unifying requirements

style and format with a focus on building and querying a requirements database.
• “Evaluate Existing Documentation” as an additional contribution to the specification.
• “Employ a Requirements Engineer as a Care Taker” for performing the central model-

ling tasks.
• Use this pattern for creating a central specification if you “Organize Specification

Along Project Structure”.

Credits. The pattern was discovered during discussion at the REP04 workshop [HHP04].

 Page 41

3.8 Provide Statements of Objective With Each Requirement

REQUIREMENTS ENGINEERING PATTERN *CANDIDATE*
Provide Statements of Objective
With Each Requirement

Sometimes customers require technical features which seem convincing at first glance, but
turn out to be expensive or even impossible to realize later on. This pattern provides the
ground for finding reasonable alternatives.

!

Figure 22: The statement of objective opens design and implementation alternatives:

Wings are not required if bridges satisfy the same need.

Objective. Design alternatives for non-optimum technical approaches have to be developed.

Context. A customer orders the development of a new product and provides a vision which
contains unacceptable technical details.

Problem. Design efforts are often biased by a technical solution which is proposed even be-
fore design alternatives have been developed and evaluated. Such proposals may be inspired
for example by scaling available solutions, or by transferring technologies from other do-
mains to the problem at hand. Although such proposals have their justification, the often de-
scribe unnecessary, expensive or even detrimental features.

Forces. The forces in this pattern relate to guidance in the design process:
• Novel product development should exploit existing successful technical solutions to

benefit from their reliability and acceptance.
• Novel products should be inspired and invented independent of past or current techno-

logical solutions.

Page 42

Solution. Treat proposed technological
solutions as if they were system re-
quirements. Relate them to user re-
quirements and provide a statement of
objective for each user requirement. If
system requirements (i.e. the proposed
solutions) refer to impossible solu-
tions, use the statement of objective
to initiate new design activities.

Known Uses.

• Defence Project

In a defence project a long-range warship was envisioned to sail at 30 knots and more. As
the necessary engines would have consumed most of the available payload, the reasons for
the high speed requirement were investigated. The objective was to escape torpedoes –
which used to run at 30 knots, but can nowadays reach more than three times the speed.
The objective could be better reached using fake targets, and the high-speed requirement
was dropped.

• Spare Part Management

In a spare parts management project, mobile devices were to be introduced for mainte-
nance work. The mobile devices should offer the same GUI as an available terminal cli-
ent. Investigating the reasons for the technically difficult to realize GUI requirement re-
vealed the intention behind: Maintenance workers should be enabled to register the spare
parts they were using to enable immediate re-stocking of the parts – a functionality which
was included in the terminal client. This essential requirement was satisfied by providing
mobile scanners for part recognition with acoustic feedback for successful registration
transactions. The GUI requirement on the mobile client was dropped.

requirement

statement of
objective

user
requirement

system
requirement

Figure 2: Statement of objective as the
primordial requirement.

Figure 23: Statement of objective as the
primordial requirement.

 Page 43

Figure 25: Storing approval information
in checklists.

3.9 Generate Approval Checklists

REQUIREMENTS ENGINEERING PATTERN
Generate Approval Checklists

If the project team expects checklists for tests and approvals, but requirements cannot be
checked directly because they are reused for several project components, then checklists
should be generated dynamically from the requirements database.

Objective. It shall be ensured that a
given product has been created according
to an agreed specification.

Context. A product version has been
delivered and needs to be tested for com-
pliance with the requirements specifica-
tion. The test result has to be certified.

Problem. Requirements fulfilment can-
not be implemented using check marks in
the requirements document because the
requirements are reused for several prod-
ucts (see Figure 24).

Forces. The pattern addresses the com-
plexity of products and common (shared)
requirements.

• An approval is an isolated activity which verifies step by step whether a specified re-
quirement has been adequately implemented in a product. People therefore like to
work with requirement checklists as a simple tool for conducting approval procedures.

• A requirement can never be marked “approved” because it might have been reused in
different components or in approvals of other product versions.

Solution. For every product to be approved, use generated checklists that contain all the rele-
vant requirements. Generate the checklists by querying the requirements database. Once com-
pleted, use the checklist as an approval
certificate.

Structure. A checklist consists of a num-
ber of line items which relate a given re-
quirement with a given product. Addi-
tional approval information like the fulfil-
ment status is stored in the checklist line
item (see Figure 25).

gas store

office
building

cryogenic
plant 2

cryogenic
plant 1

certificate
R41
R32
R23

certificate
R41
R32
R23

certificate
R32
R11
R23

certificate
R32

R11 The size of the gas store
should be at least 60 m2.

R23 Every Hall must be fenced
in.

R32 Every building must have at
least two emergency exits.

Reuse: 2

Reuse: 4

Reuse: 1

Reuse: 3

R41 Cryogenic plants must have
separate power supplies.

requirements products

Figure 24: Example for generated
approval checklists.

requirementchecklist line item
fulfilment status 11

checklist
date

1..*1..*

product
11

1

1

certifies approval of

1

1

Page 44

Instructions.
• Provide requirements attributes which store for each requirement to which products

this requirement is related
• For every product approval to be carried out, filter the requirements database for the

requirements which are related to the product. Export the result set to a spreadsheet or
an office document for creating a checklist.

• During the approval procedure, go through the requirement list step by step and add
fulfilment information to each requirement

• When completed, store the checklist as an approval certificate

Application Areas. The checklist approach is beneficial for any project that reuses the same
requirements on several occasions, e.g.

• Projects that follow an incremental process model, where products are delivered in
growing versions, and approvals are re-iterated;

• Projects which deliver product families;
• Projects which are still vague in their scope.

Constraints.
• Generating approval checklists demands a requirements database that stores the rela-

tion between products and requirements.
• In some cases, requirements fulfilment cannot be recognized directly from the re-

quirement, but demands further instructions, e.g. test cases. In such cases, the pattern
has to be extended to anticipate the need for test cases.

Consequences.
 Approval checklists enable product and requirement versioning and allow to track the

history of approvals.
 Checklists can be formally treated as independent documents, i.e. reviewed, released, pub-

lished, etc. They decouple approvals from the specification.
 Tracking checklists involves configuration management efforts.

Experiences.
• Generated approval checklists are a powerful tool for involving stakeholders into the

RE activities. The checklists can be created e.g. as easy-to-use spread sheets, distrib-
uted through e-mail, and filtered according to the individual responsibilities of each
stakeholder.

Known Uses.

• Interdisciplinary Plant Construction

In a plant construction project, the requirements were kept in a central requirements data-
base. Attributes were used to assign the requirements to plant components, engineering
disciplines and responsible stakeholder groups. The stakeholders included mechanical en-
gineers, civil engineers and future users of the planned facilities. For each plant compo-
nent, approval checklists were generated by querying the requirements database for all re-
quirements which were assigned to that component. The checklists were used for review-
ing the CAD design models of the plant components to ensure they would include all the

 Page 45

intended installations without collisions. The checklists proved to be an essential vehicle
for communication and documentation and for improving stakeholder involvement.

• Introduction of COTS-based Information Systems

A project for introducing a COTS-based information system was structured in a way that
project deliverables corresponded to work packages (WPs) in the project plan. Each re-
quirements was linked with all the WPs which needed to observe the requirement. When
approving a work package, checklists were generated by querying for requirements which
were linked with that WP. This way, the implementation team could check the relevant
functional requirements for their actual WP, and the project leader could follow imple-
mentation progress by observing requirements fulfilment.

Related Patterns.
• “Use Requirements Index Cards” as a means to record the requirements.
• “Write Reusable Common Requirements” to build your requirements database in an

adequate information structure.
• Use approval checklists to record the test results if you “Detail the Specification by

Writing Test Cases”.

Page 46

3.10 Detail the Specification by Writing Test Cases

REQUIREMENTS ENGINEERING PATTERN
Detail the Specification by Writing Test Cases

If a specification turns out to be ambiguous or incomplete while a project is already well on
its way, this pattern describes a way of clarifying the specification without halting the imple-
mentation work.

Objective. Usability (e.g. clarity,
testability, coverage) of a specifica-
tion shall be improved after it has
already been frozen.

Context. Client and supplier have
agreed on a specification which has
been frozen because it became for
example part of a contract, or the pro-
ject progressed to the next phase.
When using the specification for im-
plementation and test it turns out that
it is incomplete and ambiguous.

Problem. The specification is in a
shape which endangers the project
success, but no more time and re-
sources are available for improving
the specification.

Forces. The pattern is related to pushing the progress in the project:
• The project has to step back to improve the specification.
• The project has to move ahead to meet the milestones.

Solution. Leave the specification as it is and create
test cases instead. The test cases should describe the
usage and the expected output from an end user per-
spective. Provide the test cases to the implementation
team, and agree that the test cases will become the
criteria for approval and in this sense an appendix to
the specification.

Structure. Test cases explain the context of require-
ments and provide examples for scenarios which rely
on a requirement. They should contain an objective,
preconditions, a course of events including exceptions
and alternatives, and expected results for specific in-

Figure 26: Test cases provide more concrete
ideas of the desired solution.

Figure 27: Test cases contribute to
the specification by detailing re-

quirements.

3t

60 l

Specification

Test Case 1

Test Case 2

Test Case 3

Possible Solutions

requirement

product
specification

**
test case

1..*1..*
tests

details

 Page 47

puts. This way, they can improve e.g. the level of detail, the clarity, the coverage and the test-
ability of requirements.

Instructions. The key to good test cases is the end user perspective. Test cases can be col-
lected in different manners:

• Let key users describe use cases and concrete usage scenarios of the system and em-
ploy them as test cases.

• Let key users conduct tests and record their activities and their expectations.
• Let key users explain for each requirement in which situations the requirement is rele-

vant to them, then create scenarios for each such situation.

Application Areas. This pattern has so far been observed in small and medium projects
which are conducted by teams working to a large degree on a basis of understanding.

Constraints.
• Usually contracting is based on the initial specification, and the introduction of test ca-

ses later on can be seen as an attempt to extend or modify the project scope. It will
therefore only work if both client and supplier follow the same intentions of improv-
ing the project quality.

• Ideally, the approach has to be realized without affecting the project resources, imply-
ing that it should be used only on small amounts of requirements at a time.

Consequences.
 The test cases are used as a new basis for implementation.
 Hidden assumptions and wishes are revealed and made explicit before tests and approvals.
 Test cases can lead to unsolicited updates of the requirements specification from the client

side.

Experiences.
• Writing test cases cannot replace the requirements specification. Generally both are

needed to completely capture the different views on a project.
• It is easier to acquire resources for tests and test case specification than for require-

ments analysis as the necessity of test is generally acknowledged.
• Writing test cases helps discovering weak points in the specification.
• Test cases are best written by domain experts or end users who ideally act as multipli-

ers in the project team.
• Test cases can be written in parallel by several independent persons.
• “Better late than never” – the availability of test cases for requirements always pays

off in reduced development cycles.

Known Uses. The pattern has been observed in the introduction of information systems.

• Migration of an Information System (Logistics)

A logistics company’s liability management application should be replaced by a newly
developed application. Management replaced the project leader after the specification was
written. The new project leader found the specification to describe the new system’s func-
tionality in an understandable and complete way. He found a “joint understanding” of
what the new system should do having been established among all stakeholders. But he

Page 48

also found the specification not to be suitable as contractual basis as the formulations were
interpretable in too many places. The specification’s authors resisted to doing substantial
rework because if they did rework, they had to admit failures in their former work. Thus
the new project leader convinced end users to specify and conduct tests. Clarifications
took place when end users and developers discussed the test cases. As a consequence, the
system was introduced with the correct functionality.

• Introduction of a Facility Management System

To suit the purchasing of COTS components for a Facility Management System (FMS),
user requirements were specified in an abstract, product independent style which was suit-
able for software selection and contracting. When customization started, more detailed
questions arose and holes in the specification became apparent. As a consequence, the ex-
ternal developers provided features as specified, but were unable to envision the way the
users intended to work with the FMS. The resulting system was functionally acceptable,
but usability and user acceptance were low. As the specification could not be modified af-
ter contracting, both parties agreed to add test cases for better explaining how the clients
expected to work with the system. The developers used the test cases already for early
module tests and thus were implicitly guided by the test cases, obtaining an overall im-
provement of the system’s ergonomics and acceptance.

Related Patterns.
• “Bundle Requirements to Features” for recording the relation of requirements and test

cases.
• “Generate Approval Checklists” to record the test results.

 Page 49

3.11 Organize Specification along Project Structure

REQUIREMENTS ENGINEERING PATTERN
Organize Specification along Project Structure

This pattern recommends using the same structures for project management and requirements
elicitation to minimize coordination efforts.

Objective. The different views on the
project have to be coordinated and
shall be represented in an agreed
specification.

Context. A project is organized in a
work breakdown structure (WBS).
Distributed project teams work on the
individual WBS elements. A specifi-
cation that covers the whole product
has to be worked out and agreed upon
by the teams. Responsibilities for cre-
ating the specification have to be as-
signed in the beginning of the project.

Problem. The project teams are ex-
pected to spend their time primarily on working on the solution, but they also need to be in-
volved in the specification process to record and negotiate their needs and constraints.

Forces. The forces in this pattern address the intensity of communication and information
exchange in collaborative teams:

• On behalf of the mission, requirements have to be negotiated until mutual agreement
has been reached. This requires a collaborative working environment.

• Groups of specialists tend to concentrate on the topics of their own immediate concern
and may thus become too self-sufficient and difficult to access for negotiation.

Solution. Organize the specification procedure according to the project organization. Let each
WBS team appoint an author who writes a specification from this team’s view point on the
product. Figure 28 shows a structure of specification documents and their authors that reflects
the WBS elements and project teams. Introduce a requirements engineer who creates an over-
all product specification from the partial ones. Thus the communication overhead to write
specifications is reduced to a minimum for the busy project teams. The requirements engineer
takes responsibility for the specification progress and for ensuring requirements conflict reso-
lution.

Figure 28: Specification mirrors project
structure.

A

A

A

A

product
spec

A

project structure specification structure

controls

safety

tires

mechanics

Page 50

Structure. Figure 29 shows a class diagram for organizing the specification procedure. Every
project team or stakeholder group who is responsible for a WBS element has to appoint one
person as an author for specification purposes. Authors contribute to the project specification
according to their team’s viewpoint. A central requirements engineer acts as an architect who
creates the overall project specification by coordinating the authors in a similar way as the
project manager coordinates the project teams. The requirements engineer takes responsibility
for the specification progress and for ensuring requirements conflict resolution.

Instructions.
• Convince the client to support the measure by explaining the forces from this pattern

and the perspective to compensate the cost for the requirements engineer by reduced
development and test efforts.

• Let every project team appoint an author for the WBS element specifications. Try to
make sure a suitable person with sufficient standing in the team is selected. Stake-
holders which are not accessible to the project should be represented by a team mem-
ber who is playing their role.

• Appoint a requirements engineer who instructs and supports the authors on how to
write specifications.

• Let the requirements engineer consolidate an overall specification from the teams’
contributions. He should analyze the requirements to detect omissions and conflicts
that have to be solved, and facilitate negotiation and conflict resolution.

Application Areas. The proposed organization has proven to be useful in distributed projects
that require formalized communication channels, e.g.

• Locally distributed projects, in which the project teams are spread across different lo-
cations;

• Projects with diverse stakeholders or expert groups, e.g. originating from different dis-
ciplines and having different “cultural” backgrounds;

• Projects with large fluctuations in the team over time.

Figure 29: Responsibilities for WBS elements and specifications.

project

WBS element
specification

requirements
engineer

project manager

accounts for

WBS element
describes

project team

**

coordinates

accounts for

author

writes

**

coordinatesappoints

product

produces

product specification

describes

1..*1..*

accounts for

 Page 51

Constraints.
• This pattern requires the project to be structured into teams according to WBS ele-

ments, i.e. each WBS element is assigned to one project team. It further assumes that
the main stakeholders and their viewpoints are represented in the project teams, as
otherwise the specification will not be complete.

• Influence on the assignment of responsibilities in the project is another prerequisite for
using this pattern.

• Organizing the specification along the existing project structure requires a central
requirements engineer as a caretaker for the overall specification.

Consequences.
 Authors are deeply involved in the negotiation procedure and are thus able to maintain the

essential interests of their teams and at the same time support decisions and necessary
compromises in their group.

 The role of the requirements engineer ensures a moderated and formally documented ne-
gotiation procedure.

 Requirements negotiation requires specification contributions with compatible formats
and styles. Stakeholders might be forced to use other than their preferred formats.

 The communication overhead that is taken from the productively working teams has to be
partially taken over by the authors and the requirements engineer.

Experiences.
• Structuring RE along the project organization can draw benefits from established

teams and communication channels, but success depends on the experience and social
skills of the requirements engineer and the project manager.

• Requirements negotiation should be instantiated as a regular meeting. If groups do not
contribute according to their responsibilities, the specification remains incomplete.
Thus, unwilling groups can endanger the whole project.

• The resulting specification describes a joint vision and is balanced in granularity and
terminology.

• To ensure compatibility of the specifications a definition of terms and a set of tem-
plates for specification are advisable.

• Requirements should be management using an RMS, which helps generate acceptance
if it makes specifications available and researchable for the whole project team.

Known Uses.

• Interdisciplinary Plant Construction

In a plant construction project, the teams were organized according to plant components
and different engineering disciplines, e.g. there were groups for the technical equipment,
cryogenic components or halls and buildings, as well as for survey or electric supplies.
Each team nominated one requirements author who contributed to a central specification.
The authors were trained by a central requirements engineer to use a requirements man-
agement system (RMS), which facilitated access to contributions from other groups. The
requirements engineer used the RMS to monitor and support the contributions to the
specification.

Page 52

• Introduction of COTS-based Information Systems

For a couple of COTS-based system introduction projects, the project teams were struc-
tured according to business processes. One additional team was responsible for the overall
system architecture and integration. In each business process team, one person took re-
sponsibility for the process and provided a specification for this process as a part of the
overall specification. The contributions were prepared and updated by the teams using of-
fice tools. They were maintained by a central requirements engineer using an RMS with
export/import capabilities for office tools.

Related Patterns.
• „Employ a Requirements Engineer as Care Taker” for creating and coordinating the

overall specification.
• ”Create a Specification Guideline by Tracking How an Analyst Works”, and distribute

the specification guideline to the project teams.
• “Use Requirements Index Cards” as a unique specification format in all the stake-

holder groups as a basis for later integration of the specifications.
• “Build an Abstract Model to Integrate Fragmented Specification” provides a guideline

for the requirements engineer for creating a central specification.
• “Evaluate Existing Documentation” to represent stakeholder groups which are not ac-

cessible for specification tasks.

 Page 53

3.12 Employ a Requirements Engineer as a Care Taker

REQUIREMENTS ENGINEERING PATTERN *CANDIDATE*
Employ a Requirements Engineer
as a Care Taker

If requirements engineering efforts are growing so large that project teams are no longer able
to accommodate them in their daily business with satisfactory quality, a dedicated require-
ments engineer should be established as a central person for performing RE activities.

 Objective. A specification and a joint un-
derstanding of its meaning shall be created
without taking the domain experts off their
daily business.

Context. A project team of experts from
several domains has to create a mutually
agreed specification.

Problem. The domain experts need to be
involved in the requirements tasks, as they
have the technical domain knowledge and
they are the persons who need to establish
agreement.

On the other hand, their involvement is problematic as they tend to
• Have little knowledge of requirements engineering methods
• Be rarely available due to other obligations in the project
• Have little motivation or enthusiasm for requirements engineering
• Have no language talent.

Forces. For creating a quality specification,
• Authors should have profound know-how of the domain.

• Authors should have profound know-how of requirements engineering methods.

Solution. An author with the domain knowledge is supported by a person with know-how of
the requirements engineering methods. This person is called a requirements engineer.

Structure. The requirements engineer ensures that the primary tasks of the domain expert do
not suffer from workload due to RE activities by performing most of the RE tasks. These
tasks include elicitation and negotiation (acquiring domain knowledge, specifying require-

Figure 30: A central requirements engi-
neer supports RE activities in a project.

tester

engineer 2

product
specification

requirements
engineer

stakeholder

engineer 1

request

clarification

requirement

test cases

Page 54

ments and taking care that all the stakeholders develop the same understanding of the specifi-
cation), coordination and requirements management.

Instructions.
• Select a person who is com-

petent in requirements engi-
neering methods and in com-
munication, and which can
gain acceptance in the project
team. Acceptance can for
example be gained by
persons who are well-known
from former activities, by
persons which perform simi-
lar tasks in comparable set-
tings, or by authority. Having
domain knowledge can help,
but is not obligatory and may
in some cases even be coun-
terproductive.

• If coordination and modera-
tion are important in the pro-
ject, consider selecting an ex-
ternal person.

• Let the project manager introduce the person as “the requirements engineer” by point-
ing out the benefits. The requirements engineer will relieve all the stakeholders of
most of their requirements engineering tasks (except providing their knowledge).

• Support the requirements engineer by letting the project manager affirm the role as of-
ten as possible towards all other stakeholders.

Application Areas. The pattern has been observed in various project types and sizes.

Constraints.
• Domain experts need to be at the requirements engineer’s disposal.

Consequences.
 The requirements engineer provides improved input for the project management (e.g.

planning of releases).
 The requirements engineer replaces the domain expert as communication partner to the

developer and vice-versa.
 The requirements engineer coordinates communication and improves its efficiency.

 The know-how of other stakeholders about requirements engineering methods increases
over time.

 The domain know-how of the requirements engineer increases over time, enabling him to
answer questions or make suggestions when working with domain experts.

 The requirements engineer is a dedicated position which has to be staffed accordingly.

 The requirements engineering resources have to be introduced timely; they cannot be in-
creased in later project stages by simply adding more requirements engineers as the peo-

Figure 31: Product specification with a central
requirements engineer as a care taker.

product
specification

create spec. part 1engineer 1

create spec. part 2engineer 2

create test cases tester

take care of RE tasksrequirements
engineer

<<include>> <<include>>

<<include>>

analyze requirements

<<extend>>

contribute requirements

<<include>>

negotiate requirements

<<extend>>
stakeholder

 Page 55

ple would need to catch up with the project teams learning curve before they become pro-
ductive.

Experiences.
• In larger projects which make use of more elaborate requirements management tools

the role of the requirements engineer as a care taker includes also technical support of
the domain experts.

Known Uses.

• Interdisciplinary Plant Construction

In a plant construction project, expert teams from different engineering disciplines had to
develop and negotiate a common vision of the intended facilities. The experts were re-
sponsible for project coordination and for specification, design and installation work, and
at the same time had to operate and maintain other installations. A central requirements
engineer has been appointed for supporting the expert teams by organizing, performing
and promoting the RE activities. Furthermore, the requirements engineer was responsible
for introducing and operating a requirements management system (RMS). By coaching,
distributing material and publishing specifications in the RMS, the requirements engineer
successfully involved the different stakeholder groups into the specification procedure.

• Migration of an Information System (Logistics)

A logistics company’s liability management application had to be replaced by a newly de-
veloped application. Management changed the project manager after the specification was
written. The new project manager found the specification to describe the new system’s
functionality in an understandable and complete way. He found a “joint understanding” of
what the new system should do having been established among all stakeholders. But he
also found the specification to not be suitable for contracts as the formulations were am-
biguous in too many places. The specification’s authors resisted to doing substantial re-
work because if they did rework, they had to admit failures in their former work. Thus the
new project manager took over the role of a requirements engineer who cared for main-
taining the “joint understanding” throughout the rest of the project.

Related Patterns.
• Define the requirements engineer’s responsibilities through other RE patterns, for ex-

ample let the requirements engineer „Create a Specification Guideline by Tracking
How an Analyst Works” to help domain experts at authoring specification documents.

• “Build an Abstract Model” from “Analyzing Existing Documentation” to get the re-
quirements engineer involved into the project.

• Employ a requirements engineer as a care taker if you want to “Organize the Specifi-
cation Along Project Structure”, “Write Reusable Common Requirements”, “Use Re-
quirements Index Cards” or “Synchronize Change Requests”.

• “Use a Central Issue List” to coordinate the change procedures.

Page 56

3.13 Use a Central Issue List

REQUIREMENTS ENGINEERING PATTERN *CANDIDATE*
Use a Central Issue List

This pattern recommends to immediately track any open issues in a central position of the
project because they might otherwise be treated differently by different project team members
- or even get completely lost.

Objective. The goal of this pattern is to keep
track of open issues in a client-supplier setting,
i.e. in a setting with two or more different
environments.

Context. Open issues occur due to changed re-
quirements, identified (software) defects, unclear
requirements that cause need for clarification,
and many other reasons. Development activities
have to be shared amongst at least two parties
(e.g. client and supplier) that are not co-located.

Problem. Identified and accepted issues have to
be communicated throughout the project team in
a way that no individual issue can be “forgot-
ten”. The problem becomes the more severe the
more issues have to be maintained simultane-
ously.

Forces. This pattern addresses the transparency of the change process:
• The involved teams intend to build the right system and thus are open for change re-

quests. They are interested in getting their issues accepted and fixed by other parties,
and in return they are also open to fix issues dedicated to them.

• The involved teams have only limited resources, so they need to be restrictive regard-
ing issues they accept to fix.

Solution. Define, establish and maintain
a central issue list. All follow-up activi-
ties of an issue are triggered and moni-
tored by means of this list. New issues
might only show up in the list if all the
involved parties have agreed on that is-
sue.

Figure 32: Distributed teams work-
ing on different tasks that are

synchronized through a central issue
li

Figure 33: Structure of a central issue list that
synchronizes list copies through issues IDs.

issue list
synchronize()

issue
id
status

issue list
synchronize()

is replication of

replicator
replicate()

 Page 57

Structure.

Variant (a): Maintain one central issues list that is read-only accessible to all project mem-
bers. Writing is limited to a single person during project meetings.

Variant (b): Maintain several lists that are kept in the different teams and synchronized on a
regular basis.

Instructions. Introducing a central issue list involves two major activities:
• Establish an issue list with a commonly used state model for issues (e.g. new – under

consideration – in work – closed).
• Establish a defined and agreed process how to (i) enter new issues and (ii) modify is-

sue states.
In small projects, the issue list could be implemented using a spreadsheet on a network drive.
A process could be emulated by appointing a single person only to maintaining the list, and
granting read-only access to the rest of the team. Every change to the list would have to be
communicated through the maintainer, who would automatically act as a filter for accepting
and following issues. A simple database and / or generated Web front ends may be used as an
alternative to the spreadsheet.
In larger projects, issues should be maintained and tracked in a dedicated database tool which
records the history of issues and provides user access control. A variety of public domain
tools are available for such purposes, among them for example the Request Tracker [BPS02]
and bugzilla [Moz98]. Many of these tools also propose simple and easy-to-implement proc-
esses for accepting, coordinating and solving issues.

Application Areas. All kinds of development projects. No restrictions have been observed so
far.

Constraints.
• Both the issue list structure and the process to handle the issues have to be commonly

agreed and pursued.
• If two lists are used, tool support is highly recommended for synchronisation.

Consequences.
 Project status transparency increases as the issue list can be used for controlling and pro-

gress tracking purposes.
 Only agreed issues that have made it into the list should cause follow-up activities.
 Incorporation of new issues is bound to “synchronisation events” (e.g. regular project

meetings).

Experiences.
• The earlier the issue list is introduced the easier it gets adopted. It is very hard to

change established communication channels in later project stages.
• Stakeholders who have experienced the problem in former projects are more likely to

understand the necessity of formal documentation.

Page 58

Known Uses.

• Introduction of COTS-based Information System

For a couple of COTS-based system introduction projects, the project consisted of both
part-time internal participants and external developers. Direct communication was limited
to dedicated meetings. During discussions at different places issues arose that escaped part
of the project team and could not be conducted to a decision because they got lost. Intro-
ducing a central issue list helped to collect open points and make them available. Attrib-
utes were used to classify and filter items e.g. regarding priority or affected components.
Thus issues could be followed over time and decided upon, e.g. to become a change re-
quest or a warranty issue. During the project, the issue lists were kept in spreadsheets
which were maintained by the project managers. When the systems were released into
production, the Request Tracker [BPS02] has been introduced for accepting and tracking
issues: a hotline has been established for user consulting and accepting and dispatching is-
sues, and the support staff was working on issues according to their assignments by the
hotline.

• Automotive multi-supplier environment

In an automotive development project a supplier was asked to develop an electronic con-
trol unit (ECU). This means, that the client had the duty to specify the system. The speci-
fication was than handed over to the supplier. At the beginning of a development, it is
quite unrealistic to have a complete specification on the table. New functions and features
or changes emerged over time. This means, that from time to time, the supplier got a new
and more detailed specification. Every time he got an updated product specification, he
evaluated the new or modified parts. Usually, this raised a number of questions and issues
to be clarified. As a solution, a list that collects all these points both on the supplier’s and
the client’s side had been established. After the evaluation of an SRS, the supplier handed
over the list (filtered on those points that had to be solved by the client) to the client. The
client included these points into his list, prepared answers to them and gave the answers
back to the supplier.

Related Patterns.
• “Synchronize Change Requests” uses a central issue list to document all changes to

the specification.
• “Employ a Requirements Engineer as a Care Taker” who is among many tasks also re-

sponsible for maintaining the central issue list.

Further Reading.
[BPS02] Best Practical Solutions LLC, RT Request Tracker,

http://www.bestpractical.com/rt/
[Moz98] The Mozilla Organization, Bugzilla, http://www.bugzilla.org

 Page 59

Figure 34: Ad-hoc communication on
change requests (top) and exchange of syn-

chronized change requests (bottom).

3.14 Synchronize Change Requests

REQUIREMENTS ENGINEERING PATTERN
Synchronize Change Requests

If a project needs to be open for changes to ensure optimum customer acceptance, but at the
same time has to meet its milestones, this pattern recommends establishing a change process
for coordinating the interplay of project work and specification updates.

Objective. The goal of this pattern is to cre-
ate and maintain a clear and consistent foun-
dation of requirements for product planning
and implementation. It shall be made clear to
all stakeholders what the changed require-
ments are and what the impact on the devel-
opment process will be.

Context. Requirements on products change
during the development process for example
because of new or changed stakeholder
needs or results of prototype evaluations and
tests.

Depending on the project phase, these
change requests have different impact on the
product development. In any case initial
plans on time and budget have to be repeat-
edly updated.

Problem. Change requests emerge from diverse sources, but the priorities and the status of
the change requests are not clear. As a result, the current requirements are scattered across
requirements documents and change requests.

Forces. This pattern addresses the transparency and the intensity of change requests:
• The project team intends to build the right system and is thus open for necessary

changes in the system specification.
• The project team fears the risk of losing the overview over impacts of changes and is

thus restrictive regarding change requests.

Solution. Define, agree, establish and maintain a process for collecting, recording and track-
ing change requests. Link change requests to the existing requirements documentation in such
a way that the latest agreed version of each requirement is immediately obvious to the reader.

Structure. Each change request follows the same defined life-cycle. The life-cycle activities
include recording, deciding upon and implementing change requests. Responsibilities are as-
signed to each life-cycle activity (cf. Figure 35).

stakeholder developer

stakeholder developer

1.3.

1.2.

Page 60

new change request

record change
requests

: suggestion

: change
request

[new]

: change
request

[agreed]

: change
request

[documented]

negotiate change
requests

wait for periodical
meeting

update
specification

: product
specification

[updated]

replace

: product
specification

[valid]

requirements repositoryrequirements managerrequest repositoryinput channel

Instructions.
• “Use a Central Issue List” to establish a single input channel (person and/or tool) for

change requests. Refer to the pattern for more implementation details, especially on
how to store and track the issues.

• Establish a defined and agreed process how to include changes into the existing speci-
fication. Again, refer to the “Use a Central Issue List” pattern for more details on how
to implement the process.

Application Areas. The pattern has been observed in several kinds of development projects.
So far, no restrictions are known. It is highly recommended for projects of ten or more per-
sons.

Constraints.
• A dedicated person is necessary for managing the change requests.

Consequences.
 Specification documents are up to date, developers know what to develop, and testers

know what to test.
 Risks are identified and can be addressed.
 It is possible to re-plan with reasonable data.
 Some stakeholders might have the impression that “flexibility” decreases, others that all

this overhead it not necessary.
 There might be resistance against the “change in handling changes”, which then would

have to be treated like cultural changes.

Experiences.
• The earlier the change request workflow is introduced, the more natural it will become

to the project team. It is very hard to change habits and culture in later project stages.
• If your requirements documentation is in a bad condition, try to fix this problem first..
• Project management support is needed as workflows induce cultural change.

Figure 35: Example workflow for synchronizing change requests.
The updated specification replaces the previously valid version.

 Page 61

• In project teams of fifteen or more persons, usually some tool support is needed. In
smaller project teams, this problem may not arise due to an informal “common under-
standing”.

Known Uses.

• Migration of an Information System (Logistics)

A logistics company’s liability management application should be replaced by a newly
developed application. The development of the new application was started with imple-
menting partial functionality which was specified in great detail. Some other functionality
was not yet specified accurately at this stage of the project. Change requests emerged for
example while gaining insights through tests of prototypes and sub-functionalities, or
through refining requirements in the course of the project. The change requests emerged
because of dependencies to requirements being already implemented. A change request
management process was introduced to work out clearly the requested changes and the
impacts on time and budget as the requested changes had to be commissioned and to be
paid for to the software house explicitly.

• Development of Infotainment system

An Infotainment-System for passenger cars should be developed. Such a system typically
contains radio, compact disk, telephone, navigation, SMS and partially WAP and e-mail.
The development concerns hardware, software and mechanics. The client initiated change
requests through various channels (telephone, personally, e-mail, changed requirements
specification documents) and sent them to various persons (developer, subproject man-
ager, software project manager, project manager). It was not recognizable whether re-
quirements were committed or not. Different client’s business departments requested con-
tradictory requirements. The various documents were handled in a chaotic way within the
project. An overview was missing. Documents were left in the project manager’s inbox.
The situation improved when a requirements manager was introduced who managed all
the existing documents and who became the channel through which changes to require-
ments entered the project in a defined way.

Related Patterns.
• “Employ a Requirements Engineer as a Care Taker” to ensure that responsibility for

handling change requests is clearly defined.
• “Use a Central Issue List” to document all changes to the specification.

Page 62

specification result
1. Describe important tasks and

applications.
2. Describe scenarios for each

task and identify key objects.
3. Determine required floor

space.
4. Determine required facilities.
5. Describe procedures for

provision of resources.
6. Check for external

constraints.
7. …

1. The experimental hall is used to
conduct experiments.

2. It shall house the detector.
3. The detector shall have a size

of 16*26*16 m3.
4. For operation the detector needs

gases. Gas facilities include a
mixer and a gas store.

5. Gases should be inserted to the
mixer through a separate
shaft.

6. The gas installations should be
kept in a separate building for
safety reasons.

guideline

Figure 36: Example for a specification
guideline and obtained results.

3.15 Create a Specification Guideline
by Tracking How an Analyst Works

REQUIREMENTS ENGINEERING PATTERN
Create a Specification Guideline
by Tracking How an Analyst Works

If requirements need to be written by domain experts personally, but the experts are lacking
the methodological knowledge, this pattern recommends providing a specification guideline
to the experts. The guideline could be obtained from observing and recording the way how an
analyst creates specifications.

Objective. Distributed stakeholders shall
be enabled to create complete, balanced
and consistent contributions to the project
specification.

Context. Envisioning and requirements
elicitation have to be performed in a dis-
tributed project with independent teams.
The stakeholders cannot delegate require-
ments specification, but have to write
specifications personally, e.g. because of
their specialist knowledge. They are not
available for thorough method training.

Problem. The stakeholders create specifications according to their individual habits, back-
ground and experience and provide ad-hoc specifications. The resulting documents are of
varying quality regarding for example completeness and precision.

Forces. This pattern addresses the different skills needed for specification.
• A specification needs to be complete, balanced in its level of detail, and consistent.

Creating such specifications requires training in methods and notations.
• Writing and maintaining specifications requires expert knowledge in the stakeholder

domains.

Solution. Create a specification guideline which tracks an analyst’s modelling steps. Use the
guideline to transfer the analyst’s modelling skills to the stakeholders. It enables them to build
a verbal specification similar to the quality of the visual model an analyst would normally
build.

 Page 63

Structure. Analysts usually create
business models using a modelling
method. Such methods can be ex-
pressed in terms of modelling
guidelines. Inversely, analysts
could develop guidelines by keep-
ing track of their steps when creat-
ing the model. The guidelines can
be used by the stakeholders to cre-
ate a verbal model (i.e. a specifica-
tion document) that is comparable
to a business model regarding
completeness and balance.

Instructions. The basic idea of this
pattern is to have an analysts create
a model and at the same time re-
cord every step in the modelling
procedure.

• Let an analyst build a partial visual model from an example stakeholder specification
in the target domain.

• Record all the modelling steps and transform them into a guideline. Illustrate the
guideline with an example which shows how a resulting specification should look like.

• Hand the guideline to the stakeholders and let them write specifications along the
guideline.

• To check the quality of the resulting specification and for continuous improvement of
the guideline repeat the procedure, i.e. build and analyze a new model from the speci-
fication that was created using the guideline.

A simplified scheme for a guideline which is helpful for getting started can be summarized as:
1. define the main system use cases
2. create detailed scenarios for each use case, identifying the key objects
3. identify the relevant attributes of each object
4. create a class model and identify additional classes
5. for each class: identify the main use cases which operate on (or use) the class,

continue from step 2
6. collect non-functional requirements

Application Areas. Creating specifications by guideline has been successfully used with
• Teams in long-term projects with frequent changes in the teams;
• Stakeholder groups that need highly specialized knowledge for specification, and
• Stakeholder groups of loosely-coupled individuals that are not accessible for other

elicitation methods.

Constraints.
• Guidelines are better accepted by stakeholders that have not yet developed their own

way of writing specifications.

Figure 37: Specification by a stakeholder using a
guideline provided by the analyst.

analyst

modeling
method

uses
visual model

creates

follows

viewpoint on
shared vision

analyses

guideline

creates
describes

verbal model

describes

follows

stakeholder

describes
uses

creates

specification by
stakeholder

specification
by analyst

Page 64

Consequences.
 Guidelines enable remote specification work, thus supporting distributed projects.
 Specifications created according to a guideline have contents similar in scope.
 Guidelines offer flexibility to the authors regarding time and location of work, thus in-

creasing the acceptance for specification tasks.
 Deficiencies in guidelines lead to according deficiencies in specifications.

Experiences.
• For quality control purposes and to improve the guidelines, some specifications were

translated back into UML models. Meaningful models were achieved immediately,
underlining the efficiency of the approach.

• The guidelines were used for envisioning and requirements negotiation in early project
phases. At this stage, the granularity of the models were still coarse, hence efficient
guidelines could be produced with reasonable effort.

• The method delivers fast results for the users and can thus be perceived as productive.
It helps to improve the acceptance of RE.

• Guidelines are usually domain-specific and thus have to be re-created for every new
domain. They should be improved in an iterative procedure.

Known Uses. The pattern has been observed in projects with distributed stakeholder groups
who had to be able to work independently from the core project.

• Interdisciplinary Plant Construction

In a plant construction project, buildings and facilities had to be jointly specified by ex-
perts from different disciplines who were distributed over several organizational units. A
specification guideline was developed which followed a general scheme for creating ob-
ject-oriented models. The guideline was translated into a specification template, which
was then given to the different stakeholder groups. The groups nominated one responsible
person each for contributing to the specification. They were using the templates, and the
guidelines were used together with a central requirements engineer for quality control and
improvement.

• Introduction of COTS-based Information Systems

In an introduction of a COTS-based information system, stakeholder groups were given a
guideline which asked them to describe their specific tasks, the information they required
or produced when performing their tasks, and how the information should be entered or
displayed in forms or reports. The guidelines were given to the stakeholders as “home-
work” assignments for ensuring progress in the specification procedure.

Related Patterns.
• “Employ a requirements engineer as caretaker” for coordinating development and dis-

tribution of the guideline, and for collecting the contributions from the stakeholder
groups.

• Distribute the specification guideline to the project teams if you ”Organize Specifica-
tion Along Project Structure”.

 Page 65

4 Experience
The following paragraphs summarize the experience gained in collecting case studies, analyz-
ing observations and extracting and using the patterns.

4.1 Collecting Case Studies
Case studies have been collected in different ways: by interview, by telephone conference and
by using templates. It was essential that they were reported by somebody from the project
team who gained the experience personally. Good results have been achieved using a template
in the beginning, followed by questions or an interview conducted by an analyst.
A successful approach for capturing case studies was letting the project managers decide what
they wanted to report in the first place, i.e. any decision or action they took in the project
which they considered noteworthy. After this initial report, an interviewer could ask for more
details on specific topics which had also been raised in previous reports from other projects.
One difficulty was recording case studies in the “right” granularity, i.e. with enough details
for understanding the observations, but yet focussed and short. The best results have been
achieved when the observations were based on actions, and the reasons for the actions were
stated afterwards. Starting with the conflict, on the other hand, often led to the same observa-
tion being included more than once in a case study, each time from slightly different view-
points, but with the same essential information.
In summary, a recommended practice for acquiring case studies would first record the action
(“what has been done”) then ask for the intended objective (“what was the goal”), and finally
investigate the conflict (“why was it done”).

4.2 Analyzing Observations
Identifying conflicting forces is a tedious process. Frequently, a set of more than two forces
seemed to apply to an observation. In such situations it was helpful to try to assign a “dimen-
sion” to each force and select those forces which act on the same dimension. For example, in
the window place pattern the forces are pointing in opposite directions according to the loca-
tion of chairs and windows, hence the pattern is acting on the “dimension” space (see Section
2.4). Similarly, the “prototype”-pattern (Section 2.4 and 3.2) addresses the technological
knowledge or skill level of the project team. It could often be observed that during the analy-
sis process the initial set of (sometimes more than two) forces changed to two forces which
exactly pointed to the underlying conflict described by the observations.
Forces can be expressed in different styles: they can underline the facts which cause a force
(e.g. presence of chairs, inexperienced users), or emphasize the effect of a force (e.g. drawn to
chairs, drawn to using conservative technologies). Users seem to prefer the fact-oriented ex-
pressions for pattern access, thus it is recommended to choose this style for pattern vectors,
while descriptions of the effects are better suited for understanding patterns and should thus
be included in the elaborated patterns. In future, the pattern vector could be extended to in-
clude both facts and forces, but this requires further studies as there could be several facts
related to the same force and vice versa.
Special attention needs to be paid to the level of detail in force specifications. Forces need to
be specified at a somewhat general level to enable reusing forces in different observations as a
basis for pattern discovery, while it has to be ensured that the generalization does not change
the meaning or relevance of the reported observation. With a growing repository of observa-
tions and patterns the focus of the analysis shifts from extracting new forces to assigning
known ones. Thus documenting the forces becomes easier.

Page 66

Expressing RE experience in terms of pattern vectors turned out to be of great value to the
participants in the process. For example, when the group analyzed an observation for the con-
flicting forces, it often revealed different underlying problems than the observer had origi-
nally assumed. In addition, the comparison with similar situations in other projects helped the
participants to reflect and optimize their own way of work.

4.3 Discovering Patterns
The proposed method has been successfully used to conduct RE pattern workshops at the
RE04 conference [HHP04] and at the annual meeting 2004 of the SIG RE in the GI. These
events have shown that it is possible to teach the pattern mining procedure to a group of par-
ticipants and discover meaningful pattern candidates in a reasonable period of time.
The workshops began with some of the attending RE experts reporting case studies from their
experience. Then, one topic which had been touched by several experts was chosen for closer
investigation. The experts provided additional details of their observations, and the pattern
vector was used for summarizing the reports and for structuring the subsequent discussion.
Assigning the forces was a major issue. The initially reported observations were so broad that
they referred to more than one conflict, which was recognized during the discussion when the
group tried to understand the underlying conflict. After a few attempts, conflict statements
emerged which were agreed by all the participants, and in both workshops the vector format
enabled the participants to rapidly identify meaningful pattern candidates.

4.4 Using the Patterns
The WGREP members found the patterns beneficial for reflecting personal RE practices: The
patterns were clarifying the reasons for using certain practices, resulting in the methods being
used more consciously. The experience was confirmed at the REP04 workshop [HHP04].
Other intended future applications include:

• Training and coaching of new members in a project team after they have acquired ini-
tial text book knowledge: the patterns are expected to help getting newcomers faster to
productive work

• Supporting project managers on the job: patterns offer guidance for decision making
and provide arguments for acquiring RE-specific project resources

• RE process review: patterns provide a foundation for process evaluation by analyzing
for example whether certain activities are established or certain conflicts are present in
an organization.

• Teaching software engineering classes: patterns combine applicable engineering ex-
perience with criteria for when to use the practices

In example projects where the patterns were applied, they helped to discover potential specifi-
cation conflicts, eliminate possible project risks, and clarify responsibilities. Explaining the
patterns, especially the conflicting forces and their resolution, helped to increase the accep-
tance for RE activities. Promoting RE patterns close to project milestones, when RE becomes
especially visible by providing the essential inputs for contracts, validation and approvals,
ensured better management support.
It is too early to report profound experience in using the patterns – the patterns have just be-
come available.

 Page 67

5 Conclusion and Outlook
After a one year period, WGREP has completed its intended program and achieved its goals.
The group has successfully developed and demonstrated a format for describing RE patterns
and an RE “pattern mining” procedure. Fourteen case studies have been collected which con-
tain more than eighty observations, and an initial set of fourteen RE pattern candidates has
been identified. About half of the candidates have been elaborated into patterns and are avail-
able for review by external readers.
The need for easy access to well-proven RE experience has been confirmed by the strong in-
terest from different communities in the group’s activities. This observation supports the ini-
tial motivation that many persons being responsible for RE in small and medium projects deal
with the same challenges.
Follow-up activities are being prepared to improve and extend the RE pattern collection.
Quarterly RE pattern workshops will be held with the aim of improving the existing and find-
ing new RE patterns. The workshops will address RE experience for specific topics, like e.g.
contracting requirements (client - supplier relationships) or requirements reuse. They will
initially be held in Germany, but may also be conducted in conjunction with international
conferences.
An online RE pattern repository, REPARE [REP05], is being set up which uses the pattern
vector for navigating and filtering the patterns. It enables pattern retrieval e.g. for specific RE
tasks or project roles and provides navigation between related patterns. The forces are used to
enable project managers to retrieve patterns for a specific project situation. It is envisioned
that project managers provide a set of characteristics of their current project conditions to re-
trieve in turn a list of applicable patterns as a recommendation, and it is intended to provide
mechanisms for user contributions to the repository as an additional way of collecting feed-
back and further patterns.

Page 68

References
[AIS77] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language, Oxford Univer-

sity Press, 1977.
[Ale79] C. Alexander, The Timeless Way of Building, Oxford University Press, 1979.
[BE00] J. Bergin, J. Eckstein, et al., The Pedagogical Patterns Project,

http://www.pedagogicalpatterns.org/
[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-

Oriented Software Architecture – A System of Patterns, Wiley & Sons, 1996.
[BPS02] Best Practical Solutions LLC, RT Request Tracker,

http://www.bestpractical.com/rt/
[CH01] J. Coplien, N. Harrison, et al., Organizational Patterns Page, http://www.bell-

labs.com/cgi-user/OrgPatterns/OrgPatterns?OrganizationalPatterns
[EP00] H.-E. Eriksson, M. Penker, Business Modeling with UML – Business Patterns

at Work, Wiley & Sons, 2000.
[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Addison-

Wesley, 1995.
[HHP04] L. Hagge, F. Houdek, B. Paech, “International Workshop on Requirements En-

gineering Patterns (REP’04)”, Sept. 6, in conjunction with 12th International
IEEE Requirements Engineering Conference (RE’04), Sept. 6-10, 2004, Kyoto,
Japan, http://rep04.desy.de/

[HL05] L. Hagge, K. Lappe, “Sharing Requirements Engineering Experience Using
Patterns”, IEEE Software 22, 1 (2005), 24-31.

[Kau04] M. Kauppinen et al. ”Implementing Requirements Engineering Processes
throughout Organizations: Success Factors and Challenges”, Journal of Infor-
mation and Software Technology 46, 14 (2004), 937-953.

[KCH+90] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-Oriented Domain
Analysis (FODA) Feasibility Study, Technical report CMU/SEI-90-TR-021,
Software Engineering Institute, Carnegie Mellon University, 2000.

[KS98] G. Kotonya, I. Sommerville, Requirements Engineering – Processes and Tech-
niques, Wiley, 1998.

[MFM+96] C. Mazza, J. Fairclough, B. Melton, D. de Pablo, A. Scheffer, R. Stevens, M.
Jones, G. Alvisi, Software Engineering Guides, Prentice Hall Europe, 1996.

[Moz98] The Mozilla Organization, Bugzilla, http://www.bugzilla.org
[OMG03] Object Management Group: UML 1.5 Specification. http://www.omg.org/-

technology/documents/formal/uml.htm
[REP05] REPARE, Requirements Engineering Patterns Repository REPARE,

http://repare.desy.de/
[RR03] S. Robertson, J. Robertson, Volere Requirements Specification Template, Edi-

tion 9, 2003, http://www.systemsguild.com/GuildSite/Robs/Template.html
[SIG04] FG RQ, Homepage SIG Requirements Engineering of the German Informatics

Society (GI), http://www.iese.fhg.de/gi_fgre/ (in German)
[Som05] I. Sommerville, “Integrated Requirements Engineering. A Tutorial”, IEEE Soft-

ware 22, 1 (2005), 16-23.
[SS97] I. Sommerville, P. Sawyer, Requirements Engineering - A Good Practice

Guide, Wiley, 1997.

 Page 69

[STT03] Reports from and Contributions to the SIG RE Annual Meeting 2002 in
Softwaretechnik-Trends, http://pi.informatik.uni-siegen.de/stt/23_1/index.html

