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Abstract

A QCD analysis of the world data on polarized deep inelastic scattering is presented in
next–to–leading order, including the heavy flavor Wilson coefficient in leading order in the
fixed flavor number scheme. New parameterizations are derived for the quark and gluon
distributions and the value of αs(M

2
z ) is determined. The impact of the variation of both the

renormalization and factorization scales on the distributions and the value of αs is studied.

We obtain αNLO
s (M2

Z) = 0.1132
+0.0056
−0.0095

. The first moments of the polarized twist–2

parton distribution functions are calculated with correlated errors to allow for comparisons
with results from lattice QCD simulations. Potential higher twist contributions to the
structure function g1(x,Q

2) are determined and found to be compatible with zero both for
proton and deuteron targets.
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1 Introduction

The short–distance structure of the nucleon spin still consists a developing field. Nucleons as
composite fermions obtain their spin in terms of a superposition of the spins and orbital angular
momenta of their constituents, the quarks and gluons. It came as a surprise when the European
Muon Collaboration (EMC) published its result [1] more than 20 years ago, which showed that
the quarks do contribute only by a small fraction to the nucleon’s spin. The obvious conclusion
was to assume that the spin of the gluons and the orbital angular momenta of all constituents
have to account for the missing fraction. This result initiated activities worldwide both on the
experimental and the theoretical side in order to understand this spin puzzle and, finally, the
spin structure of the nucleon.

Experiments performed at CERN, SLAC, DESY and JLAB [1–15] have contributed a vast
amount of experimental data on inclusive polarized deeply inelastic lepton–nucleon scattering
(DIS) during the last years. The main interest in measuring the short distance structure of
polarized nucleons has somewhat moved from determining the first moments of the twist–2
parton distributions to the extraction of their x-dependence in the measured region and their
scaling violations due to QCD–evolution. At large enough four-momentum transfer Q2 = −q2,
the structure function g1(x,Q

2) mainly receives twist–2 contributions1 and is related to the
polarized twist–2 parton distributions.

In the present paper a QCD analysis of the polarized deep–inelastic world data is performed at
next-to-leading order (NLO). Due to a larger set of new data which has become available recently
the present analysis extends and updates earlier investigations [9, 15, 17–26]. In the QCD-fit
we determine the flavor singlet and non-singlet contributions of the polarized parton densities
together with the QCD-scale ΛQCD with correlated errors. The measurement of the strong
coupling constant αs(M

2
Z) from polarized deep-inelastic data does not reach the same precision

as in the unpolarized case [27–30] since the measurement is based on an asymmetry and the
present analysis is performed in NLO. However, a consistent analysis requires the determination
of the QCD-scale ΛQCD along with the parameters of the non-perturbative input distributions.
Also, it is interesting to see which value of αs(M

2
Z) is obtained in comparison to other deep–

inelastic analyzes. At a given scale Q2 the Mellin moments of the parton distribution functions
can be calculated under some assumptions on their extrapolation outside the measured region
towards small and very large values of the Bjorken variable x. We also analyze, to which extend
the present data contain higher twist contributions.

The paper is organized as follows. In Section 2 the basic formalism is lined out. The data
analysis is described in Section 3. In Section 4 details of the fit are given and Section 5 deals
with the error analysis. The results of the QCD analysis are presented in Section 6. In Section 7
we determine potential higher twist contributions and Section 8 contains the conclusions. In the
Appendix we describe the FORTRAN-code through which the polarized parton distributions and
structure functions can be obtained for numerical analyzes.

2 Basic Formalism

The twist–2 contributions to the spin–dependent structure function g1(x,Q
2) are given in terms

of a Mellin convolution of the polarized singlet ∆Σ, the gluon ∆G and the flavor non-singlet

1Twist–3 contributions are connected by target mass effects, cf. [16].
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(NS) ∆qNS
i densities with the corresponding Wilson coefficient functions ∆CA

i by

g1(x,Q
2) =

1

2

Nf
∑

i=1

e2i

∫ 1

x

dz

z

[

1

Nf
∆Σ

(x

z
, µ2

f

)

∆CS
q

(

z,
Q2

µ2
f

)

+∆G
(x

z
, µ2

f

)

∆CG

(

z,
Q2

µ2
f

,
m2

c

Q2

)

+∆qNS
i

(x

z
, µ2

f

)

∆CNS
q

(

z,
Q2

µ2
f

)]

. (1)

Here x is the Bjorken variable, ei denotes the charge of the ith quark flavor in units of the
elementary charge and Nf is the number of light flavors. The scale µf denotes the factoriza-
tion scale which is introduced to remove the collinear singularities from the partonic structure
functions. In addition to the factorization scale there is the renormalization scale µr of the
strong coupling constant αs(µ

2
r). The gluonic Wilson coefficient ∆CG accounts for the massless

as well the massive contributions due to charm quark production for W 2 > (2mc +mN )
2 with

mc = 1.5 GeV, [31], at first order. 2 For the implementation of the Wilson coefficients in Mellin
space we refer to [33]. The parton densities and the Wilson coefficient functions are dependent
on these scales and obey corresponding renormalization group equations, while the structure
function g1(x,Q

2), as a physical observable, is independent of the choice of both scales µ2
f and

µ2
r.
The polarized singlet and non–singlet parton densities which occur in Eq. (1) are expressed

by the individual quark flavor contributions as

∆Σ
(

z, µ2
f

)

=

Nf
∑

i=1

[

∆qi
(

z, µ2
f

)

+∆q̄i
(

z, µ2
f

)

]

, (2)

∆qNS
i

(

z, µ2
f

)

= ∆qi
(

z, µ2
f

)

+∆q̄i
(

z, µ2
f

)

−
1

Nf

∆Σ
(

z, µ2
f

)

, (3)

where ∆qi denotes the polarized quark distribution of the ith light flavor.
The running coupling constant αs is obtained as the solution of

dαs(µ
2
r)

d log(µ2
r)

= −β0α
2
s(µ

2
r)− β1α

3
s(µ

2
r) +O(α4

s) , (4)

where, in the MS–scheme, the coefficients of the β–function are given by

β0 =
11

3
CA −

4

3
TFNf ,

β1 =
34

3
C2

A −
20

3
CATFNf − 4CFTFNf , (5)

with the color factors CA = 3, TF = 1/2, and CF = 4/3. Matching of the scale Λ
Nf

QCD is performed
at Q2 = m2

c , m2
b , with mc = 1.5 GeV and mb = 4.5 GeV.

In the present analysis the spin–dependent structure functions gp1(x,Q
2) and gn1 (x,Q

2) will
be considered referring to Nf = 3 light partonic flavors, i.e. i = u, d, s. The spin–dependent
structure function gd1(x,Q

2) is represented in terms of gp1(x,Q
2) and gn1 (x,Q

2) using the relation

gd1(x,Q
2) =

1

2

(

1−
3

2
ωD

)

[

gp1(x,Q
2) + gn1 (x,Q

2)
]

, (6)

22nd order corrections were calculated in the asymptotic range Q2 ≫ m2 in Refs. [32].
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where ωD = 0.05± 0.01 is the D-state wave probability for the deuteron [34].
The change of the parton densities with respect to the factorization scale µ2

f = Q2 is described
by the evolution equations, which read

∂∆qNS
i (x,Q2)

∂ logQ2
=

αs(Q
2)

2π
∆PNS

qq (x, αs)⊗∆qNS
i (x,Q2) (7)

∂

∂ logQ2

(

∆Σ(x,Q2)
∆G(x,Q2)

)

=
αs(Q

2)

2π
∆P (x, αs)⊗

(

∆Σ(x,Q2)
∆G(x,Q2)

)

, (8)

with

∆P (x, αs) ≡

(

∆Pqq(x, αs) 2Nf∆Pqg(x, αs)
∆Pgq(x, αs) ∆Pgg(x, αs)

)

. (9)

The symbol ⊗ denotes the Mellin convolution

[A⊗ B](x) =

∫ 1

0

dx1dx2δ(x− x1x2)A(x1)B(x2) . (10)

The spin–dependent coefficient functions ∆CA
i and anomalous dimensions ∆Pij are calculated

to next-to-leading order in the MS–scheme [35–37], which we use in the present analysis. As
seen from Eqs. (7) and (8), the flavor non-singlet densities ∆qNS

i evolve independently, while
∆Σ and ∆G are coupled in the evolution.

In order to solve the evolution equations, a Mellin transformation of the evolution equations
Eqs. (7, 8) and the polarized parton densities ∆f is being performed by calculating its Nth
Mellin moment M as:

M[∆f ](N) =

∫ 1

0

dx xN−1∆f(x) , N ≥ N0, N ∈ R . (11)

Here N0 is chosen such that the integral (11) converges. Under this transformation the Mellin
convolution ⊗ turns into an ordinary product. After the transformation has been performed
the argument N is analytically continued to the complex plane. This also requires analytic
continuations of harmonic sums [38], which is outlined in Refs. [39] in detail. The fundamental
method of solving Eqs. (7) and (8) is described in the literature in detail, see e.g. Refs. [36,40,41].

To next-to-leading order (NLO) the solution of the flavor non–singlet and singlet evolution
equations are given by

∆qNS
i (N,αs) =

(

αs

α0

)−P
(0)
NS /β0

[

1−
1

β0
(αs − α0)

(

P
−(1)
NS −

β1

β0
P

(0)
NS

)]

∆qNS
i (N,α0) , (12)

(

∆Σ(N,αs)
∆G(N,αs)

)

= [1 + αsU 1(N)]L(N,αs, α0) [1− α0U 1(N)]

(

∆Σ(N,α0)
∆G(N,α0)

)

. (13)

Here P
−(1)
NS denotes the NLO non-singlet ′−′ splitting function, αs = αs(Q

2) and α0 = αs(Q
2
0),

with Q2
0 being the input scale. The matrices U 1 and L are evolution matrices, for details see

Ref. [41]. We refrain from applying so-called small x resummations [42, 43], since they are very
sensitive to to several series of less singular terms [41,42], which are yet unknown. Furthermore,
no factorization theorem exists for these terms through which non-perturbative and perturbative
contributions can be separated in a well defined way. Likewise, no other evolution equation than
that governing mass singularities exists to deal with these terms.
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Due to the factor–structure in Eqs. (12) and (13), the Gaussian error propagation of the
input density parameters can be calculated analytically, cf. [22], for the whole Q2 region. The
covariance matrix of the parton distributions alone is completely determined by the fit to the
data at the input scale.

The input distributions ∆qNS
p,n(N,α0), ∆Σ(N,α0) and ∆G(N,α0) are evolved to the scale Q2.

An inverse Mellin– transform to x–space is then performed by a contour integral in the complex
plane around all singularities on the real axis for x ≤ x0 ≤ 1, which can be written as

∆f(x) =
1

π

∫ ∞

0

dz Im
[

exp(iφ)x−c(z)∆f [c(z)]
]

. (14)

In practice an integral along the path c(z) = c1 + ρ[cos(φ) + i sin(φ)], with c1 = 1.1, ρ ≥ 0
and φ = (3/4)π is performed. The upper bound on ρ has to be chosen in accordance with
the numerical convergence of the integral (14) in practice. The result ∆f(x) for the respective
distribution depends on the parameters of the spin–dependent parton distributions chosen at the
input scale Q2

0, which are determined by a fit to the data and to ΛQCD and αs(M
2
Z), respectively.

3 Data Analysis

The QCD analysis being performed in the following is based on the spin-dependent structure
functions gp,d,n1 (x,Q2). These structure functions are extracted from the experimental cross
section asymmetries for longitudinally polarized leptons scattered off longitudinally polarized
nucleons,

A|| =
σ

→

⇒ − σ
→

⇐

σ
→

⇒ + σ
→

⇐
. (15)

The arrows
→
⇒(

→
⇐) denote parallel (anti–parallel) relative spin orientation of the incoming lepton

and nucleon. The structure function ratio g1/F1 and the longitudinal virtual–photon asymmetry
A1 are related to A|| by

g1
F1

=
1

(1 + γ2)

[

A||

D
+ (γ − η)A2

]

(16)

and

A1 =
A||

D
− ηA2 , (17)

with
g1
F1

=
1

(1 + γ2)
[A1 + γA2] . (18)

The asymmetry A2 is the transverse virtual–photon asymmetry and constitutes only a small
correction to g1. Its contribution has been treated differently by various experiments as will be
discussed below. The other variables are given by

D =
1− (1− y)ǫ

1 + ǫR(x,Q2)
, (19)

γ =
2Mx
√

Q2
, (20)

η =
ǫγy

1− ǫ(1− y)
, (21)

ǫ =
4(1− y)− γ2y2

2y2 + 4(1− y) + γ2y2
. (22)
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Here D denotes the virtual photon depolarization factor. It determines the fraction of the incom-
ing lepton polarization transferred to the virtual photon. The variables ǫ, γ and η are kinematic
factors, M denotes the mass of the nucleon and y = (E − E ′)/E is a Bjorken scaling variable
which describes the normalized energy transfer to the virtual photon, with E the incoming energy
and E ′ the energy of the scattered lepton in the target rest frame. Finally, R denotes the ratio of
the longitudinal and transverse virtual–photon absorption cross section R(x,Q2) = σL/σT , which
is experimentally well determined in the kinematic region considered in the present analysis.

In order to obtain g1(x,Q
2) the measured ratio g1/F1 has to be multiplied by the spin–

independent structure function F1(x,Q
2):

g1(x,Q
2) =

(

g1
F1

)

(x,Q2) × F1(x,Q
2) . (23)

The structure function F1(x,Q
2) can be calculated from the structure function F2(x,Q

2) by

F1(x,Q
2) =

(1 + γ2)

2x(1 +R(x,Q2))
F2(x,Q

2) . (24)

For R(x,Q2) and F2(x,Q
2) parameterizations of existing measurements are available as will be

discussed below.
The following data sets have been used in the present analysis: the EMC proton data [1], the

E142 neutron data [2], the HERMES neutron data [3], the E154 neutron data [4,15], the SMC
proton and deuteron data [5], the E143 proton and deuteron data [6], the HERMES re-analyzed
proton and the new deuteron data [7], the E155 deuteron data [8], the E155 proton data [9],
the COMPASS deuteron data [11], the JLAB neutron [10], proton and deuteron data [12, 13],
and the COMPASS proton data [14] 3. The number of data points with Q2 >

∼ 1.0 GeV2 and
W 2 >

∼ 3.24 GeV2 from the different data sets are summarized in Table 1 together with the x and
Q2 ranges of the different experiments. In order to obtain the best possible statistical accuracy
data on A1, g1/F1 and g1 are not averaged over the different Q2 values measured within a certain
x bin. In total 1385 data points are used. Using A1 and g1/F1 data has, in addition to the higher
statistics, the advantage of calculating g1 for all these data sets in a unique way. Furthermore,
g1 data are sometimes only published as obtained from the average of asymmetries measured at
different Q2 values, while for the QCD analysis it is important to maintain the Q2 dependence
of the measured quantities.

The SLAC parameterization R1990 [45] is used by most of the experiments when extract-
ing g1. At the time of the EMC experiment this parameterization was not available yet and
R was assumed to be Q2 independent. SMC adopted a combination of R1990 (for x > 0.12)
and a parameterization derived by NMC [46] (for x < 0.12). In the E155 experiment a re-
cent SLAC parameterization for R, R(1998) [47], was used. The changes in the data caused
by using the different R–parameterizations, however, are not significant and stay within the
experimental errors 4. For all A1 and g1/F1 data sets entering the present QCD analysis the
SLAC R1990(x,Q

2) [45] and the NMC F2(x,Q
2)–parameterization [48] is used to perform the

calculation of g1. The same parameterizations were used by the E154 experiment while JLAB
applied the R(1998) SLAC parameterization of R.

The magnitude of A2 has been measured by SMC [49], E154 [50], E143 [6], E155x [51] and
JLAB [10] and was found to be small. Its contribution to g1/F1 and A1 is further suppressed by
the kinematic factors γ and η and could in principle be neglected to a good approximation. On

3Earlier data from Ref. [44] are not considered.
4The EMC proton data, where the biggest impact is expected, change by a few percent only, see Ref. [18].
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the other hand all the measurements have shown that the A2 contribution can be approximated
by the Wandzura–Wilczek expression [52], which is calculated from the spin-dependent structure
function g1(x,Q

2) assuming that twist–2 contributions are dominant according to 5

A2(x,Q
2) =

γ(x,Q2)

F1(x,Q2)

[

g1(x,Q
2) + g2(x,Q

2)
]

WW
≃

γ(x,Q2)

F1(x,Q2)

∫ 1

x

dz

z
g1(z, Q

2) . (25)

The E143 experiment has exploited its measurement of A2 at 29.1 GeV and used the Wandzura–
Wilczek expression to account for A2 for the other two lower beam energies. The measurement
of A2 by E154 and E155x was done after having published the data on A1 and was therefore
not available for a A2 correction of A1. While E154 neglected A2, the E155 experiment has
used the Wandzura–Wilczek approximation throughout its data. The JLAB measurement of A2

went into the extraction of gn1 . In HERMES the A2 contribution to gp,d1 /F p,d
1 data has been

accounted for by using a parameterization for A2 obtained from a fit A2 = CMpx/
√

Q2 to all
available proton and deuteron data, with C = 0.437 ± 0.150 for the proton and 0.246 ± 0.066
for the deuteron [7]. For all A1 data sets used in this analysis g1 has been calculated with the
application of the Wandzura–Wilczek correction for A2.

The data sets contain both statistical and systematic errors. It is known that the systematic
errors are partly correlated, which would lead to an overestimation of the errors when added
in quadrature with the statistical ones and hence to a reduction of the χ2 value in the fitting
procedure. To treat all data sets on the same footing only statistical errors were used. However,
a relative normalization shift, Ni, between the different data sets was allowed within the normal-
ization uncertainties, ∆Ni, quoted by the experiments. These normalization shifts were fitted
once and then fixed, see Table 1. Thereby the main systematic uncertainties coming from the
measurements of the luminosity and the beam and target polarization were taken into account.
The normalization shift for each data set enters as an additional term in the χ2–expression for
the fit which then reads

χ2 =

nexp
∑

i=1





(Ni − 1)2

(∆Ni)2
+

ndata
∑

h,k=1

(Nig
data
1i,h − gtheor1,h )(C−1

i )hk(Nig
data
1i,k − gtheor1,k )



 ,

where the sums run over all data sets and in each data set over all data points. The covari-
ance matrices Ci are diagonal for each experiment except for the case of the HERMES data [7].
The statistical errors, and consequently the covariance matrices Ci, have been rescaled by the
normalization factors Ni. The minimization of the χ2 value above to determine the best pa-
rameterization of the polarized parton distributions is performed using the program MINUIT [58]
choosing a value UP = 9.3. Only fits giving a positive definite covariance matrix at the end have
been accepted in order to be able to calculate the fully correlated 1σ statistical error bands.

4 Parameterization of the Polarized Parton Distributions

The shape chosen for the parameterization of the polarized parton distributions ∆fi(x,Q
2)

5Note that this relation holds also in the presence of quark and target mass corrections [16, 53, 54], for non-
forward scattering [55], for diffractive scattering [56], and the gluonic contributions to heavy flavor production [57].
Related integral relations for twist–3 contributions and structure functions with electro–weak couplings were
derived in Refs. [16, 54].

6



in x–space at the input scale Q2
0 is :

x∆fi(x,Q
2
0) = ηiAix

ai(1− x)bi
(

1 + ρix
1
2 + γix

)

. (26)

The term xai controls the behavior of the parton density at low and (1−x)bi that at large values
of x, respectively. The remaining polynomial factor accounts for additional degrees of freedom
at medium x.

The parameterizations are chosen to be flexible enough to describe the shape of the data and
at the same time to contain not too many parameters which have to be sufficiently constrained
by the available data. The choice of the shape (26) is applied in various QCD analyzes of
unpolarized data, see e.g. Ref. [59].

The normalization constant Ai, being given by

A−1
i =

(

1 + γi
ai

ai + bi + 1

)

B(ai, bi + 1) + +ρiB

(

ai +
1

2
, bi + 1

)

, (27)

is calculated such that

ηi =

∫ 1

0

dx∆fi(x,Q
2
0) (28)

is the first moment of ∆fi(x,Q
2
0) at the input scale. Here, B(a, b) is the Euler Beta–function

being related to the Γ–function by B(a, b) = Γ(a)Γ(b)/Γ(a+ b).
When the QCD evolution equations are solved in Mellin space as described in Section 2

a Mellin transformation of the polarized parton density ∆f(x,Q2) is performed and a Mellin
moment is calculated for complex arguments N according to

M[∆fi(x,Q
2
0)](N) =

∫ 1

0

xN−1dx∆fi(x,Q
2
0)

= ηiAi

(

1 + γi
N − 1 + ai
N + ai + bi

)

B(N − 1 + ai, bi + 1)

+ρiB

(

N + ai −
1

2
, bi + 1

)

. (29)

Four spin–dependent parton densities have to be determined in the QCD analysis. They are
chosen to be: ∆uv(x,Q

2), ∆dv(x,Q
2), ∆qs(x,Q

2) and ∆G(x,Q2). As seen from Eq. (26), each
spin–dependent density contains five parameters which gives a total of 20 for all four. It has been
found that, in order to meet the quality of the available data and the reliability of the fitting
procedure, this large number of free parameters has to be reduced, which is discussed below.

Assuming (approximate) SU(3) flavor symmetry the sea quark distribution is given by

∆qs(x,Q
2) = ∆u(x,Q2) = ∆d(x,Q2) = ∆s(x,Q2) = ∆s(x,Q2) . (30)

In the present analysis we refer to the inclusive polarized DIS World Data. A breaking of the
flavor symmetry also for the light (sea) quarks in the polarized case is probable and has been
clearly observed in the unpolarized case, cf. e.g. [30]. In the polarized case first attempts have
been made to determine the individual sea quark distributions, cf. Refs. [24, 61]. We consider
the evolution of the complete light polarized sea.
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The first moments of the polarized valence distributions ∆uv and ∆dv, ηuv
and ηdv , can be

fixed exploiting the knowledge of the parameters F and D as measured in neutron and hyperon
β–decays according to the relations:

ηuv
− ηdv = F +D , (31)

ηuv
+ ηdv = 3F −D . (32)

A re–evaluation of F and D was performed on the basis of updated β–decay constants [60]
leading to

F = 0.464± 0.008 and D = 0.806± 0.008 (33)

and consequently to

ηuv
= 0.928± 0.014 and ηdv = −0.342± 0.018 . (34)

In order to compensate for the present insufficient accuracy of the data, a certain number of
parameters is set to zero from the very beginning. This applies to ρuv

= ρdv = 0, γqs = ρqs = 0,
and γG = ρG = 0. The number of parameters to be fitted for each polarized parton density is
reduced to three, i.e. to 12 in total. In addition the QCD scale ΛQCD is fitted.

In the analysis it turns out that the four parameters γuv
, γdv , bqs, and bG have very large

uncertainties. The precision of the data is not high enough to constrain these parameters suf-
ficiently. Altering them within these uncertainties does not lead to a significant change of
χ2. These four parameters were therefore fixed. The first two of them were fixed at their
values obtained in the initial fitting pass, γuv

= 27.64 and γdv = 44.26. In fixing the high–
x slopes bG and bqs a relation was adopted as derived from the unpolarized parton densities,
bqs/bG(pol) = bqs/bG(unpol) = 1.44. Fitting with this constraint led to the following choice:
bG = 5.61 and bqs = 8.08, see e.g. Ref. [62].

A second relation was adopted to constrain the low–x behavior of the spin–dependent gluon
density with respect to the low–x behavior of the spin–dependent sea–quark distribution by
aG = aqs + C with C = 1. This relation, together with the relation for the high–x slopes, are
suited to establish positivity for ∆G and ∆qs. No explicit positivity constraint was assumed for
∆uv and ∆dv.

5 Determination of the Errors

5.1 Calculation of Statistical Errors

The evolved polarized parton densities and structure functions are functions of the input densi-
ties. Let ∆f(x,Q2; pi|i=1,k) be the evolved polarized density at the scale Q2 depending on the
parameters pi|i=1,k. Then its correlated statistical error as given by Gaussian error propagation
is

(σ∆f)2 =
k
∑

i,j=1

(

∂∆f

∂pi

∂∆f

∂pj

)

cov(pi, pj) , (35)

where cov(pi, pj) are the elements of the covariance matrix determined in the QCD analysis. The
gradients ∂∆f/∂pi at the input scale Q2

0 can be calculated analytically. Their values at Q2 are
calculated by evolution and can then be used to calculate the errors according to Eq. (35). As
shown in Section 2, the covariance matrix is completely determined by the fit at the input scale
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and does not change when the evolution is done in Mellin space. That means it can be used at
any scale Q2. For the expressions of the gradients at the input scale see Ref. [22].

Apart from statistical errors the data are also subject to systematic uncertainties which are
even partly correlated. These correlations are not published by the experiments and can hence
not be taken into account here. In the following the influence of experimental and theoretical
systematic uncertainties will be investigated.

5.2 Determination of Experimental Systematic Uncertainties

The experimental systematic uncertainties were estimated from the following sources :

1. The variation of the data within their experimental systematic uncertainties.
The procedure used to obtain the contribution from the experimental systematic uncer-
tainties consists in shifting each data set by ±σsyst while leaving the other data sets at their
central values and looking at how much the polarized distributions change. The extreme
changes from the ‘central’ distribution were taken as the systematic uncertainties. This
was done for each of the 19 data sets used separately and, finally, the 19 contributions were
added in quadrature to obtain the total contribution.

2. The variation of the data within the upper and lower limits of the NMC F2 parameterization [48].
When calculating g1(x,Q

2) from the asymmetry data, see Section 3, the NMC F2–
parameterization was used at its upper and lower limit to determine the changes in the
polarized distributions compared to the ’central’ curve. The extreme deviations from that
curve were taken as the systematic uncertainties arising from the F2 parameterization.

3. The variation of the data within the uncertainty of the R parameterization [45].
When calculating g1(x,Q

2) from the asymmetry data, see Section 3, the SLAC R1990 pa-
rameterization was used at its uncertainty limits, see Ref. [45], to determine the changes
in the spin–dependent distributions compared to the ‘central’ curve. The maximal de-
viations from that curve were taken as the systematic uncertainties arising from the R–
parameterization.

Finally, the contributions from all three sources were added in quadrature to obtain the total
contribution at each value of x, which is shown as hatched error bands in the Figures below.

5.3 Determination of Theoretical Systematic Uncertainties

The theoretical systematic uncertainties were estimated from the following sources :

1. The variation of the factorization and the renormalization scale by a factor of 2.

2. An additional variation of Λ
(4)
QCD. We varied Λ

(4)
QCD by ±30 MeV, which corresponds to a

variation of αs(M
2
Z) by ±0.002, being a typical error in individual precision measurements,

in addition to the error of αs(M
2
Z) being determined in the present fit.

3. The variation of ηuv
and ηdv within the errors of the parameters F and D, see Section 4,

while keeping gA/gV = F +D constant.

4. The variation of the parameterizations at the input scale Q2
0.

Two cases are considered: first, the values of the parameter ρ for ∆uv and ∆dv are added
in the fit by assigning a value different from zero. Second, the values of the parameter γ
for the same densities are changed compared to the values used for the central curve.
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5. The variation of the standard input scale: from Q2
0 = 4.0 GeV2 to 2.0 GeV2 and 6.0 GeV2.

For all items always the extreme deviations from the ‘central’ curve were taken as the contri-
bution to the theoretical systematic uncertainty from that source. Finally, all different contribu-
tions were added in quadrature to get the total contribution at each value of x which is shown
as the second hatched error bands in the Figures below.

6 Results of the QCD Analysis

6.1 The parton distributions

In the NLO QCD fit we covered the polarized world deep-inelastic data with Q2 > 1 GeV2,W 2 >
3.24 GeV2, with a value of χ2/NDF = 1.12. The parton distributions are parameterized at
Q2

0 = 4 GeV2. In Table 2 the values of the fit parameters are summarized. The covariance
matrix of the fit is given in Table 3. Gaussian error propagation allows to derive the error bands
due to the parton densities for the various polarized observables.

In Figure 1 the polarized momentum distributions x∆fi(x) are presented at the scale Q2
0. We

compare with other analyzes [18–20, 24]. The x∆uv distribution is slightly lowered if compared
to our previous analysis [22]. The most important change concerns the gluon distribution x∆G,
which is lowered by about a factor of two relative to the results of Ref [22]. Comparing to
the results of other analyzes the x∆uv turns out to be lower in a wider range, except of [24],
which takes lower values from x ∼ 0.05 on. In case of the x∆dv-distribution all fits widely agree
within the 1σ error band. This also applies for the x∆q-distribution, with the exception of the
DSSV-distribution [24], which yields smaller values of |x∆q|. Here we have added the individual
sea-quark contributions to allow for the comparison. For the polarized gluon distribution the
agreement of the different fits at larger values of x agree within the 1σ error, while below x ∼ 0.02
the fits [18–20] yield slightly higher values. The DSSV-fit [24] is located at the lower end of the
error band.

In Figures 2 and 3 we analyze the systematic errors in more detail, cf. Sections 5.2 and 5.3.
For the gluon distribution function x∆G(x,Q2

0), Figure 2, the experimental systematic errors are
lower than the statistical errors, but are still significant. The combined theoretical systematic
effects at NLO amount to larger values than the experimental ones. About half of the error is
due to the uncertainty in ΛQCD. Clearly, in future analyzes based on NNLO QCD evolution this
error will diminish. The effect of the experimental and theoretical systematic errors in case of
the singlet distribution x∆Σ(x,Q2

0) is similar. The errors are smaller if compared to the gluon
distribution. The singlet distribution at Q2

0 = 4GeV2 is negative (within the 1σ errors) for
x < 2 · 10−2 and turns to positive values for x > 4 · 10−2. All the fits [18–20] lie inside the 1σ
error band. In the medium x-range the DSSV distribution [24] yields somewhat larger values.

In Figure 4 we compare the fit results for the structure functions gp1(x,Q
2), gd1(x,Q

2) and
gn1 (x,Q

2) at Q2 = 5 GeV2 with the data, cf. Table 1, to illustrate the fit quality for the different
targets as an example. Furthermore, also the results of the GRSV [19] and AAC [18] analyzes
are shown. Overall a good agreement is obtained.

A further illustration of the fit quality is presented in Figure 5. Here the data for gp1(x,Q
2)

are compared to the fit including, the statistical errors. We also show the fit results of AAC,
GRSV, and LSS [18–20]. Within the error bands the data agree well with the fit. In the lowest
x-bins the fluctuation is somewhat larger. In some cases the EMC-data [1] lay outside the 1σ
error range.
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6.2 ΛQCD and αs(M
2
Z
)

The NLO QCD-analysis of the polarized world deep-inelastic data requires the fit of ΛQCD along
with the parameters of the non-perturbative parton distributions at the scale Q2

0. As outlined in
Table 3 the QCD-scale is correlated to all other parameters and in particular to ηG. Due to this
analyzes in which αs(M

2
Z) or ΛQCD is imported from 3rd sources may suffer significant biases, i.e.

a too large value of αs(M
2
Z)(ΛQCD) leads to a too small gluon distribution, aside of other effects.

Despite of various precision measurements of the strong coupling constant based on theoretical
NNLO (and partially even higher) precision, a thorough agreement on the value of αs(M

2
Z) has

not yet been reached, cf. e.g. [63]. Due to this ΛQCD is determined in this analysis. We refer to

Λ
NLO,(Nf=4)
QCD as the NLO value for 4 active flavors. We obtain

Λ
(4)
QCD = 243.5± 62(exp) MeV . (36)

In an earlier analysis [22] the values

Λ
(4)
QCD = 235± 53(exp) MeV ISET = 3 (37)

Λ
(4)
QCD = 240± 60(exp) MeV ISET = 4 (38)

were found, for comparison, slightly depending on some assumptions in the fit. The variation of
the factorization and renormalization scales µ2

f,r by a factor of 1/2 and 2, respectively, yields

Λ
(4)
QCD = 243.5± 62 (exp)

−37
+21

(FS)
+46
−87

(RS) . MeV . (39)

Here we excluded values µ2
f,r < 1 GeV2, unlike in Ref. [22], since at scales lower than 1 GeV2

the perturbative description cannot be considered reliable anymore.
Correspondingly, for αs(M

2
Z) one obtains

αs(M
2
Z) = 0.1132

+0.0043
−0.0051

(exp)
−0.0029
+0.0015

(FS)
+0.0032
−0.0075

(RS) , (40)

with combined errors of

αs(M
2
Z) = 0.1132

+0.0056
−0.0095

. (41)

Due to the NLO analysis the factorization- and renormalization scale uncertainties are still
dominant. The values are well compatible with recent determinations of the strong coupling
constant at NNLO and N3LO from deep-inelastic data :

αs(M
2
Z) = 0.1134

+0.0019
−0.0021

NNLO [27] (42)

αs(M
2
Z) = 0.1141

+0.0020
−0.0022

N3LO [27] (43)

αs(M
2
Z) = 0.1135± 0.0014 NNLO, FFS [30] (44)

αs(M
2
Z) = 0.1129± 0.0014 NNLO, BSMN [30] (45)

αs(M
2
Z) = 0.1124± 0.0020 NNLO, dyn. approach [28] (46)

αs(M
2
Z) = 0.1158± 0.0035 NNLO, stand. approach [28] (47)

αs(M
2
Z) = 0.1171± 0.0014 NNLO [29] (48)
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More recent unpolarized NNLO fits, including the combined HERA data [64], yield

αs(M
2
Z) = 0.1147± 0.0012 NNLO [65] (49)

αs(M
2
Z) = 0.1145± 0.0042 NNLO, (preliminary) [66] (50)

The central value of the present fit (41) does well compare with the above values. They are
located below the present weighted average of αs(M

2
Z) measurements [63] of

αs(M
2
Z) = 0.1184± 0.0007 . (51)

The error given in (51) does not include the relative systematics of the different classes of
measurements.

We would like to mention that recent determinations of αs(M
2
Z) using event shape moments

for high energy e+e− annihilation data from PETRA and LEP including power corrections the
following values were obtained :

αs(M
2
Z) = 0.1135± 0.0002 (exp)± 0.005 (Ω1)± 0.0009 (pert) NNLO [67] (52)

αs(M
2
Z) = 0.1153± 0.0017 (exp)± 0.0023 (th) NNLO [68] (53)

Also these measurements of αs(M
2
Z) yield low values. They show that the results obtained ana-

lyzing deep–inelastic data do not form a special case. The systematics of the different extractions
of αs(M

2
Z) has to be understood in more detail in the future.

Fit results from previous polarized analyzes like [15, 17, 25] were summarized in [22]. In
Figure 6 we compare recent determinations at NNLO and N3LO for unpolarized and at NLO
for prolarized deep-inelastic scattering.

6.3 Moments of Polarized Parton Distributions

We calculate the lowest moments of the polarized parton densities

〈f(x)〉n =

∫ 1

0

dxxn∆f(x) , (54)

where ∆f(x) denote the different polarized (number) density distributions. The moments n =
0, ..., 3 are given in Table 4. The behaviour of these distributions outside the kinematic range
in which the fit is performed bear uncertainties, which are difficult to predict for theses non-
perturbative quantities. 6 Instead of presenting necessarily uncertain models for this range, we
compute the respective part of the moments for values x < 0.005 and x > 0.75 extrapolating
the present distributions to the range x ∈ [0, 1].

The zeroth moments of the polarized quark- and gluon distributions as well as the contribu-
tions due to the quark- and gluon angular momenta, Lq and Lg, constitute the nucleon spin

1

2
=

1

2
〈∆Σ(x)〉0 + 〈∆G(x)〉0 + Lq + Lg . (55)

We obtain

〈∆Σ(x,Q2
0)〉0 = 0.216± 0.079 (56)

〈∆G(x,Q2
0)〉0 = 0.462± 0.430 , (57)

6We remind the failure in predicting the lower x behaviour of the structure function F2(x,Q
2) prior the

HERA measurements until 1992, which assumed a slightly falling or constant behaviour below x ≃ 10−2, whereas
a strong rise was measured at HERA.
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at Q2
0 = 4GeV2. For Eq. (55) this yields

1

2
= (0.570± 0.437) + Lq + Lg . (58)

The error of ∆G is clearly dominant.
The results given in Table 4 can be compared to ab initio calculations of these moments

in Lattice Gauge Theory. There we also compare with the values obtained in our previous
analysis [22]. In the present analysis the first moments (n = 0) of the polarized valence quark
distributions are determined by the values of F and D and are fixed in the fit. Comparing to
the results of [22], ISET = 3 7 slightly larger values are obtained for the moments of ∆uv(x,Q

2)
and slightly lower values for ∆dv(x,Q

2) and ∆q(x,Q2). A very significant change is obtained for
the moments of the polarized gluon density, where the moments reduced by a factor of about
two comparing to [22]. Although being positive, the latter moments are now compatible with
zero in the 1σ errors.

First lattice results for the moments n = 0, 1, 2 of the polarized quark distributions were
given about ten years ago. Meanwhile many systematic effects in the simulation have been
improved further. Still there are differences in the different simulations. Rather aiming on a
detailed comparison with the values in Table 4 we give a brief summary of the current status. A
recent survey has been given in [69]. Lattice results on 〈∆u −∆d〉0 for m2

π = 0.029...0.48GeV2

were given in [70–73] by the BGR, RBC, LHPC, ETMC, QCDSF-collaborations using dynamical
quarks. Most of the values are yet below the experimental value. The QCDSF collaboration [73]
performed simulations at mπ = 170MeV and obtained

〈∆u(x)−∆d(x)〉0 = 1.17± 0.05 , (59)

〈∆u(x)−∆d(x)〉0
〈∆u(x) + ∆d(x)〉0

= 0.47± 0.02 . (60)

For the first moment the following values were determined

〈∆u−∆d〉1 = 0.271± 0.040, mπ = 493MeV, [70] (61)

= 0.252± 0.020, mπ = 352MeV, [72] (62)

which are larger than the value

〈∆u−∆d〉1 = 0.190± 0.008 (63)

determined in the present analysis.
Results on the second moment were given in [70]

〈∆u−∆d〉2 = 0.083± 0.012, mπ = 493MeV, (64)

(65)

to be compared to

〈∆u−∆d〉2 = 0.063± 0.004 (66)

obtained in this analysis.
Results of older lattice simulations [74] were discussed in [22] previously. The values given

above for the 1st and 2nd moment are based on theoretically much improved simulations, if com-
pared to early investigations [74]. Yet, the moments obtained yield similar values. Comparing
the lattice results with the results obtained in QCD-fits to the polarized deep-inelastic world
data one observes a similar trend of values but not yet agreement.

7The NLO results for ISET = 4 are quite similar.
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7 Higher Twist

So far we have applied the twist-2 approximation at NLO to describe the spin–dependent struc-
ture function g1. As the data may contain contributions from higher twist (HT) it is of interest
to look for possible effects of such contributions. A thorough description of higher twist anoma-
lous dimensions and Wilson coefficients to NLO is still missing, even for the twist–4 contribu-
tions. Therefore we will perform a purely phenomenological analysis. Similar to the approach of
Ref. [75] for the structure function F2, where a higher twist term is parameterized by the ansatz

hHT (x,Q
2) =

Ci(x)

Q2
, (67)

used multiplicative to the leading twist (LT) contribution, g1(x,Q
2) is described by

gHT
1 (x,Q2) = gLT1 (x,Q2)

[

1 + hHT (x,Q
2)
]

. (68)

This approach has to be handled with great care, since the coefficients Ci(x) are actually also
Q2 dependent. They consist of a combination of various terms which exhibit different scaling
violations. The relation to ΛQCD is completely masked here. Moreover, higher twist contributions
should have a flavor-dependence and are not expected to be the same in case of polarized and
unpolarized deep-inelastic scattering.

The kinematic x–range being covered by experiment is divided into 5 bins and the coefficient
Ci(x) has to be determined in each bin and for each target. The resulting coefficients for the
proton and the deuteron target, Cp

i (x) and Cd
i (x), are summarized in Table 5. The coefficient

Cn
i (x) is calculated from Cp

i (x) and Cd
i (x) by the relation

Cn
i (x) =

2

1− 1.5ωD
Cd

i (x)− Cp
i (x) . (69)

with ωD = 0.05± 0.01 [34]. All three coefficients are compatible with zero within their errors as
can be seen from Figure 7 where they are shown as a function of x. Therefore, the present data
do not contain significant higher twist contributions in the range Q2 > 1 GeV2 and a NLO QCD
analysis can be carried out in the leading twist approximation. This result is in disagreement
to Ref. [21]. Note that in the latter analysis a partonic description of F1(x,Q

2) down to low
values of Q2 is used, while we refer to the measured function. Unlike the case for the large x
valence quark region, in which dynamical higher twist terms are extracted consistently in the
unpolarized case, cf. Refs. [27, 76, 77], the situation is more involved for the low x-region. The
dynamics is clearly different in both these domains due to the contributing parton species. As
has been shown in [78], different power corrections cancel each other in the small x region.

8 Conclusions

A QCD analysis of the polarized deep-inelastic world data has been performed at NLO, including
the effects of charm production to first order. We derived a parameterization for the polarized

parton distributions and Λ
Nf=4
QCD with the error correlations between the fitted parameters applying

the χ2–method. Detailed comparisons have been performed with recent parameterizations [18–
20, 24]. The present data are not accurate enough to determine all the shape parameters at a
sufficient accuracy. Due to this some of the parameters have to be fixed after an initial phase
of the analysis to a model-value. If compared to our previous analysis [22] the more recent data
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lead to a smaller gluon distribution which is for a wide region of x compatible with zero within
the 1σ error. We determined both the experimental and theoretical systematic effects. Both
the central values of the parton densities and their 1σ error are made available in form of a
numerical parameterization in the range x ∈ [10−9, 1], Q2 ∈ [1, 106] GeV2. These distributions
can be used for polarized hard–scattering processes at hadron– and lepton–nucleon colliders for
various observables, including error propagation w.r.t. the accuracy of the parton densities. The
implementation in terms of grid-interpolation is well suited also for Monte Carlo simulations.

The QCD-scale was determined by Λ
Nf=4
QCD = 243.5±62 (exp)

+59
−90

(th) MeV, corresponding

to αNLO
s (M2

Z) = 0.1132
+0.0056
−0.0095

. The central value is well compatible with other measurements,

cf. [27, 28, 30, 65–68]. The errors are still rather large, also because of the scale variation uncer-
tainties at NLO. Nonetheless the correlated determination of αs(M

2
Z) with the parton densities

is of importance to avoid biases in particular w.r.t. to the size of the gluon distribution function.
We also determined potential higher twist contributions, which were found to be compatible

with zero in the whole kinematic range within the present errors. Based on the results of the
present analysis we computed the lowest moments of the individual twist–2 parton densities. For
the lowest moment (1/2)〈∆Σ(x)〉0+ 〈∆G(x)〉0 we obtain 0.570± 0.437 at Q2

0 = 4 GeV2, which
is well compatible with the nucleon spin 1/2 even without angular momentum contributions.
However, the error is dominated by that of the polarized gluon distribution. The moments may
be be compared to upcoming lattice simulations based on dynamical quarks of the corresponding
operator matrix elements. The present results are not yet in agreement, although the tendency
of values is visible. Runs at even smaller values of mπ seem to be necessary.
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Theoretische Teilchenphysik and the European Commission MRTN HEPTOOLS under Contract
No. MRTN-CT-2006-035505.
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9 Appendix: The FORTRAN-code for the parton densities

and their errors

A fast FORTRAN program is available to represent the polarized parton densities x∆uv(x,Q
2),

x∆dv(x,Q
2), x∆G(x,Q2), and x∆q̄(x,Q2), as well as the polarized structure functions xgp1(x,Q

2)
and xgn1 (x,Q

2) at NLO in the MS–scheme together with the parameterizations of their 1σ errors.
The following ranges in x and Q2 are covered:

10−9 < x < 1 , 1 GeV2 < Q2 < 106 GeV2.

The polarized distributions are the result of a fit to the world data on spin asymmetries, i.e.
Ap,n,d

1 or g1/F
p,n,d
1 , as described above. The SUBROUTINE PPDF returns the values of the polarized

distributions, always multiplied by x, at a given point in x and Q2 by interpolating the data on
specified grids. The interpolation in x is done by cubic splines and in Q2 by a linear interpolation
in log (Q2). 8

The parton distributions are evaluated by

SUBROUTINE POLPDF(ISET, X, Q2, UV, DUV, DV, DDV, GL, DGL, SEA, DSEA,

G1P,DG1P,G1N,DG1N),

with ISET = 1. All non-integer variables are of the type REAL*8. The calling routine has to
contain the COMMON/INTINI/ IINI. Before the first call to SUBROUTINE POLPDF the initialization
is set by IINI = 0.

The parameters X, Q2 [GeV2] are x and Q2. The momentum densities of the polarized up-
and down valence quarks, gluons and the sea quarks are UV, DV, GL, SEA, with SEA = x∆us =
x∆ds = x∆u = x∆d = x∆s = x∆s. Correspondingly, DUV is the 1σ error of UV etc. and G1P

and G1N are the values of the electromagnetic structure functions xgp1 and xgn1 .
The programme example.f reads the data-grid qcd nlo 905 0.grid and is compiled using

gfortran at a LINUX-system. The test-code produces the test-output for the structure-functions
xg1p, xg1n, xg1d and their 1σ errors dxg1p, dxg1n, dxg1d :

* x,Q2,xg1p,dxg1p,xg1n,dxg1n,xg1d,dxg1d

0.100000 4.000000 0.027295 0.001559 -0.010928 0.001479 0.007570 0.000994

0.200000 4.000000 0.044602 0.001396 -0.009622 0.001895 0.016178 0.001088

0.300000 4.000000 0.053325 0.001135 -0.004909 0.001934 0.022392 0.001037

0.400000 4.000000 0.052437 0.001132 -0.000395 0.002209 0.024069 0.001148

0.500000 4.000000 0.043976 0.001371 0.002429 0.002272 0.021462 0.001227

0.600000 4.000000 0.032110 0.001822 0.003287 0.001921 0.016371 0.001224

0.700000 4.000000 0.018456 0.001858 0.002643 0.001254 0.009759 0.001037

0.800000 4.000000 0.007465 0.001254 0.001340 0.000557 0.004072 0.000634

0.900000 4.000000 0.001337 0.000383 0.000284 0.000115 0.000750 0.000185

0.950000 4.000000 0.000215 0.000087 0.000049 0.000023 0.000122 0.000042

The program can be received on request via e-mail to Johannes.Bluemlein@desy.de or
Helmut.Boettcher@desy.de or from http://www-zeuthen.desy.de/~blumlein.

8We thank S. Kumano and M. Miyama of the AAC–collaboration for allowing us to use their interpolation
routines.

16

http://www-zeuthen.desy.de/~blumlein


10 Tables

Experiment x–range Q2–range data points Ni

[GeV 2] type #

E143(p) [6] 0.027 – 0.749 1.17 – 9.52 g1/F1 82 0.963

HERMES(p) [7] 0.026 – 0.731 1.12 – 14.29 A1 37 0.970

E155(p) [9] 0.015 – 0.750 1.22 – 34.72 g1/F1 24 1.003

SMC(p) [5] 0.004 – 0.484 1.14 – 72.10 A1 59 0.960

EMC(p) [1] 0.015 – 0.466 3.50 – 29.5 A1 10 0.964

CLAS1(p) [12] 0.125 – 0.575 1.10 – 4.16 A1 10 1.010

CLAS2(p) [13] 0.292 – 0.592 1.01 – 4.96 g1/F1 191 1.030

COMPASS(p) [14] 0.005 – 0.568 1.10 – 62.10 A1 15 0.955

proton 428

E143(d) [6] 0.027 – 0.749 1.17 – 9.52 g1/F1 82 0.960

HERMES(d) [7] 0.026 – 0.731 1.12 – 14.29 A1 37 0.970

E155(d) [8] 0.015 – 0.750 1.22 – 34.79 g1/F1 24 0.979

SMC(d) [5] 0.004 – 0.483 1.14 – 71.76 A1 65 0.998

COMPASS(d) [11] 0.005 – 0.566 1.10 – 55.30 A1 15 0.952

CLAS1(d) [12] 0.125 – 0.575 1.01 – 4.16 A1 10 1.003

CLAS2(d) [13] 0.298 – 0.636 1.01 – 4.16 g1/F1 662 1.014

deuteron 895

E142(n) [2] 0.035 – 0.466 1.10 – 5.50 A1 33 0.989

HERMES(n) [3] 0.033 – 0.464 1.22 – 5.25 g1 9 0.970

E154(n) [4]/ [15] 0.017 – 0.564 1.20 – 15.00 g1 17 0.980

JLAB(n) [10] 0.330 – 0.600 2.71 – 4.83 g1 3 1.000

neutron 62

total 1385

Table 1: Number of data points on A1, g1/F1 or g1 for Q
2 > 1.0 GeV2 and W 2 > 3.24 GeV2 used in

the present QCD analysis. For each experiment are given the x and Q2 ranges, the type of quantity
measured, the number of data points for each given target, and the fitted normalization shifts Ni

(see text).
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∆uv η 0.928 (fixed) ∆q̄s η -0.417 ± 0.079

a 0.239 ± 0.027 a 0.365 ± 0.164

b 3.031 ± 0.178 b 8.080 (fixed)

ρ 0.0 (fixed) ρ 0.0 (fixed)

γ 27.64 (fixed) γ 0.0 (fixed)

∆dv η -0.342 (fixed) ∆G η 0.461 ± 0.430

a 0.128 ± 0.068 a a∆q̄s + 1

b 4.055 ± 0.879 b 5.610 (fixed)

ρ 0.0 (fixed) ρ 0.0 (fixed)

γ 44.26 (fixed) γ 0.0 (fixed)

Λ
(4)
QCD = 243± 62 MeV χ2/NDF = 1537/1377 = 1.12

Table 2: Final parameter values and their statistical errors at the input scale Q2
0 = 4.0 GeV2.

Λ
(4)
QCD auv

buv
adv

bdv
ηsea asea ηG

Λ
(4)
QCD 3.85E-3

auv
-4.08E-4 7.55E-4

buv
-1.14E-3 4.30E-3 3.18E-2

adv
2.75E-3 -9.39E-4 -4.44E-3 4.61E-3

bdv
2.38E-2 -8.34E-3 -1.03E-2 4.51E-2 7.73E-1

ηsea 1.79E-3 -7.20E-4 -3.79E-3 2.38E-3 2.23E-2 6.32E-3

asea -5.65E-3 3.04E-3 1.65E-2 -8.26E-3 -7.39E-2 8.07E-4 2.70E-2

ηG -1.96E-2 8.32E-3 4.25E-2 -2.16E-2 -1.68E-1 -2.21E-2 4.17E-2 1.85E-1

Table 3: The covariance matrix for the 7+1 parameter NLO fit based on the world asymmetry data.
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Fit Results

Distribution n value value out [22], set 3

of range

∆uv 0 0.928± 0.000 0.158|3.3E−3 0.926± 0.071

1 0.153± 0.004 1.6E−4|2.7E−3 0.163± 0.014

2 0.052± 0.002 0|2.1E−3 0.055± 0.006

3 0.023± 0.001 0|1.7E−3 0.024± 0.003

∆dv 0 −0.342± 0.000 −0.110|−2.1E−4 −0.341± 0.123

1 −0.037± 0.007 −7.0E−5|−1.7E−4 −0047± 0.021

2 −0.010± 0.002 0| −1.3E−4 −0.015± 0.009

3 −0.004± 0.001 0|−1.1E−4 −0.006± 0.005

∆u–∆d 0 1.270± 0.000 0.267|3.5E−3 1.267± 0.142

1 0.190± 0.008 2.3E−4|2.8E−3 0.210± 0.025

2 0.063± 0.004 0|2.3E−3 0.070± 0.011

3 0.027± 0.002 0|1.8E−3 0.030± 0.006

∆u 0 0.866± 2E−5 0.136|3.3E−3 0.851± 0.075

1 0.151± 0.004 1.3E−4|2.7E−3 0.160± 0.014

2 0.052± 0.002 0|2.1E−3 0.055± 0.006

3 0.023± 0.001 0|1.7E−3 0.024± 0.003

∆d 0 −0.404± 3E−5 −0.132|−2.1E−4 −0.415± 0.124

1 −0.039± 0.007 −1.0E−4|−1.7E−4 −0.050± 0.022

2 −0.011± 0.002 -0|−1.3E−4 −0.015± 0.009

3 −0.004± 0.001 0|−1.1E−4 −0.006± 0.005

∆q 0 −0.062± 0.013 −0.02|0 −0.074± 0.017

1 −2.5E−3± 1.2E−3 −3.0E−5|0 −0.003± 0.001

2 −3.3E−4± 2.0E−4 0|0 −4.0E−4± 1.0E−4

3 −7.0E−5± 4.0E−5 0|0 −8.0E−5± 2.0E−5

∆G 0 0.462± 0.430 0.004|1.0E−4 1.062± 0.549

1 0.079± 0.079 1.0E−5|8.0E−5 0.184± 0.103

2 0.021± 0.021 0|6.3E−5 0.050± 0.028

3 0.007± 0.007 0|4.9E−5 0.017± 0.010

Table 4: Moments of the NLO parton densities and their combinations for the present analysis at
Q2 = 4 GeV2. The value of the respective moment integrating only outside the x–range in which
currently deep–inelastic scattering data are measured, 0.005 < x < 0.75, are given for comparison
(lower|upper part). The errors are the 1σ correlated errors.
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< x > Cp
i , [GeV2] Cd

i , [GeV2]

0.060 -0.020 ± 0.089 0.030 ± 0.131

0.150 -0.010 ± 0.036 0.140 ± 0.082

0.275 -0.041 ± 0.027 -0.005 ± 0.054

0.425 -0.068 ± 0.055 0.007 ± 0.059

0.625 0.124 ± 0.172 0.008 ± 0.114

Table 5: The higher twist coefficients Cp
i (x) and Cd

i (x) as a function of x.
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Figure 1: NLO polarized parton distributions at the input scale Q2
0 = 4.0 GeV2 (solid line) com-

pared to results obtained by GRSV (dashed–dotted line) [19], DSSV (long dashed–dotted line) [24],
AAC (dashed line) [18], and LSS (long dashed line) [20]. The shaded areas represent the fully
correlated 1σ error bands calculated by Gaussian error propagation.
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Figure 2: The polarized parton density x∆G(x) at Q2
0 = 4.0 GeV2 as a function of x (solid line). The

shaded area is the fully correlated 1σ statistical error band and the hatched areas are the systematic
uncertainties. Results from GRSV (dashed–dotted line) [19], DSSV (long dashed–dotted line) [24],
AAC (dashed line) [18], and LSS (long dashed line) [20] are shown for comparison.
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Figure 3: The polarized parton density x∆Σ(x) at Q2
0 = 4.0 GeV2 as a function of x (solid line). The

shaded area is the fully correlated 1σ statistical error band and the hatched areas are the systematic
uncertainties. Results from GRSV (dashed–dotted line) [19], DSSV (long dashed–dotted line) [24],
AAC (dashed line) [18], and LSS (long dashed line) [20] are shown for comparison.
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Figure 4: The spin–dependent structure functions xgp1(x), xg
d
1(x) and xgn1 (x) as a function of x.

The experimental data are evolved to a common value of Q2 = 5 GeV2. The error bars shown are the
statistical and systematic ones added in quadrature. The experimental distributions are well described
(solid curve) within the statistical (shaded areas) and systematic (hatched areas) error bands. The
curves obtained by GRSV (dashed-dotted) [19] and AAC (dashed) [18] are shown for comparison.
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[30] S. Alekhin, J. Blümlein, S. Klein and S. Moch, Phys. Rev. D 81 (2010) 014032
[arXiv:0908.2766 [hep-ph]].

[31] A. D. Watson, Z. Phys. C12 (1982) 123;
W. Vogelsang, Z. Phys. C50 (1991) 275.

[32] M. Buza, Y. Matiounine, J. Smith et al., Nucl. Phys. B485 (1997) 420; [hep-ph/9608342];
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