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Abstract.
We describe statistical and coherence properties of the radiation from x-ray free electron lasers (XFEL).

It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly
important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the
results of numerical simulations allowed us to find universal scaling relations for the main characteristics
of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse
coherence. We find that with an appropriate normalization of these quantities, they are functions of only
the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and
coherence properties of the higher harmonics of the radiation are highlighted as well.
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1. Introduction

Single pass free electron laser (FEL) amplifiers starting from shot noise in the electron beam
have been intensively developed during the last decades§. An origin for this development was
an idea born in the early eighties to extend the operating wavelength range of FELs to the
vacuum ultraviolet (VUV) and x-ray bands [1–3]. Significant efforts have been invested into
the development of high brightness injectors, beam formation systems, linear accelerators,
and undulators. The result was rapid extension of the wavelength range from infrared to hard
x-rays [4–13]. The first dedicated user facility FLASH at DESY in Hamburg is in operation
since 2005 and provides wavelength range from 6.5 nm to 50 nm [14]. LCLS at Stanford
has been recently commissioned and delivers radiation in the 0.15 nm - 1.5 nm wavelength
range [13]. The two other dedicated facilities that are under construction at the moment, the
European XFEL, and SCSS at Spring-8 [15, 16].

The high gain FEL amplifier starting from the shot noise in the electron beam is a very
simple device. It is a system consisting of a relativistic electron beam and an undulator.
The FEL collective instability in the electron beam produces an exponential growth (along
the undulator) of the modulation of the electron density on the scale of undulator radiation
wavelength. The initial seed for the amplification process are fluctuations of the electron beam
current. Since shot noise in the electron beam is a stochastic process, the radiation produced
by a SASE FEL possesses stochastic features as well. Its properties are naturally described
in terms of statistical optics using notions of probability density distribution functions of the
fields and intensities, correlation functions, notions of coherence time, degree of coherence,
etc.

Development of the theoretical description of the coherence properties of the radiation
from SASE FEL has spanned more than twenty years (see [19–36]. This subject is rather
complicated, and it is worth mentioning that theoretical predictions agree well with recent
experimental results [7–10, 37–40]. Some averaged output characteristics of SASE FEL
in framework of the one-dimensional model have been obtained in [19, 20]. An approach
for time-dependent numerical simulations of SASE FEL has been developed in [21, 22].
Realization of this approach allowed one to obtain some statistical properties of the radiation
from a SASE FEL operating in linear and nonlinear regime [23, 24]. A comprehensive study
of the statistical properties of the radiation from the SASE FEL in the framework of the same
model is presented in [25]. It has been shown that a SASE FEL operating in the linear regime
is a completely chaotic polarized radiation source described with gaussian statistics. Short-
pulse effects (for pulse durations comparable with the coherence time) have been studied
in [22, 26, 27]. An important practical result was prediction of the significant suppression
of the fluctuations of the radiation intensity after a narrow-band monochromator for the case

§ Following the terminology of quantum lasers (amplified spontaneous emission, ASE), the term ”self amplified
spontaneous emission (SASE)” in connection with an FEL amplifier, starting from shot noise, started to be used
in [17]. Note that this essentially quantum terminology does not reflect physical properties of the device. In fact,
free electron laser belongs to a separate class of vacuum tube devices, and its operation is completely described
in terms of classical physics (see [18] for more detail).
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of SASE FEL operation in the saturation regime [26]. Statistical description of the chaotic
evolution of the radiation from SASE FEL has been presented in [28, 29].

The first analytical studies of the problem of transverse coherence relate to the late
eighties [30, 31]. Later on more detailed studies have been performed [32]. The problem
of start-up from the shot noise has been studied analytically and numerically for the linear
stage of amplification using an approach developed in [31]. It has been found that the process
of formation of transverse coherence is more complicated than that given by a naive physical
picture of transverse mode selection. Namely, in the case of perfect mode selection the degree
of transverse coherence is defined by the interdependence of the longitudinal and transverse
coherence. Comprehensive studies of the evolution of transverse coherence in the linear and
nonlinear regime of SASE FEL operation have been performed in [33–35]. It has been found
that the coherence time and the degree of transverse coherence reach maximum values in
the end of the linear regime. Maximum brilliance of the radiation is achieved in the very
beginning of the nonlinear regime which is also referred as a saturation point [34]. Output
power of the SASE FEL grows continuously in the nonlinear regime, while the brilliance
drops down after passing saturation point.

2. Operation of an FEL amplifier

A single-pass FEL amplifier starting from the shot noise in the electron beam seems similar
to the well known undulator insertion device: in both cases radiation is produced during
single pass of the electron beam through the undulator. To reveal principal differences,
we first recall the properties of incoherent radiation. Radiation within the cone of half
angle θcon =

√
1 + K2/(γ

√
Nw) has relative spectral bandwidth Δλ/λ � 1/Nw near the

resonance wavelength λ = (λw/2γ2)(1 + K2). Here λw is the undulator period, Nw is
the number of undulator periods, γ is the relativistic factor, K = eλwHw/2πmc2 is the
undulator parameter, Hw is the rms undulator field, and m and e are the electron mass
and charge, respectively. Radiation energy emitted by a single electron in the central cone
is Ee � 4π2e2K2A2

JJ/[λ(1 + K2)]. Here AJJ = 1 and AJJ = [J0(Q) − J1(Q)] for a
helical and a planar undulator, respectively, Jn(Q) is a Bessel function of nth order, and
Q = K2/2/(1 + K2). Wavepackets emitted by different electrons are not correlated, thus
radiated power of the electron bunch with current I is just the radiation energy from a single
electron multiplied by the electron flux I/e:

Wincoh �
[
4π2eI

λ

] [
K2

1 + K2

]
A2

JJ . (1)

In the free electron laser, electron beam density is modulated by the period of resonance
wavelength λ. Let us consider a model case of an electron beam with the gaussian distribution
of the current density with rms width σ, and an axial modulation I(z) = I[1+ain cos(2πz/λ)].
Total power radiated by a modulated electron beam has been derived in [41]:

Wcoh =

[
π2a2

inI
2

2c

] [
K2

1 + K2

]
A2

JJNwF (N) , (2)
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Figure 1. Plot of the universal function F (N) given by eq. (3). Dashed curve shows an asymptote for a
wide electron beam F = 1/(2πN).

where

F (N) =
2

π

[
arctan

(
1

2N

)
+ N ln

(
4N2

4N2 + 1

)]
, (3)

N = kσ2/Lw is the Fresnel number, k = 2π/λ, and Lw = Nwλw is the undulator length.
In Fig. 1 we present the plot of the universal function F (N). It exhibits a simple behavior in
the limits of large and small values of Fresnel number: F (N) → 1/(2πN) for N → ∞, and
F (N) → 1 for N → 0.

Analysis of expressions (1) and (2) tells us that incoherent radiation power corresponds
to the radiation power of the modulated electron beam with effective modulation amplitude of
ain ∼ 1/

√
NwIλ/(ec). Note that NwIλ/(ec) is the number of electrons on the slippage length

Nwλ. Now we have quantitative answer to the question: how much the FEL radiation power
exceeds the power of incoherent undulator radiation? In the free electron laser an amplitude
of the electron beam density modulation reaches values of about unity, and the ratio of the
radiation powers (coherent to incoherent) is a factor of about the number of electrons per
slippage length.

Enhancement of the beam modulation in the free electron laser occurs due to the
radiation-induced collective instability. When an electron beam traverses an undulator, it
emits radiation at the resonance wavelength. The electromagnetic wave is always faster than
the electrons, and a resonant condition occurs such that the radiation slips a distance λ relative
to the electrons after one undulator period. The fields produced by the moving charges in one
part of the electron bunch react to moving charges in another part of the bunch leading to
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a growing concentration of particles wherever a small perturbation starts to occur. Electron
bunches with very small transverse emittance (of about radiation wavelength) and high peak
current (of about a few kA) are needed for the operation of short wavelength FELs.

The description of high gain FEL amplification refers to the class of self-consistent
problems for which the field equations and equations of motion must be solved
simultaneously. Characteristics of the amplification process can be obtained with a
combination of analytical techniques and simulations with time dependent FEL simulation
codes (see [18, 36] and references therein). The amplification process in the SASE FEL is
triggered by the shot noise in the electron beam, then it passes the stage of exponential growth
(also called the high gain linear regime), and finally enters saturation stage when the beam
density modulation approaches unity. In the linear high-gain limit the radiation emitted by the
electron beam in the undulator can be represented as a set of self-reproduced beam radiation
modes [42]:

Ẽ =

∫
dω exp[iω(z/c − t)] ×

∑
n,k

Ank(ω, z)Φnk(r, ω) exp[Λnk(ω)z + inφ] (4)

described by the eigenvalue Λnk(ω) and the field distribution eigenfunction Φnk(r, ω). Here
ω = 2πc/λ is the frequency of the electromagnetic wave. At a sufficient undulator length
the fundamental mode (having maximum real part of the eigenvalue) begins to be the main
contribution to the total radiation power. From a practical point of view, it is important to find
an absolute minimum of the gain length Lg = 1/ Re(Λ00) corresponding to the optimum
focusing beta function. In the case of negligible space charge and energy spread effects
(which is true for XFELs) the solution of the eigenvalue equation for the field gain length
of the fundamental mode Lg and optimum beta function βopt are well approximated by‖:

Lg � 1.67

(
IA

I

)1/2
(εnλw)5/6

λ2/3

(1 + K2)1/3

KAJJ

,

βopt � 11.2

(
IA

I

)1/2
ε
3/2
n λ

1/2
w

λKAJJ

. (5)

Here εn is normalized emittance, and IA = mc3/e � 17 kA is Alfven’s current.
Dimensionless FEL equations are normalized using the gain parameter Γ and the efficiency
parameter ρ̄ [18]:

Γ =

[
I

IA

8π2K2A2
JJ

λλwγ3

]1/2

,

ρ̄ =
λwΓ

4π
. (6)

Analysis of the dimensionless FEL equations tells us that the physical parameters describing
operation of the optimized FEL (5), the diffraction parameter B and the parameter of betatron
oscillations k̂β , are only functions of the parameter ε̂ = 2πε/λ [18, 34, 44]:

‖ General fitting expression including energy spread effects can be found in [43].
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B = 2Γσ2ω/c � 12.5 × ε̂5/2 ,

k̂β = 1/(βΓ) � 0.158 × ε̂−3/2 . (7)

Note that Eqs. (5) and (7) are accurate in the range 1 < ε̂ < 5.
The diffraction parameter B directly relates to diffraction effects and the formation of

transverse coherence. If diffraction expansion of the radiation on a scale of the field gain
length is comparable with the transverse size of the electron beam, we can expect a high
degree of transverse coherence. For this range of parameters the value of the diffraction
parameter is small. If diffraction expansion of the radiation is small (which happens at large
values of the diffraction parameter) then we can expect significant degradation in the degree of
transverse coherence. This effect occurs simply because different parts of the beam produce
radiation nearly independently. In terms of the radiation expansion in the eigenmodes (4) this
range of parameters corresponds to the degeneration of modes [18]. Diffraction parameter for
an optimized XFEL exhibits strong dependence on the parameter ε̂ (see eq. (7)), and we can
expect that the degree of transverse coherence should drop rapidly with the increase of the
parameter ε̂.

3. Definitions of the statistical properties of radiation

We describe radiation fields generated by a SASE FEL in terms of statistical optics [46].
Longitudinal and transverse coherence are described in terms of correlation functions. The
first order time correlation function, g1(t, t

′), is defined as:

g1(�r, t − t′) =
〈Ẽ(�r, t)Ẽ∗(�r, t′)〉[

〈| Ẽ(�r, t) |2〉〈| Ẽ(�r, t′) |2〉
]1/2

. (8)

For a stationary random process the time correlation functions are dependent on only one
variable, τ = t − t′. The coherence time is defined as [18, 47]:

τc =

∞∫
−∞

|g1(τ)|2 d τ . (9)

The transverse coherence properties of the radiation are described in terms of the
transverse correlation functions. The first-order transverse correlation function is defined as

γ1(�r⊥, �r′⊥, z, t) =
〈Ẽ(�r⊥, z, t)Ẽ∗(�r′⊥, z, t)〉[

〈|Ẽ(�r⊥, z, t)|2〉〈|Ẽ(�r′⊥, z, t)|2〉
]1/2

,

where Ẽ is the slowly varying amplitude of the amplified wave, E = Ẽ(�r⊥, z, t) ei ω0(z/c−t) +C.C.

We consider the model of a stationary random process, meaning that γ1 does not depend on
time. Following ref. [34], we define the degree of transverse coherence as:

ζ =

∫ |γ1(�r⊥, �r′⊥)|2I(�r⊥)I(�r′⊥) d�r⊥ d�r′⊥
[
∫

I(�r⊥) d�r⊥]2
, (10)
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where I ∝ |Ẽ|2 is the radiation intensity.
An important figure of merit of the radiation source is the degeneracy parameter δ, the

number of photons per mode (coherent state). Note that when δ � 1, classical statistics are
applicable, while a quantum description of the field is necessary as soon as δ is comparable
to (or less than) one. Using the definitions of the coherence time (9) and of the degree of
transverse coherence (10) we define the degeneracy parameter as

δ = Ṅphτcζ , (11)

where Ṅph is the photon flux. Peak brilliance of the radiation from an undulator is defined as
a transversely coherent spectral flux:

Br =
ω d Ṅph

d ω

ζ

(λ/2)2 =
4
√

2cδ

λ3
. (12)

When deriving right-hand term of the equation we used the fact that the spectrum shape of
SASE FEL radiation in a high-gain linear regime and near saturation is close to Gaussian
[18]. In this case the rms spectrum bandwidth σω and coherence time obey the equation
τc =

√
π/σω.

4. Probability distributions of the radiation fields and intensities

The amplification process in the SASE FEL starts from the shot noise in the electron beam,
then it passes the stage of exponential amplification (high gain linear stage), and finally enters
saturation stage (see Fig. 2). The field gain length of the fundamental radiation mode in the
high gain linear regime is given by eq. (5), and saturation is achieved at the undulator length
of about Lsat � 10 × Lg for the parameter space of modern X-ray FELs. Figures 3 and 4
show evolution of temporal and spectral structure of the radiation pulse along the undulator:
at 0.5Lg (beginning of the undulator), 5Lg (high gain linear regime), and 10Lg (saturation
regime). Figure 5 shows snapshots of the intensity distributions across a slice of the photon
pulse. We see that many transverse radiation modes are excited when the electron beam enters
the undulator. Radiation field generated by SASE FEL consists of wavepackets (spikes [22])
which originate from fluctuations of the electron beam density. The typical length of a spike is
about coherence length. Spectrum of the SASE FEL radiation also exhibits a spiky structure.
The spectrum width is inversely proportional to the coherence time, and a typical width of a
spike in a spectrum is inversely proportional to the pulse duration. The amplification process
selects a narrow band of the radiation, the coherence time increases, and spectrum shrinks.
Transverse coherence is also improved due to the mode selection process (4).

Figure 6 shows the probability distributions of the instantaneous power density I ∝ |Ẽ|2
(plots on top), and of the instantaneous radiation power P ∝ ∫

I(�r⊥) d�r⊥ (plots on bottom).
We see that transverse and longitudinal distributions of the radiation intensity exhibit rather
chaotic behavior. On the other hand, probability distributions of the instantaneous power
density I and of the instantaneous radiation power P look more elegant and seem to be
described by simple functions. The origin of this fundamental simplicity relates to the
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Figure 2. Evolution of main characteristics of SASE FEL along the undulator: brilliance (solid line),
radiation power (dash-dotted line), degree of transverse coherence (dashed line), and coherence time
(dotted line). Brilliance and radiation power are normalized to saturation values. Coherence time and
degree of transverse coherence are normalized to the maximum values. Undulator length is normalized to
saturation length. The plot has been derived from the parameter set corresponding to ε̂ = 1. Calculations
have been performed with the simulation code FAST [48].

Figure 3. Temporal structure of the radiation pulse at different undulator lengths. Indexes 1, 2, and 3
correspond to the undulator length of 0.5Lg, 5Lg, and 10Lg, respectively. The plot in the right column
represents the enlarged fraction of the plot in the left column. Calculations have been performed with the
simulation code FAST [48].

properties of the electron beam. The shot noise in the electron beam has a statistical nature that
significantly influences characteristics of the output radiation from a SASE FEL. Fluctuations
of the electron beam current density serve as input signals in a SASE FEL. These fluctuations
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Figure 4. Spectral structure of the radiation pulse at different undulator length. Solid, dashed, and dotted
line correspond to the undulator length of 0.5Lg, 5Lg, and 10Lg, respectively. The plot on the left-hand
side shows only the envelope of the radiation spectrum. The plot on the right-hand side represents an
enlarged fraction of the radiation spectrum. Calculations have been performed with the simulation code
FAST [48].

Figure 5. Snapshots of the power density distribution in a slice at the undulator length of 0.5Lg (left plot),
5Lg (middle plot), and 10Lg (right plot). Calculations have been performed with the simulation code
FAST [48].

always exist in the electron beam due to the effect of shot noise. Initially fluctuations are
not correlated in space and time, but when the electron beam enters the undulator, beam
modulation at frequencies close to the resonance frequency of the FEL amplifier initiates the
process of the amplification of coherent radiation.

Let us consider microscopic picture of the electron beam current at the entrance of the
undulator. The electron beam current consists of moving electrons randomly arriving at the
entrance of the undulator:

I(t) = (−e)
N∑

k=1

δ(t − tk) ,

where δ(. . .) is delta-function, (-e) is the charge of the electron, N is the number of electrons
in a bunch and tk is the random arrival time of the electron to the undulator entrance.



Statistical and coherence properties of radiation from X-ray free electron lasers 10

Figure 6. Probability density distributions of the instantaneous power density I = |Ẽ|2 (top), and of
the instantaneous radiation power P (bottom) from a SASE FEL at different stages of amplification:
linear regime, saturation regime, and deep nonlinear regime (undulator length of 5Lg, 10Lg, and 15Lg,
respectively). Solid lines on the power density histograms (top) represent negative exponential distribution
(14). Solid lines on power histograms (bottom) represent gamma distribution (15) with M = 1/σ2

P. Here
ε̂ = 2. Calculations have been performed with the simulation code FAST [48].

The electron beam current I(t) and its Fourier transform Ī(ω) are connected by Fourier
transformations :

I(t) = (−e)
N∑

k=1

δ(t − tk) =
1

2π

∞∫
−∞

Ī(ω)e−iωtdω ,

Ī(ω) =

∞∫
−∞

eiωtI(t)dt = (−e)
N∑

k=1

eiωtk . (13)

It follows from eq. (13) that the Fourier transformation of the input current, Ī(ω), is the sum
of large number of complex phasors with random phases φk = ωtk. Thus, harmonics of the
electron beam current are described with gaussian statistics.

The FEL process is just an amplification of the initial shot noise in the narrow band
near the resonance wavelength λ when both harmonics of the beam current and radiation are
growing. An FEL amplifier operating in the linear regime is just a linear filter, and the Fourier
harmonic of the radiation field is simply proportional to the Fourier harmonic of the electron
beam current, Ē(ω) = HA(ω − ω0)Ī(ω). Thus, the statistics of the radiation are gaussian –
the same as of the shot noise in the electron beam. This kind of radiation is usually referred to
as completely chaotic polarized light, a well known object in the field of statistical optics [46].
For instance, the higher order correlation functions (time and spectral) are expressed via the
first order correlation function. The spectral density of the radiation energy and the first-order
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time correlation function form a Fourier transform pair (Wiener Khintchine theorem). The
real and imaginary parts of the slowly varying complex amplitudes of the electric field of the
electromagnetic wave, Ẽ , have a Gaussian distribution. The instantaneous power density,
I = |Ẽ|2, fluctuates in accordance with the negative exponential distribution (see Fig. 6):

p(I) =
1

〈I〉 exp

(
− I

〈I〉
)

. (14)

Any integral of the power density, like radiation power P , fluctuates in accordance with the
gamma distribution:

p(P ) =
MM

Γ(M)

(
P

〈P 〉
)M−1

1

〈P 〉 exp

(
−M

P

〈P 〉
)

, (15)

where Γ(M) is the gamma function with argument M = 1/σ2
P, and σ2

P = 〈(P −〈P 〉)2〉/〈P 〉2
is the relative dispersion of the radiation power. For completely chaotic polarized light
parameter M has a clear physical interpretation – it is the number of modes [18]. Thus,
the relative dispersion of the radiation power directly relates to the coherence properties of
the SASE FEL operating in the linear regime. The degree of transverse coherence in this case
can be defined as [18]:

ζ =
1

M
= σ2

P . (16)

It is shown in ref. [34] that such a definition for the degree of transverse coherence is
mathematically equivalent to (10).

When amplification process enters nonlinear stage and reaches saturation, statistics of
the radiation significantly deviate from gaussian. Particular signature of this change is
illustrated in Fig. 6. We see that the probability distribution of the radiation intensity is
not the negative exponential, and the probability distribution of the radiation power visibly
deviates from gamma distribution. Up to now there is no analytical description of the
statistics in the saturation regime, and we refer the reader to the analysis of the results of
numerical simulations [34]. General feature of the saturation regime is that fluctuations of the
radiation intensity are significantly suppressed. We also find that the definition of the degree
of transverse coherence (16) has no physical sense near the saturation point.

When we trace the amplification process further in the nonlinear regime, we obtain that
fluctuations of the radiation intensity and radiation power increase, and relevant probability
distributions tend to those given by eqs. (14) and (15). This behavior hints that the properties
of the radiation from a SASE FEL operating in the deep nonlinear regime tend to be those
of completely chaotic polarized light [25, 34]. For the deep nonlinear regime we find that the
degree of transverse coherence defined by (10) again tends to be an agreement with (16).

Another practical problem refers to the probability distributions of the radiation intensity
in the frequency domain, like that filtered by monochromator. For SASE FEL radiation
produced in the linear regime the probability distribution radiation intensity is defined by
gaussian statistics, and it is the negative exponential for a narrow band monochromator.
When amplification process enters saturation regime, this property still holds for the case
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of long electron pulse [18, 25], and is violated significantly for the case of short electron
bunch, of about or less than coherence length. In the latter case fluctuations of the radiation
intensity after narrow band monochromator are significantly suppressed as it has been
predicted theoretically and measured experimentally at the free electron laser FLASH at
DESY operating in a femtosecond mode [26, 37].

All considerations presented above are related to the fundamental harmonic of the SASE
FEL radiation. Radiation from a SASE FEL with a planar undulator has rich harmonics
contents. Intensities of even harmonics are suppressed [49], but odd harmonics provide
significant contribution to the total radiation power [50–54]. Comprehensive studies of
the statistical properties of the odd harmonics have been performed in paper [45]. It has
been found that the statistics of the high-harmonic radiation from the SASE FEL changes
significantly with respect to the fundamental harmonic (with respect to gaussian statistics).
For the fundamental harmonic the probability density function of the intensity is the negative
exponential distribution: p(W ) = 〈W 〉−1 exp(−W/〈W 〉). Mechanism of the higher
harmonic generation is equivalent to the transformation of the intensity W as z = (W )n,
where n is the harmonic number. It has been shown in [45] that the probability distribution
for the intensity of the n-th harmonic is given by:

p(z) =
z

n〈W 〉z
(1−n)/n exp(−z1/n/〈W 〉) . (17)

The expression for the mean value is 〈z〉 = n!〈W 〉n. Thus, the nth-harmonic radiation
for the SASE FEL has an intensity level roughly n! times larger than the corresponding
steady-state case, but with more shot-to-shot fluctuations compared to the fundamental [54].
Nontrivial behavior of the intensity of the high harmonic reflects the complicated nonlinear
transformation of the fundamental harmonic statistics. In this case a gaussian statistics are no
longer valid. Practically this behavior occurs only in the very end of high gain exponential
regime when coherent radiation intensity exceeds an incoherent one. When amplification
enters nonlinear stage, probability distributions change dramatically on a scale of the gain
length, and already in the saturation regime (and further downstream the undulator) the
probability distributions of the radiation intensity of higher harmonics are pretty much close
to the negative exponential distribution [45].

5. Characteristics of the radiation from SASE FEL operating in the saturation regime

In Fig. 2 we present evolution of the main characteristics of a SASE FEL along the undulator.
If one traces evolution of the brilliance (degeneracy parameter) of the radiation along the
undulator length, there is always the point (defined as the saturation point [34]) where the
brilliance reaches maximum value. The best properties of the radiation in terms of transverse
and longitudinal coherence are reached just before the saturation point, and then degrade
significantly despite the radiation power continuing to grow with the undulator length.

Application of similarity techniques allows us to derive universal parametric
dependencies of the output characteristics of the radiation at the saturation point. As we
mentioned in Section 2, within accepted approximations (optimized SASE FEL and negligibly
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Figure 7. Degree of transverse coherence ζsat in the saturation point versus parameter ε̂. The number of
electrons in the coherence volume is Nc = 4×106. Calculations have been performed with the simulation
code FAST [48].

small energy spread in the electron beam), normalized output characteristics of a SASE
FEL at the saturation point are functions of only two parameters: ε̂ = 2πε/λ and the
number of electrons in the volume of coherence Nc = INgλ/c, where Ng = Lg/λw is
the number of undulator periods per gain length. Characteristics of practical interest are:
saturation length Lsat, saturation efficiency ηsat = Psat/Pb (ratio of the radiation power to the
electron beam power Pb = γmc2I/e), coherence time τc, degree of transverse coherence ζ,
degeneracy parameter δ, and brilliance Br. Applications of similarity techniques to the results
of numerical simulations of a SASE FEL [34] gives us the following result:

L̂sat = ΓLsat � 2.5 × ε̂5/6 × ln Nc ,

η̂ = P/(ρ̄Pb) � 0.17/ε̂ ,

τ̂c = ρ̄ωτc � 1.16 ×
√

ln Nc × ε̂5/6 ,

σω =
√

π/τc . (18)

These expressions provide reasonable practical accuracy for ε̂ � 0.5. With logarithmic
accuracy in terms of Nc characteristics of the SASE FEL expressed in a normalized form
are functions of the only parameter ε̂. The saturation length, FEL efficiency, and coherence
time exhibit monotonous behavior in the parameter space of modern XFELs (ε̂ � 0.5 . . . 5).
Situation is a bit complicated with the degree of transverse coherence as one can see in
Fig. 7. The degree of transverse coherence reaches a maximum value in the range of ε̂ ∼ 1,
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and drops at small and large values of ε̂. At small values of the emittance, the degree
of transverse coherence is limited by the interdependence of poor longitudinal coherence
and transverse coherence [32]. Due to the start-up from shot noise, every radiation mode
entering eq. (4) is excited within finite spectral bandwidth. This means that the radiation
from a SASE FEL is formed by many fundamental TEM00 modes with different frequencies.
The transverse distribution of the radiation field of the mode is also different for different
frequencies. Smaller values of ε̂ (smaller value of the diffraction parameter) correspond to
larger frequency bandwidths. This effect explains the decrease of the transverse coherence
at small values of ε̂. The degree of transverse coherence asymptotically approaches unity as
(1 − ζ) ∝ 1/z ∝ 1/ ln Nc at small values of the emittance.

In the case of large emittance the degree of transverse coherence is defined by the
contents of higher transverse modes [34, 35]. When ε̂ increases, the diffraction parameter
increases as well, leading to the degeneration of the radiation modes [18]. The amplification
process in the SASE FEL passes limited number of the field gain lengths, and starting from
some value of ε̂, the linear stage of amplification becomes too short to provide a mode
selection process (4). When the amplification process enters the nonlinear stage, the mode
content of the radiation becomes richer due to independent growth of the radiation modes in
the nonlinear medium. Thus, at large values of ε̂ the degree of transverse coherence is limited
by poor mode selection. The degree of transverse coherence scales as ζsat ∝ (ln Nc/ε̂)

2 in the
asymptote of large emittance. To avoid complications, we present here just a fit for the degree
of transverse coherence for the number of electrons in the coherence volume Nc = 4 × 106:

ζsat � 1.1ε̂1/4

1 + 0.15ε̂9/4
. (19)

Recalculation from reduced to dimensional parameters is straightforward. For instance,
saturation length is Lsat � 0.6×Lg × ln Nc. Using (18) and (19) we can calculate normalized
degeneracy parameter δ̂ = η̂ζτ̂c and then the brilliance (12):

Br

[
photons

sec mrad2 mm2 0.1% bandw.)

]
� 4.5 × 1031 × I[kA] × E[GeV]

λ[Å ]
× δ̂ . (20)

Properties of the odd harmonics of the radiation from a SASE FEL with a planar
undulator operating in the saturation regime also possess simple features. In the case of cold
electron beam contributions of the higher odd harmonics to the FEL power are functions of
the only undulator parameter K [45]:

〈W3〉
〈W1〉|sat = 0.094 × K2

3

K2
1

,
〈W5〉
〈W1〉 |sat = 0.03 × K2

5

K2
1

. (21)

Here Kh = K(−1)(h−1)/2[J(h−1)/2(Q) − J(h+1)/2(Q)], Q = K2/[2(1 + K2)], and h is an
odd integer. Influence of the energy spread and emittance leads to significant decrease of the
power of higher harmonics, up to a factor of three for the third harmonic, and a factor of up
to ten for the fifth harmonic. Power of the higher harmonics is subjected to larger fluctuations
than the power of the fundamental harmonic as we mentioned in the previous section. The
coherence time at saturation scales inversely proportional to the harmonic number, while
relative spectrum bandwidth remains constant with the harmonic number.
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6. Estimations in the framework of the one-dimensional model

An estimation of SASE FEL characteristics is frequently performed in the framework of the
one-dimensional model in terms of the FEL parameter ρ [55]:

ρ =
λw

4π

[
4π2j0K

2A2
JJ

IAλwγ3

]1/3

, (22)

where j0 = I/(2πσ2) is the beam current density, σ =
√

βεn/γ is rms transverse size of
the electron beam, and β is external focusing beta function. FEL parameter ρ relates to
the efficiency parameter of the 3D FEL theory as ρ = ρ̄/B1/3. Basic characteristics of the
SASE FEL are estimated in terms of the parameter ρ and number of cooperating electrons
Nc = I/(eρω). Here we present a set of simple formulae extracted from [18,22, 25]:

The field gain length : Lg ∼ λw

4πρ
,

Saturation length : Lsat ∼ λw

4πρ

[
3 +

ln Nc√
3

]

Effective power of shot noise :
Psh

ρPb

� 3

Nc

√
π ln Nc

,

Saturation efficiency : ρ ,

The power gain at saturation : G � 1

3
Nc

√
π ln Nc ,

Coherence time at saturation : τc � 1

ρω

√
π ln Nc

18
.

Spectrum bandwidth : σω =
√

π/τc , (23)

In many cases this set of formulas can help quickly estimate main parameters of a SASE FEL
but it does not provide complete self-consistent basis for optimization of this device.
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We are grateful to Dr. Pavle Juranić for careful reading of the manuscript.

References

[1] A.M. Kondratenko, E.L. Saldin, Sov. Phys. Dokl. vol. 24, No. 12 (1979)986; Part. Accelerators
10(1980)207.

[2] Ya.S. Derbenev, A.M. Kondratenko, and E.L. Saldin, Nucl. Instrum. and Methods 193(1982)415.
[3] J.B. Murphy and C. Pellegrini, Nucl. Instrum. and Methods A237(1985)159.
[4] M. Hogan et al., Phys. Rev. Lett. 81(1998)4867.
[5] S. V. Milton et al., Science, 292(2000)2037.
[6] A. Tremaine et al., Nucl. Instrum. and Methods A483(2002)24.
[7] V. Ayvazyan et al., Phys. Rev. Lett. 88(2002)104802.
[8] V. Ayvazyan et al., Eur. Phys. J. D20(2002)149.
[9] V. Ayvazyan et al., Eur. Phys. J. D 37(2006)297.



Statistical and coherence properties of radiation from X-ray free electron lasers 16

[10] W. Ackermann et al., Nature Photonics 1(2007)336.
[11] T. Shintake et al., Nature Photonics 2(2008)555.
[12] P. Emma, ”First lasing of the LCLS X-ray FEL at 1.5 A”, presented at the Particle Accelerator Conf.,

Vancouver, May 2009.
[13] P. Emma, Lasing and saturation of the LCLS FEL, Proc. FEL09 Conference, TUOA01.
[14] K. Tiedtke et al., New Journal of Physics 11(2009)023029
[15] SCSS X-FEL: Conceptual design report, RIKEN, Japan, May 2005. (see also http://www-

xfel.spring8.or.jp).
[16] M. Altarelli et al. (Eds.), XFEL: The European X-Ray Free-Electron Laser. Technical Design Report,

Preprint DESY 2006-097, DESY, Hamburg, 2006 (see also http://xfel.desy.de).
[17] R. Bonifacio, F. Casagrande and L. De Salvo Souza, Phys. Rev. A 33(1986)2836.
[18] E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, “The Physics of Free Electron Lasers” (Springer-Verlag,

Berlin, 1999).
[19] K.J. Kim, Nucl. Instrum. and Methods A 250(1986)396.
[20] J.M. Wang and L.H. Yu, Nucl. Instrum. and Methods A 250(1986)484.
[21] W.B. Colson, Review in: W.B. Colson et al. (Eds), ”Laser Handbook, Vol.6: Free Electron Laser” (North-

Holland, Amsterdam, 1990), p. 115.
[22] R. Bonifacio, et al., Phys. Rev. Lett. 73(1994)70.
[23] P. Pierini and W. Fawley, Nucl. Instrum. and Methods A 375(1996)332.
[24] E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, Nucl. Instrum. and Methods A 393(1997)157.
[25] E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, Opt. Commun. 148(1998)383.
[26] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Nucl. Instrum. and Methods A507(2003)101.
[27] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Nucl. Instrum. and Methods A562(2006)472.
[28] S. Krinsky and R.L. Gluckstern, Phys. Rev. ST Accel. Beams 6(2003)050701.
[29] S. Krinsky and Y. Li, Phys. Rev. E73 (2006)066501.
[30] L.H. Yu and S. Krinsky, Nucl. Instrum. and Methods A 285 (1989)119.
[31] S. Krinsky and L.H. Yu, Phys. Rev. A 35(1987)3406.
[32] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Opt. Commun. 186(2000)185.
[33] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Nucl. Instrum. and Methods A 507(2003)106.
[34] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Opt. Commun. 281(2008)1179.
[35] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Opt. Commun. 281(2008)4727.
[36] Z. Huang and K.-J. Kim, Phys. Rev. ST Accel. Beams 10(2007)034801.
[37] V. Ayvazyan et al., Nucl. Instrum. and Methods A507(2003)368.
[38] R. Ischebeck et al., Nucl. Instrum. and Methods A507(2003)175.
[39] Y. Li et al., Phys. Rev. Lett. 91(2003)243602.
[40] Y. Li et al., Phys. Rev. B80(2004)31.
[41] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Nucl. Instrum. and Methods A539(2005)499.
[42] G. Moore, Opt. Commun. 52(1984)46.
[43] E.L. Saldin, E. A. Schneidmiller, and M.V. Yurkov, Opt. Commun. 235(2004)415.
[44] E.L. Saldin, E.A. Schneidmiller and M.V. Yurkov, Nucl. Instrum. and Methods A475(2001)86.
[45] E.L. Saldin, E.A. Schneidmiller and M.V. Yurkov, Phys. Rev. ST Accel. Beams 9(2006)030702.
[46] J. Goodman, Statistical Optics, (John Wiley and Sons, New York, 1985).
[47] L. Mandel, Proc. Phys. Soc. (London), 1959, v.74, p.223.
[48] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, Nucl. Instrum. and Methods A 429(1999)233.
[49] G. Geloni et al., Opt. Commun. 271(2007)207.
[50] M. Schmitt and C. Elliot, Phys. Rev. A, 34(1986)6.
[51] R. Bonifacio, L. De Salvo, and P. Pierini, Nucl. Instr. Meth. A293(1990)627.
[52] W.M. Fawley, Proc. IEEE Part. Acc. Conf., 1995, p.219.
[53] H. Freund, S. Biedron and S. Milton, Nucl. Instr. Meth. A 445(2000)53.
[54] Z. Huang and K. Kim, Phys. Rev. E, 62(2000)7295.
[55] R. Bonifacio, C. Pellegrini and L.M. Narducci, Opt. Commun. 50(1984)373.


