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Abstract

The problem of errors, arising due to finite BPM resolution, in the difference
orbit parameters, which are found as a least squares fit to the BPM data, is one
of the standard and important problems of accelerator physics. Even so for the
case of transversely uncoupled motion the covariance matrix of reconstruction
errors can be calculated “by hand”, the direct usage of obtained solution, as
a tool for designing of a “good measurement system”, does not look to be
fairly straightforward. It seems that a better understanding of the nature of
the problem is still desirable. We make a step in this direction introducing
dynamic into this problem, which at the first glance seems to be static. We
consider a virtual beam consisting of virtual particles obtained as a result
of application of reconstruction procedure to “all possible values” of BPM
reading errors. This beam propagates along the beam line according to the
same rules as any real beam and has all beam dynamical characteristics, such
as emittances, energy spread, dispersions, betatron functions and etc. All
these values become the properties of the BPM measurement system. One can
compare two BPM systems comparing their error emittances and rms error
energy spreads, or, for a given measurement system, one can achieve needed
balance between coordinate and momentum reconstruction errors by matching
the error betatron functions in the point of interest to the desired values.
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1 Introduction

The determination of variations in the transverse beam position and in the beam
energy using readings of beam position monitors (BPMs) is one of the standard
and important problems of accelerator physics. If the optical model of the beam
line and BPM resolutions are known, the typical choice is to let jitter parameters
be a solution of the weighted linear least squares problem. Even so for the case of
transversely uncoupled motion this least squares problem can be solved “by hand”,
the direct usage of obtained analytical solution as a tool for designing of a “good
measurement system” does not look to be fairly straightforward. It seems that a
better understanding of the nature of the problem is still desirable.

A step in this direction was made in the paper [1], where dynamic was introduced
into this problem which in the beginning seemed to be static. When one changes the
position of the reconstruction point, the estimate of the jitter parameters propagates
along the beam line exactly as a particle trajectory and it becomes possible (for
every fixed jitter values) to consider a virtual beam consisting from virtual particles
obtained as a result of application of least squares reconstruction procedure to “all
possible values” of BPM reading errors. The dynamics of the centroid of this beam
coincides with the dynamics of the true difference orbit and the covariance matrix
of the jitter reconstruction errors can be treated as the matrix of the second central
moments of this virtual beam distribution.

In accelerator physics a beam is characterized by its emittances, energy spread,
dispersions, betatron functions and etc. All these values immediately become the
properties of our BPM measurement system. From now one can compare two BPM
systems comparing their error emittances and error energy spreads, or, for a given
measurement system, one can achieve needed balance between coordinate and mo-
mentum reconstruction errors by matching the error betatron functions in the point
of interest to the desired values.

This dynamical point of view on the BPM measurement system was explored
in [1] in application to the case of transversely uncoupled nondispersive beam mo-
tion and in this paper we continue this study adding energy degree of freedom.!
The paper by itself is organized as follows. In section 2 we introduce all needed
notations, formulate the problem and give its standard least squares solution. As
a new element, we formulate the necessary and sufficient conditions for the BPM
system to be able to distinguish between transverse and energy jitters in terms of
its three BPM subsystems. In section 3 (the core section of this paper) we make
parametrization of the covariance matrix of the jitter reconstruction errors using the
usual accelerator physics concepts of emittance, energy spread, dispersion and be-

Tt is clear, that such considerations, if needed, can also be done for the case of the fully coupled
six dimensional motion. It is also clear that in similar fashion one can approach some other problems
connected with the error propagation. It should not be necessary the BPM reading errors, it could
be, for example, errors in the kick angles produced by the orbit feedback system.



tatron functions. We also show that the error dispersion is not simply one of the
many dispersions which could propagate through our beam line. It, in analogy with
the error betatron functions [1], is by itself solution of some minimization problem
and is uniquely determined by transport matrices between BPM locations and by
BPM resolutions. In section 4 we consider the measurement system which utilizes
three beam position monitors (the minimum number of BPMs needed) and analyze
in details effect of symmetries of the optics between BPM locations. In section 5 we
continue the investigation of periodic measurement systems started in [1]. This time
with the main accent on achievable energy resolution. And, finally, in section 6 we
discuss application of the Courant-Snyder quadratic form as error estimator, even so
in the case when energy degree of freedom is taken into account this quadratic form
is not bound to be an invariant.

2 Problem and Its Least Squares Solution

Let us consider a magnetostatic beam line which is built from optical elements
which are symmetric about the horizontal midplane y = 0. In such magnetic system
the transverse particle motion is uncoupled in linear approximation, the vertical
oscillations are dispersion free and errors in reconstruction of their parameters were
already studied in [1], and in this paper we will examine together z-plane and energy
degrees of freedom because they are connected through (linear) dispersion.

We will use the variables Z = (z, p, €)' for the description of the horizontal
dispersive beam motion. Here, as usual, x is the horizontal particle coordinate,
p is the horizontal canonical momentum scaled with the kinetic momentum of the
reference particle and the variable e stays for the relative energy (or momentum)
deviation.? As orbit parameters we will understand values of z, p and e given
in some predefined point in the beam line (reconstruction point with longitudinal
position s = r) and as transverse and energy jitter in this point we will mean the
difference

02(r) = (8a(r), op(r), 6=(r))" = (a(r) = 2(r), p(r) = p(r), e = &) (1)

between parameters of the instantaneous orbit and parameters of some predeter-
mined reference (golden) trajectory (7, p, £)'.

Let us assume that we have n BPMs in our beam line placed at positions
S1,...,8, and they deliver readings

be = (b, ... 05)" (2)

2The exact form of the variable ¢ which we have in mind can be found in [2], but let us note
that for the present study the particular form of this variable is unimportant. Let us also note that
while in [1] the symbol & was used for the BPM reading errors, in this paper we prefer to use it for
the relative energy deviation, and for the BPM reading errors we will introduce ¢ as new notation.




for the current trajectory with previously recorded observations for the golden orbit
being

by = (b9, ...09)" . (3)

Suppose that the difference between these readings can be represented in the form
x(s1) — z(s1)
b < b, — b, = : + 3, (4)

z(8n) — Z(8n)

N

where the random vector ¢ = (¢, ..., s,)" has zero mean and positive definite
covariance matrix V_, i.e. that

(3) =0 (@) = () —()() =% >0 ®)

The purpose of this paper is to study the influence of BPM reading errors ¢ on
precision of reconstruction of jitter parameters under assumption that optical model
of the beam line is known. The additional assumptions which we will make are: the
covariance matrix V_ stays constant and the BPM reading errors can be treated as
independent from one measurement to the other. So BPM errors that are correlated
from measurement to measurement (calibration and other systematic errors, drifting
BPM readings and etc.) and fluctuations in BPM resolutions will be not considered.
In practical applications these assumptions may or may not be realistic, but, first,
they make the underlying mathematics almost trivial®> and, second, their satisfaction
is, in some sense, one of the goals for the BPM and BPM electronics designers.

Let A,,(r) be a transfer matrix from location of the reconstruction point to the
m-th BPM location

and let us assume that the Cholesky factorization V. = R! R of the covariance
matrix V_ is known. As usual, we will find an estimate

0Z(r) = (dx(r), opc(r), dee(r))" (7)

for the difference orbit parameters (1) in the presence of BPM reading errors by
solving the following weighted linear least squares problem

3Under these assumptions errors in the reconstruction process can be modeled as a sequence
of independent identically distributed random variables (like in coin tossing) and therefore all
probabilistic characteristics can be obtained studying errors in reconstruction of the result of only
one measurement, but for all possible values of <.
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Here || -||2 denotes the Euclidean vector norm, M, = RZTM and

ai(r) ca(r) gi(r)
M = : : : : (9)
an(r) cu(r) gn(r)

The problem (8) always has at least one solution and, if we will assume that the
matrix M. has full column rank (rank(M.) = 3), then the solution of this problem
is unique and is given by the well known formula

67.(r) = (M (r)M,(r)) " M (r) R -85, =

= M7V M) MT(r) V6 (10)

The calculation of the covariance matrix of the errors of this estimate (object of our
main interest) is also standard and gives the following result

def 1

Va(r) = V(02 (r)) = (M (M(r)) = (M (r) V7 M(r))

1

(11)

Let us discuss in more details the important condition for the matrix M. to have
full column rank. This condition will allow us to separate betatron and dispersion
oscillations at the BPM locations and, therefore, will make our system applicable for
measuring transverse and energy jitter.

Because the matrix R, is nondegenerated, the rank of the matrix M. is always
equal to the rank of the matrix M, and the matrix M, in the next turn, will have full
column rank if and only if the Gram determinant I' (@, ¢, §) of its column vectors

= (ar,....an) , @= (c1,...,cn) s G = (g1, 90)" (12)
is not equal to zero.
To find desired expression for the Gram determinant let us introduce B, -

transport matrix from the location of the BPM with index m to the location of the
BPM with index k&

mk mk mk
. aenk 3812k aelﬁk

B = A A, = | &bt ely el | . (13)
0 0 1

With these notations and using Binet-Cauchy formula one can obtain after some
straightforward manipulations



.. . .. N\ 2
N@eg) =det(MM) = Y (abals - alalf) =

1<i<j<k<n

3

o )
(eeefs — ®ipaly) ,  (14)

=

1 L N2
=5 2 (whels - ehhafy) =
i, j k=1 i, j k=1
where 36?2 (in the framework of the usual 6 by 6 matrix formalism for the linear
beam dynamics) is the coefficient that connects variation of the particle path length

with variation of the particle transverse momentum and which can be expressed
using elements of the matrix B;; as follows

R R ij _ij
Xy = Xgg X5 — Ly Lo - (15)

From (14) one sees, that the matrix M will have the full column rank if and only
if there are at least three beam position monitors with indices ¢, 7 and k& such that
the transport matrices between them satisfy the condition

e ey — ®pey # 0 (16)
or (equivalently) the condition
wlfy ey — eejp ety # 0. (17)

Note that both conditions, (16) and (17), involve elements of two transfer ma-
trices, but while (16) uses matrices between neighboring BPMs (B;; and B,y), con-
dition (17) operates with the transport matrices from first to two remaining BPMs
(Bi; and By). In simple words the condition (17), for example, means that one
can not vary particle transverse momentum and particle energy at the first BPM

location in such a fashion that these variations are invisible at the two downstream
BPMs.

3 Beam Dynamical Parametrization of
Covariance Matrix of Reconstruction Errors

Let A(ry, r2) be a matrix which transport particle coordinates from the point
with the longitudinal position s = r; to the point with the longitudinal position
S =T9

mir Miz Mie
A(Tl, 7“2) = Mao1 Moo Mg ) mi1 Moz — Mz Mo = 1. (18)

0 0 1



Similar to [1], one can easily show that for any given value of < the estimate of the
difference orbit parameters 0z, propagates along the beam line exactly as particle
trajectory

07(r2) = A(ry, 12) - 67(11), (19)

as one changes the position of the reconstruction point. So again we can consider
a virtual beam consisting from virtual particles obtained as a result of application
of formula (10) to “all possible values” of the error vector <. The dynamics of the
centroid of this beam 0z coincides with the dynamics of the true difference orbit

03(r) & (07(r)) = 02(r), (20)

and the error covariance matrix (11) can be treated as the matrix of the second
central moments of this virtual beam distribution and satisfies the usual transport
equation

Vi(ra) = A(ry, 7o) Va(ri) AT (11, o). (21)

Consequently, for the description of the propagation of the reconstruction errors
along the beam line, one can use the accelerator physics notations and represent the
error covariance matrix in the familiar form

T
1 ﬁc —Q 0 Nz Nz,s
Vi= (MJMC) = €& —0Os Y 0 + A? Tp,s Mp,s =
0 0 0 1 1
€ B + A? Tiﬁ,g —€ O + A? Nz, Mpys Af Nz,
= —€ O + A? UERL XS € Vs + A? Tig,g A? Mp.s . (22)
A? UERS A? Tlp,s A?

As usual for the particle dynamics, this parametrization has two invariants (quan-
tities which are independent from the position of the reconstruction point), namely
transverse error emittance e, and rms error energy spread A., which can be calcu-
lated according to the formulas

1 I (a, ¢
€ = = Ay = —Fag—’_, Cgl ) (23)
F (ag7 Cg) F (GCJ CC? gS‘)

where we have used the notations

i, = R’'da, & = R'¢ G = R'§ (24)

<

and T (i, ... 1,) is the Gram determinant of the vectors wy, ... iy,.



The error Twiss parameters, of course, remain the same as they were earlier
published in [1], namely

Bo(r) = e @z, adr) =e @(r)-a(r)), %) =e @)z, (25)

and for the new objects, the coordinate and momentum error dispersions, we have

Tacr) = e (ac(r) (@) 30) = Br) @) - 5lr) ). (26)

M) = € () @) 7)) = %) @) 3.(r) ). (27)

As it was shown in [1], the error Twiss parameters (25) are not simply one of
many betatron functions which could propagate through our beam line, they are by
themselves solutions of some minimization problem and are uniquely determined by
transport matrices between BPM locations and by BPM resolutions. And we would
like to show, that the same is true also for the error dispersions (26) and (27).

Let n.(r) and 7,(r) be some dispersions specified in the reconstruction point.
Then the corresponding coordinate dispersion at the m-th BPM location can be
calculated as follows

Me(5m) = am(r)me(r) + em(r) mp(r) + gm(7). (28)

Counsider a vector

D (T, 771(7")7 np(r)) = Rg_T (771(31), e anﬂc(sn))T = 7793(7“) d + 77;0(7") Ce + ge (29)

and a minimization problem

= 2
min D (r, n.(r), ny(r . 30
i [ B0, m0) [ (30
By standard means it is not difficult to show that if I" (@, &) # 0 then the solution
of this minimization problem is unique and is given by the formulas (26) and (27).
If, additionally, I' (@, ¢, §) # 0 then the minimum in (30) is bigger than zero
(and is equal to zero otherwise) and the following identity holds

| B meslr), ) [ = 2z 31)

Note that geometrically the vector n,(r)d. + n,(r) ¢, is nothing else as taken
with an opposite sign projection of the vector g. onto a linear subspace formed by
vectors @, and & and hence the vector D (7, 1,..(r), 1p<(r)) is orthogonal to both,
vector d. and vector c..

To finish this section let us, for the case when readings of different BPMs are
uncorrelated, i.e. when the covariance matrix V. is a positive diagonal matrix



V. = diag(of, 03, ...,0.) > 0, (32)
write down the following useful expressions for the Gram determinants

n

.. 2
Lo 1 )
r (aca C?) = 5 Z (E) ) (33)

i,7=1

P (6§7E§7§§) -

o 2 g g 2
n i gk ij o Jk n i ik i ik
Z E52F1p — T | _ 1 Z L5 — PPy (34)
0,0, 0 6 0, 0; O ’

ivjv k:l i,j, k:l

D =

which enter formulas (23) for the transverse error emittance and for the rms error
energy spread.

4 Three BPMs in Symmetric Arrangement

Let us assume that we have three beam position monitors in our beam line which
deliver uncorrelated readings with rms resolutions oy, 09 and o3, and let B;s and
Bs3 be transfer matrices between first and second, and between second and third
BPM locations respectively

11 Ti2 Tie mi1 M2 Mae
By = 21 Ta2 T2 ) By = Mo Mo Mg . (35)
0O O 1 0 0 1

When the phase advance between the first and the second BPMs or the phase
advance between the second and the third BPMs is not multiple of 180°, i.e. when

iy + miy # 0, (36)
this system can be used for the measurement of the transverse orbit jitter with the
transverse error emittance given by the following expression

010203

. - . (37)
2,2 2 2 22
\/01 miy + 05 (miiri2 + Te2maz)” + 0377,

In order to be able to resolve both, transverse and energy, jitters simultaneously
we have to assume, additionally to (36), that

My Ts2 — T12M16 7"é 0, (38)

where the 755 and r5; coefficients can be expressed using elements of the matrix
Bis as follows

10



{7"51 = T21T16 — 711726 (39)

sz = T22T16 — 712726
With (36) and (38) satisfied, we obtain for the square of the rms error energy spread

2,2 2 2 2,2

A2 _ OiMip + 0 (ma1m12 + reamag)” + 0371
= 2
(M2 752 — T12M16)

N

(40)

To complete description of the covariance matrix of the reconstruction errors
(22) for the three BPM case, we also need formulas for the error coordinate and
momentum dispersions, and for the error betatron functions. And although it is
not very difficult to provide some formulas using (25), (26) and (27), the results are
not very informative and it is not easy to derive some nontrivial conclusions from
them. So in this section we will give more digestible expressions for error dispersions
and error betatron functions making an additional simplifying assumption about our
measurement system that the transfer matrix By between the second and the third
BPM is not an arbitrary beam transport matrix, but is obtained as a result of some
symmetry manipulation with the transfer matrix between the first and the second
BPM.

4.1 Mirror Symmetric Optical System

Let a magnet system between the second and the third BPMs be a mirror symmet-
ric image of the magnet structure between the first and the second BPM locations.
Then

T2 Ti2 —Ts52
Bas = | 121 i1 =711 |- (41)
0 O 1
The transverse error emittance of this measurement system is given by

1 01 09 03

el Voi + 40313, + oF

(42)

€

and the error betatron functions at the BPM locations can be calculated as follows

o1 do2r2, + o2

Be(s1) = |rial - e (43)
0203 \/01 + 40515, + 03

. 01 20'27"22 (]. + 27’12T21) + 0'27”11
ac(s1) = sign (r2) - S > — 23 : (44)
0203 Vot + 403rd, + 03

o o + o2

Bo(sz) = |ria| - — . : (45)

’ )
01035 /o + 4o2r2, + o2

11



g (o8 0272
ac(sg) = sign (r2) (0_3 0_1> \/O% T i0i1% & 0?%, (46)
o o? + do3rs

Be(ss) = [l - - 2 1 2 22 = 2’ (47)

0102 \Jo} + 4o3r, + 03

2 2
. 03 o771 + 20' 7929 (1 + 2T127"21)
ac(s3) = —sign (r2) - - > 2 — : . (48)
0102 Vo + 40213, + o3

If we will assume that BPM resolutions follow mirror symmetry of the system,
which means that o, is equal to o3, then, as it could be expected, the error Twiss
parameters will satisfy the following symmetry relations

6@(33) = ﬁc(sl)a ()4@(33) = _04<<31)a ac(SQ) =0. (49)
For the square of the error energy spread we have the following expression

2 2.2 2
o + 40515 + 03

2
4rs,

A? =

<

: (50)

and the coordinate and momentum error dispersions at the BPM locations are given
below

20'%7”52
cc(81) = — , o1
77&( 1) 0_% n 4037,32 + 0_:? ( )
. U% (7”16 + 27”127”51) - 4057”12 T22T26 — 032,7”16
77p,<(81) - 2 2 9 2 ) (52)
(39) = pocirmle 53
.o\ S - )
52 0% + 4o3rs, + o3
Mo(2) = (0} — 03) - , (54)
’ T2 (03 + 40313y + 03)
20§T52
rc(S3) = — ) 55
s (53) o3 + do3ry, + o3 (55)
Np(s3) = 07716 + 405712792 o6 — 03% (r1i6 + 2712751) (56)

2 2.2 2
rig - (0 + 403135 + 03)

12



Figure 1: Schematic layout of four bend chicane.

One sees that if BPM resolutions will follow mirror symmetry of the system, they,
similar to the error betatron functions, will satisfy

nm,<<33) = 773:,@(51)7 77p,<<33) = —Up,<(51), 77;0,@(52) =0, (57)

independently if ro6 is equal to zero or not.* One also sees that if mirror symmetric
system can be used for energy jitter measurement (i.e. if r5 # 0), then the error
dispersion is nonzero at the system entrance and exit, again independently if ro4 is
equal to zero or not.

As a more specific example, let us consider three BPMs integrated into four bend
magnetic chicane, as shown by red circles in figure 1. For this system

1 ri2 716
Bl2 - 0 ]. O 5 (58)
0 O 1
where
2L, Ls
=L L
12 Lt bt COS(%O) cos3(§0) # 0 (59)
and
1 L
16 = T'52 co5(2) ( 2 tan(p/2) + cos(9) an(gp)) # 0 (60)

Therefore this system always can be used for the transverse and energy jitter mea-
surement, and, as a concrete case, let us consider the first bunch compressor of the
FLASH facility [3, 4], which is the four bend chicane of the discussed layout. The

4Let us remind, that the condition reg = 0 applied in the symmetry point is the necessary and
sufficient condition for the total transfer matrix of the mirror symmetric system to be achromatic.

13



Orbit BPM resolution (rms, microns)

0 1 2 3 4 5 6
Energy BPM resolution (rms, microns)

Figure 2: Resolutions of orbit and energy BPMs (shaded area) which are needed in
order to be able to resolve energy jitter 5-107° in the first bunch compressor of the
FLASH facility. BPMs are positioned as shown by red circles in figure 1.

typical deflection angle for this chicane is about 18° and the distances L, and L3 are
equal each other and are equal to 0.5 m (see, for example, [5]). Let us assume that the
first and the third BPMs (orbit BPMs) have the same rms resolutions oy = 03 = 0o
and for the second BPM (energy BPM) let us introduce the notation oy = ;. Let
Ages will be energy jitter resolution desired for the system. With these numbers and
notations, and using the usual three sigma criterion (3A. < Ages) we obtain from
(50) the following inequality

o2, + 202 < 0.02663- A2, (61)
which gives us limitations on the range of the BPM resolutions which can provide
the required precision for the energy jitter measurement. Figure 2, for example,
shows the area of acceptable BPM resolutions defined by the inequality (61) for
Ages = 5 - 107°.

To finish the chicane discussion, let us move the first and the third BPMs into
positions shown as green circles in figure 1. For this case

1 T2 Tie

By = 0 rog 7T ) (62)
0 0 1

14



1 Ls
T = ~ = cos(yp), T2 = W + Ly + Ly cos(p), (63)
re = —Lg tan(p/2) — Ly sin(yp), Tos = —sin(y), (64)
L
T'so = L2 tan(g0/2) + COS(SQO) tan(gp), <65)

and one sees that this BPM positioning still can be used for the jitter measurement,
because 715 # 0 and 755 # 0, but both, the transverse error emittance and the error
energy spread become larger (for the same BPM resolutions) than for the original
BPM layout. Nevertheless, it is a good example of a mirror symmetric system for
which rss # rg and the total transfer matrix is not achromatic.

4.2 Mirror Antisymmetric Case

If a magnet system between the second and the third BPMs is a mirror antisym-
metric image of the first part of the system, then

22 Ti2 Ts2
Bys = o1 T11 Ts1 . (66)
0 O 1

The transverse error emittance and the error beta functions remain the same
as for the mirror symmetric case, but the measurement of the energy jitter is not
possible anymore, independent of the BPM resolutions following symmetry of the
system or not. The coordinate error dispersion is always zero at the BPM locations
with the momentum error dispersion taking the values

T'16 T'52
Mo (81) = Mpe(s3) = ——, Mps(82) = ——, (67)
T12 12
which are independent from BPM resolutions. Note that this impossibility of the
energy jitter measurement does not depend on the value of r14 which could be zero
or not.”

4.3 'Two Periodic System

Let us assume that our measurement system is periodic, by which we mean
that Bsz = Bjs. We named it in the title as two periodic owing the fact that two
equal transfer matrices are involved, but, more correctly, it should be treated as

®The condition 716 = 0 is the necessary and sufficient condition for the total transfer matrix of
the mirror antisymmetric system to be achromatic.

15



a three cell system because we consider three BPMs. Note that general periodic
measurement systems constructed from n identical cells will be studied in details in
the next section, but with additional simplifying assumptions that the cell transfer
matrix allows periodic beam transport and that all BPMs have the same resolutions.

The transverse error emittance of the two periodic system can be expressed in
the form

1 010903
€ fr— . P 68
) Iri2|  \/o? + 03 -t12 (Bya) + 03 (6%)
where
tl‘z (Blg) = 711 + 292, (69)
and calculation of the error betatron functions gives the following results
2 4.2 2
o o5 -tr2 (B2) + o
Be(s1) = |rial - e — (70)
0203 \Joi + 0} -t12 (Bia) + 03
. o 02 - tr, (B1a) - (111 - tre (B1a) — 1) + o2r
ac(s1) = sign (r12) - L 22 ( 12)2 ( 112 2< 12) )2 3 1 . (71)
0203 Vo? + 0% -t12(Bp) + o3
2 2
09 o] + o
Be(s2) = |rial- e = (72)
0103 o} + 0} -t12 (By) + 03
( ) . ( ) 02 0%7“11 - 057"22 (73)
ac(sy) = sign(ris) - . ,
S oo Vo2 + o3 -t12 (By) + o3
2 2 4.2
o3 o1 + o3 - tr2 (Bia)
PBe(ss) = |ral - e = (74)
0102 \Jo? + 0} t12 (Bia) + 03
7 3 try (Bra2) - try (Bpa) — 1
ag(s3) = —sign (ri2) - % Oirm T o (Brz) (r - trs (Bro) ) (75)

0102 Vo? + o2 -t12 (By) + o2

Let us assume in the following that BPM resolutions follow symmetry of the
system, which, in the periodic case, naturally mean that o; = o = 03. In this
situation [.(s1) and (.(s3) are always equal to each other and, it seems; it is the
only symmetry which does not require additional assumptions about coefficients of
the cell transport matrix Bys.

16



The error betatron functions will be cell periodic (will stay unchanged after trans-
port through the first half of the system), if and only if

tr2 (By) = 1, (76)
and, if (76) is satisfied, then
cos(pp) = :l:% (77)
and, therefore,
sin(3py) = sin(ny) - (4c0s’(1,) — 1) = 0, (79)

where 1, is the cell phase advance corresponding to the periodic betatron function.
The error betatron functions will be two cell periodic (will stay unchanged after
transport through the whole system), if and only if

tr® (Byy) = tr, (Bia) , (79)
which, when compared with (76), gives equation
trm (Blg) == 0, (80)

as the condition for the “true two cell periodicity” (two cell periodic, but not one
cell periodic). This condition means that the transverse part of the total system
matrix B%, (two by two submatrix located in the left upper corner) is equal to the
minus identity matrix for which arbitrary incoming beta and alpha functions will be
transported without changes through the system, but the error betatron functions
will also bring the sum of the beta function at the BPM locations to the minimal
possible value.

To finish the discussion about error betatron functions let us note, that if in the
matrix By the first two diagonal coefficients are to equal each other (r1; = rag),
then

ag(s3) = —ag(s1), ag(s2) =0, (81)

and one may say that in this situation the error betatron function becomes mirror
symmetric.

For the error energy spread and the error coordinate and momentum dispersions
we have in the case of the two periodic measurement system the following formulas

02 + 03 -tr (Byy) + o2

(7"16 - 7“52)2

A? =

<

, (82)

0% (7“16 - 7"52)

0? + 02 -tr2 (By2) + o3’

77$,<<31) = (83)
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7717,@(31) =

_ _0'% <T16 + T11 <T16 — 7’52)) -+ O'% . tI‘x <B12) . ((tl‘z (Blg) + 1) 6 — T52) + 0§T16 (84)
riz - (0 + 03 - tr3 (Bia) + 03) ’

2

05 - try (Bia) - (rig — r52)
x o ’ 85
My (52) 02 + o3 -tr2 (Bya) + 03 =

Mps(52) =
_ _0%7’16 + 03 - try, (Bia) - (try (Bi2) - 752 + 1oz (r1i6 — 52)) + 03752 (36)
T (03 + 03 - tr2 (Bya) + 02) ’
s (83) = o? —i—aag%(-rtliizB:zQ))-i- o3’ (87)
Mps(83) =
_ _0%7"52 + 03 - try (Bia) - ((trg (Bi2) + 1) 150 — 116) + 03 (750 + 792 (150 — 7'16)) (89)

12 (0’% + 0'% . trg (Blg) + U%)

and, if resolutions of all three BPMs will be equal, the error dispersion will satisfy
the equality

Nes(51) = Nec(s3). (89)

The condition for the error dispersion to be cell periodic is more restrictive than
for the error betatron functions, namely

tr, (Ba) = —1, (90)
and the condition for the “true two cell periodicity” is
tl‘z (Blg) == —2, (91)

which does not lead to any noticeable symmetry of the error betatron functions and
which means that the transverse part of the cell matrix Bjs is equal to the sum of
the minus identity matrix plus some nilpotent matrix N (N? =0).

Note that under condition (90) we have for the periodic cell phase advance the
following relations

cosli) =~ sin(n/2) = sin(y/2) - (2eos(py) +1) = 0. (92)
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4.4 Cell Followed by Switched Cell

If a magnet system between the second and the third BPMs repeats the magnet
system between the first and the second BPMs but with switched directions of dipole
magnets, then

i T2 —Tie
By = | ra1 122 —T26 |- (93)
0 0 1

In analogy with transition from mirror symmetric to mirror antisymmetric case, the
transverse error emittance and the error betatron functions remain the same as for
the two periodic measurement system, but, in contrast to mirror antisymmetric case,
this system still can be used for the energy jitter measurement if

T16 + T'52 7é O, (94)

which, in particular, forbids the magnet system between the first and the second
BPMs to be mirror symmetric by itself.
For this measurement system we obtain

0? + 03 -tr2 (By) + o2

A? = : (95)
: (rie + 7"52)2
2
Ul (7"16 + 7"52)
(s)) = — , 96
e (51) 02 + o3 -tr2 (Bya) + 03 (96)
77p,<($1) -
_ _0% (r1i6 — 711 (116 + 752)) + 03 - try (Bra) - ((try (Br2) — 1) 716 — 752) + 03716 (97)
rig - (0 + 03 -t (Biz) + 03) ’
2
0'2 . tI‘I (Blg) . (7”16 + 7”52)
T - y 98
e (52) o? + 03 -tr2 (By2) + o3 (98)
7717,@(32) =
_ o1 — 05 -1, (Bia) - (try (Bi2) - 152 — 199 (116 + 752)) — 0§T52 (99)
rig - (07 + 03 -t} (Bi2) + 03) 7
2 -
Mo (53) = 73 (1o ¥ 72) (100)

_0% + 03 -tr2 (Byg) + 02’
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7717,@(33) =

0%7"52 + U% -try (Bi2) - ((try (Bi2) — 1) rse — 116) + 032, (152 — rog (152 + 716))

- ,(101
riz- (0 + 03 - try (Bi2) + 03) (101)

and one sees that for equal BPM resolutions the property
Nes(51) = Mue(s3) (102)

is still preserved.

There is no reasons to expect that coordinate error dispersion and simultaneously
momentum error dispersion could stay constant at all three BPM locations (analogy
of cell periodicity for the two cell measurement system) and, as one can check, there
is no solution for that. Nevertheless, both error dispersions still can stay unchanged
after transport through the whole system, if

tl‘z (Blg) =1 or tl"z (Blg) = 2. (103)

5 Periodic Measurement Systems

Let us consider a measurement system constructed from n identical cells assuming
that the cell transfer matrix allows periodic beam transport with phase advance per
cell 11, being not a multiple of 180°. Additionally, we will assume that BPMs placed
in our beam line deliver uncorrelated readings, all with the same rms resolution o,.

Let us first consider the case when we have one BPM per cell (identically posi-
tioned in all cells) with the periodic betatron function and the periodic dispersion
function at the BPM locations equal to (,(s1) and 7,,(s1) # 0 respectively.

In this situation the formulas for the error transverse emittance and the error
betatron function remain the same as was already published in [1], and the square
of the error energy spread is given by the following expression

2

o
A = P ouliy) (104)
nnz,p<81)
where the function
- 1 sin(npu,)
n  sin(u
nlit) = L) (105)

L sin(nyip) _ L sin(ny,/2) ’
L ) (n Sin(up/2)>

is defined only for n > 3. Note that for n > 3 this function could be extended by
continuity for all u, not multiple of 360° where it becomes unbounded.”

SFor m = 1,2 the denominator in the formula (105) is equal to zero independent of the value of
the cell phase advance p,,

"The nonnegative denominator in the formula (105) is equal to zero not only when g, is a
multiple of 360°, but also when n is even and, simultaneously, 4, an odd multiple of 180°.
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The coordinate and momentum error dispersions 7, and 7,. at the BPM lo-
cations are given below

Mec(5) = Mep(s1) - (1 = wnlpp) - cos (M52 1)) (106)

_ s) — s ,Wn(ﬂp) gin (ntl=2k _
Mpis (k) = Tpp(s1) Nep(51) B, (s1) ( ( 2 “P>

— aplsr) - cos (212 4)) (107)

wn () = 2 <l : M) (1 + 1 M)_l 7 (108)

0 sin(/2) nsin(uy)

and one sees that while the coordinate error dispersion n,. always have mirror
symmetry

7736,§<8k) = 7730,g<3n+1—k) ) k = 17 sy 1y (109)
the momentum error dispersion will be mirror antisymmetric
np,C(Sk) - _np&(STH—l—k) ) k = L...,n (110)

only in the case when a,(s;) = 0 and n,,(s1) = 0.
Note, that the mean value of the coordinate error dispersion and the mean value
of its squares satisfy the following relations

1 771;)(51) I 2 77317(31)
— D Maelsk) = ——, — D mylsk) = = : (111)
n ; ) on(ttp) n ; * on(tip)

The function g, (p,) is never smaller than one and is equal to one (reaches its
minimum) only in the points

360°
n

-1 if n is odd
-1L,3+1,...,n—1 if n iseven

(mod 360°), k::{ Lo

X (112)

n
,up:/{: n
I N)

in which error dispersion coincides with periodic dispersion and which seem to be
good candidates to be selected for improving resolution of the energy jitter measure-
ment (see figure 3), if we are free in choosing the cell phase advance while, for some
reasons, the dispersion at the BPM location has to stay unchanged. But, when we
optimize a cell in which periodic dispersion at the BPM location is by itself function
of the cell phase advance, the situation, of course, changes. Let us, like in [1], con-
sider a thin lens FODO cell of the length L in which two identical thin lens dipoles
with transfer matrix
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Figure 3: Functions g,(p,) shown for n = 3,4,5,6 (magenta, red, green and blue
curves respectively).

0
©/2 (113)
1

o O =
O = O

are inserted in the middle of drift spaces separating the focusing and defocusing
lenses. Let us assume that the BPM is placed in the “center” of the focusing lens
with the periodic dispersion at this locations being

Ly 1+ Lsin(p,/2)

. _ _ 7 114
77 ,P(Sl) 77+ 4 Sin2(/llp/2) ( )
where ¢ is the cell deflection angle.
In this situation we can write
o2 4\2
A2 = e () Ly, 115
2 T () (). (115

where functions W, depend only on the cell phase advance p, and are converging
(from above) to the function

()
Voo(ptp) = (1 n %Sin(ﬂp/2))2 (116)
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Figure 4: Functions W, (y,) shown for n = 3,4,5,6 (magenta, red, green and blue
curves respectively). The gray curve shows function W ().

as n goes to infinity.

The functions W, (41,,) for n = 3,4,5,6 are plotted in figure 4 together with their
values in the points (112) shown as small circles at the corresponding curves. One
sees that, again like in [1], there is nothing really special about points (112) except
the trivial fact that all of them belong to the graph of the function W, .

Before switching to the situation when we have two BPMs per cell let us rewrite
expression (105) for the function p,(s,) in the form

5;0(31)
2my, (5., ﬁp) 7792:,;)(31)

1
Qn(ﬂp) = (1 - A, (5@7 Nz, = Naypy Mps — np,p)) ) (117)

where
my (B ) = (1 - (55 ) (118)

is the mismatch between the error and the periodic betatron functions (even so we
do not assume, in general, periodic betatron functions and/or periodic dispersion
being the design betatron functions and/or design dispersion matched to our beam
line) and

I, (ﬁm Nz, = Na,py Mp,s — np,p) =
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Figure 5: Functions ®,,(y,) shown for n = 3,4,5,6 (magenta, red, green and blue
curves respectively). The gray curve shows function ®o.(p,).

= % (7799,< - 7793,;0)2 + 20 (7799,< - nx,p) (77p,< - np,p) + 0 (77p,< - 7710,;0)2 =

B 4n§,p(slﬁ)p2%)(ﬁg, By) (% , %)2 (1 - %%) (119)

is the difference between periodic and error dispersions measured by using the Courant-
Snyder invariant formed out of error Twiss parameters.

Note, for completeness, that if one will express the difference between periodic
and error dispersions using Courant-Snyder invariant formed using periodic Twiss
parameters, then one will have the following relation

I, (ﬁm Nz, = Na,py Thps — np,p) =

1 sin(nu,)
= My (5{7 5;0) (1 - E ' W) 'Ia: (59 Nz, — Neyps Thp,s — np,p) -

] 1 sin(npu,)
- n_ sin(p,) B -
B 1 sin(npu,) Lo (B, Moe = Moy Mo — Tpyp) - (120)
|y - S
n sin(p,)
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Let us now turn to the situation when we have two BPMs per cell with 6 being
the phase shift between the first and second BPM location.
In this situation the square of the error energy spread can be expressed as

2
g
A? = b Wy, (121)
Con(m2(s0) + n2,(s2))

where multiplier

o (1 By(s1) + By(s2)

-1
_ Ly (Bey Thoe — Ty e — 199
2mp (6{7 6})) (7732371)(81) —+ 7732371)(32)) (B N, Na,p> Tp, 7)174?)) ( )

has a form which is very similar to (117) with

I, (ﬁcv Nz, — MNa,py Mpe — np,p) =

= % (77I,< - 77:13,;0)2 + 20 (77I,< - nx,p) (77p,< - np,p) + 0 (77p,< - 7710,;0)2 =

4 (2 ,(s1) + 2, (s2)) m3 (B, Bp) (1 sin(np,/2) 2 1 sin(np,)\
- B(s1) + By(52) <n sin(iip/2) ) [ (1 n " Sinl,) )

'ﬁp(sl) 773,;)(31) + 2 COS(Q) V ﬁp(sl) ﬁp(SQ) nx,p(sl) 771,p<32) + 5;)(32) 773,;;(32) 4
(Bp(s1) + Bp(s2)) (n2,(s1) + n2,(s2))

(By(s1) + Bp(s2))® \n sin(p,)

and with the mismatch between the error and the periodic betatron functions having
now the following form

m =[1—(1—4sin’ Bp(51)0p(52) 1 sin(npu,) 2\ ~2
» (B; Bp) (1 (1 4 (0)(5p(31)+ﬁp(82)>2) (n sm(up)>)  (124)

For a thin lens FODO cell with BPMs placed in the “centers” of focusing and
defocusing lenses we have § = p,/2 and the periodic beta function and the periodic
dispersion at the BPM locations are equal to

+ 2sin?(0) Bp(51) Bp(s2) .(l._sm(”ﬂ_ﬁ)” (123)

1 =+ sin(p,/2) Ly 1+ gsin(u,/2)
siny) 4 sin(/2)

e = L- (125)
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Figure 6: Ratio W, / @ as a function of the phase advance f,.

With these assumptions we can write

02 4 2
A2 = ) g 12
2= T () ). (126)

with functions ®,,(x,) converging to the function

sin (1,/2)

Boo(pty) =
) = T e (4 2)

(127)

as n goes to infinity.

The functions ®,, (u,) for n = 3,4,5,6 are plotted in figure 5 and one can see
that though we are using two times larger number of BPMs, the energy resolution
improves mainly in the region of the low phase advances, while for the high phase
advances it stays almost unchanged. To understand the situation better, it is useful
to look at the figure 6 where the ratio of the limiting functions ¥, and &, is
shown.

6 Courant-Snyder Invariant as Error Estimator

When we consider the jitter problem, the subject of our real interest is the actual
difference 0Z; between parameters of the instantaneous and the golden trajectory.
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Our measurement system delivers us an estimate ¢z, of this parameter, which in-
cludes the effect of the BPM reading errors <.

Thus, in the framework of the model considered, the only information which we
could obtain about the true difference 7, is the statistical information based on the
properties of the random variable 0Z; — 2y, which, due to our assumptions, has zero
mean and whose statistical distribution does not depend on the actual value of ¢z .

It seems to be natural to use the module |de. — deg| as a numerical measure
of the difference between estimated and true beam energies, but the quantitative
measure of the difference 6z, —dz; from zero in the transverse phase space could be
chosen differently. One may simply use the Euclidean vector norm, but, as it was
already stated in [1], the usage of the Courant-Snyder quadratic form has certain
advantages. For example, when one considers errors only in the reconstruction of
the transverse orbit parameters in the beam line without dispersion, the Courant-
Snyder quadratic form is an invariant and therefore all estimates based on it do not
depend on the position of the reconstruction point. And, as one will see below, even
for dispersive particle motion the Courant-Snyder quadratic form is a “much better
conserved quantity” than the Euclidean norm.

6.1 Transverse Jitter

Let us first return to the situation whose study was already started in paper [1],
where we considered errors in the reconstruction of transverse orbit parameters in
the beam line without dispersion.

Let Gy(r), ap(r) and ~o(r) be the design betatron functions, and

L(r, 2z, p) = y(r)2* + 2a0(r)zp + Bo(r) p? (128)

be the corresponding Courant-Snyder quadratic form.
According to the above discussion, the object of our current interest is the random
variable

Iy = L(r, dxc — dxg, Opc — Opo ). (129)
The mean value of this random variable was already calculated in [1] and is equal

(I5) = 2emy(B,, Bo), (130)

where m, (0., (o) is the mismatch between the error and the design betatron func-
tions. That is, probably, all what one can obtain without making additional assump-
tions about distribution of BPM reading errors.

In this subsection we will assume that the random vector < has a multivariate
normal distribution and will find not only higher order moments of the random
variable I3, but also its probability density.

Calculations made in [1] show that we can represent the variable I$ in the form
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IL = 3 ' KT(r)K(r) i, (131)

where
a; C
_ 1/v/Bo 0O ) .
K=TV.M"R' T = . M = oo, (132
N ( a0/ Bo VDo a' c' (132)

and the components of the vector 77 = R;TE are independent standard normal
variables. The matrix K"K is n by n matrix, but, as it was also shown in [1], it has
only two nonzero eigenvalues, namely

Hte = € (mp (B, Bo) £ \/mg(ﬁg, Bo) — 1)- (133)

If & are the unit orthogonal eigenvectors of the symmetric matrix K™K cor-
responding to its nonzero eigenvalues g4 , then we can rewrite (131) in the form

I = py &8 + po &2, (134)

where £ = €] 7} are two independent standard normal variables.

With representation (134) calculation of all probabilistic characteristics of the
random variable I3 becomes rather straightforward. For example, the following
formula gives its variance

V(IS) = (1)) — (1) = 4 (2m2(B., o) — 1) - (135)

Moreover, it is not very complicated to calculate the probability density of this
random variable using, for example, results published in [6]. This density p(t) is
equal to zero for negative values of its argument, and for ¢ > 0

) = 5o (g =1 g Jesp () 5o ) o (130)

where I; is the modified Bessel function of zero order.

Note that for m, (0., fy) =1 the density (136) becomes the density of chi-square
distribution with two degrees of freedom and in this case the distribution function
F(t) can be calculated in the explicit form

F(t) = Pr(I5 < t) = /p(T) dr = 1 — exp <——> | (137)
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6.2 Transverse and Energy Jitter

When the beam energy is included in both, measurement and dynamics, the
transverse motion could be separated into two parts: dispersive motion and pure
betatron oscillations. One can write

{ drg = (0zg — 0 Mwo) + 90 Mo (138)
dpo = (0po — deo - Mpo) + €0 - Mpo
and
{ or, = (533< — deg - 7730,0) + 0eg - Nz,0 (139)
ope = (5p§ — deg - 77p,0) + de - Mp,0

where 1,0 and 7,0 are the coordinate and momentum design dispersions respec-
tively.

The first terms in the right hand sides of formulas (138) and (139) represent the
pure betatron oscillations. Let us at the beginning estimate their difference using
the Courant-Snyder quadratic form, which in this case will be an invariant, i.e. let
us consider the random variable

It = I(r, (0z; — dzg) — (dec — de0) * Nwo, (0pc — Opo) — (dec — deg) - Mpo ). (140)

The mean value of this variable is given below

<ffc> =2 € mp(ﬁca 50) + A? ’ [x (T, Nz, — Nz,0 5 Tpe — 7710,0) ) (141)

and one sees that, in addition to the mismatch between error and design betatron
functions, the difference between error and design dispersions starts to play an im-
portant role.

If we again will assume that the random vector ¢ has a multivariate normal
distribution, we can represent f; in the form

I = e & + oo &2, (142)

which is similar to (134) and in which €. are again two independent standard nor-
mal variables. Unfortunately, the expressions for fi. become essentially more com-
plicated than (133) and, with the notations

mp = mp(ﬁca 50)7 jx = [x (Ta Nz, — Nz,05 Tp,s = Tlp,0 ) ) (143)

are given below

A2 . Af
gi:egmp+7<-fxi\/eg(mg_1)+E<Ag(mp_1)-[x+f-fg. (144)

With representation (142) one can calculate the variance
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V(L) = ((I)°) = ()" =2 (@2 + i) (145)

and also find formula for the probability density p(¢). This density is equal to zero
for negative values of its argument, and for ¢ > 0

N 1 B\’ t B t
pt) = ﬂfo <Z> -1 24 exp <_Z : ﬂ) ] (146)
where [ is the modified Bessel function of zero order and

A=, op=tlt (147)

are the geometric and the arithmetic means of the eigenvalues (144) respectively.
To finish this section, let us note that in order to get probabilistic characteristic
of the random variable (129), i.e. in order to study not the difference in the pure
betatron oscillations, but the total difference in the transverse motion, one simply
has to set to zero the design dispersions in all formulas of this subsection (indepen-
dently, if actual design coordinate and momentum dispersions are equal to zero or
not). The obtained formulas will, of course, not have invariant character anymore.
Nevertheless, the dependence form the position of the reconstruction point will enter
them through the single parameter, namely through the value 1, (7, n.c, e )-
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