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Abstract

Based on the parabolic equation approach to Maxwell’s equations we have derived scaling prop-
erties of the high frequency impedance/short bunch wakefields of structures. For the special case
of small angle transitions we have shown the scaling properties are valid for all frequencies. Using
these scaling properties one can greatly reduce the calculation time of the wakefield/impedance of
long, small angle, beam pipe transitions, like one often finds in insertion regions of storage rings.
We have tested the scaling with wakefield simulations of 2D and 3D models of such transitions, and
found that the scaling works well.
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INTRODUCTION

In modern ring-based light sources one often finds insertion devices having extremely
small vertical apertures (on the order of millimeters) to allow for maximal undulator fields
reaching the beam. Such insertion devices require that there be beam pipe transitions from
these small apertures to the larger cross-sections (normally on the order of centimeters)
found in the rest of the ring. The fact that there may be many such transitions, and that
these transitions introduce beam pipe discontinuities very close to the beam path, means
that their impedance will be large and, in fact, may dominate the impedance budget of
the entire ring. To reduce their impact on impedance, the transitions are normally tapered
gradually over a long distance. The accurate calculation of the impedance or wakefield of
these long transitions, which are typically 3D objects (i.e. they do not have cylindrical
symmetry), can be quite a challenging numerical task.

In this report we present a method of obtaining the impedance of a long, small angle
transition from the calculation of a scaled, shorter one. Normally, the actual calculation
is obtained from a time domain simulation of the wakefield in the structure, where the
impedance can be obtained by performing a Fourier transform. We shall see that the scaled
calculation reduces the computer time and memory requirements significantly, especially for
3D problems, and can make the difference between being able to solve a problem or not.
The method is based on the parabolic equation approach to solving Maxwell’s equation
developed in Refs. [1, 2].

This report is organized as follows: We begin by developing the theory of impedance
scaling for small angle transitions. This is followed by numerical calculations to test the
validity of the theory. Our examples consist of longitudinally symmetric transitions that
connect a large beam pipe to a small one and then back again by means of small angle tapers.
Our examples include (i) a 2D (cylindrically symmetric) transition with a short central
section (similar to a collimator), (i) 2D transitions with longer central pipes, and (iii) a 3D
transition with long central pipe. We finish with a concluding section. To differentiate the
three types of examples we call them short (i), long (ii), and 3D (iii) transitions.

THEORY

We start from the parabolic equation formulated in [3]. As discussed in [1], in general
case this equation is valid for frequencies w > ¢/a where a is a characteristic transverse size
of the pipe. However, for small-angle tapers and collimators, the region of validity of this
equation extends toward smaller frequencies and includes w < ¢/a.

The parabolic equation is formulated for the envelope part of the electromagnetic field
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where k = w/c. Tt is written in terms of the transverse component E, = (E,, E,) of the
vector E,
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where z is the coordinate in the direction of motion of the beam, and j, is the Fourier



transformed projection of the beam current along z
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The longitudinal electric field E, is expressed in terms of E,
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E.=—-(V,.-E, ——j.). 4
2 ( 1B - J ) (4)

We assume perfect conductivity of the metal walls. The boundary condition for the
electric field requires vanishing tangential component on the wall

nx E|, =0, (5)

where n is the normal vector to the surface of the wall.

The current j, in Egs. (2) and (4) corresponds to a unit point charge moving with the
speed of light along the axis of the system x =y =0, j, = qcd(x)d(y)d(z — ct). It is given
by the following expression

J= = ¢6(2)é(y). (6)

The longitudinal impedance on the z-axis at frequency w is given by
1 [ ~
B = / d2E.(0,0, 2,w). (7)

Due to the presence of d-functions in the current (6), the electric field E has a singularity
on the axis z. An equivalent formulation of the impedance problem which avoids the singular
terms is the followmg We introduce the vacuum electric field EVaC of the current j, and
subtract it from E

E=FE - E,. (8)

The vacuum field is the beam field in the absence of material boundaries in the propblem; it
satisfies the same Eq. (2), but is not required to satisfy the boundary condition (5). While it
is easy to write down an analytical expression for Evac, we will not need it in what follows.
The equations for £, which we call the radiation field, are

k%& = %viéb
éziévl-éb (9)
with the boundary condition
nx£|w+nxﬁ7vac\w=0. (10)

The vacuum electric field is perpendicular to the direction of motion (because we consider
an ultra-relativistic point charge), and does not contribute to the impedance. Note also that
the vacuum field does not depend on z, E\,ac(:lc7 Y).

Let us assume that the geometry of a given surface of the metallic wall is determined
by the equation U(z,y,z) = 0. Instead of considering one particular shape of the pipe,



we consider a family of such pipes, which are defined by various scale lengths A\ in the
longitudinal direction. This means that U is also a function of the parameter A\, and it has
a special dependence on A:

U(z,y,z;\) =V (x, Y, ;) ) (11)

Increasing the parameter \ in Eq. (11) we extend the pipe in the z-direction without changing
its transverse shape at each cross-section, while decreasing A contracts the pipe along z.
We now define the normal vector to the surface of the pipe, n = VU or
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where we have introduced the dimensionless scaled coordinate ¢ = z/\, and used notations
ez, ey, and e, for unit vectors in respective directions. We will indicate the dependence of
fields versus the parameter A by adding A to the list of arguments and separating it by the
semicolon, e.g., € (x,y, z,w; \).

Our goal now is to prove that a solution to the parabolic equation depends on the coor-
dinate z only through the dimensionless variable (; more precisely, we will prove that
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where F'| and G are functions of four arguments. To prove this statement, we first need
to show that substituting Eqgs. (13) into our equations and the boundary condition results
in expressions which involve the coordinate z, the parameter A\, and the wavenumber £ as
combinations z/A and k/X only. Indeed, substituting (13) into Egs. (9) we find
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which clearly satisfies our requirement.

We now take a close look at the boundary condition (10). Rewriting it in terms of the
perpendicular and transverse components of the field we obtain (remember that Evac has
only perpendicular components)

nze; X ‘éJ_lw +mn, X gJ_|w +mn) X engzlw

+n.e, X Evac|w +n, X Evac|w = 07 (15)

where n; = n — e.(e, - n) is the perpendicular to z part of the vector n. The first, third
and fourth terms in this equation are perpendicular to e,, and the second and fifth terms
are directed in the z-direction. Hence they can be split into two separate equations. The
first one is

n,e, X £L|w +n X ezéz|w +n.e; X Evac‘w -
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The last line, after cancelation of the factor 1/, clearly shows that the parameter A does
not enter explicitly into it. The second boundary equation is

n; X ‘-‘:'J_|w +ny X Evac‘w =

:nLXFl|w+nLXEvac‘w:0a (17)

and it again does note explicitly contain the parameter A\. Our statement is therefore proved.
Substituting the second of Egs. (13) into (7), we find the scaling property for the longi-
tudinal impedance

w

Zj(w;A) =R (X) , (18)

where R is a function of one variable.
Taking the Fourier transform of the impedance we find, in addition, that the longitudinal
wake scales as

w(s; A) = Au (sA), (19)

where u is a function of one variable.
For the transverse forces the results are similar. The high frequency impedance scales as

ZJ_(OJ;)\):iRJ_ (%), (20)

where R is a function of one variable; and for the transverse wake is
wi(s;A) =uy (sN), (21)

where u is a function of one variable.

Note that Eq. (19) is not valid for general tapers, because we have only proven Eq. (18) for
the general case at high frequencies. However, for the special case of small angle transitions,
the impedance at low frequencies also scales as (Eq. 18) [4], and therefore Eq. (19) holds.
The same is true for the transverse case (Eq. 21).

SCALED CALCULATIONS

To test the impedance scaling, we perform numerical simulation, using 2D and 3D versions
of the time-domain, finite difference Maxwell equation solver ECHO [5]. The program finds
wakefields excited by a speed-of-light Gaussian bunch of finite length o in a structure, such
as a beam pipe transition. The impedance, in turn, is found by Fourier transforming the
wake and dividing by the bunch spectrum. For the combination of a short bunch and a
long, small angle transition, one can greatly reduce the requirements on computer time and
memory by solving the scaled problem, i.e. the one with the longitudinal dimension scaled
by a factor A < 1, and the bunch length scaled by 1/A.

In simulations we compare the wakefield and impedance computed for two structures. The
first one, which we call nominal, has a length L, and the second one, which we call scaled,
has a length AL, and is obtained from the first one by scaling along z, as described in the
previous section. Typically, in this paper, we choose A = % We denote W (s,o,) the wake
of the nominal structure, and W (s, o,) the wake of the scaled one. Using (19) it is easy to



establish a relation between these two functions by convolving the bunch distribution with
the wake of a point charge w(s; ). For the nominal structure we set A = 1 and obtain
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for the scaled structure we have
A > N2 2 )\ o0 N2 2
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Changing the integration variable to ¢ = s’ in the last integral we find that
1 s 0,
W(s,0.) = 5 Wa (X’ 7) . (24)
For the transverse wake we have the relation
s 0,
WJ_(S,O'Z):WJ_A (X77) . (25)

The maximum mesh size and time step in the wake calculations are limited to a specific
fraction of o, and o, /c, respectively (the mesh size is typically taken to be o,/5). Let us
assume that the total range in s over which the wake is needed is short compared to the
total structure length (which for electron machines and small angle transitions typically is
true). Let us first consider a 2D transition. Since the bunch length in the scaled calculation
is increased by 1/A, the calculation window (that moves with the beam) has a factor A fewer
mesh points in the radial direction, but the same number of mesh points in the longitudinal
one (the mesh density is lower but the window needs to be 1/ times longer—see Eq. 24).
In addition, the structure length for the scaled calculation is reduced by the factor A; and
since the mesh is coarser, the number of time steps for the beam to traverse the structure
is reduced by ~ A2. Thus, we see that the scaled calculation reduces the computation time
(in 2D problems) by A3; in a 3D example the factor becomes \*, a significant speed-up even
if we scale only by a factor of 2 (A = 1).

NUMERICAL EXAMPLES
Short Transition

We begin with a 2D, smooth test example that has a central beam pipe that is relatively
short, i.e. it looks more like a collimator than an insertion device transition (see Fig. 1).
A beam pipe of radius b = 5 mm is connected by two gentle, symmetric transitions to a
beam pipe of radius a = 2.5 mm. Although the boundary is everywhere smooth, the tapers
approximate straight lines of angle § = 2.4°, with a central pipe length of 6 mm. For the
nominal calculation the bunch length is ¢, = 0.1 mm, and the mesh size is 0.01 mm. For
the scaled calculation, we take A = %, the structure is half as long, and the bunch length
and mesh size are twice as large.

The real and imaginary part of the impedance for the nominal and scaled structures are
shown in Fig. 2, and the wakefield of the bunch in Fig. 3. One can see very good agreement
between the nominal and the scaled structure results. Finally, we should also mention
that when we replace the smooth collimator geometry with one consisting of straight line
segments (in longitudinal view) the results remain essentially unchanged.



0.50

0.45

— 0.40

r(cm

0.35

0.30

0.25

OJ\\\\‘\\\\‘\\\\‘\\\\‘\\\\

5 10 15 20
z (cm)

FIG. 1: Geometry for smooth, 2D example problem.
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FIG. 2: Real (left) and imaginary (right) parts of impedance for nominal and scaled structures. The
blue curves show the impedance of the nominal structure, and the red curves show the impedance
of the structure that is half as long scaled using Eq. (18).

Long Transition

In typical insertion devices the central beam pipe has an aperture on the order of millime-
ters and a length on the order of meters. Our second example transition is a 2D model of
such a transition: in longitudinal view there are straight line tapers of (small) angle 6 that
connect a large beam pipe of radius b to a very long pipe of smaller radius a. We assume
that the impedance of such a structure is given by the sum of the impedance of an in-step
(from b to a, with b > a) plus the impedance of an out-step (from a to b) [see, e.g. Ref. [6]].
In the 2D case we can write

Z b
Zin = Zl - Zs ) Zout = Zl + Zs 3 Zs = 20 In () ; (26)
27 a

where Z, is a potential term. For a longitudinally symmetric transition

and similarly the wake W =~ 2(W;,, + W), with W, = —Zsc),. Thus, we can obtain the
impedance of the symmetric transition from the numerical calculation of just the in-step
problem.
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FIG. 3: Comparison of the wakefields of a Gaussian bunch for the nominal and scaled structures.
The blue curve shows the wake excited by a bunch with ¢, = 0.1 mm in the nominal structure,
and the red curve shows the wake in the structure that is half as long excited by the bunch with
0. = 0.2 mm and scaled using Eq. (24).

As specific example we take a 2D model of wiggler transitions that have been considered
for PEP-X [7]. For the purpose of generating a pseudo-Green function wake, the wake of all
ring elements was needed for a Gaussian bunch with o, = 0.5 mm to a distance of 60 mm
behind the bunch (an extremely challenging task for the 3D wiggler transitions). The 2D
model that we consider is a symmetric transition with ¢ = 7.5 mm, b = 48 mm, and 6 = 5.8°
(we take as nominal bunch length for the calculation o, = 0.5 mm). In the real structure
the central beam pipe is meters long; for our calculations we take it to be infinitely long.
The wake and the scaled (A = %) results are given in Fig. 4. We see that the wake is simpler,
with less oscillation than for the finite-length example above. We, in addition, see that the
agreement between the wake and the scaled wake is quite good.
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FIG. 4: Longitudinal wake for o, = 0.5 mm bunch in 2D model of PEP-X transitions (blue) and
results obtained from the scaled problem with A = % (red). The nominal bunch shape is also given
with the head to the left (black).

In the transverse case the wake scales as Eq. 25. For a symmetric transition with long
bottom, the results can again be obtained from an in-step wake calculation alone. The lon-



gitudinal dipole wake Wz(l) = 2(Wi(nl) + Ws(l))7 s(l) = —Zgl)cAz, with the static impedance

given by
Zy (1 1
n_ %o
Zﬁ)gﬁ(cﬂw)' (28)

The transverse (dipole) wake is then given by W, (z) = — [ d2/ Wz(l)(z’ ). The results of
the calculation are shown in Fig. 5. We see that the transverse wake of the long-bottomed
transition is also relatively simple, and that the agreement between the nominal and scaled
wakes is quite good.
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FIG. 5: Transverse wake for o, = 0.5 mm bunch in 2D model of PEP-X transitions (blue) and
results obtained from the scaled problem with A = % (red). The nominal bunch shape is also given
with the head to the left (black).

We have shown good agreement between the nominal and scaled wakes for 2D transitions
with a short central region and a long one. For the next example we consider a 2D transition
with a medium-length central region. The parameters are ¢ = 7.5 mm, b = 48 mm, § = 5.8°,
and length of central region L = 72 mm. We take as nominal bunch length for the calculation
0, = 0.5 mm, and again take A = % for the scaled calculation. The numerical results are
shown in Fig. 6. Compared to the previous example we see nearly the same wake over the
bunch, though many more oscillations behind it. Comparing nominal and scaled wakes we
again see good agreement near the driving bunch. Farther behind, however, we see that the
two wakes gradually deviate from one another, an indication of the accuracy of the scaling.

3D Transition

As a 3D (non-cylindrically symmetric) example we consider a longitudinally symmetric,
small angle transition, from a large beam pipe to a small one and then back again, with
the central region taken to be infinitely long. In the horizontal () direction the beam pipe
remains unchanged; the transition occurs only in the vertical (y) direction. For the nominal
geometry, the large beam pipe has a square cross-section of 30 mm by 30 mm (z X y),
the small one is rectangular with dimensions 30 mm by 15 mm, and the central region is
assumed to be long. The connecting pipes are straight line tapers (in y) of angle 3° (see
Fig. 7). The nominal bunch length o, = 0.5 mm. For the scaled case we take \ =

1=

R
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FIG. 6: For the 2D transition with a medium-length central region, and o, = 0.5 mm, the nominal

longitudinal wake (blue) and results obtained from the scaled problem with A = % (red). The

nominal bunch shape is also given with the head to the left (black).

FIG. 7: The 3D test example is a symmetric, small angle transition. Here we show, in cut view,
the geometry of one of the tapers of this transition.

The numerical calculations were performed with the program ECHO3D [5]. Like in the
2D long taper example, the total wake of the transition is taken to be the sum of a step-in
and a step-out part. (More details of the algorithm ECHO3D uses for such problems can
be found in Ref. [8].) The mesh size was taken to be 0,/10 in the longitudinal direction and
0./5 in the transverse plane. In Fig. 8 we give the numerical results for the longitudinal
wake, and see good agreement between the nominal and scaled results.

For a non-cylindrically symmetric structure, but one that has mirror symmetry in « and

10



FIG. 8: Longitudinal wake for o, = 0.5 mm bunch in 3D collimator (solid) and results obtained
from the scaled problem (dashed).

y (as in our example problem), the transverse (vertical) wake of a beam is given by
Wy(57 0.) = ydWy,d(Sa o)+ yWy#}(Sa 02) (29)

where Wy, 4 is called the dipole wake component and W), , the quadrupole wake component.
Here y4 and y are, respectively, the vertical offset—with respect to the axis—of the beam
and of a test particle (the offsets of beam and test particle in both = and y are assumed to
be small). The two components of the transverse wake are given in Figs. 9-10. We see that

in both cases the nominal and scaled wakes agree well.
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FIG. 9: Dipole component of the transverse wake for o, = 0.5 mm bunch in 3D collimator (solid)

and results obtained from the scaled problem (dashed).
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FIG. 10: Quadrupole component of the transverse wake for ¢, = 0.5 mm bunch in 3D collimator
(solid) and results obtained from the scaled problem (dashed).

CONCLUSIONS

Based on the parabolic equation approach to Maxwell’s equations we have derived scaling
properties of the high frequency impedance/short bunch wakefields of structures; for the
special case of small angle transitions we have shown the scaling properties are valid for all
frequencies. Using these scaling properties one can greatly reduce the calculation time of
the wakefield /impedance of long, small angle, beam pipe transitions, like one often finds e.g.
in insertion regions of storage rings. We have tested the scaling with wakefield simulations
of 2D and 3D models of small angle transitions, and find good agreement from the front
to 200, behind the driving bunch. For wakes that extend further back—such as that of a
medium-length 2D transition example—we see a gradual discrepancy developing far behind

the bunch.
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