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Riemann—Hilbert approach tc;(the tlime-dependent generalied sine
ernel.

K. K. Kozlowski 1,

Abstract

We derive the leading asymptotic behavior and build a neveseepresentation for
the Fredholm determinant of integrable integral operappearing in the representa-
tion of the time and distance dependent correlation funstaf integrable models de-
scribed by a six-vertelR-matrix. This series representation opens a systematid¢avay
the computation of the long-time, long-distance asymptatpansion for the correla-
tion functions of the aforementioned integrable modasisyfrom their free fermion
point. Our method builds on a Riemann—Hilbert based armlysi

1 Introduction

Highly structured determinants appear as a natural wayeforesenting the correlation functions in integrable
models that are equivalent to the so-called free fermidngas already shown by Kaufman and Onsager that cer-
tain two-point functions of the 2D-Ising model can be repréed by Toeplitz determinants [29]. Then Montroll,
Potts and Ward [41] made this observation more systematiexpyessing the so-called row-to-row two-point
function of this model in terms of a Toeplitz determinantwls observed by Lieb, Mattis, Schultz [37] that such
Toeplitz determinant-based representations also holthéoso-called XY model. Then, the systematic study of
the correlation functions of the impenetrable Bose gasxXtfienodel or its isotrpoic version the XX model lead
to the representation of various correlators in terms oflRoém determinants (or their minors) of the so-called
integrable operators [7, 8, 34, 36, 39, 44]. Such types ditiokn determinants also appear in other branches of
mathematical physics. For instance, the determinant afdhealled sine-kernel acting on an intendds directly
related to the gap probability (probability that in the batialing limit a given matrix has no eigenvalues lying in
J) in the Gaussian unitary ensemble [20]. Integrable infemparators [10] are operators of the tybe V where
the integral kerneV takes a very specific form. This fact allows for a relativeipgsle characterization of the
resolvent kernel and often for a construction of a systenmadiad differential equations satisfied by the associated
Fredholm determinant or its minors [13, 23, 25, 28, 46].

In all of the aforementioned examples, the integrable nalegperatord + V act on some curv& with a
kernelV (1, u) depending, in an oscillatory way, on a parametein the previous examples a lot of interesting
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information can be drawn out of the asymptotic behavior @fde V] for large values of. For instance, when
dealing with the correlation functions of integrable magglplays the role of a spacial afwt temporal separation
between the two operators entering in the correlation fanctin such a case, computing the largasymptotic
expansion of the associated Fredholm determinants, abloedo test the predictions of conformal field theories.
The form of the asymptotic behavior of the pure sine kernétrieinant log detl[ + S] was strongly argued in
[6, 18] and then proven, to some extend, using operator rdst[& 19, 48]. Also, the discovery of non-linear
differential equations of Painlevé V type for this determin&& pllowed to compute many terms in the large-
asymptotic expansion of the associated correlation fanstj28, 38, 39, 40]

However, a really systematidfieient approach to the asymptotic analysis of various gtiesitrelated to
integrable integral operatots+ V has been made possible thanks to the results obtained in T2&re it was
shown that the analysis of such operators can be reduce@solation of an associated Riemann—Hilbert problem
(RHP). The jump contour in this RHP coincides with the one dricl the integral operator acts and the jump
matrix is built out of the functions entering in the desddptof the kernel. In this way, one deals with a RHP
depending orx in an oscillatory way. The asymptotic analysis of their sohs is possible thanks to the non-
linear steepest descent method of Deift-Zhou [15, 16]. Ihithis context, that the full characterization of the
leading asymptotic behavior of Fredholm determinants ofiéds related to correlation functions in free-fermion
equivalent models (the long-distance, long-tilmeg-distance at zero and also non-zero temperature) heas be
carried out in the series of papers [4, 9, 22, 24, 26, 27]

This paper deals with an extension of these analysis to the @ba Fredholm determinant of an integrable
integral operator whose integral kernel has a more invobedture then in the aforementioned cases. We call our
kernel the time-dependent generalized sine kernel. TheghBhe determinant we analyze arises in the represen-
tation of the zero temperature long-distattmeg-time asymptotic behavior of two-point functions in &esclass
of integrable modelawayfrom their free fermion point. In particular, its asymptstiexpansion (and especially
the new series representation that we obtain for it) playsieia role in the computation of the long-tirteng-
distance asymptotic behavior of these two-point functions

In a wide class of algebraic Bethe Ansatz solvable models,i®able to compute the so-called form factors
(matrix elements of local operators) and represent thermiés-Bize determinants [33, 43] . It has been shown in
[34] that, for free fermion equivalent models, it is possitd build on these representations so as to explicitly sum-
up the form factor expansion and compute the zero-temperéand even the non-zero temperature) correlation
functions of the model. In the limit of infinite lattice sizestwo-point function is then represented by a Fredholm
determinant (or its minors) of an integrable integral opmra+ V acting on some contow’ determined by the
properties of the model. For time and space translatiorriemvamodels, the kernél depends on the distance
separating the two operators as well as on thedince of time evolution between them. One can show that
for general free-fermion type models, the integral operate V associated with the form factor expansion of
two-point functions acts on a finite subinteryalq; q] of R and its kerneV belongs to the class of kernels
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The functionsy ande just as the integration curvég appearing in (1.2) depend on the specific model that one
considers. We will give more precision about their progsrtin the core of the paper. We stress that, in free-



fermion equivalent modelg (1) is some constant aneltakes a simple form. It was in such a context that the
asymptotic analysis of det - V] has been carried out in the aformentioned papers.

As will be shown in a series of subsequent publication [32, 86ite astoundingly, it is as well possible to
build on the finite-size determinant representation forftiren factors of local operators in integrable models
out of their free fermion point so as to sum up the form factmes over the relevant sector of excited states.
The intermediate computations can be shown to boil dowrnftectve generalized free fermionic models. As
such, they involve, again, the Fredholm determinants ofaipes| + V with V given by (1.1). However, then
the functionsy ande become much more complex that at the free fermion point. inessense, the approach
of [32, 35] shows that kernels (1.1) appear as a natural lhsipecial functions allowing one to represent the
correlation functions of a wide class of interacting dway from their free fermion point) integrable models as
certain linear combinations thereof. Therefore, the maipgse for our study of the time-dependent generalized
sine kernel (1.1) is to obtain a convenient ariiéetive representation for the associated Fredholm deterrhi
allowing to re-sum the aforementioned linear combinatiosame compact, explicit form, that moreover enjoys
the property of giving an almost straightforward accesféoasymptotic behavior of the correlators.

This article contains two main results. We first derive trasllag asymptotic behavior of the Fredholm deter-
minant of | + V understood as acting dr? ([ —-q; q]), with q < +co. This sets the ground for the second main
result of the article. Namely, we derive a new series reptasion -the Natte series- for the Fredholm determi-
nant. This series is converging rather fast in the asymptetie +co regime. Its main advantage is to provide
a rather direct (without the need to perform any additiomalysis) approach to the asymptotic expansion of
the determinant. As already stressed out, this seriessepiaion plays a crucial role in the computation of the
long-timelong-distance asymptotic expansion of the two-point fiomst in integrable models corresponding to
a six-vertexR-matrix [32, 35]. Also, the very form of the asymptotic expanm stemming from the Natte series
proves several conjectures relative to the structure ohslgeptotic expansions for certain particularizations (fo
specific values of, ande) of such Fredholm determinants [42, 45]. Also, upon spietbn, it yields the general
structure of the asymptotic expansion of the fifth Painlesagcendent associated to the pure sine kernel [13, 28]

This article is organized as follows. In section 2, we oetline main assumptions that we rely upon throughout
the article and give a discussion of the class of funct®tisat we deal with. After introducing several notations,
we present the two main results of the paper. The remainirtgsoaf technical nature. In section 3, we present the
RHP problem that is at the base of the asymptotic analysigdt & V] and the construction of its Natte series.
We also outline the chain of transformations corresponttirte implementation of the Deift-Zhou [16] steepest-
descent method. In section 5, we build the various localrpataces. This brings the original RHP into one
that can be solved through a series expansion of the assdaistgular integral equation [5]. The latter naturally
provides the large- asymptotic expansion of the solution. We build on theselt®so as to derive the leading
asymptotic expansion of the Fredholm determinant in sedioFinally, section 7 is devoted to the construction
of Natte series for the Fredholm determinant-6¥11n particular, we establish the main properties of suchese
We then give a conclusion and discuss the further possilplécagions. In appendix A, we recall all the properties
of the special functions that we use in this article. In apipeB, we gather some proofs relative to the structure of
the largex asymptotic expansions of certain matrix valued Neumarnieseepresenting the solution to a singular
integral equation of interest to us. In appendix C, we eitlaldome bounds for certain matrices appearing in our
analysis.

"The origin of this name issues from the so-called pig-taillfaid) hairstyle that is called Natte in French. A braid ispecifically
ordered reorganization of the loose hair-do style. Sityiltihe Natte series reorganizes the Fredholm series inyaspercific way, so that
the resulting representation is perfectly fit for carrying an asymptotic expansion.



2 The main results and assumptions

In this article, we will focus on the case where the funcidakes the form

i Xu() | 9()
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et)=¢ (2.1)
e(1) is quickly oscillating in thex — +oo limit and the functiong entering in the definition o0& (1) has been
introduced so as to allow for some finitejndependent oscillatory behavior of the functie(®). The principal
value integral apperaing in the definition Bf(1.2) is carried out along a cun#: which corresponds to a slight
deformation of the real axis and is depicted in Fig. 1. UnHerforthcoming hypothesis, such a contour allows to
strengthen the convergence of the integral defiritray infinity (in the case oR, the convergence would be the
one of an oscillating non-absolutely integrable powerawereas it is exponentially fast alofi).

2.1 The main assumptions

Throughout this paper, we make several assumptions on tietida u, g andy entering in the description of the
integrable kernel (1.1).

There exists an open neighborhdddf R such thau andg are simultaneously holomorphic &h

The functiong is bounded onJ.

The functionu is real valued ofR and has a unique saddle-pointUnlocated atly € R. This saddle-point
is a zero ofu’ with multiplicity one, thatisto say! 1 € R : U (1p) = 0 andu”(4p) < 0. We also assume
that the saddle-point lies away from the boundarigst +q.

u is such that, given any > 0, €™ decays exponentially fast inwhen+J (1) > § > 0 for any fixed
6 >0, andR (1) = Foo.
€

e The functiony is holomorphic orlJ and such that simj (1)] has no zeroes in some open neighborhood of
[-9:q] lying in U.
o The function has a "sfiiciently” small real part atq, ie |R [v (xq)]| < 1/2.

For technical reasons, one has to distinguish between twatisins when the saddle poing is inside of
] —q;qg[ or outside. Following the tradition we refer to the first césg < 1o < ) as the time-like regime and to
the second ongAp| > Q) as the space-like regime. Actually, in this article we witlly consider the case where
Ao > 0. Also, we do not treat the limiting case whef = +q as this would require a significant modification of
our approach.

2.2 The main result

We now gather the main results of this paper into two theorems



Theorem 2.1 Let V(4,) be as in(1.1)and | + V act on [?([-q;q]). Then, under the assumption stated in
section 2.1, the leading % +oco asymptotic behavior afet [| + V] reads:
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The functional B[v, u] takes the form

B, [r.u] = &1 G2(1+ T/(Q))V(;Jz)(l -v(-0q)) - (2n)" @ 5 (AD-4-0) 2.3)
[2gx(u (@) +i07)]" [2gxu (-g)]

It is expressed in terms of the Barnes G function [1] and thdlewy functional
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The functional b[v, u, g] takes djferent forms depending whether one is in the so-called spkeeegime (o > Q)
or in the time-like regimep € | -q; q[):
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The proof of this theorem will be given in section 6.2. It hiavelies on the asymptotic analysis of the RHP
associated witl that will be carried out in sections 3 to 5.

Above, thei0* regularization is important only in the time-like regimetasnu’(q) < 0. It allows one for
a non-ambiguous definition of the power-laws appering abdwehe space-like regime, th@* regularization
makes no dterence .

A special limit of the kernel (1.1) can be related to the galieed sine kernel studied in [31]. Indeed, when
the saddle pointlg is send to infinity, by deforming slightly the contoutg, the functionE can be seen to
be proportional tee™!, up to corrections that are uniformly @ *) on[—q;q]. In particular, one has that the



X — 400 asymptotic expansion of the two Fredholm determinantsoadénin this limit. This can be seen directly
by inspection of our formulae, at least in what concerns ¢laeling asymptotics.

A specific case of our kernel(1) = 1 —t1%/x, g = 0,q = 1 andv = csthas been studied in the litterature
in the context of its relation with the impenetrable fermgas [4]. Upon such a specialization, our results agree
with the codficients of the asymptotic expansion obtained in that paper.

The second main result obtained in this paper is the Natiesserpresentation for the Fredholm determinant.

Theorem 2.2 Under the assumptions stated in section 2.1, the Fredhotarmé@ant of the operator + V where
the kernel V is given bf1.1) admits the below absolutely convergent Natte series eiank other words, there
exists functional§H, [v, e, e'X“] such that

det]l +V][v,u,g] =det]l +V]?[v,ug] {1 + Z Hp [v, €9, u]} . (2.9)

n>1

There
q
detl +V]@[v,u,g] = B[ u] -exp{ f [ixu' (1) + g’ ()] v (1) d/l} . (2.10)
-q

A more detailed structure of the function&, can be found in the core of the text, formu(@el0) One has the
following estimates for the functionalsf;, [v, €9, X]| < [m(x)]", with m(x) = O (x") being n-independent and

W= gmin(l/z,l-w—2m=§x|%V(eq)|) with @ = 2supf|R [v() - v(eQ)]| : N-edi=0, e= 4}, (2.11)

wheres > 0 is taken small enough. Hence, the series is convergent fange kenough.
The functionalsH, [v, €9, U] take the form
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Above, we agree upap= 1 |n the space-like regime angl= —1 in the time-like regime. Theré{(‘”) [v,€9,X] =
O(x *) and the functlonal§{n [v, €9, 4] andﬂ(m’pb) [v, €9, u] admit the asymptotc expansions

m (m) - m _ of (ogx™2"
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r>0

This theorem, together with a more explicit expressiongHterfunctionalsH,, will be proven in section 7.
Here, we would however like to comment on the form of the aggtipexpansion. Indeed the above asymptotic
expansion is not of the type usually encountered for higtagrscendental functions. In fact, the lasgbehavior
of the functionalsH,, (v, €%, u) and hence of the determinant det{V] contains a tower of dierent fractional



powers ofx, each appearing with its own oscillating pre-factor. Oz bne has fixed a given phase factor and its
associated fractional power gf then the corresponding functional ctﬁ)ejents‘Hr(]m) [v,€9,u] or ‘Hr(]mb’p) [v, €9, 4]
admit an asymptotic expansion in the more-or-less stargtmde. That is to say, each of their entries admits an
asymptotic expansion into a series who8é¢erm can be written a8, ., (log x) /x™" with P, ., being a polynomial

of degree at mogt + n. One of the consequences of such a structure is that anatisgjlterm that appears in a
sense "farther" (large values of in the asymptotic series might be dominant in respect toraaseillating term
present in the "lower" orders of the Natte series. This stinecof the asymptotic expansion proves the conjectures
raised in [42, 45] for certain specializations of this kénfdso, upon specialization, it yields the general stroetu

of the asymptotic expansion of the fifth Painlevé transcendssociated to the pure sine kernel [28].

The series representation (2.9) might appear abstract giece is no generic simple expression for the func-
tionalsH,, n > 1. However, the slightly more explicit (but also more cundoene so that we did not present it a
this point) characterization of the functionat,, gives a thorough and explicit description of the wWaly acts on
€Y. This characterization, together with the overall formhaf Natte series (2.9), is enough to build a multidimen-
sional deformation of (2.9) which describes a class of ¢atian functions appearing in integrable modaisay
from their free fermion points. The very fact that the seriggresentation one starts with has good properties
from the point of view of an asymptotic analysis (for instaricimmediately provides the leading asymptotics)
leads to a multidimensional deformation which has basitcht same good properties in respect to the asymptotic
analysis, in the sense that it admits an expansion of the (@9, (2.12), (2.13). As a consequence, the long-
time/long-distance asymptotic behavior of two-point functiamsn interactingintegrable model can be simply
read-gf by looking at the multidimensional series.

2.3 Notations

We now introduce several notations that we use througheuitticle.

e D,5=1{zeC : |z—- 2 < 6} is the open disk of radius centered ary. 0D, s Stands for its canonically
oriented boundary andd D, s for the boundary equiped with the opposite orientation.

e 03, o andl, stand for the below matrices

e ) I ) R

e Given an oriented curv®& in C, I' (¥) stands for a small counterclockwise loop around the c@fva his
loop is always chosen in such a way that the only potentiguarities of the integrand inside of the loop
are located or¥’. For instance, if¢’ consists of one poim, thenI' (¥¢’) can be taken a8D, s, for some
6 > 0 and small enough.

e When no confusion is possible, the variable dependencéwitimittedje u(1) = u, g(1) = g, etc

e log refers to the }r; n [ determination of the logarithm, and it is this determipatthat is used for defining
powers.

e Given asetJ, G refers to its interior andl to its closure.
e H,, resp.H_, stands for the uppde e C: I (2) > 0}, resp. lowefze C: I (2) < 0}, half-planes.

e Given matrix valued functiond1(2), N(1), the relationM(2) = O(N(A1)) is to be understood entry-wise
M (1) = O (Nk (2)).



IMllisey = max([M .

2.4

Given an oriented curv&’, one defines its- (resp. —) side as the one lying to the left (resp. right) when
moving along the curve. Above and in the following, given &myction or matrix functionf, f. (1) stands
for the non-tangential limit of (z) whenz approches the point € ¢ from the + side of the oriented curve
.

Given a piecewise smooth cur#e and matrixM with entries inLP (%), p = 1, 2, o, we use the canonical
matrix norms { stands for Hermitian conjugation):

@+ Mlizg) = [tr[MM]|| ., and ||M||L1(<,ap):m”ax||MinLl(%).(2.15)

The distance between any two subs&t8 of C will be denoted by (A, B) = inf {{x—y| : xe A, ye B}.

Several remarks

It now seems to be a good place so as to gather several remaggpiect to our assumptions.

The assumptions on the type of the saddle-pointhauarantee that there exists a local parametrization for
u(2) aroundag, u(2) — u(lg) = —w?(1) with w(1) = (1 — Ag) h(1), whereh (1) # 0 andh is holomorphic
onD,, s for somes > 0.

As it will become apparent from our asymptotic analysisegifunctionay, v, g satisfying to all the hypoth-
esis, one has that ddtf V] # 0 for x large enough.

The assumption on the number of saddle-points and their @ate be relaxed in principle. RHP with
multiple saddle-points have been considered in [47]. Thiskwvas later extended to the case of less
regular functions and higer order saddle-points in [17].

The restriction on the real part ofin the vicinity of +q is of technical nature. It allows us to avoid the
analysis related to the so-called ambiguous Fisher—Harsyimbols. The method for dealing with such
kinds of problems in the framework of Riemann—Hilbert pesbk has been proposed in [11, 12]. The cases
whereR (v(xq)) > 1/2 could in principle be treated along these techniques, leuthose not to venture
into these technicalities.

We have depicted the contodt appearing in principal value integral in (1.2) on Fig. 1. §bontourée is
chosen in such a way that the integral is converging expaigrfiast at infinity. This avoids us unnecessary
complications and corresponds to most, if not all, situsgithat can arize in interacting integrable models.

In the case of kernels involved in the representation of W goint functions in integrable models, the
functionu takes the formu (1) = p(2) —te (1) /x. p corresponds to the momentum of excitations whegeas
corresponds to their energy. The paramefgays the role of the time-shift between the two operatotsxan
that of their distance of separation. In general, one iga@sted in the large-distanteng-time behavior of
the two-point function in the case where the rdtiris fixed. In such a limit, for many models of interest,
the functionu has a unique saddle-point & This physical interpretation can be seen as a motivation fo
certain of our assumptions.

It is not a problem to carry out the same analysis in the caggewhe contoutr given in Fig.1 is replaced
by %é‘”) =%eN {z eC : |9% (z)| < w}, with w € R* such thaty, —q andg belong to J-w; w[. Up to minor
modifications due to such a truncation of the remote partettntour, the results remain unchanged.
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Figure 1: Contoufée for the definition ofE.

3 The initial RHP and some transformation

3.1 The RHP fory

The kernel of any integrable integral operator can be rénasform allowing one to give a convenient character-
ization of the kerneR (4, i) of the resolvent operatdr— Rto | + V.
Namely, in the case of the kerndlgiven in (1.1) one sets

|ER()) = M (E((j))) (E-()| =sinfrv ()] (-e(1) , E(1)), (3.1)

I

so that the kerneV is expressed as the scalar product:

"W ER G

pp— (3.2)

V(4,u) =

The resolvent — Rof | — V exists if det [ + V] # 0. In that case, one defin{aER(/l)> as the unique solution to
the integral equation:

q .
F00)+ [V FRW)a= e w) . |FRe) - 22l () (3.3)

I
—-q

where the integration is to be understood entry—w(ﬂé'.— @) | corresponds to the solution of the integral equation

where| ER (/1)> has been replaced wi(kEL @) | It was shown in [25] that the resolvent kernel can be remtese
as:

FYO) [FRG)

py— (3.4)

R4, p) =
It is well know since the results established in [13, 23, 2&{t the study of many properties (construction of
the resolvent, calculation of the Fredholm determinantstruiction of a system of partialféiérential equations
for the determinant) of the so-called integrable integadratorsl + V can be deduced from the solution of a
certain RHP. In the case of the kernel of interest, this RHiese

e yisanalytic onC\ [ —q;q] and has continuous boundary values|em; q| ;



oX(/l):O( 1 1)Iog|/12—q2| for A — +q ;

e x(D =+ 10( 1 1) uniformly inA — o ;

¢ X+ (MG, (W) =x_(1) forae]-q;qf .

We remind thaj .. stands for the- boundary value of from the+-side of its jump curve.
The jump matrixG, (1) appearing in the formulation of this RHP reads

G )= |2+4SII’12[7TV(/1)]( e((//ll)) )(—e(/l), E(1) . (3.5)

The above RHP admits a solution as long as HetY] # 0. Indeed, it has been shown in [25] that the matrix

R L R L
f|F (1) ) E(/u)| e I+f|E(/u) F(/1)| 6)

solves the above RHP. This solution is in fact unique, as easelen by standard arguments [2]. It follows [25]
readily from (3.6) that the solutiop(4) allows one to construdt=R (1) ) and{ F* (u) |

|FR) ) =x () |ER@)) . (Fr|=(E*W|x ) . (3.7)

3.2 Relation betweeny and det [l + V]

One can express partial derivatives of det [V] in respect to the various parameters entering in the diefinaf
V (4, 1) in terms of the solutiory (1) to the above RHP. We will derive a set of such identities belbhese will
play an important role in our analysis.

Proposition 3.1 Letn > 0 a_ndF(%E) be a loop in U enlacing counterclockwiself: and such that it goes to
infinity in the regions wheré™®, 5 > 0 is decaying exponentially fast. Then,

dxlogdet] +V] = —ia% 5{5 e'”u(z)tr[(c')z,\/)(z)(0'3+2C[ 2@ ) @] (3.8)
I'(6E) n=0*

dulogdetl +V] = x| Z10u@1 ™[00 @(rs+ e @o @l @)

4
[(¢E) n=0*

There, ([ f] stands for the Cauchy transform @fg and C. [G] for its + boundary values offe. One has more
explicitly

C[Gl (1) = f% % , and C.[Gl)-C_[G](A) =G(1) , for A€ FE. (3.10)
e

10



Proof — The proof goes along similar lines to [31]. It is straightiard that

q
dxlogdet] +V] = f [0V - (I = R] (1, ) d1 . (3.11)
-q

In order to transform (3.11) into (3.8), one should start bifing a convenient representation fayV (4, u). One
has that

__! _1 dsu(9-u(@ .
() =-zu(@e® .  HEW=ZUWEW-eW f e LACE (3.12)
e
The last integral can be recast in a more convenient form
duu()-u@) ,, .  (du 56 dz u@ 2
xS W= PaT et W
CE e T({A.u})
inu(2) inu(2)
_ 9 [H SBE—G’ e (u) -2 fd—“ ng—el e ()
on 21 2in (z— ) (z— ) on 21 2in (z— ) (z— )
CE r({a.u}) =0+ CE [(¢k) =0
8 dz &M [ due?(y) ¥ dz €MAC|e?| (2 o 13
o) P J o Tl 95Z—(z—/l) (313)
['(%E) e =0+ ['(%E) =0+

We first have replaced the ratio offdirences by a contour integral Bif{1, u}). HereI ({1, u}) consists of two
small loops around the poinsandyu. In order to manipulate convergent integrals, we then wittéeintegral as
ann-derivative. The derivative symbol could then be taken duhe integral. Next we deformed the contour of
integration from a compact ofd&({4, u}) into ' (¥E). Such a replacement is allowedés is chosen precisely in
such a way so as to mak&%V, » > 0, decay exponentially on a small neighborhoodgfwhere one can draw
I' (¢&). Such a choice of contours allows us to satisfy to the hymighaf Fubini's theorem and hence permute
the orders of integration. Also, we stress that one shouldpcbe they-derivative only once that all integrals have
been computed. Indeed, for generic choices of functignsermuting thej-derivation with thet-integration in
the last line of (3.13), leads to apriori divergent integral.

Once that this dferential identity is established, one readily convincesseif that

9 dn@ _ . dz
OV (A, ) = o m(EL(l)|(o-3+2C[e 2] @0 )|ER(,1)> = (3.14)

I'(¢&) n=0+

11



DenotingS (2) = 03+ 2C [e ] (2 o+, using the representation (3.4) of the resolvemind the fact that
(FL) | FRu)) = tr || FR@) ) ( FL(2) ||, we get

L S R
dxlog det ] + V] = ai énu@ fd (EL[s@|ERW))

(z- 2)?
r((bﬂE) n=0*

|6—nt 95 e'”“(z)fd/ld,u|FR(/1)><EL(/1)|

['(¢E)

R L
X(%_%)S(Z)“E WRFOIL 15

-z (u - 2)
n=0*
Using the integral expressions (3.6) foandy ™1, we obtain
q L R
¥ dz (E-[s@|ERW)
. ZZ dnu)
dxlogdet] + V] |a77 564ne' fd/l Y.
['(¢e) -
q
. ER@w) ) (F-()
i e [t xS @ [E70) (760
on 47 (u - 2)?
I'(6E) —-q n=0*
-9 5{5 9z gy ox@s@x '@} . (3.16)
on 4r
[(%E) n=0*

where we used (3.7). The proof of identity (3.9) goes alorg sa@milar lines.

4 The first set of transformations on the RHP

We now perform several transformations on the original RM&first simplify the form of the oscillating functions
E appearing in the formulation of the RHP. This step in carnethe spirit of [27]. Then, we map this new RHP
into one whose jump matrix can be written as the identity puse purely i-diagonal matrix. Finally, we apply
the non-linear steepest descent method by deforming thewoso as to obtain jump matrices that are &0O°)
uniformly away fromxqandAg. These last steps are a standard implementation of the Zteft steepest descent
method [15, 16].

4.1 Simplification of the function E

In order to replace the complicated functiBrby e %, we perform the substitution

x (D) =x ) (12 + o Cle?| (1) (4.1)

whereC is the rational Cauchy transform with support@g defined in (3.10).
It is readily checked that this new matfgxis the unique solution to the RHP

12



e y is analytic onC \ %t and has continuous boundary values@n\ {+q} ;

11 ) uniformly inA — oo ;

e x() = I2+/l‘1O( 11

.5;(4):0( 1 i)log|/12—q2| for 1 - +q;

° ;\7+ (/l) G} (/l) = j(v_ (/1) for 1 e (gE

The jump matrix fofy takes two dferent forms

e—2i7rv(/l) 0
G)? (/1) = ( eZinv(/l)GZ(/l) (e—Zim/(/l) _ 1)2 eZim/(/l) for 1€ ] -q; q[ (42)
and
-2
G;(A)=(é © 1(1)) for e ¢g\[-q;q] . (4.3)

The existence and uniqueness of solutions for the RHJ &rsures that there is a one-to-one correspondence
betweeny andy.

4.2 Uniformization of the jump matrices

We now carry out the second substitution that will yield a Ri#h upper or lower diagonal jump matrices whose
diagonal is the identity. For this purpose, we define
q

v(2) _
@ (D) = k() (ﬂ) . where  log(1) = — f yO-vw, (4.4)
1-q A—pu
The functiona (1) is holomorphic orC \ [ -q;q], a (1) P 1 and satisfies to the jump condition
a,()E™V =q_(1) for Ae]-q;q[ . (4.5)
Then we set
EM@)=x@)a”() . (4.6)

The matrixZ (1) is the unique solution to the RHP:
e Eis analytic onC \ %t and has continuous boundary values@n\ {+q} ;

11

° E(/l)IO(l 1

) (- )7 (2 + )7 Dlog|a% - ?| for 41— =q;

e Z(1) = |2+/l‘10( 11 ) uniformly in A — oo ;

11
+(Q)G=z(1) =E_(1) foraebk.
The new jump matriGz (1) reads

[1]

1
eZiﬂva+a_eZ (e—2i7rv _ 1)2 1 de ] —q; q[ :

Again, there is a one-to-one correspondence betvesamd y.

2.2
GE:((])- ale ) 1€%e\[-q;q9] and Gz=

13



4.3 Deformation of the contour

We now perform the third substitution that will result in aaclge of the shape of jump contour. Due to the fact
thate*1(1) are exponentially small i in appropriate regions of the complex plane, we will end ughwi RHP

for an unknown matriX® whose jump matrices ate + O (x~*°) and this fora uniformly away from the pointsq
andAg.

4.3.1 The time-like regime

Figure 2: ContouEy = F(TL) U F(lL) U F%R) U FER) appearing in the RHP for (time-like regime) .

We first introduce three auxiliary matricé(1) andN-R (1)

M) = ((1) “_2(1)16_2(1)) = L+P)o 4.7)
1 0
Oy - _ O o
NP@ = (a%(/l)ez(/l)(e‘zm(/’)—l)z 1] = 2+ Q7

! 0 (R _
a2 () D) (e—2ifrv(ﬁ)_1)2 1| = Q7@ (4.8)

Note that although the matrice?/1)(1) have diferent expressions, they coincideldmiue to the jump conditions
for a(2). It is clear from its very definition tha((1), resp. N® (1), has an analytic continuation to some
neighborhood of —q; q| in the lower, resp. upper, half-plane. Also, the matviX1) has an analytic continuation
toU \ [—q;q] starting from%e \ [ -q;q].

The functionsP and Q) andQ® have the local parameterizations arourgd

2v(2) () _ 1 2v(1) e2dmd) _ 1
chb@) cR()

QL) = cH(1) gi¢-a [g_q]m (W -1)  and QP =CcP(p e [éq]_sz (™ - 1) . (4.10)

N(R)(/l)

for 1edD 45, P(1) =€) for 1€ dDqs , (4.9)

P() =éasg]

14



There{_q = x(u(4) — u(-0q)) and{yq = x(u(q) — u(1)) and we have set

2 ~g(1)—ixu(-q) 2v(4)
L SO ( A1+q ) 2inv(1)
W e i -uce (g2 -1).
2v(1)
cR() = eg?dl;ii(i)(q) (u(/lj - :(Q) N i0+) (x(1+ Q]2 (e—Zim/(/l) ~1). (4.11)

We now define a piecewise analytic mattixaccording to Fig. 2. We will be more specific about the choice
of the contourd“/® around the pointeq and g when we will be constructing the local parametrices. Here,
we only precise that the jump contour férremains inU and that all jump curves are chosen so that, for a fixed
ze F(TL) U F%R) \ {£0, Ao} (resp.z € F(lL) U FER)), éxu(? (resp. e™U?) is exponentially small irx. The matrixY is
discontinuous across the curtlg = '™ uT® U F(TR) U F(lR). One readily checks that the matfixis the unique
solution of the below RHP (and hence there is a one-to-onegmondence betwegrand):

e T is analytic onC \ Xy and has continuous boundary valuesgn\ {+q} ;

e T(1) = O( 1 1 )(/1 - )@ (1 + )7 Dlog |42 - ?| for A xq;
(11 _ .
© T() =l2+27*0( | | |uniformlyind — o ;

T (A)Gyr(A) =T_(2) for 1€y )\ {£q, 0} .

With
Gr()=M@) on TPur®  Gr)=NY@) on " and Gy (1) =N®) onr.
(4.12)
4.3.2 The space-like regime
We introduce two matrices andN
1 ae” + d ! o) _, - (413
M—(O 1 )—|2+P(/l)0- an N = a%ez(e_zmy_l)z 1 = 2+Q(/1)O_ . ( . )

The matrixM(2) has an analytic continuation td \ [ —q; g ] starting from%g \ [ —q; q]. The matrixN(1) has an
analytic continuation t&J N H_.
This allows to write convenient local parameterizationsuad +q for P andQ:

. 2y imv(d) _ . y —2imv(d) _ _ (L
P = da PO ETT L e POy {é-q X(u(4) - u(-q))

cL(a) CcR(1) g = X(u(d)-u(@)
(4.14)
Similarly,
Q) = COW) e[ (7 — 1) = —cR) e[| > (e 27D - 1) . (4.15)
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Figure 3: Contouky = F(TL) v Fi") U F%R) U F(lR) appearing in the RHP for (space-like regime).

Here, we bring to the reader’s attention thée&lence of signs in the definition @f in the time-like and
space-like regimes. Also, the functiof$8-/® (1) have been defined in (4.11). The sol&etience is that, in the
space-like regime, thei0* regularization plays no role.

The matrix Y (1) defined in Fig. 3 in the unique solution to exactly the same RidRormulated for the
time-like case but with the contours being defined in Fig. @ tae jump matrix being now given by

Gr()=M(@) on rPur®ur® and Gr()=N@) on 1. (4.16)

5 The local parametrices.

We now build the parametrices arourq and 1p. These will allows us to put the RHP faf (and hence the
one fory) in correspondence with a RHP that has its jump matriceedlmshe identity, uniformly on its whole
jump contour (in the case &f (1) the jump matrices are close to the identity only uniformlyagfrom the points

Ao andxq). The role of the parametrices is to mimic the complicatezhlldehavior of the solutiof near the
stationary poinflg and the endpointsg. Once again, due to slightféitrences between the two regimes, we treat
the space-like and the time-like regimes separately.

5.1 The time-like regime

We recall that for the time-like regime, the functioR$1) andQ(-/R (1) appearing in the jump matrices are given
respectively by (4.9) and (4.10) wit-/R (1) given by (4.11).

5.1.1 The parametrix around g

It follows from the assumptions gathered in subsection that the functionu admits a local parameterization
aroundAo, ie there existg > 0 such thatD,, s ¢ U and a holomorphic functioh on some open neighborhood of

D,y SUch thaui (1) — u (o) = —w? (A) with w (1) = (1 - 10) h (1), andh(@o,é N Hi) C H,.
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The curvesl"(l%R) in D,, s are defined according to Fig. 4.

0D 5

Figure 4: Contours appearing in the local RHP aroggih the time-like case.

The parametri¥Py aroundig reads
Po(A) = 15 — bo1(A) e‘i%%‘/ﬂ\y(l, g; iXa)Z(/l)) o (5.1)
T

There,'¥ (a, b; 2) is Tricomi’s confluent hypergeometric function whose déifami is recalled in appendix A.
The functionb,; is defined piecewise:

521(/1) — (Xz(/l) e—iXU(/lo)—g(/l) (e—2i7rV(/1) - 1)2 foraeH n Z)/lo,é , (5.2)
b51(2)

22(1) €40 gxu(0)-g() (e—Zinv(/l) _ 1)2 for A e H' N Dy . (5.3)

It is holomorphic onD,, s due to the jump condition satisfied by(4.5).
The paramerti¥Py solves the RHP:

e Py is analytic inD,, s \ {F%R) U FEL)} N D,,s with continuous boundary values ({)ﬂ(TR) U Fi")} N Do

1 . .
e Po=Il2+—=0(c") uniformlyind e dD,,s;
X

\/_
o [Pol. (1) (12 +D2a(1) €W~ = [P]_(1) .
The first two points in the formulation of the RHP 8 are obvious. The validity of the jump conditions can
be checked with the help of identity (A.1).
5.1.2 The parametrix at—q

The parametrices for the local RHPsz are well known. They have already appeared in a series ofsvork
[4,11, 31] and can be constructed from thiatiential equation method [21]. Here, we recall their form.
The parametri¥P_q around-q reads

P_q (1) =¥ () L (1) [x(u() - u(-q)]" W73 e 5" | (5.4)
v (ﬁ):( ¥ (v (1), 1;-ix[u() - u(-g)]) ibnuwa—vu),l;ix[uu)—u(—q)])) 5
by ()P (L+v (D), L-ix[uW) —u(=9)])  P(=—v@),Lix[u@W-u=x) )
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Duo(t) = i T (1= ()
d 2CO() ,  sothat byp(d)bpi(2) = —*(1) . (5.6)

SN DI T2 (— )
cM)(1) is given by (4.11) and

bo1(1) =

B /2 < arg[u(d) - u(-q)] < /2.

L) = ( (])- ezizg(/l) ) n/2 <arg[u(d) —u(-0g)] <7, (5.7)

e2im/(/l)
( 0 1 ) - <arg[u(l) —u(-g)] < -n/2.

P_q is an exact solution of the RHP:
o P_qis analytic onD_gz \ {F(TL) U F(lL)} with continuous boundary values ({)ﬂgL) U FEL)} \{-q};

11

. p_qu):o( 11

) 1+ a7 Dlog|a+ql, 1 — -q;

) P_q(/l):I2+WO 1 1

|P-a], (DM (1)
|P-a], () NO(2)

Here, we have set

1 . .
( 11 ) uniformly in A € 0D_qs ;

I:P_q]_ (/1) fOI’ /l € F%,L) N .Z)_q’(s' ,

[Pal ()  foraerPno g .

py = 2supf|R (v(2)) : A €0D.qy UOD_qp|} <1. (5.8)
The fact thalps < 1 for suficiently smallé’ is a consequence of the assumptions majtv (J_rq))| < 1/2. The
canonically oriented contoudtD_q s together with the definition of the contouf.%)l is depicted in Fig. 56" > 0
is chosen in such a way thél.qs U, Diqs N Days = 0 andDqy N D_qe = 0. Playing with thes entering
in the definition of the parametriRy, one can tune it in such a way th#it= 6. We shall assume such a choice in
the following.

5.1.3 The parametrix atq

The parametri¥Py aroundq reads

Pq (D) =¥ (D) L) [x(u(q) - u(a)] 0 e (5.9)
Here,
vy =| ‘I‘(—v(ﬂ),l;—iX[U(_ﬂ) —u(a)]) i D1o(1) ‘I‘(1+v(_ﬂ),1;iX[U(ﬂ) —u(aQ)]) . (5.10)
=) Y(1-v(),1;-ix[u() —u(g)]) Y (v(2),L;ix[u(d) —u(@)])

18



aD_q’é’

Figure 5: Contours for the local RHP around in the time-like case.

x[c®W]
T2 () sin o ()] . bra() bas(d) = —v2(1) (5.11)
b1 () = in 2 (1 -v () CR) sin [xv ()]
c(®(1) is given by (4.11) and

b12(2)

P -n/2 < arg[u(q) —u()] <n/2,

imv(2)
( T 1 ) 7/2 < arglu(@) —u(d)] <7

L) = (5.12)

1 0
( 0 e2im/(/1) ) < arg[u (q) - U(/l)] <-nm/2.
Pq is an exact solution of the RHP:

o Pq is analytic orﬂ)q,(;\{F%R)Ul"(lR)} NDqs and has continuous boundary values{Bﬁ)uFER)} N Dgs\q)

11
* Pq(d) =O( 11 )(ﬂ—q)“”v(‘” loglt—dl , 1 —d;

« Pe) =2+ ——0( | ]

1 11
xl—P§

), uniformly in A € 0Dqs
|Pq], (ONPQ)

|#4], () M(2)

[Po] () for2eT®nDgs\ (a)

[Po] () foraer®n Dy, \(a).

The canonically oriented contod®Dq s together with the definition of the curveﬁff)i in the vicinity of q is
depicted in Fig. 6. Note the change of orientation of the juumye due tar (g) < 0. Alsops is as given in (5.8).

5.1.4 Asymptotically analysable RHP forll

We now define a piecewise analytic matfxn terms of Y and the parametrices according to Fig. 7. In particular
one hadl = T everywhere outside of the disks. The matffixas its jump matrices uniformly close to the identity
matrix in respect to th& — +oo limit. Hence, it can be computed perturbativelyxiby the use [16] of Neumann
series expansion for the solution of the singular integgala¢ion equivalent to the RHP for. This matrixII is

the unigue solution to the RHP:
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aDq’é

Figure 6: Contours for the local RHP arouqdh the time-like case.

e ITis analytic onC \ X and has continuous boundary valuesgn;

— -1
e II(A) =1+ O( 1 1

11 ) , uniformly inA — oo ;

e I1,(A)Gp(1) =TI_(1) fordeXy.
The jump matrixGy (1) for IT1 (1) reads
P;l (/l) on - a@iqﬁ

Gn(0) =Gy (1) on T=TPUTPUTPUT®  and  Gn(1) = . (5.13)
Por(A) on —8Dys

Figure 7: Contoukr; appearing in the RHP fdi, time-like regime.

5.2 Asymptotic expansion for the algebraically small jump natrices

Note that the jump matrices alofigare exponentially close e in x and this in theL1 (i) N L2 () N L™ (Zn)
sense. Only the jump matrices on the disks are algebrairatkclose to the identity matrix. The latter jump
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matrices have the below asymptotic expansion into inveoseeps ofx, valid uniformly on the boundary of their
respective domains of definitiodD.qs or 0D,,):

P9 - +;)<n+1)\!/;_x;n<)sfi)q)]””’
PO = <n+1)\!/;+x;n<)sfi)q)]”+l’
PoHY =~ lp+o > xn+%?s(ri(j)0)2”+1' (5.14)
Where,
VE(g = (—i)””(%f(_@)m( | f;i)ri;lb(zzz)lﬁilv)ﬁ i(n+l)b1?f)_{)lm(l_v)ﬁ ) . (5.15)
avy = LC2ED hz‘niif(s)ﬁm(s), (5.17)

We remind thaiw (1) = (1 — 10) h(1) and we have used the conditions getq| = 1 = det [Po] so as to invert
the parametrices and then infer their asymptotic exparfsmn the one of CHF (A.2). Also, we have not made
explicit thatbyj, bjj andv are functions of.

5.3 The space-like regime

The discussion of the space-like regime resembles, up tormsimbtelties, to the previous one. Therefore, we
make it as short as possible.

5.3.1 The parametrix aroundAg

The parametri¥Pg on D,, s for the local RHP aroundg reads
Po () = | — bio(2) €% %\/B(‘P (1, > —IXa)Z(/l)) ot with  bra(2) = @ 72(2) @U+9) (5 18)
T
b1, is holomorphic orD,,s- The parametrif, is a solution to the RHP
o Py is analytic inD,, s \ {F%R) U FER)} N D,,s and has continuous boundary values{Bﬁ) U FER)} N D5,
1 . .
e Po=1Il + —=O(c™) uniformlyin2edD,,s ;
v)_( i)
o [Pol.(1) (I2+Dbra(2) €™ Wot) = [Po]_(2) .

The jump curve for the parametrfy; is depicted on Fig. 8.
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0D 5

Figure 8: Contours for the local RHP arounglin the space-like case.

5.3.2 The parametrix around —q

This parametrixP_g is exactly the same as in the time-like regime. Hence, we dpmsent it here.

5.3.3 The parametrix aroundq

The parametri¥Py aroundq reads

Pa(1) =¥ () L) [x(u() - u(@)] "W e™ . (5.19)
Here,
vy = _ ‘P(—v(ﬂ),l;—iX[U(ﬁ') —-u(@]) ib12 (1) ‘I‘(1+v('ﬂ),1;iX[U(ﬁ) —-u(@]) . (5.20)
—ibp1 (1) ¥(1-v(2),1;-ix[u() —u(a)]) Y (v (1), Lix[u(d) —u(q)])
_ 2
Bo(l) = ir(é(+)l(/ﬂ()/l)) snpr(d] 2
_ d ixCR(1) . b12(2) ba1(2) = —v(4) . (5.21)
bal) = () sin o (]

c® is given by (4.11) and

2 -n/2 < arg[u(1) —u(qQ)] < 7/2,
1 0
L) = ( 0 e2mW ) n/2 <arg[u() —u(q)] <, o2
@2mv(d)
( 0o 1 ) - <arg[u(2) - u(q)] < -n/2.

Pq is an exact solution of the RHP:
o Pqis analytic onDgs \ {F(TR) U FER)} N Dqs with continuous boundary values t{jﬁ(TR) U FER)} N Das \ Q) ;

11

° Pq(/l)ZO( 11

)(ﬂ -9 ¥ @logli-q , 1 —q;
o Py(d) =12+ iO( 11 ) uniformly in2 € 0Dqs

x1-ps 11
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[Po] M@ = [Pg] () foraeT®n Dy,
[Po],(ONQ) = [Pg] () foraer®noy,.

The canonically oriented contodD, s as well as the definition of the jump curvE%R) is depicted in Fig. 9.
Finally, ps has been defined in (5.8).

aDq’é

Figure 9: Contours for the parametrix arounah the space-like regime.

5.3.4 The RHP forIl

The matrixII is defined according to Fig. 10 and is the unique solutioneédRRIP formulated in exactly the same
way as for the time-like regime. TheftBrence consists in the precise form of the contours due tfattehat in

the space-like regimey > @.

Figure 10: ContouEr; appearing in the RHP fdi, space-like regime.

5.4 The asymptotic expansion for the parametrices

The jump matrice?;}] have the same asymptotic expansion as in the time-like e 4) with the sole excep-
tion that the coficientsb,, by entering in the definition 0¥+ (5.16) are now given by (5.21). The matrix
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5051 has the below asymptotic expansion

d(s) _ — 2 T(1/2+n) €3
(M (g) = _j)n
Lot M TR T ey

Por(9 =12 +0" (5.23)

6 Asymptotic expansion of the Fredholm determinant

Starting from now on, we will treat both regimes (space amtlike) simultaneously.

6.1 The asymptotic expansion foil

In this subsection we present two ways of writing down thengsiptic expansion for the matrid. The first,
given in proposition 6.1, traces back all thefeient fractional powers of and oscillating terms that appear in
the asymptotic expansion Bf. It also provides one with a sharp and quite optimal contféhe remainders. The
second one, given in proposition 6.2, is considerably l&pficit and, by far, does not provide optimal estimates
for the remainders. However, it is easier to implement fdismdomputational point of view, especially when one
is interested in calculating only a couple of terms in thengstptics. One can then build on the first asymptotic
expansion so as to on the one hand argue for a sharper forra ektimates for the remainders and on the other
hand identify which among the computed terms are relevehindrich are not. We start this section by presenting
the Neumann series expansion for

Definition 6.1 Let X be the jump contour for the matri. We define the contomE%N) as being the inslotted
version of the N-fold Carthesian produEf; x - - - x Zr;. Namely it is obtained fror2p x - - - x Xy by putting the
contour for z,1 slightly shifted to the right from the contour fog.ZWe have depicted the inslotted contour for
N = 2on Fig. 11.

N R

-
~ - ~

Figure 11: The inslotted contour fod = 2. The integration over; runs through the dotted contour whereas the
one overz, runs through the full one?D [z] refers to the three disks over which the variahles integrated.

Let pr, stands for the projection on thd"Kactor of an N-fold Carthesian product, ie given= (z,...,z)
one haspr, (2) = . The contourz!lY) thus defines N curvesy [z] = pry (Zﬂ\')), k=1,...,N. Each of these
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can be interpreted as giving rise to the jump contour for théPRproblem associaed with the matiik In the
following wheneven, resp. V, is inegrated along [z], it should be understood as originating from the jump
matrix I + A, resp. b + V, appearing in the RHP fofl, resp. IT"%, when the latter is formulated on the jump
contourX [z].

Lemma 6.1 Let | + A be the jump matrix fofl andV = Comat(A)! be the transpose of the adjugate matrixAto
Then, for x-large enough, the matricHsandIT-* admit the below uniformly convergent Neumann series

dN A(ZN)...A(Zl)

R - 6.1)
N>1 S0 (Zm)N (1-2z) NUll (Zs — Zs41)
U Nz Vv (Zl) V()
m) = L+ Nzﬂf L ) (6.2)

(1-12) H (zs — zs11)

The convergence holds if°l{O) sense fort € O, with O any subset @ such thatd(O, Z;) > 0. Also, it holds
for 1. € Xp in the L2(Z) sense. Finally, the matricesandV that are integrated along the inslotted contfﬁﬁ\')
should be understood according to definition 6.1.

Proof —
We define two linear operators on<2 L2(Zp)-valued matrices

ds

MW= [ EMEaE®  ad MW= [55

Zn Zn
Using that for skiciently regular, not necessarily bounded, contdiys the + limits of the Cauchy transform

with support orZp; are continuous operators as(Zr) with normc(2r) [30], it is easy to see that that the two
above operators are also continubos the space> (LZ(ZH)) of 2 x 2 matrices with_?(Z) entries:

IA

ez, Ml 2qs,
[z, Ml e,

There we made use of the fact thais the transpose of the adjugate matrixatso thatl|All «(s,) = [Vl ey
and||All 2y = IVl

It is a standard fact [5] that there is a one-to-one corredpoce between the solution to the RHP Fbor
1Y) and the unique solution to the singular integral equations

2¢ (Zm) IAllLs g Ml L2 (6.4)
2¢ (Zm) Al (s M2z (6.5)

IA

CE [IL] = I and mt-'ey [ =12 (6.6)

Indeed, provided thdil, is known, the matriX1 (or IT"1) admits the below integral representation foaway
from Xp

ds _ ds -
H(/l) =1y + fmn+ (S)A(S) and I1 l(/i) =1y + me(S) H+1 (S) . (67)
n Zn

"By intechanging the roles af andM, it is easy to see thaﬂ§n is continuous on, (L*(Zy)) sinceA € L?(Zp).
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The estimates for the jump matrices on the boundary of thesdi®.qs andoD,,s and the specific choice for
the shape of the contolli; at infinity lead tol|All 2z, + Al gy = O(XY) with w = min(1/2,1 - ps) > 1 and
ps defined in (5.8). This implies that forlarge enough the operatars- Cén andl -t an are invertible and that
their inverse can be computed by a Neumann series expar@iwarging inL? (Xp):

L@ = 1+ {cd )1 (a)=|2+2f(2| o A(Z'&“A(Zl) . (6.8)
= N @ - 2) Tz - 2sa)

-1 _ t VY _ V(z)...V(zn)

i = |2+NZ>1{CZH}”[IZW)-|2+NZ>1 f e - 69

(/1+ - Zl) sljl ([Zs]+ - Zs+l)

Where{C@H}Nz Cg, o---oCy _stands for the composition &f operatorsCy . In (6.8)-(6.9) the integration runs
across the Carthesian product®topies ofZy: pp x - -« X Zy.

The fact thatlT*! (1) admits a uniformly convergent Neumann series Jfobelonging to any open set O
at finite distance fronEp follows from the L? (£;) convergence of the series (6.8)-(6.9), the fact that
Mo (L2(En) N LY (2n)), and that O, =) > 0.

Finally, it is easy to check that one gets the expressiofiI{d) (resp.I171(1)) on C \ Xy by replacing ther
type regularization, of 1in (6.8) (resp. (6.9)) byl € C\ Z.

The N summand of the Neumann series 6! can be expressed in terms of regularized by deforming the
original contourZy x -- - x Zpy to the inslotted one:(N) The latter manipulation is possible due to the properties
of the locally analytic matricea (2) andV (2). It aIIows one to get rid of the regularization in the integrals.

The construction of the inslotted contcEﬁ\') is depicted in Fig. 12 and 13. Initially, the integral is pered
with the use of ther boundary value of; on the integration contour fa. Hence, away from the points of triple
intersectiong;, we can deform the integration contour farto the + side of the integration contour fag. One
ends up with a contour as depicted in Fig. 12. There, the didittes correspond to the integration contour Zpr
whereas the full lines give the integration contour Zar One then proceeds inductively in this way ugto As
A is assumed to lie uniformly away from the original cont@yy, there is no problem to deform the integration
contour forz; in the vicinity of £y as the pole at; = A is lying "far" away.

It remains to threat the integration on the intersectiomisoof the disk)D|z;] with the curvesl“("/ Fz)[ z;.

We first reduce the most interior disc (the one over wiaghis integrated and then the procedure is repeated by
induction) to smaller a one. The jump matricebave diferent analytic continuations from the right and left of the
pointsc; (this corresponds to the discontinuity linesff and®..). Taking this diference into account produces
the small extensions of the contom%/lR) [zn] as depicted on the right part of Fig. 13 together with smallecs

0D [zy]- Itis in this way that the matrix\ integrated oveEy [zy] is identified with the one stemming from the
jump matrix forIT when the latter is defined as in (5.13) but with jumpsXpiizy] (what corresponds to slight
deformations of the curvelér IRy, n

Proposition 6.1 The matrixII admits the series expansion

() = 1p+ i H?‘(ff) , (6.10)
N>1

that is valid uniformly away frort;; and also on the boundary;; in the sense of 4(Zy;) boundary values. The
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Figure 13: Deformation of the circles.

codficientslIIy of this expansion take the form

2 gmu@-u-a]

In(2) = An(A —_—
N( ) N( ) + N] XZm[V(q)+V(_Q)] N

m=—

2
vz b (3D fu@-uca] |, gxabutio)-pua+(p-bu(-a)]
+ > X2 n™eP ) | (6.11)
2 v(a)+v(-a)] x2n(b—p)v(-a)-2pyv(a) N
=0 b 1]

and one should set = 1 in the space-like regime angl= —1in the time-like.

The matrix A (1) contains only exponentially small corrections, [#®];j (1) = O(x ) with a O that is
uniform for A-uniformly away fronky;.
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The matricesHE\Im)(/l) and Hf\lmb’p)(/l) admit the asymptotic expansion

. log X N+r—0mo—2m
oM = Z nQ)  with 0 ) = (( 9%) = M] , (6.12)
r>0
b, b ' b (Iog X)N+r—2(m+b)
n>Pe) = Y IfPPe) with  0f>P) = o( = M|, (6.13)
r>0
The estimates hold fotr uniformly away fronky;.
The matrix M appearing in the variou3 estimates takes the form:
gxu(a) _ _
1 m, + mx2 (- gxu(-a) 4 mg 4/xeU(o)
M = . x2/(@ (6.14)
- ~ XZV(q) ~ e"xu(_Q) ~ \/)_( '
M@ "™ 2 Mgt 1

There m, my, M. and My are x-independent cgécents. Moreover, necessarilyom 0 in the time-like regime
andimg = 0in the space-like one.

We postpone the proof of this asymptotic expansion to apgpeBdas it is rather cumbersome and long.
However, at this point, we would like to make several commantespect to the form of the asymptotic expansion.
The above asymptotic expansion is in a form very similar &odhe of the functionalgt, [v, €9, u] given in

Theorem 2.2. In fact, the largebehavior of the matriXIy contains various fractional powersxfeach appearing
with its own oscillating pre-factor. Once that one has fixeghan phase factor and fractional powenrxgfthen

the corresponding matrix cﬁmlentSH(m) or H(anb P admit an asymptotic expansion in the more-or-less standard
sense. That is to say, each of their entrles admits an astimptgansion into a series whos® term can be
written asPy.n (logx) /X" with Pn.n being a polynomial of degree at mast+ n. One of the consequences
of such a structure is that an oscillating term present i, (1) may be in fact dominant in respect to, say, a
non-oscillating term present ™ I,y (1) wheren’ < n.

We would also like to point out that the asymptotic expansiofily andITy.1 share many oscillating terms
at equal frequenciegge*[U(@-u-a] is present iy andITy.1 for anyN > 2). However, those issued froffn.1
have an additional dumping pre-factor gx! in respect to the same ones issued fidm Finally, there may
also appear additional oscnlatorg/ termd<¥?, z = +q or 1o (and their associated fractional powersxpin the
off-diagonal parts ofi{” andI1] Mb.P) of (6.14).

There is also another way of writing down the asymptotic espan ofI1 (1). Although it is more compact, it
is also less explicit and provides one with weaker estimfatethe remainders.

Proposition 6.2 The matrixIT admits the asymptotic expansion

(”)(/1) 11 1
—(N+Dw ; —minl= 1_
(1) =2+ néo o ( 11 )x with  w = mln(z, 1 p5) , (6.15)

that is valid uniformly away fromx.
For A belonging to any connected componenioin C \ X, the first few terms appearing in this expansion
read

dO (1) V(€0 (eq)
Oy - o (= - Y LD
™ (1) 110 o, I+ (1) 2.1 , (6.16)
(0) (€:0) (€:0) 2 (1)
@) = d(1g) (VN eq) o oV (eq) T 0c (dY(9) . (6.17)
Z/lo—eq A— Ao A—€q 208 o
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The expression fdiA® is a bit more involved.

2
B G0 I T e VG
A= % (- eq)? 20(1 - €q)

~ }Z 9 V(ED (5) — 2V(E€D (eq) V(€D (s) (6.18)
24495 A-s seq

€=+

Thereo = ot in the space-like regime and = o~ in the time-like regime.

This form of the asymptotic expansion is the closest, iritspirthe one appearing in the literatuocf,eg[14].
However, it does not represent a "well-ordered" asymp®tjgansion in the sense that each mafti¥ depends
on the various fractional powers a&fand oscillating corrections. Some terms present in theesntf I1P) are
dominant in respect to the ones presBff, £ < p. Moreover, the expansion (6.15) does not provide one with a
precise identification of these terms. This form is howewyconvenient from the computational point of view,
and having explicit expressions for the matri€&8 easily allows one to identify the various matrices enteiing
the "well-ordered" asymptotic expansion (6.10)-(6.11).

Proof —
The unique solutiorl, to the singular integral equation (6.6) equivalent to thigjuely solvable RHP fofl
provides an integral representation féion C \ X;. Namely,

ds
H(/l)— I2+fmn+(S)A(S) for /lEC\E]‘[ (619)
Zn
The only places where the jump matrix fidris not exponentially close to the identity are the three lolawies
of the discs-0D.qs and-0D,,s. There one has

MLPg=T_ on -0D.qs and ILP =TI on —9Dy,s. (6.20)

Note that the minus sign refers to the clockwise orientatibtihe boundary of the discs in Fig. 10 and 7.
By using the estimate

. (1
N (A) = IAllLg,y + ALy = O(X™)  with Wzmln(i,l—pg) (6.21)

and equation (6.6), one shows by standard methode(gdd]) the existence of the asymptotic expansion (6.15)
for I1(1). This expansion is valid uniformly away from the jump cuBe

We would like to stress that for computing the flodents of the asymptotic expansion, we can drop the
integration contours other then the boundaries of the disRsy/a,;s. Indeed agIl, - 1) € L?(Zp), cf (6.1),
and||A||L2le® = O(Xx™®), it is clear that the integration alofigin (6.6) can only produce exponentially small

corrections. Thence, it cannot contribute to the asymptexipansion (6.15). As a consequence, the matrix
codficientsII™ in (6.15) can be computed by plugginthe asymptotic series into the integral equation (6.19),
dropping there all the exponentially small correctionerfgning from the integration alorg) and replacing the

"It is possible to insert the asymptotic expansion, whichiarpis valid only uniformly away fromzy in (6.15) in as much as one
slightly deforms the contol; in the + direction what is allowed in virtue of the analytic propesgtiofIl, and the local analyticity oA.
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jump matricesP; 1, P;(l] by their asymptotic expansions which are valid uniformlytik@ boundaries of the three
discs. This leads to the formal (in the sense that valid dogl@rder inx) equation,

H+(S) dO(g) o I, (s) VE(s)
I, (1) ~ 2——f z.ﬂZ f /l+—S . (6.22)

9 Ay — S 4 (s— o)™ x+3 S (n+ 1) (s— eq)™t xn+t
G D{OO (')ngb

It now remains to equate the dieients of equal inverse powers X1 This yields sets of recurrence relations
between the various terms appearing in the asymptotic sigraforII. A straightforward residue computation
leads to the result fad™, n=0,...,3, fora belonging to any connected componentoin C \ . [ ]

6.2 Proof of the leading asymptotics of the determinant

We now prove theorem 2.1. We divde the proof into three parst,Fwve obtain a modified version of the integral
representation (3.8) faiy log det ]| + V] that will be more suited for our further computations. Thee use this
integral representation so as to compute the first fetependent terms in the asymptotics. Finally, we fix the
constantx-independent part of the asymtptotics.

¢ Modification of the integral representation

The first few terms of the asymptotic expansion of det ] can be obtained by using the identity (3.8) between
the x-derivative of log det[ + V] and the RHP datg, together with the asymptotic expansion forAs a starting
remark, we observe that one can always choose the cohif@gfi) appearing in (3.8) in such a way that it only
passes in the region where

x (D) =) a™"3() (12 + C[e?| () ™) . (6.23)
Then, plugging this exact expression fointo the trace appearing in (3.8), one gets that
tr{ou (1) [or3 + 2C €] (1) o* | ¥ (@)} = tr[9al1 (1) oslT™ ()| - 20, (log @) (A) - (6.24)

It remarkable, but also important from the computationahpof view, that the matrix allowing one to simplify
the complicated functionk (1) (1.2) appearing in the formulation of the initial RHP, does play a direct a role

in the computation of the asymptotics of the determinantpdrticular, one does not have to deal with integra-
tions onI" (¢g) of Cauchy transform& [e 2] (). Inserting (6.24) into (3.8), one obtains that the contrdyu of
—-20, (log ) (1) can be separated from the rest, so that

dxlogdet] +V][vu,g]l =aq - 12 f A i) g [oaTT () st (D]} (6.25)
on 4n

I'(¢e) n=0*

where we have set

a_l—f—u ()l (“; Ej;):ifu’(/l)v(/l)d/l. (6.26)
~q

Note that one cannot exchange tfiderivation and thel-integration symbols in (6.25) yet. To be able to do
so, we deform the most exterior parts of the contB(fr) in (6.25) toF(TL) andl"(lR), cf Fig. 14. We denote©®
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the resulting interior loop. The integrand alop remains unchanged. However, when integrating along the
contoursl"(T%R), one should replace ﬁﬁﬂl‘[ (1) o3It (/1)] by the diference between the two boundary values:
tr [0, (1) oalI= (2)] = tr [9aTL, () T ()] (6.27)

(LR
Ve

This is a consequence of the fact the jump malsix A for IT on TR admits an analytic continuation to a
neighborhood of these curves. This fact allows one for d ldeformation of the jump contol;, meaning that
I1, (resp.I1.) admits an analytic continuation to some neighborhooHplocated on its- (resp.+) side.

The diference in (6.27) can be estimated with the help of the jumplition for IT anng’f%R): LM =T
whereM is given by (4.7) :

We remind that not only the boundary values themselves, but also thesd$'®flerivatives do exist o

tr 911 () o3l ()] = tr[{[2aT1, (D] M (D) + T () 02M (D} oM~ () T ()|
= tr[ 113 (9aT1, (1)) M? (1) o] + tr[9aM () oM (D)] . (6.28)

Using thatM = |, + Po*, with P being defined in (4.9) , we obtain the jump formula
tr[04TT () oalI= (A)] = tr[9aTL, (1) ralT3H ()] = 2072 (1) €72(A) tr {911, (2) o T (D)) (6.29)

Using, once again, the jump condition bl //lR), we see that 0,11 (1) 0'+H_1(/1)] has no discontinuity across
those parts o'f(T%R) that we focus on. It can thus be extended to a holomorphicifumin some neighborhood

of this curve. Thence, we can deform the contours of intiig'raﬁ%%R) to y(L/P as depicted on Fig. 14. Once
that this has been done, there is no problem anymore to egetihan-derivation with thex-integration. Indeed,
tr 9,01 (1) o 11 (1)] is bounded whefR (1) — +co alongy(-/®), and the functiorG given by

G (1) = u() {L0() + 2072 () €2 () Luu,w () (6.30)

is integrable. Herel stands for the characteristic function of the AetOnce that the-derivative is computed,
we get the below integral representation

dxlogdet] +V][vu,g] = a1+ 95 2—;@ [T (D)o (I ()] - (6.31)

Y

The final contouty is depicted in Fig. 14 and the matrix-valued function reads) = o31,0/(1) + 0" L0 uym (4).

e Extracting the first few x-dependent terms

tr[9a11(2) o*TI7(1)] is bounded o™ U y® and|IGlls(,my,w) = O(x*). Hence, we can drop the part of
integration oven") U y® when computing the asymptotic expansion of log dlet I/]. It thus remains to treat
the integration along©.

As follows from proposition 6.111 has a uniform asymptotic expansion §® given by (6.10). In order to
obtain the leading asymptotic expansion for igerivative of the determinant, it is readily seen that &m®ugh
to plug in the more compact expansion (6.15) to the desirddrand then drop all the terms that are irrelevant.
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Figure 14: Contouy = ¥ U@ U (M. The contouy; is depicted in dotted lines.

This is simpler from the point of view of computations andtifiesd a posterioriby the form of the well ordered
asymptotic expansion (6.10). Therefore we get

3

3
2

tr[9aT1 (1) oaI1 2 (1)) = %(tr (M@ () o} + S tr{[0@] ) - 1O2) [M®] (2) - 1O ) (O] ()}
X

etx[u@-u-a]  d@multo)-u(zq)] (log x)
XiZ[v(q)+2v(—q)] +2’ % v(£0) ’

+ %tr {[H(3)]'(/1) — O [H(l)]/(/l)} o3+ 0( ¥

] , (6.32)
uniformly ony(©. There the o refers to sub-leading terms that have beendgndt distinguishes between the
various oscillating and non-oscillating corrections thate been ignored. Also one should get 1 in the
space-like regime angl = —1 in the time-like regime. Note that due to the compactnesg®fthe order of the
o-remainder is preserved by the integration algf?%

Note that, in (6.32), we have been able to simplify certamdpcts by exploiting that, regardless of the time

. ) 2 . . : .

or space like reglmeﬁn(o)] = 0 and that traces of matrices proportionabtdwith o = o* depending on the
space ot time-like regime) vaniskeg 1O 1 [1‘[(0)]' « o).

We now insert the explicit form of the first few matrix dieients appearing in the expansionldfand then
integrate the expansion (6.32) alop@ with the appropriate weight. At the end of the day, by usirgphecise
estimates provided by the expansion (6.10), we get

o -3 3 o E o ol o
X X N X X2 »

X3 XW+3 xw+2

Above the last O corresponds to higher order oscillatingemtion with bigger phases than those involved in the
definition ofa; anda3*‘. The term responsible for the logarithmic contributiontie tleterminant coincides with
the one appearing in the time-independent case (the sedagdineralized sine kernel) considered in [31]:

2o = - (v*(@) +*(-9)) . (6.33)
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The firstig dependent term is an oscillating correction

2 Z (0)( ) u (/10) Ug;Q) {V(E;O)(GQ) [0_3’ O’]} ) (634)

aj¢contains the oscillating term coming from the boundatigs

osc_ U(@ -u(-0q) + -
a :-—56574qw<%mAﬂ®emkﬂ. (6.35)

Finally, a3° corresponds to the first non-oscillating corrections idsuem the endpoints-q:
i ) ” e 2 , el € 0
=7 D (eqtr {v< B(eq) - [V (eq)| }0'3+u () tr {[VED] (eq) - 2V (eq) [VEO (eq)} o5 (6.36)

Here, we precise that = d,u, u” = §2u and[V(E’a)]' =9,V

It now remains to insert the explicit expressionsVtX as well a=d™ so as to obtain the expressions for the
codficientsay, k = 1, 2.

We get that, independently of the time-like or space-likgime,

a>r . o~ v(Qv(=9) (g_ﬁ)

2 = Hu@-u(=q] T A A (6.37)
As for a;, we have

a _ _j%@aMM@_.,mwamM@} 638

% 2%%@6“/qu%mw+WS-”m)wmw—w&- (6:39)
in the time-like regime, and

a _ V_mewemg_v,wwrwmg} 6.3

x2 Zﬁh(ﬂo)xg{ : U(Q o+ a2 S0 ? ' (a) (Ao — g)* So (6.39)

in the space-like one. We remind th&t andSgy have been defined in (2.7) and (2.8)

e The constant term

Thex-derivative cannot fix the constantipart of the leading asymptotics. We use flgederivative identity so as
to fix the Ao dependent part of this constant. Then, in the space-likeneegne obtains thég-independent part of
the constant term by sendinlg — oo (the asymptotic expansion is uniform.g lying uniformly away to the right
from @). In such a limit, the determinant can be related, up {@@) corrections, to the generalized sine kernel
determiant studied in [31]. In this way, we are able to fix tbagtant in this regime. In the time-like regime, in
order to fully fix the constant, one has also to computegtherivative of the determinant asymptotically.

We already know from the above analysis that log tlet /] = xa_1 +log xap+ C [v, u, g] + 0(1). Using (3.9),
we get

tr [V(E;o) (eq) 0'3]
(z— eq)?

92,C[v.u,g] = 562—; @0 @ D = —01, [V (@ log |’ ()| + v (-q) log ' (-)} . (6.40)
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The absolute value has been chosen so as to treat the dpaesdi time-like regimes simultaneously.

In the space-like regime, the asymptotics are uniformgnas long asty remains uniformly away frong.
Hence, one can sdp = ~ in the asymptotics so as to fix the constant term. Whgge +co, the functionu has
no saddle-point, a straightforward computation showsWat i) = Vask (4, 1) + O (x™), with

Vesk () = {1 _ eZinv(/l)}% { 1- eZim/(p)}% .’é—l(/l)'evz(i/ilr)(; 'f‘;)(u)'é(/i) with () = e(d) (e‘zm( o 1)% ‘

Moreover, the big O symbol is uniform dr-q; q]. This means that
det[ ~qq] [I+V]= det[ ~qq] [ +Ves - (1+0O(X%)) . (6.41)

This last identity stems from the fact that the resolvent géaeralized sine kernel is polynomially boundedk,in
and this uniformly or{ —q; q], cf [31]. Using thex — +c0 asymptotic behavior of d[elq;q] [I + Vgsk] obtained
in [31], we get that

Clv,u,g] = —v?(q)log[2q(u'(q) +i0%)] - v* (~q) log [2qu (-a)] + 109G (1, v (@) G (1, ¥ (-q)) + C1 []

q q
+ f dig () v () — f div () log’ (€20 -1) . (6.42)
—-q —-q

The functionalC; has been defined in (2.4) and we agree upon the shorthanibn@dtl, 2 =G (1+2)G(1- 2

for the product of two Barnes functions. Note thatitieregularization only matters in the time-like regime where
U (q) < 0. Of course, for the moment we have only proven the valueeo€timstant term in the space-like regime.
To see that the constant term is indeed giverChiy, u, g] (6.42) in the time-like regime as well, we apply the
so-calledq derivative method [31]. Namely, starting from the identity

dqlogdet] +V] =R(q,q) + R(-0,—-q) , (6.43)

one replaces the resolvarby its leading inx part corresponding to sendimfj= I, in the reconstruction formula
for |FR(/1)> in terms ofy. The leading resolvent arouney is then expressed in terms of CHF with the use
of identities (A.6). Then, following word for word the stedsscribed in [31] one obtains that, in the time-like
regime,dqC [v, u, g] is indeed given by the partigtderivative of (6.42). This fixes thé& andq dependent part of
the constant term in this regime. As the remainiiggandqg independent part has to be the same in both regimes,
the constant term is fully fixed.

The form of the asymptotic expansion given in theorem 2.[b¥ed once upon applying the identity

_ a o’ e‘zi’”“)— v
o 4 RS (Lv (@) G (L v (-q)) = €3(1D4D) (27D G2 (1 4 v () G? (1 - v (~Q)) .
(6.44)

This identity is a direct consequence of (A.8). [

7 Natte Series for the determinant

In this section, we derive a new series representation,veatall the Natte series, for ddtf V]. Just as a
Fredholm series is well adapted for computing the detemtioé the operatod + V perturbatively when the
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kernelV is small, the Natte series is built in such a way that it is irdiagely fit for an asymptotic analysis of the
determinant. The form and existence of the series is clastdyed to the fact that the asymptotic behavior of this
determinant can be obtained by an application of the DdifitZsteepest-descent method.

Let| + A be the jump matrix fofl. Then, according to sections 3 andAbhas an asymptotic expansion that
is valid uniformly on the contouEy;:

dm
0 Az x) = ﬁ%g for ze 0D, 5
v APz x) (z— 20)
A(2) ~ Z o where V) (7.2)
n>0 Az x) = & for ze€ 0D.qs

(n+ D! (zx g™t

and everywhere els&™ (z x) = 0. In other wordsh (z x) is a O(x"*) everywhere else on the contour. Moreover,
one can convince oneself that thigx>*) holds in theL* N L* (%) sense, for any curvé that is lying stficiently
close to¢e. Finally, we remind that- = o* in the space-like regime and= o~ in the time-like regime.

7.1 The leading Natte series

We start the derivation of the Natte series by providing avearent integral representation for log det{V].

Lemma 7.1 Let V be the kernel defined {i.1) andI1 (1) = I1(1; X) be the unique solution to the associated
RHP. Then, the logarithm of the Fredholm determinant adthisbelow representation

logdetl +V][v,u,g] =logdet] +V]? [v,ug] + logdet] + V]®[y,u,g] (7.2)

where

q
logdet [l +V]©[v,u,g] = ix f () v () da — (v4(0) + v*(-g))log x + C [, u, g] (7.3)
-q

and C[v, u, g] has been defined i{®.42). Also

dz tr [A(l) (zX) 0-3]
2in (1 - 2)?

log det ] +V]®9 [y, u,g] = f dx’ 5{5 j—ieu) tr [0,01(4; X)) o () TT A X)) | + Xi f
+o00 y 0D
(7.4)

The contoury is as defined in Fig. 14 andD = —0Dqs U —0D_qs5 U —0D,,s. The function G has been defined
in (6.30) AW in (7.1)and we remind that (1) = o'31,0(1) + o+ Lwy,w ().
The convergence of this integral representation is parhefdonclusion of the lemma.

Proof —
The formula for thex-derivative of the determinant (3.8) is the starting poihthe proof. By re-ordering the
terms we get, exactly as in the proof of theorem 2.1,

dxlogdet] + V] [vu,g] = dxlogdet] + V][, u, gl + R, (7.5)
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in which

9 1 dz tr [A(l) (zX) 0-3]
= j— —Z dnud) . -1(5- az == \=7s)
R b ﬁne' tr [04TT (4; X) 3l (/l,x)]+f2iﬂ =22
(k) 0D n=0*

(7.6)

Here the matrixa® appears in (7.6) as its contribution has already been tatermtcount id, log det | + V]©,
It had thus to be substracted.

Now, performing exactly the same steps as in the proof ofrdrad®.1, we recast the integral in such a way
that then-derivative can be moved inside of the integration symbobteNthat the operation of squeezing the
contourT" (&) in (7.6) toy does not fect the term coming from® as it is holomorphic outside @®. Once
that then-derivative has been computed, the result follows by-#mtegration. This integration is licit as, due to
the presence ai®, the n-differentiated integrand behaves aél@g x/x2) , for x = +o0, in what concerns the
non-oscillating contributions and a&e" for the oscillating terms. Here,andw are constants such that R
andR (w) > 0. The oscillating contributions are thus also integrabtdeast in the Riemann-sense. [

We are now in position to derive the logarithmic Natte serggsesentation for log det |+ V].

Theorem 7.1 There exists a sequence of functionals[v, u, €] (x), such that

logdet] + V][vu,g] = logdet]l +V]?[v,u,g] + Z Fn v u, €8] (%) . (7.7)

N>1

There exists a positive N-independent constafx)rsuch that|#y [v,u, €9] (x)| < [m(¥)]N. m(x) is such that
m(x) = O(x™") where, fors > 0 but small enough

w = g min(1/2, 1-W-2 m:a+1x|9% [v (eq)]|) and W=2 max{ sup |R [v - v(eq)]|} (7.8)

€q,0

The functionalsFy [v, u, €9] (X) admit the integral representation

[v,u, €% ( ZN: f 56 (2I7r)N HNr(/l {ZJ}J 1 X {g) i 1)[y ul - ]—[efpg(zp) (7.9)

r=1 ZXe= 0 7=],T p=1
ael+1,0) 400 (rN

in terms of the auxiliary functionals

GW) DN,r(/L (Z . x {ej}ﬂ-il) [v.u] (7.10)

e (2 23000, % (6111 sl = — . .
(1= 2)% (A= Z+2) 0 (20— 2pe1) L (20 - Zp+1)

The first summation if7.9) runs through all possible choices of the variabégs {+1, 0} subject to the constraint

3 & = 0. Then, one sums over integrals running over the yfmeer party!/! of the contoury and also over the

. . N
associated inslotted conto{E!/* N

For N > 2, the functionals Q are defined as the functionals wand u that appear in the expansion of

tr{A(z)...A@) o (D) V(zi1)... V()] = Z DN,r(/l,{zj}jN:l, eidjs 1)[v ul e Ep (Zp) (7.11)
=0
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into different powers o89%). For N = 1 one has
D1 (1,21,%) = tr[(A(z) - x *AD (@) 3] Lo (1) (7.12)

Above,V is the adjugate matrix tah: V = Comat[A]!, so that b + V corresponds to the jump matrix féF;>.
Finally, y'/! denotes that part of the curgewhich lies abovbelow ofz. Let Py, P, stand for the two intersection
points between and Xy, cf Fig. 14. ThenZlT.I/l is the contour equal eveywhereXg except in a small vicinity of

the points R, where it avoids these points by befabove. ThelﬁET/ l}(r ) is realized as the Carthesian product
of two inslotted contours of length r and-Nr: {Zm}(r N {Zm}(r) {ZIT.I”}(N_”.

Starting from the definition 6.1 of the matricAsandV on inslotted contourEl(T'\'), one defines the matriceés
andv onz!/* [z] as the analytic continuations affrom = [z].

Proof —

The functionalfy [v, u, g] will be constructed by merging the integral representaibd) with the Neumann
series forTl (6.1) andIT™! (6.2). These series converge uniformly.ir(and every finite order-derivative) on
every open seD such that €O, X)) > 0. However, in (7.4), one integrates{cmH W) o) H‘l(/l)] with a weigth
alongy, where the contouy is depicted in Fig. 14. The latter contour intersexts Hence, it contains points
that are not uniformly away fror;. However, we have already argued tha{t’)ﬁrl‘[i (W) o) H;l(/l)] can be
analytically continued to a small neighborhooddgflocated to the righieft of Zi;. Such an analytic continuation
can be also performed on the level of the Neumann seridg*far

In order to have a Neumann series representatiofIfor IT-! that is uniformly convergent in € y™/{ \
{P1, P2}, we use the local analyticity of the jump matrices fbrso as to deform the original jump contoly
appearing in the RHP fdil andIT~! (6.1)-(6.2) into the contouz!/*:

N-1
H(A)—|2+NZ>1£2| Z e fla@a@ and mi- '2+NZ>1f2' Gy Ol 1210)

According to these formulaH, IT~ are holomorphic on some small vicinity ¢f/{. However, we do stress that
these analytic continuation from above and beRwdiffer atPy. Hence, ford € y1/1 \ {P4, P,}, we get

tr [0, (4) o () ITH(D)] = Z fn (4, X) (7.13)
N>1
with
—dzdy N-r-1
fu (1.0 = Z f 2y u—y)'”[{ sl @aee@yon el o]

—dz
+ fmtr[{ Zm} [|2] (Z)A(Z,X)rf(/l)] (7.14)

/L
Zl_l

Above, we have insisted on the dependencex ohthe matrices\ andV. The representation (7.13) allows us to
define the functionafy [v, u, €9]:

p dz tr[A()(z X)o-3] da
F1 [, 0, &] = f dxsg fL (LX) + f P N IO (7.15)
+00 Y oD
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and, forN > 2,
X
da
N[v,u,eg]:fdx’SBfN(/l,x’)G(/l,x’)‘l—ﬂ. (7.16)

We remind thaG is given by (6.30) and above, we have explicitly insistedtsxidependence.

In the following we justify that (7.15)-(7.16) are well dedith and that one can exchange the integrals gpver
and [Xx; +oo [ in (7.4) with the summation (7.13). Then, we provide explmounds forFy [v, u, €9] and finally
outline the steps leading to the derivation of the reprediemt (7.9) forfFy.

Exchange of symbols

Building on the identities:
tr (AB) < maxi ([Bik) D [Ail  and > [AB I sy < D 1Al agery 1By < 41IAIILz ) 1Bl
Jk Jk ikt

and after some algebra one obtains that

N-1

Nl oy < 4 max ZT

TNl may 7 Z Z{
k=2,3 =1l r=1

{5 T

{Céﬁ }r[_llz] %

L2(zh)

L2(z5)
A N-1 Z
H{Czﬁ} [IZ]

A
Eo

L2(z7,) ‘2”

In the intermediate calculation we have uged )|l () = 1. By using the estimates (6.4)-(6.5), one gets that for
T=Tor}

et
et o,

Also, one has

{2c(27)|A||Lm(ZT ||c [A]

L2(=r) < {20 (Zﬁ)}r IIAIIL<><’(2T) IIAIILZ(ZT)

and

{2c(zf)} AN sry 1Allcagsy) -

r r
e fiaa] .. <2mie s foa (717)

The estimates and asymptotic expansiona ehsure that there exists anindependent consta@t, such that
max {||A||LN(ZT) + ||A||L2(ZT)} < Cz x"  where c(Zp)= maxc(ET) (7.18)
re(1.1) m )= () e(n.l)

Hence,

N
1Nl < cz(gn) Tn?ax} {d k(yf, Zﬁ)} (&) (n‘l + C(ZH)) with w= i—i min(1/2, 1-W-2max, [Ry (J_rq)|) .
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(7.19)

It follows that forx large enough and fa¥ > Ng (with Now > 1) (4, X') ZB':NO G (4, X) fy (4, x') is bounded
ony x ] X;+oco [ by an integrable function. The terms correspondingte 1,...,Ng — 1 are also integrable as
will be shown below. Hence, by the dominated convergenceréme one can exchange the summation and the
integration symbols leading to (7.7). It now remains to esharper estimates for each summand.

Sharper estimates forFy [v, u, €9]

It follows from proposition C.1 applied to the jump contcE#l, that forA € y'/! one has the representation

[N/2] b [N/2]-b . m-np ) nb
G (10:%)
MW =AW + ), ), (ee<—qq;xx)) (: (—g;i))

b=0 p=0 m=b-[N/2]

x> LI F P (e (v 912

ee{+1,0}

wheree (g, X) = XU@x-2/@ ¢ (—q, X) = XU-Dx2(D ande (1o, X) = XU x—3. Also, we remind thay = 1 in

the space-like regmie angl= —1 in the time-like and we agree upep = 1o andv.q = +q. The matrixAn(1)

contains exponentially small correctionsxmnd the remaining part represents the algebraically smal.o
This representation ensures that fog y

an (1. %) ) 1 IN2+1 b [N/2J+1-b (

fN (/1, X) = XN

e (=0, X)) (e (-a, x)) o) (7.20)

N
T 50 pmomebiN/2-1

The functionscf\lmb’p) (1,x) anday (1, X) can be expressed as traces involving appropriate comisanf
the matricesAy andHf\l”_LEb’p). We have included all the exponentially small correctiotesrsning from theA;’s
j=1,...,Ninto ay (1, X).

It follows from the properties of;(1) andH(mb’p) ), j= , N that these functions are smoothire y
andx. Moreover, by using the estimates for ﬂa‘é norms of the aforementioned matrichg andH(anb P) (C.4),
after some algebra one shows that, fdarge enough, given arly € N there exists amN- mdependent constant
C > 0 such that

cN @ : .
la (1, X)| < = and |cf\|m’b’p) (a, x)| <CNxXNW  uniformly in 2 e y'/t (7.21)

These estimates remain unchanged when considering first padtial derivatives in respect toof these func-
tions. Hence for all integens, b, p of interest the function

N ( ¢(9.y) )”””’ ( ¢ (Ao, y)
¢ (_q’ y) ¢ (_qv y)

is Riemann—integrable opx ] X; +oo [. Suppose thamn, b or p is non-zero. Then, foN > 2 an integration by
parts leads to the estimate

~ 1N
[fN]W G:X) | (7.23)

nb
(1Y) o dmop (1Y) = V- ) dMOP) (1 )G (1) (7.22)

+00
f dymp (1.Y)] <
X

with w being defined as in (7.19). Whenm= b = p = 0 one simply deals with a non-oscillating integral. In that
case,
[C]"

+00
f dymp (1.Y)] <
X

39



There are two cases of interest to considerw i 3/8, then sincav = O(6), taking ¢ sufficiently small we get
thatNw < N (1 - W) — 1. It remains to treat the case when, foralt 0 small enougtw < 3/8. In other words,
1-W-2max |Rv(zq)| < 1/2. Therefore

< m3x|‘Rv(iq)| . (7.25)

N =l

1
4

Thus, takings small enough, so that < 1/10 one gets m@<|9%v(iq)| > 1/5. Hence, folN > 2

~ 1N
[fN]W G . (7.26)

+00
f dypmp,p (1, Y)| <
X

Thus, once upon the integration ovee y' Uy! = y, we get that there exists a constamfx) = O (x™") such that
|7—'N [v,u, g](x)| < [m(X)]N for N > 2. The fact thatﬂ [v,u,g] (x)| < m(X) from a direct calculation based on the
representation (7.15) and the first few terms of the asynpeapansion of the matria.

Justification of (7.9)

We conclude this proof by explaining how one can obtain ahfliigmore convenient representation for each
individual functional#y [v, u, g] (X). Starting from the Neumann series representations (6@8)&8), it follows
that fora e y1/4

N

wanwewmr)=-y Y [ L5 HRE.AEOTED. TEN g4

2i)N r-1 N-1
N=1 rzl{zwl}(ﬂm (i) (A~ 21)2 A-z41) I1 (ZP - Zp+1) [1 (Zp - Zp+1)
m p=1 p=r+1

N) . . N- . -
Above, {Zf{l}(r )is the Cartesian product of two inslotted conto{ﬁigi}(r) X {EITI”}( " To obtain (7.27) it is

enough to multiply out the two series f8§11 (1), II"1 (1) and then take the trace. One can convice oneself that
the matrices\ andV are such that

93 2o 9@o3

A@ =P hg0@ e and V@ =e7Veo@e 7. (7.28)

This means that there exists functionBlg, (/1 N, x; {6]‘};\':1) [v, u] such that

=1

N

A AR WY@ V@)l = > Dz x (el il exp{ Y 0 (z) |- (7.29)
T6=0 p=1
exe{+1,0}

Above, the sum is taken over all possible choicefNahtegersec € {+1, 0}, such thatz'lz‘:1 & = 0. We replace
the trace in (7.27) by (7.29) and then insert the result iheoittegral representation for log det{ V]'®. One
can exchange the and x’-integrals with the summation ové in virtue of the previous discussion. One can
also pull-out the finite sum ovek € {1, 0} out of the integrals. Indeed, given any choice{qf, the function
(4, X') » G (4, X) Dy is Riemann—integrable alongx ] X; +oo [ . This stems from the fact th&@y, is bounded

in A, and as follows from the previous discussion, is at leastmRie-integrable irx as an oscillatory integral.
Moreover, it is clear that by harping on the steps that alloe t prove the expansion fbiy given in proposition
6.1, one can just as well prove a similar type of expansionFipfv, u, €9]. [
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Lemma 7.2 Under the assumptions of section 2.1, the Fredholm detammbiof | + V, with V being given by
(1.1), admits the below, absolutely convergent for x-large eholatte series representation:

det[l + V] [vu.g] = det[ + V] [»ug] {1+Z DT Ha(x (K et ) [ U gy, “9(2”]}- (7.30)
n>1 keky {e}e&(K)

The i term of this series is ® ([m(x)] "), with m(x) = O (x"¥) and w being given as ifV.8). The functional
Hn appearing above is a linear functional in respect to theitom{T],. I e9(#) of the n-variables It produces
a weighted integration of this function over curves lyingame small neighborhood of the real axis:

@)= N dig d%z,
Ho (% (K} (ethea, ) [nu [ [ €9®] = >0 > f dx d56 Zn
e dredD(t, ra=T/L d<Dw oo Td}(rd’dl)
n
1
X 1_[ — ]—[ Hdl,rd(/id,{zd,j}?il, Xd; {fd,j}?il) [v,u] - 1_[ etd@) - (7.31)
j=1 I dED(k} tEJ(k}

In (7.30) the sum is carried out over all the possible choices of resiplf integerk = (ky, .. ., k,) belonging to
n
‘an{k:(kl,...,kn)eN” : Zslg:n} (7.32)
s=1
Each such n-uple of integers defines a set of triplets
={(sp.j),sell;n], pell; k], jell; s]} (7.33)

and a set of doublets

={(sp).sell;n], pell; ksl}. (7.34)

Atriplet (s, p, j) belonging to {, is denoted byt and a double(s, p) belonging to B is denoted byd = (s, p).
The notationd; stands for the first coordinate af ie if d = (s, p), then s= d;. Once that a choice df is made,
one sums over all the possible elements of

d;
&E(Kk) = { €thteyy, - € €1x1,0} and Z €q,j=0 forallde D{k}} . (7.35)
=1

The sums and integrations (7.31) are also ordered by the sets of tripletg;Jnd doublets ;. One first
starts to sum up overgr whered runs through B),. There are#Dy, such sums in total, corresponding tb
running through the set {3. Finally, for eachd € Dy, there is one integral over the corresponding &ne over

: : : . d
the correspondingly and d; integrals over the subordinate set of z-varlab{e&j}jil

Proof —
We define an auxiliary function

AW) = > NPl ugl (9 (7.36)

N>1
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which is holomorphic iny on the open disc of radius™(x), with m(x) = O (x") andw given by (7.8), as follows
from the estimates on the growth®f; with x. This means that"®) is holomorphic on the same disc. The radius
of convergence of its Taylor series arounet 0 has its lower bound given by ().

The series for the Fredholm determinant is obtained by usiadg-aa-di-Bruno formula so as to compute the

nth derivative of ) aty = 0
_[m)" o 1
N i oy

_ Z eA(O)l_[{ (A(’?!(O)) } N
(7.37)

jE ffLeA@)

nt cy"

1 da
il )
n! dy”eAy

y=0 y=0

25I~'s n

Where we used théfN [v,u,g] | < M)V, with m(x) = O(x™W). The last estimates allow one to see explicitly
that the Taylor series at = 0 for ™ has a radius of convergence that scalesnals(x). It is in particular
convergent ay = 1 leading to

det[l +V][v,u,g] = det[l +V](0)[V,u,g]{1+z > ]_[ - ﬁ |71 [v.u.q] (x)] } (7.38)
=1

n>1 ¥sks=n j=1

In this language of doublets and triplets, the expressiothi® product in (7.38) reads

EﬁVUg(x) BN fddsgdﬂd fﬂszz.dn’)

rg=1 dg q=1/1 dED{k} I
deDyq .Zled’j—o o Td rd dl
j=

€4,j€{+1,0}

x [ | Howra(das 1201, xa fea j}%) [l exp{Z €t9(Zt)} - (7.39)

dED{k} tEJ{k;

The result follows. n
The expression (7.31) for the functionals involved in thedt®laeries is more explicit then as it was given in
theorem 2.2.

7.2 Proof of theorem 2.2

The first part of theorem 2.2e the very form of the expansion (2.9) is a consequence of lem@aThe latter
provides moreover a more explicit form for the functionig[v, €9, u].

The well ordered asymptotic expansionnfor each functionalH,[v, €%, u], as given in (2.12), is a di-
rect consequence of the existence of a similar representédr 7 [v, u, g] together the correspondence (7.38)
between¥y [v,u,g] and det[ + V]. Finally, the existence of a representation 6y [v,u, g] in the spirit of
(2.12) can be readily obtained by inserting the well-ordeseries representation forandIT-* (we remind that
1! = 'Comat(Il) since det[I] = 1) given in proposition 6.1 into the integral representatior Fy, (7.14),
(7.15), (7.16). m

7.3 Higher order Natte series

The higher order Natte series is a generalization of theeNs&ities derived in the previous sub-sections. It gives a
direct access to part of the asymptotic expansion withouihgao compute thefeective form of the functionals
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Dy, and then carry out the contour integrals. Indeed, evensfgbissible in principle to compute explicitly, order-
by-order the functional®y, and thusHp, this task becomes very quickly monstrously cumbersomerder to
get the corrections, it is more desirable to apply the promedelow (or its obvious extension to higher order
asymptotics) if one wants to access to the higher order ctiorethen those contained in détf V]© [v,u,q].

Proposition 7.1 The Fredholm determinant off V admits the below convergent Natte series representation:
X
det]l +V][v,u,g] = detl + V]9 [v,uqg] exp{ f dx¥ [X] 2 ai(X) + [ 172 [83%4x) + aJo(X )]}
+00

x{l+Z DT> Ha(x (Kl e [ u Tl 649 } (7.40)

n>1 kekn {er}€&(K)

ThereH, is defined as ir(7.31), (7.10), but with the minor dference that the functionals \Din (7.10) should
be replaced by the functionaBy as given in(7.42) Also, a, &>, a)°>¢ are given by(6.36) (6.37) (6.38)
(6.39). Note that here we have explicitly insisted on their depaod®n the large-parametef.XThe fundamental
difference between the higher order Natte series and the onasdied previously is that for x large enough and
for an n-indepenen®d:

19(2)
Hn(x,{k},{et})[v,u,t];[k)ef | )OS g T e g e

2 OSCIO OSC
:min{o(i) ’ O(Iog x’allogx’az QX’ aa & )} .

The constant w is as defined(in8).

Proof — One starts by performing the decomposition

g alE
¥

v +logdet ] +V]©3[y, u,g] .

log det | +V] [».u.g] = logdet +V]© [»u.gl+ f dy % (y>]

There, log detl[ + V]©P3[y, u, g] corresponds to that part of log dét§ V]“9[y, u, g] (7.4) where all terms that
give rise to the integral involving, anda*?"™ have been substracted. Namely,

Lo(1) {
y

logdet | + V]2 [y, u, g] = f dx’ 56 2—; G (1) {tr |0ATT () o (1) T2 ()] - tr [nﬂ)]’u)ag} (7.41)

Y

ly“’é() tr{[n@] () - 1O ) [N®] (1) - 1O O] ()} 5 - 1y )() tr{[1®] () - 1O [M®] () }

We stress that the variable of integratigncorresponds to the large parameter (denoted ligfore) that enters in
the formulation of the RHP fofl and on whicHT depends implicitly.

The expansion of log det [+ V]9 [v,u,g] goes along the same lines as before, with the minfierdince
that the functional®y, are defined slightly dierently. Indeed one has to substract from the Neumann dikees
expansion for t[ﬁAH 1) o) H‘l(/l)] all the subleading contributions that appear in (7.41).tRigrpurpose we
define

rIA@). AWV @) V@)l -Rur (@0 = Y Due(afaly xfe] ) mu 7 (7,47

Te=0
ee{£1,0}
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In order to defindRy ({2}, X) we represent the asymptotic expansio@f) slightly differently then in (7.1).
dP(2)
; M(2p+l) (Z, X) m . 1940,26\9,{0,6’(2)

A@ =) xMP(zx)  with . g_l) (7.43)

p>1 M@ (z, X) V—(Z)
&=t pl(z- eq)P?

There we tooks small enough and > §’ > 0. In terms of such matrices one has

“1D420\ D (D) -

35r 3

Rur (12}, ) = onaden ZX 2t [MO(z1, %) — 5 tr[MP(z5, ) M (z2. ) MU (21, X) 75|

p_

+ Z(sNz( 1) Z X7 tr[M(p)(zl X osMP(z,X)]| .

p.p'=1

Finally, definingH,, as in (7.31), (7.10), but with the minorftérence that the functional3y in (7.10) should be
replaced by the functionaBy given in (7.42). One gets the desired representation. [

A similar Natte series can be obtained for other quantitias &re also related with the correlation functions
in integrable models.

Proposition 7.2 Let F; be as defined i(3.3), then the below Fredholm minor admits a Natte series reptase
tion:

q
gi e?(1) + f d—2i4 sir? [v ()] F1(A) E (1) ¢ det [ + V][v,u,g] = det[l + VIO v, u,g]
4= -q

So Yaiseo[et0) | v(9) v(-q)
X : + St 1y A (x, k {e) [v.u. 10, 9@ }
{ V=2rw" () xu (@ " xu (- i HZ; kez;; Eté(k) ( D[y U iy, €]

(7.44)
There the summation runs through all the possible choicatefers k, . . . ky.1 belonging to
n
Kn = {k: (Ke,....kni1) - kseN, s=1,...,n and ky, € N* kn+1+Zsks: n}. (7.45)
s=1
The remaining summation run through sets that are labelleddublets and triplets belonging to
Jw = {(S» p.j),sell; n+1], pe[1; ks], jell; S—5sn+1n]|}
D = {(sp.j).se[1;n]. pe[l;k]}.
Indeed, then
dy Kn+1
S(k) = { €} tedu . € € {il, 0} s Zéd’j =0 with de D{k} and Z €kni1,pl = 1} . (746)
j=1 p=1
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Finally, the functionalsHS" (x, {k}, {e}) read

~ dzn.1, 1~
Hr(1+) (% 1K}, (et )[V u, n eetg(Zt) fl_[ +1,p, n {Zns1, pl}p_l’ {€n+1p1) p 15 [V U] l_[ e€n+1p19(Z1+1 pl)

2in
teduy Z(n) =
when k,1 = n and in all other cases,
dy d Kni1
_ dAq d%zy; dz.,.p1
W)l [Jew] 53 1 fafle [ S [ o
ew dredDi ra=T/L deDig oo { Td](rd’dl) Zl(_[kml) p=1

n

l_[ X Cisy kalpl}';”_l, X A€kn1.p1lp )[V ul - n Hdl,rd(/ld,{zd,j}?il, Xd;{éd,j}?il) [v,u] - l_[ eto@) |

=1 dED(k) tGJ(k'

Note that we have used above the notation introduced in lefhtalso we have set

tr[A(zn)...A(z) o] - 6N f X2t [MP(z, %) |
. p=1
|

Z CN( zj} 1’ ety [V U] 1_[ e09(20)

N-1
— Yes=1
Fgl (Zp Zp—l)
N-1 1
ir[A@)...A@) ][ [(o-21) = D Culizh.x i) v ]—[eEpg(zp)
p=1 Yes=1

The sums in the two equations above run over all choices ofahiableses, s=1,..., N with s € {+1, 0} and
221:1 €s = 1

Proof —
By using the integral representation fp(3.6), one readily gets that

q
i[/\(oo]lzzﬁimwtr[/l)((/l)cr_]:fdg/usinz[nv(/l)] F1()E() . (7.47)

—-q

Also, it is easy to convince oneself that

iz =i el + [ €205 (7.49)

e

The claim follows by expandindl..]1» into a higher order Natte series (where the first few terméiefsymp-
totics have been taken into account) and then taking theuptad this series with the Natte series for the Fredholm
determinant. The details are left to the reader. [

It follows from the leading asymptotics given in (7.44) thiat the case of the time-like regime, the saddle-
point 1o does not contribute to the leading order. It can however kelad that it does eventually contribute. Its
contribution is a @x5/2, x 5/2(x @ 4 x-@)?),
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8 Conclusion

In this paper we have obtained the first few terms in the lepdin +oco0 asymptotics of the Fredholm determinant
of a class of integrable integral operator that provide gistapoint for the analysis of the large-distayioag-
time asymptotic behavior in integrable models away fronirtfiee fermion point. Also, we have derived a new
series representation for the Fredholm determinant, theakbed Natte series. This series is well adapted for an
asymptotic analysis of the Fredholm determinant and cas tleithought of as being an analogue of the Mellin-
Barnes integral representation for hypergeometric fonsti In two subsequent paper, the Natte series will appear
as a central tool in computing the large-distatargg-time asymptotic behavior of the correlation functién the
non-linear Schrodinger model away from its free fermiomps2, 35]. As a byproduct of our analysis, we have
been able to bring a little more order to the structure of sharptotic expansion of Fredholm determinants of
operators belonging to the class of the generalized simeekdt would be interesting to extefiish forward the
form of the full asymptotic expansion of the determinanegiin theorem 2.2, in particular by providing a closed
form (ie the explicit values of cdécientgfunctionals), at least in the case of some particular kesneh as the
sine kernel.
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A Several Properties of CHF
One can check that fare R*

¥ (1, g; -z z) -y (l, g; e z) = 2i \/ge‘Z . (A1)

¥ (a, c; 2) has an asymptotic expansionzat> co given by

M
¥(a,c 2 = Z (-n" w{a‘” + O(z‘M‘a) , —3—; <arg@ < 3—; (A.2)
n=0 ’

It also satisfies to the monodromy properties

. ity _ . —2ira 27Tie_iﬂa+z _ .
¥(a, 1;z6") = ¥(a, 1;2)e 2" + —r? @ Y(1l-a1;-2), J(2 <0, (A.3)
¥(a, 1;2677) = ¥(a, 1;9€”™ - 27;5;:;2‘1’(1 -a,1;-2, 3(2 > 0. (A.4)

Tricomi's CHF can be expressed in terms of Humbert's CHF

c-1
\P(a,c;z):l"[ }q)(a,c;z)+l"[ }zl‘°d>(a—c+l,2—c;z) ) (A.5)
a

a-c+1
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There exists a similar formula expression Tricomi’'s CHFEa, c; 2) in terms of Humbert's one

r'(c)

®(acd)=r -3 €Y (a,c; 2) + %e“”(a‘c)”‘ll (c-ac -2, (A.6)
wheree = sgn(3(2)), and
(D(a,c;z):nzzo%g. (A.7)
The BarnesG function satisfies to the reflection property
z
G(1l-2= G((Zl;)rzz) exp{fnxcot [rX] dx} , (A.8)
0

which holds forR (2) < 1 in the usual sense (and also everywhere else by analytimaation).

B Proof of the asymptotic expansion forll

B.1 Two lemmas

We first need a technical lemma

Lemma B.1 Let the matrices\; take the form

73~ _Z3 a; bjej
O N e A ®1)

where the entriesjabj, ¢j, d; do not depend or;. Then
A A _% Z ( Aja  enBje ) . ( €y Cip )“3 (B.2)
No e 8 ¢y'Cj@ Dja e/ '
Above, the sum runs through all choiceafuples of integers® = (ju, ..., j2a) with j@ belonging to
Ban = {(J'L---, joa) €[N'J® 1 1< i<+ < o< N} : (B.3)
The entries of each matrix appearing in the sum are lineaypamials the entries of the matricgg.

This lemma allow us to trace back all the dependence on thedral power ofx in the products\ (zv) ... A (z1)
of the non-trivial parts of the jump matrices fir

Proof —
The result clearly holds fol = 1 as then, the only possibility is to take= 0.
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We prove the induction hypothesis for the 11 entry. It goesilarly for all the others. By applying the
induction hypothesis tay ... A; and then explicitly multiplying out witln, 1, we get that

€y €
[ANsa.. Al]ll—Z Z ( 2 b ){aN+1A,<a)+ by, (a)}

a=0 j@eg, - Cjoan

[%] e €ir .. € ENF1
= Z Z ( i )aN+1A @ + Z Z (%) bN+1Cj(a)

ei,...¢e i ...C0 ,eN
a=0 j@eg,y 1 a=0 [@ gy 4 I jea-1

< €joa 2ENEN+1
+Z > ( 2 : )bN+1cj(a). (B.4)

L€ eN
J(a)EBaN J2a-1

j2a=N

The result follows as the above sums can be seen organizedgaat to the partition

[N+1/2] [N/2] [N/2]
Ba;N+1={ U Ba;N}U{ U {1S jp<--<J2as<N-1, joar1 =N, joas2 = N+1}}
a1

a=1 a=1

[N/2]
U{ J{1gii<- <iam1sN-1, j2a=N+1}}. (B.5)
a=1

Lemma B.2 Let¥y (z, ..., zy) be a holomorphic function ofd = Dy, X - - - X Dy, WhereO < oy < -+ < 61
and ve C. LetdD = 0Dy, X - - - X 0Dy 5, be the skeleton ab and , a set of positive integers. Then, folying
outside ofDy,, one has

dVz Fn(z,....2n) N 1 1 ok 1 oM

(2im)" = L el Z Z NOEE '{k_ﬂaif Tkl 024 T“} ‘
A-z) [T (& - z1) P2 (Zp ‘V) kn=0 ' FO0Zy lzp=v

k=1

(B.6)
where we agree upon
rp_an+N p—Zkg and ng=0. (B.7)
{=p+1

The proof is a straightforward induction. Note that the tbiighest possible order of derivatives 6§ that is
produced by the above contour integralE$‘:1 n, + N — 1. It corresponds to no-derivation in respect to the
variablesz, ..., zy and a derivative in respect m of orderz?':1 n; + N — 1. All other choices of the intege(k,}
lead to a total order of the partial derivatives that is irismaller.

B.2 Proof of proposition 6.1

We are now in position to prove proposition 6.1.
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Here, we will only discuss the case of the time-like regimée Proof in the case of the space-like regime
goes very similarly, so that we omit it here.

We have already established that, felarge enoughlI (1) is given in terms of a uniformly convergent Neu-
mann series (6.8):

d\z Azn)...A(z0)

i \N —
) @7 (- z) NHi (20— zp1)
p=

M) =1+ Z H:‘((ﬂ) with Ty () = xN (B.8)

N
N>1
I

Above each N-fold integral runs across the inslotted corEé'\,L'? as defined in Fig. 11 and the equality holds for
uniformly away from the boundary. We remind that in this Neumann series the matrit€x) are subordinate
to the jump matrixl, + A (1) for IT1(2) solving thell-type RHP associated with the jump contdy[z], cf
definition 6.1.

To prove the claim of proposition 6.1, we build on (B.8) so@shtain a more precise form of the asymptotic
expansion ofIy (A4).

Recall that each contoltii; [z] entering in the definition of the inlsotted contoiﬁ\') can be divided into its
exterior parf[zk] and three circle®Dq 5, U 0D_g5, U 0D,y 5. There 0< oy < --- < 61 andéy is small enough,
in particular it is such thai; < |1g = g| /2. However, the very choice of the contdﬁ'rmplies that

”AHLN(I:[ZK]) + HAHL?(F[zk]) + ”A”Ll(f[zk]) = O(X_oo) . (Bg)

Hence, from the point of view of the asymptotic expansiore oan drop all contributions tdy (1) stemming
from those parts of the multiple integral in (B.8), whereeatdt one variable is integrated aldngindeed, due to
the estimates (B.9), such an integration would only prodd¢e =) terms.

The matrixAn(1) appearing in (6.11) contains exactly these contributians, henceéAy (1) = O (X™*°) uni-
formly away fromZXy.

It thus now remains to focus on thé&ect of the integration on the boundary of the three disksezedtat+q
andAp. In other words,

M () = A (1) + XN ) Nz A)...Az)

B g, BT Tl 31— 2)

where z=2A1. (B.10)

The above sum corresponds to summing up over all the possibiees of the integration contod,, s, for
each variableg,. More precisely, one sums over all tNedimensional vectors belonging to

En={e=(e1,...,en) . e€{x1,0}} . (B.11)

We also agree upon the shorthand notatipr= g, v = —q andvy = Ap. Finally, the integration contowiD, in
each summand corresponds to the Cartesian product of RO, = 0Dy, s, X -+ X 0Dy, 4, Of decreasing
radii 0< 6N < - -+ < 61, with 61 small enough.

We stress that there exists natural constraints on thelppesshoices of they. Indeed, ifz; andzj,1 both
belong to a sfiiciently small neighborhood ofo, thenA(zj) A(zj.1) = 0. Hence, choices di-dimensional
vectorse having two neighboring coordinateg @ndej,; for somej) equal to zero do not contribute to the sum
in (B.10).

The asymptotic expansions 4f(z) on each of the three disks all take the generic form:

AR =~ Z [e(z)]? -A"QD) [e(z ] 7

Iz )n(2_|€|)+l uniformly inze Dy_25 \ Dy, & ee{xl,0} . (B.12)

n>0
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The radii are such that > ¢ > 0 andé is taken sficiently small, but are arbitrary otherwise. (B.12) is to be
understood in the sense of an asymptotc expangomp to a truncation to any given order ¥a The detailed
expression for the matrices™ () ande¢ (z €) differ on each of the diskse(for € = +1 or 0). Howeverg (zZ €)
are holomorphic on any fiicently small neighborhood afq or 1g. Also, the matrixZ(”)(z) does not depend on
x anymore. The functior(z €) contains a fractional power ofand also an oscillating term:

U2 for e=1
e(ze) =] 02D for e=-1 . (B.13)
x5  for €=0
We are now in position to establish the asymptotic expansidhe second term in (B.10).

Expanding each matrix (z,) into its asymptotic series (B.12), using that the lattemigarm on the compact
domain of integration we obtain the asymptotic expansioH pf

7 A)(z _ 3. 7 Alm(z -z
Iy () = Z f a [en] 2 (zn) [en-1/en] 2. . [e1/e7] (z) [ea] 7 (B.14)
r=0 568 o+ (@in) N N np(2-|ep])+1
N neN$ 6D, (1-2)- Il (1 -2 - pr_ll (z0-ve,)
There appears a summation oedimensional integer valued vectandelonging to
N,(\l'):{n:(nl,...,nN) S g eN, Z'F\)'Zlnp:r} . (B.15)

Note that in order to lighten the notations slightly, we haeée, = ¢ (z; ex). Also, just as in (B.12), we did not
make the remainder explicit.

Lemma B.1 ensures the existence of holomorphic functkgjﬁ%({zk} D([g {z}) of z1, ..., zy such that

73 (n) (n) o

03~ eN—l 2 el (a) }) eNB i(@) ( ) €j2 oo ejZa 3

[en] ZAM) (zy) [—] e [—] A(”l’(zl) [e1] 7 = _ —.
eN €2 ;, (aé lC(n) ({z)) D(?i)) ({z)) P

(B.16)

Due to the form taken by the matriceé”(z), not all configurations of theauples j@ appear in (B.16).
Indeed, wherg € D, (ie ex = 0) the matrixA™(z) is proportional tor~ (cf (5.14)). It appears in (B.14)
with a pre-factore;l. Therefore, forz, € 0D,, s, the only non-vanishing terms in the sum O\J'é"P € By are
those corresponding to choices @@plesj® = (ji,..., j2a) Such thatj, = k for somep. In other words, each
time an integration variable belongsa®,, s, for somek, the associated oscillating exponent(1o; 0) is always
present. Moreover, all matrix entries in the expansion §Bttiat appear (after taking the matrix products) in front
of the monomialge;, ... ejZa)il/(ejl - ejzﬂ)il vanish whenever a functiory, = ¢(zj,; €j,) corresponding to
Zj, € 0D 65, would appear in the numerator. More precisely, if theretexap such thatj, = k then

e for pe 2N + 1 (ie €j,,,, = O for somer), one has8) = DM =

@ Tie@ 0;

e for p € 2N (ie €j,, = O for somef), one hasA([‘z) = C([‘a)) =0.

Putting together (B.14) and (B.16) leads to the below forrthefasymptotic expansion fofy

My (2) Z D0 Dllan[Me] - (B.17)

120 7 el [@egyy €ctn
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ThereM @ stands for the matrix appearing in the expansion (B.16) lapds a functional depending on the
choices of the entries of tHe-dimensional vectorge andn. It acts on holomorphic functions (or matrices in the
sense of entrywise actiol)e = 4Dy, , X -+-x Dy, , according to:

dVy FN Y1, - -5 IN)

len [FN] = : |

’ 2 N N N e

P ) T (o1 =y - TT (9 Ve & et
§=2 s=1

(B.18)

The functionall ;e can be estimated by computing the residueg atThis produces partial derivatives % at
the pointsys = Ve,. From now on, we focus on the analysis of the actioin@fon the 11 entry of the matriMj(a).
The case of all the other entries can be treated similarly.
Depending on the choice of the components of the N-dimeaki@ttore and hence of the evaluation points
Ve,, after performing the integration induced by. (and having computed the eventual derivatives) the ratio

(- €ioa) / (¢f1 - - - €jas ) Present in the 11 entry of (B.17) reduces to:

e"(qg; +)
e ——forsome-a<m<a;
eM(—q; -)
e Or PG 1) PG o) (g ) mforsome 1<b<m O<p<b,-(a-by<m<a-b;
P00 \ela) sosm mERED SR

Hence, we get that there exists two sets of consl%htandc(mb P

S (@D )\, v S @D PG (@D \" o,
2, 2. In;e[[Mj(a)]“]:n;a(:(q+—) AEDWIPIE q:b(:o;o)q '(ei_(qq;+—)) -

neN,(\P ecEn b=1 p=0 m=b-a

(B.19)

Each derivative of the factas in respect ta, whenz is in a neighborhood ofq, produces one power of

log x. This Iogxterm appears due to affirentiation of the exponemt2¢@)_ |t thus follows that the cdcients

cﬁ’(’;‘z and cﬁrg) P are polynomials in log. In the following, we determine the degree of these polymbsniThis

will allow us to show that

max deg(cgr(g) =r+N-2m-6n0 and max deé (’Q)b p)) =r+N-2(b+m) (B.20)

where the sup is taken over all possible choices,af j@. Once that (B.20) is established we get the claim.

(m)
The degree ofc: @

As already argued, whes = 0, there necessarily appear; 0) in the denominator oﬁM j(a)] . As no function
¢(z:;0), ¢ # k, can appear in the numerator, this implies that in such atsitue (1, 0) appears with some strictly
postive exponent after computing the integrals. Therefone ends-up with a term that does not corresponds to
the coéﬁcientc(j’(g. Hence, contribution to the cﬁi}:ientscgg can only stem from these choice of N-dimensional

vectorse whose entries are ifr-1}. This means that when focusing a@f a), all "admissible" choices of the
N-dimensional vectoe can be parameterized as

€e=(€,....€1,6,...,6,..., €,...,€) with es=(-1)%1e e € {1} forsomep<N. (B.21)
_———— —— — N

41 [#) lp
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We now compute explicitly the action of the functiorial, corresponding to some given by (B.21). For this
purpose, it is convenient to relabel the integration vaeisily appearing in (B.18) in a form that is subordinate to
such a representation of the veceoNamely,

s-1

Wi W) = (2110210 D210 25t 02y} - i€ Zi=Yg,, Wwhere Ts= > 6. (B.22)
r=1

We relabel the entries of the vectoin a similar wayje ns; = n;_,. Then, the functional;, reads

dVz [Mj(a)] ({z) P s 1
len[[Mjo] ] = R u" TIT1 e (B.23)
oD Ul {(ZS‘”H ~Zs1)- tUl (zst - ZS,t+l)} s=1 t=1 st Tes

Here we agree upofpy = 0 andzpo = A. The above integral is directly computed by an inductiveliappon of
lemma B.2:

sl 3511112

Ket=0 s=1 t=1

p
[Mj(a)]ll({z}) 1_[ (ZS—l,fsfl - st)_rsow . (B.24)
s=1

Zst :Vss

In (B.24) one sums over integeks; with s=1,..., pandt = 1,..., {s where eaclks; is summed from 0O to

ls Ip
rS,t = Z nsj + €S_t —_ Z kS,t Wlth ns’o = O . (825)
j=t j=t+1

It follows that each block of variablggs1, . . ., Zs,,) associated to the sareg is subject to partial derivatives
of total orderzfzl kst- Hence, the maximal total order of all the derivatives thayract on this block of variables
isrip = Zfil nsj+ {s— 1. The unique way of realizing this maximal order is througdirgle derivative of order
rg“f‘x with respect to the variable;;. We stress that in this case, all the other variables of thekbhre simply
set equal to/.,. Very similarly, the maximal total order of all the partiatrivatives that may act on a sub-block
of variables(zs, . . . , Zs¢,) associated to the sanagis r ™ = Zf; nsj + ¢s — t. The unique way of realizing this
maximal order is by a derivative of ordé;‘ta" with respect to the variablg. Thenzsy,1, ..., Zs¢, should be set
equal tov,,.

As we have already mentioned, the functign= e(yjk; ek) depends onx. Hence, its derivative in respect to
Yj« generates powers of log Therefore, the highest degree in bogppearing inf;n[Mj@)] will be generated by
a derivative of the highest order possible in respect to #nmblesy;,, withk=1,...,2a.

Hence, to be able to determine this maximal degree ixJoge first have to order the indicgg according to
the block to which they belong. For this purpose, we set

ﬂs:{k : jke|[zs+1;fs+l]|} and as=min{k : ke Ag} . (B.26)

Suppose that one deals with a block of varialfles, . . ., zs.,) such that #s # 0. Then the highest possible
power of Inx that an integration over the variables of this block can poedwill be issued by the action of a
derivative of the highest order possible on the varlag e ;. Thence, an integration over this block of variables
generates a polynomial in Jnof degreer?f‘x 2 . Clearly, it #ﬂs = 0, its associated set of variables and functions

cannot generate, once upon being integrated, any poweg &f lo
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a=1 =4 ap=2t-1

€ — € €& ~—— €2 €3 €3 €4 €& —— €
| | T | | ... | | | | T | | | | | | | ... | | | T .. |
I e I S e I R o

1 J2 J3 la Is Joc-1 J2e

Figure 15: Definition of the setéls and of its minimal elemerds. One hasA; = {1, 2, 3}, A = {4,5},
A3=0, ..., Ap = {20 - 1,2(}. Theg delimit the block of variables of lengtfx associated te.

We now characterize the oscillating term appearing;'m[Mj(a)]. If a given block(zsy, . . ., Zs¢,) corresponds
to a setAs having an even number of elementsAd e 2N), then after taking the derivatives and once upon
evaluating aizs; = Vv, the associated ratio of the functionscancels out. Indeed, there are as many identical
factors in the denominator that in the numerator. For incgawhenas is even one has

ejas ce ejas+#ﬂs

=1. (B.27)

e]as+l ce e]as+#ﬂs—l Zst=Veg

However, if a given blocKzs, ..., Zs,) corresponds to a sefls with an odd number of elementsf# e
2N + 1), then after taking the derivatives, the associated odtibe functions:; reduces tde (v.; es)](‘l) ° Indeed
1

= Vered) (B.28)

Clag * + - Clagrins—1 Claget - * + Clagrins—2

as€ 2N =

=e(Ve 6) and ase 2N+1=

Zst=Veg Cag * * + Clas+#mg-1

elas+1 cee elas+#ﬂ572 Z5t=Ves

Therefore, we obtain that

@ p as (@ p ls _
le:n [[Mj(a)]ll] = IDg;Jn )(|09 X)- n [e (Veo: Es)](_l) where degﬁpgn )) = Z Z Nsk + {s — (jas - fs)

s=1 =1 \k=jas—0
#HALN+1 #AZ0 k=jas—Cs

(B.29)

Now, in order to obtain the cdiécient c(_g we should sum up (B.29) over € NI(\P and also over all the

possible configurations of vectoesparameterized as in (B.21) and such that we eventually genéne power
(e(q; +) /e (=g; =))™. Then, among such configurations, we should look for thoaedbrrespond to a polynomial
Pen (log x) of highest degree.

Given a fixed number of flipg in (B.21), one maximizes the degree in (B.29) by choosindahgths( is
such a way that #is # 0 for any s and such thaj,, = {s+ 1. One can do so for aj, buts = 1. Indeed, in
the latter case one necessarily has= j1 > 1. Therefore, for such a choice of lengtfis once upon choosing
nt=0fort=0,...,j1 — 1 one obtains that this maximal degree of is N — p— (j1 — 1). Note that, we have
used} s Nst =rand)sfs = N.

There is also a condition on the number of flips that are nacg$s generate the oscillatory factors
(e(q;+) /e (=q; =)™ Due to the form of the oscillatory factor in (B.29), we geatttone sequencéss, .. ., €s)
generates at most one facfeXesq; €5)]", T = +1. Hence, ifm # 0 there are at leasn2flips necessary to generate
the factorg(e (q; +) /¢ (—qg; =))™. If m = 0, then one still has one sequerfeg.. . ., &) of length¢; = N. Therefore,
one hag > max(2m, 1). Taking the lowest possible value, p = max(2m, 1), we get that

max deg(Pg;j:))) =N+N-2m-6mo+(j1—-1) . (B.30)
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In order to obtain estimates forlfy],, one should still sum up over all the possible configuratidriZaeuples
j®. Therefore the highest degree in ogf [H ] 11 Is obtained by setting; = 1. That is, we reproduce (B.20).

The degree ofc(?;)b P

It follows from the previous discussions that each time aegration ovevD,, s occurs in (B.17)-(B.18), there
appears, once upon integrating, a faetd(1o, 0). Hence, the oscillating factor in front c?(z; bP) g necessarily
generated by these choicesfdimensional vectorg where precisel\b entries are equal to zerge(there are

exactlyb integrations ovedD,, ).
Taking into account the fact that, as previously argued,eighboring entries of the vectercannot simul-

taneously vanish, we get that such vectocan be parameterized as

p
e=(e,....€0,....,6,....6,0,6,41,...,6,,0,..., €,...,€6p), Where Zfr:N—b. (B.31)
¢ r=1
1 14 14 -
7 P

We relabel the integration variablgsappearing in (B.18) in a form subordinate to (B.31):
Wi W) = {20 Zr o Wa Zep11 - 200 € BV, Wa=VYi (B.32)

where we agree upon
_ S—
ls= > € + #{k : 7c<s}. (B.33)

We also relabel the entries of the vectoin a similar way,ie ng; = N7 .t and ngo) =Ng 41 The action of the
associated functional., takes the form

dN-b5 [Mj(eo]ll({z} {w})
If?”[[Mi(a)]n] - 56 @im)NP (zm)b ]—[ (Zs—lt’ ~Zs1) l_[ l_[ (zst — Zst+1) P L
0D. 1 . s1t=1 IT T (251 — Ve
Sﬂa+ s=1t=1
b b
1 1
o : 5— - (B.34)
a1 (Zratn — Wa) @a = Zee11)  ac1 (wa— Ag)?™ *
The integrals ovet, are readily computed. We set
b 2n© M@ ({Z} ; {CU})
1 a (@ )
Gnop (12) = n | M) ]11 (B.35)
(2n)1 5,2

a=1 (Zra,t’ra - wa) (wa = Zrye11) wa=1o

Then, the analysis boils down to the case previously studied

En[[ J(a)]ll] 95 (2im)N- ng o ({2) n (ZS—lfs_l - Zs1) n l_[ (ZS,t_ZS,t+l) l_“_[ (Zst — n5‘+1

s=1 t=1 s=1 t=1
DrEd S;t‘ra+1

(B.36)

54



The integrals runs over the conto@®'® which corresponds to that part of the initial cont@®, where the
integrals over the variable, have been suppressed. Therefore

1 ok Gn-m (12))
enllwoll = 3% 1T [ 2| R
kst=0 s=1 t=1 (ks g t [T (Zs1po, — V)0 1st=Ves

s=1
S#Ta+1

ls ls
The sum over the integekg; runs fromOtargy = > ngj + fs—t — 3 Kst .
j=t j=t+1
Similarly to the previous analysis, we set

ﬂs:{k: jkel[fs+1;zs+£s]|} and as=min{k : ke A} . (B.38)

It is then easy to see by using similar arguments to thosekmi/dl)rc(’(g that

(_j(a)) [ P as a
le:n [[Mje)]ll]:PZB(/l—(o%g)X)' 1_[ [e (Ve €)D" where degﬁP(J())) Z Z Nk + £s — —fs)

s=1 s=1 k=ja [s
HAEIN+1 #A20 s
(B.39)
In order to obtain the maximal degree in lwgssociated to the oscillating term
ep(qa +) eb_p(_qa _) . ( e(qa +) )m (B 40)
¢®(0; 0) o(-q;-)

present inIn]11, Wwe should maximize the degree of the previous polynomiéBiB9) under the constraint that
the sequence, in (B.31) ought to change its value at lebst mtimes (this in order to produce the sought form of
the oscillatory term with its associated power-law behgwamd that these changes are such that eventually (B.40)
is generated.

We should also maximize this degree in respect to all theilplesshoices of a-uples j@ of various lengths
2a and over the allowed vectorse N(r In order to obtain this maximal degree, one should choos@aral
number of flips fn + b), choose the length% and thejy in such a way thaf,, = (s + 1. Finally, one should also
taken = 0 for all a. This leads to the conclusion that the maximal degree xigrr + N — 2(m+ b). [

C Fine bounds onIly

In this appendix we provide bounds for the matrifé\?b’p) entering in the decomposition fbly given in propo-
sition 6.1.

Proposition C.1 LetX be a contour appearing in the RHP fof and U any open set such thd{U, ;) > 0.
LetTIy be as defined bg6.10) and, agreeing upom = 1 in the space-like regime arngl = —1 in the time-like
regime, let

efxu(cﬂ x2@ for e=1
(z €)= U-0y@ for e=-_-1 (C.1H
duo)yxn3  for €=0
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Then the matriXIy(1) admits the representation

(g +) m"’p( ¢ (10:0) )"b (mb.p)
e(—q:—)) ayy) W (C.2)

[N/2] b [N/2]-b
M@ =AvE) + >, >0 ) |
b=0 p=0 m=b-[N/2]

For x-large enough, the matncé’q\lmb p)(/l) and Ay(1) depend smoothly on x and holomorphically.ba U. One
has the decomposition

neP ) = ) [e(e; 017 PP (D [e(v; ] 7 where  v.=q andw=do. (C.3)
e€{+1,0}

The matrlxl'l(m’b P) (2) is such that it does not contain any oscillating factor indtgtries. Moreover, for all kk N
there exists an N-independent constant O such that

CN
IANlILsuy < = and H (mbp)H < CNX™ with W=2max{ sup |R (v-v(eq)| . (C.4)
X L>(U) =% | 9Dqs

These estimates also hold for the first order partial derxed (in respect to x ar).

Proof —
Recall that the matriXIy can be represented in terms of Cauchy transforms (or thboundary values) on
2.

My () = Y o0 1121 (1) = {2 1Tl () (C.5)

Above and in the foIIowingC% [M] (1) for A ¢ & corresponds to the case where in the integral represemtatio
(6.3) for this operator we substitute theboundary value witht ¢ %. This is clearly a well defined expression.
We decompose the jump contour fdraccording ta; = 4D U =y with 4D = 0Dqs U ID_qs5 U 0D, 5.

The exponentially small ilx terms gathered iAy can be written as

N-1
N-1-k
A = Y s {cgn} o (e 1Tl () (C.6)
k=0
whereas
1_[N (/l) AN (/l) Z Caz)v * 0 ng)ve s (C7)
EESN N
There, the sum runs throughe Ey = {€ = (€1,...,€N) : € {+1,0}}. One can readily convince oneself that

for any matrix functionM such thaAM e L? (ZH) there eX|sts a constaat such that

oz

L) = © ”AMH'-Z(EH) ' (C.8)

Thence settingg = max{c’,c(Zn),c(0D)} (we recall that for a curvéd, c(I') stands for the norm of the
boundary value of the Cauchy operatorlgi(I')), one gets

[ZCNZH (A)] N1

A . <N
IANIIL= ) < m2d (U, Zp)

Ne, (&) with N (8) = Allig) + IAllLe) -

56



Thus, the claim follows foAy as, by construction/,\/gH (A) =0 (x™).
It remains to obtain estimates for the remaining, algebtgicmall inx, part. For this we set

AD=[ele@iec@ T AQ[e@ie@F  with {*”(Z) = Hong ~ Alon g, + Dol

€@ = Loy = Lop g,
Then, by carrying out similar expansions to (B.14) and (Billi easy to convince oneself that
2 _
(mb,p) _ ’ 1 Ak Ak L1k
12 [T\, ]kl,kN+1(/l) =2, Con,,, © " ° Con oy, 2l - (C.9)

EESN ka=l

Above Ay, stands for theab entry of A. Also, there appeafé instead ofA as the oscillating factors have been
already pulled-out, as in (C.2)-(C.3). Also the primés front of the two sums are there to indicate that these are
constrained. Namely, one should sum-up only over thosesehofe € Ey andksy € {1,2}, a= 2,..., N which,
upon the replacemeﬁ — A would give rise to the oscillating factor associated v{lﬂil";‘fb’p)]kl ks By using

the continuity of ther boundary value Cauchy operator bh(9D), one shows that there exists a constastich
that for anye, T € {+1, 0} and anyf € L2 (0.D):

|5, 11121 2,y = NP0 (C-10)
Then,
mb.p) :
m p, ’ ’ A
|| ||L°°(U) d(U ZH) Z H koka LZ(BZ)V O)HH ka+1ka’L"°(5D\, b) | Kn+1Kn LZ(M)V (5)
EGSN ka:].
(ZC N-1 .
< ——NsplA) . (C.11
= a0z el - e
Since there exists’ > 0 such that| A lL2@p) < ¢'x%, the claim follows. Also, we stress that, by construction,
Hmb’p) does not contain any oscillating termsxiin its asymptotic expansion wheti— +oo. [
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