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Large-distance and Ipn%-time asymptotic behavior of the rduced
density matrix in the non-linear Schrodinger model.

K. K. Kozlowski?

Abstract

Starting from the form factor expansion in finite volume, weride the multidimen-

sional generalization of the so-called Natte series forzéve-temperature, time and
distance dependent reduced density matrix in the non+lidelarddinger model. This
representation allows one tead-gf straightforwardly the long-timf&arge-distance

asymptotic behavior of this correlator. Our method of asislyeduces the complexity
of the computation of the asymptotic behavior of correlafimctions in the so-called
interacting integrable models, to the one appearing infrgmion equivalent models.
We compute explicitly the first few terms appearing in thenagiotic expansion. Part
of these terms stems from excitations lying away from therfreoundary, and hence
go beyond what can be obtained by using the CETinger liquid based predictions.

1 Introduction

One-dimensional quantum models with a gapless spectrurbddieved to be critical at zero temperature. In
other words, in these models, the ground state expectaibres of products of local operators should decay,
for large distances of separation between the operatorspras power-law in the distance. It is also believed
that, for a generic class of Hamiltonians, the actual valuth® exponents governing this power-law decay, the
so-called critical exponents, does not depend on the ntiopds details of the interactions in the model, but only
on its overall symmetries [21, 24]. Therefore two modelsohging to the same universality class should be
characterized by the same critical exponents.

It has been argued that the equal-time correlation funstiogquantum critical one-dimensional models exhibit
conformal invariance in the large-distance regime [73]néte its appears plausible to infer their large-distance
asymptotics from those of the associated conformal fieldrsh@CFT). The central charge of the CFT lying in the
universality class of the model can be deduced from the fgiite corrections to the ground state energy [3, 11].
The possibility to compute such finite-size correctiongmany integrable models allowed the identification of the
central charge and scaling dimensions leading to the giedscfor the critical exponents [5, 17, 18, 54, 55, 83]
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of the long-distance asymptotics. We remind that it is atsonetimes possible to give predictions for the critical
exponents [25, 26, 66] by putting the model in corresponeéemith a Luttinger liquid [27].

Due to their wide applicability and relative simplicity, i# more than desirable to test these @Riktinger
liquid based predictions versus some exact calculatiomgdaout on such models; this starting from first principle
and in such a way that no approximation (apart from assumilagge distance) is made to the very end. Such
exact computations have been carried out in the 70’s andd8Digarious two-point functions appearing in free
fermion equivalent model such as the Ising [13, 69, 70], tNexodel at the critical magnetic field [67, 68] or the
impenetrable Bose gas [82]. The latter approaches werentiagie much more systematic (and also simplified)
with the occurrence of a Riemann—Hilbert based approaateésfermion models’ asymptotics [29] together with
the development of the non-linear steepest-descent mgtbpdindeed, the latter constitutes a relatively simple
and systematic tool for carrying out the asymptotic anal{?8, 30, 31] of Riemann—Hilbert problems associated
with Fredholm determinants representing the correlatofeee fermionic models.

However, obtaining long-distance asymptotic expansidns/@-point functions for models not equivalent to
free fermions faced several additional problems of tecimature. This fact takes its roots in that even obtaining
explicit expressions for the correlation functions in tleecalled interacting integrable models demands to over-
come new types of combinatorial intricacy that disappedrsmdealing with free fermion equivalent models. The
first approach to the problem of computing correlators ouheffree fermion point can be attributed to Izergin
and Korepin [34, 35]. These authors managed to construtineseries representations for the correlation func-
tions of the non-linear Schrédinger model and the XXZ spif-thain. However, the™ summand appearing
in these series was only defined implicitly by induction. Lowalculation allowed them for anffective per-
turbative characterization of a vicinity of the free fermipoint. First manageable expressions for correlators at
zero temperature in an interacting integrable model wetainéd by Jimbo, Miki, Miwa, Nakayashiki through
the vertex operator approach. They have provided multigiegral representations for the matrix elements of
the so-called elementary blodki the massive [38] regime of the infinite XXZ chain. Theseuttsswhere later
extended to the massless regime of this chain [39] or to aitfalite chain subject to a longitudinal magnetic
field acting on one of its ends [37]. The multiple integralresentations were then reproduced, in the framewaork
of the algebraic Bethe Ansatz by Kitanine, Maillet and Teffia the massive and massless regime of the periodic
XXZ chain [52]. These two series of works opened a way towardystematic andfiective computation of
various types of multiple integral afai combinatorial representations for the correlation fioms in numerous
integrable models. In particular, it was possible to deet¥ective representations in the case of finite temperature
[23], non-equal times [49], models in finite volume [36], Ihég spin chains [15],... These results should be seen
as of uttermost importance from the conceptual point of viga multiple integral representations for the correla-
tors of interacting integrable models naturally providesraerpretation for these objects as a new class of special
functions (of the distance, time, coupling constants, HQwever, the complexity of the integrands appearing in
such multiple integral representations makes the thoralggeription (computation at certain specific values of
the distancg&oupling or extracting their large-distariicag-time behavioetc..) of these new special functions a
quite challenging problem. Many investigations that faka where oriented towards a better understanding of
these special functions. In particular, it was observetltttemultiple integral representations for the elementary
blocks of the XXZ chain can be reduced to one dimensionagjiate by a case-by-case analysis [10, 47, 50, 74].
This observation led to the proof that it is possible to safgathe multiple integrals representing the elementary
blocks of the XXZ chain on the algebraic level [7]. In its tuthis led to the discovery of a Grassmann structure
in the XXZ chain [6, 8, 9. Among many other developments sastthe possibility to compute the one-point
functions of the sine-Gordon model [40, 41], the existerfcgioh a Grassmann structure constitutes a promising
direction towards bringing the complexity of the analydishe correlation function of the XXZ chain to the one
of a free fermion problem. A completely other method for r@dg the complexity of the multiple integral repre-

"these provide one basis on which it is possible to decompbsereelation functions of the model



sentations for the correlation functions was the so-callgal field approach [59]. It led to representations for the
correlators in terms of expectation values in an infiniteatisional Hilbert space of unbounded operator valued
Fredholm determinants [56, 57]. However, apart from caywece issues posed by such an infinite dimensional
framework, the main problem of that method was posed by tmeceonmutativity of the dual field’s vacuum
expectation values and the asymptotic expansion of a deldlvfalued Fredholm determinant. Its and Slavnov
[32] carried out, on a formal level, such a dual field-basealyais for the large-distandeng-time decay of the
so-called one-particle reduced density matrix at finitegerature in the non-linear Schrédinger model (NLSM).
They have been able to provide operator valued expressiotise correlation length. The dual field vacuum ex-
pectation values where computed in [79], which led to a digson of the correlation length in terms of a solution
to a non-linear integral equation. We would like to mentibattuntil recently, although formal, the dual field
approach was the only approach alternative to a/Céffinger liquid based correspondence that allowed one to
write down certain predictions for the critical exponents.

There have also been developments aiming at obtainingnatiee types of fective series of multiple integral
representations for the distance dependent two-pointifumec[48, 51]. The guideline being a construction of such
a representation that would allow to carry out a long-distamsymptotic analysis of the two-point functions. This
project has met a success in [44]. This article developed&féirly rigorous method allowing one to compute,
starting from "first principles", the long-distance asyotjat behavior of the spin-spin correlation function in the
massless regime of the XXZ spinZchain. This method relied on a few conjectures relativééopermutation
of symbols, summability of the remainders, convergencéefobtained series representations, but was rigorous
otherwise. These last results not only confirmed the /CHtTinger liquid-based predictions for the critical expo-
nents in this model but also provided explicit expressiangtie amplitudes in front of the power-law which, in
their turn, cannot be predicted by universality argumeiitsese explicit formulae for the amplitudes were then
identified with certain, properly normalized in respecthe size of the system, form factors of the spin operators
[43, 45]. This identification allowed one to point out the warsality in the power of the system-size that one
uses for normalizing the form factor corresponding to th@l@ode. The aforementioned method of asymptotic
analysis was applied recently to study the long-distangmptotic behavior of the correlation functions at finite
temperature in the NLSM [63].

The large-distangng-time asymptotic behavior of the correlation funcidn massless one dimensional
guantum models goes beyond the predictions stemming frogugstic correspondence with a CETttinger
liquid. Hence, this constitutes a clear motivation for atiteg such an asymptotic behavior from exact considera-
tions on some integrable model as this could help to undetgteeir structure and origin in the general case where
exact computations are not feasible. We would like to mertti@t there already exists several results relative to
this regime of the asymptotics in the case of free fermiorivedgnt models [31, 67, 68, 71].

This article introduces a method allowing one to computezéit®-temperature asymptotic behavior of the
correlation functions in integrable models starting frdme form factor expansion for two-point functions. The
fact that we build our method on the form factor expansioavad! us to include the time-dependence and hence
access to the large-distance and long-time asymptoticvi@hdere, we treat the example of the one particle
reduced density matrix in the non-linear Schrodinger moddle analysis of the current-current correlators on
a more heuristic ground but in the spirit of this method is sbbject of a separate publication [46]. We would
like to stress that the method of asymptotic analysis thaprepose in this paper not only allows us to carry out
the analysis in the large-distariiomg-time regime but also constitutes an important teciraad computational
simplification of the approach proposed in [44]. It has als® advantage of being applicable to a much wider
class of algebraic Bethe Ansatz solvable models as it soddilys on the universal structure of the form factors in
these models. All the more than the number of models whesethave been determined is constantly growing
[14, 35, 53, 61, 72]. The main result of this paper can be suwizeth as follows. We provide a method for
constructing a new type of series representation for theelation functions of integrable models, that we call



multidimensional Natte series. This representation is THE that is fit for an asymptotic analysis, as the first
few terms of the asymptotic expansion can be simphd-gf without any éfort by looking at the terms of the
series. Moreover, the computation of the higher order asyticg efectively boils down to the case of a free
fermionic model {e computation of subleading asymptotics of the Fredholmrdeteant of an integrable integral
operator) and thus bears the same combinatorial complé&tiy main implication of our result for physics is that
the asymptotics in the time-dependent case are not onlgrdily excitations on the Fermi boundary (the latter
coincides with the region of the spectrum that can be taktmaocount by using CHTuttinger liquid-based
predictions), but also by excitations around the saddlatpty of the "plane-wave" combinatiorp(1) — te (1)

of the dressed momentumand dressed energyof the excitations. Also, we provide explicit expressionsl a
identify the associated amplitudes with the infinite volulineit of the properly normalized in the size of the
system form factors of the field.

We stress that although we have been able to set our methochdmearigorous framework then it was done
in [44, 63], we still have to rely on a few conjectures. Moregsely, we have been able to split the asymptotic
analysis part from the one of proving the convergence ofagereries of multiple integrals representing the
correlators. The part related to asymptotic analysis has Bet into a rigorous framework. However, in order
to raise the results of this asymptotic analysis to the le¥¢he two-point function of interest, we still need to
assume on the convergence of the series of multiple inlegralobtain.

The main novelty of our method is that it provides a systeenaiy for carrying out the asymptotic analysis of
multiple integrals or series thereof whose integrandsainatsome large-parameter dependent driving term being
dressed up by coupled functions of the integration varg@ablge provide a setting that allows one to interpret the
"coupled" case as some deformation of the "uncoupled" ohis. deformation is such that, provided one is able to
carry out the analysis in the "uncoupled" case (but withfA@antly rich range of functions involved), one is able
to deform the "uncoupled" asymptotics back to the "couptabe of interest. It is in this respect that the analysis
carried out in this article strongly relies on the resulttagted in [62] (where the relevant "uncoupled” series of
multiple integrals of interest has been analyzed) as walhabe fact that correlation functions of generalized free
fermionic models (which correspond to the "uncoupled” tase naturally representable in terms of Fredholm
determinants [60].

This paper is organized as follows. In section 2, we remirddifinition and main properties of the model.
We also introduce all the necessary notations allowing psdsent the asymptotic behavior of the reduced density
matrix. In section 3, we present our result and discuss thagegly of our method. Then, in section 4, we outline
the main properties of the form factors in the model and wdaten the form factor series for the reduced density
matrix. We explain how this series can be re-summed into thealied multidimensional deformation of the
Natte series. Once that such a representation is builtk¢htarthe very properties of the Natte series, it is possible
to literally read-gf the first few terms of the asymptotic expansion. We gathethallauxiliary and technical
results in several appendices. We discuss the large simeAoe of the form factors of the fields in appendix
A. In appendix B, we derive finite-size Fredholm minor repreations for the form factor based expansions of
certain two-point functions in generalized free fermiondeis. In appendix C, we prove the existence of the
thermodynamic i€ infinite volume) limit for certain quantities of interest. Mlso provide various alternative
expressions for this limit. In appendix D, we develop theotlgeof functional translation in spaces of holomorphic
functions. The results established in this appendix ctstthe main tools of our analysis. They allow for an
effective separation of variables in the intermediate stepsagmne is able to carry out various re-summations of
the formulae by building on the results stemming from theegalized free fermion model studied in appendix B.



2 The non-linear Schrédinger model

2.1 The eigenstates and Bethe equations

The non-linear Schrédinger model corresponds to the Hanidlh
L
Hnis = f {0y@7 (y) 8y® (y) + c @7 (y) DT (y) @ (¥) @ (y) — h ' (y) D (y)} dly . (2.1)
0

The model is defined on a circle of length so that the canonical Bose fields ®' are subject td_-periodic
boundary conditions. In the following, we will focus on thepulsive regime > 0 in the presence of a positive
chemical potentiah > 0. The HamiltoniarH y s commutes with the number of particles operator, and thus can
be diagonalized independently in every sector with a fixetlmer of particledN. In each of these sectors, the
model is equivalent to a N-body gas of bosons subjeétltke repulsive interactions. The corresponding model
of interacting bosons was first proposed and studied by @Giear [22] in thec = +c0 case and then introduced
and solved, through the coordinate Bethe Ansatz, by LieblLamider [65] in the case of arbitrarg. It is also
possible to build the eigenstates of the Hamiltonian by reedithe algebraic Bethe Ansatz. This was first done
by Sklyanin [76] directly in the infinite volume. In the cagdfinite volumel, as observed by Izergin and Korepin
[33], it is possible to put the continuous model on a lattitelich a way that the standard construction [20] of the
algebraic Bethe Ansatz holds. At the end of the computatibisthen possible to send the lattice spacing to zero
and recover the spectrum and eigenstates of the continuodelnThe fact that this manipulation is indeed fully
rigorous has been shown by Dorlas [19].

In the algebraic Bethe Ansatz approach, the Hamiltonial) @pears as a member of a one-parameter com-
muting family of operatorsl — 7~ (1). It is sometimes useful to considepBadeformation of this family7 (1),
such that7z ()30 = 7 (1). The common eigenstat¢sy ({u})) of 74 (1) in the N,-particle sector are param-
eterized by a set of real numbe{ysga}ggl which are the unique solutions to tgedeformed logarithmic Bethe
equations [4, 84]

ic+ A4

NK+1)+2iﬂ,8 with po() =1 and e(ﬂ):iln(ic_/l).(z.Z)

Ny
Lo )+ Y 0, =) = 21 -
b=1

Po is called the bare momentum afithe bare phase. The set of solutions corresponding to atehof integers
{a € Z such that’; < --- < £y, yield the complete set of eigenstates in Myeparticle sector [19].

In each sector with a fixed number of particdg the so-called ground state’s Bethe roots are given by the
solution to (2.2) corresponding to the choiceNgfconsecutive integers, = a, witha=1,...,N,andB = 0. The
numbem, corresponding to the number of particles in the overall gdstate oH | s is imposed by the chemical
potentialh and scales with.. It will be denoted byN in the following. One shows that in the thermodynamic limit
(N,L — +o0 so thatN/L — D) the parameter‘glj}’l\‘ associated to this ground state condensate on a symmetric
interval|[ —q; q] called the Fermi zone.

All other choices of sets of integefg lead to -deformed) excited states. In principle, these excitetksta
can also be found in sectors with gdrent numbelN, # N of particles. It is convenient to describe the excited
states in the language of particle-hole excitations abloed\t-particles-deformed ground state Namely, such
an excited state corresponds to a choice of integeirs(2.2) such that

;=] for je[1; NJJ\hy,....,hn and &, =pa for a=1,...,n. (2.3)

thes-deformed ground state corresponds to the chbjcea, witha=1,..., N«



The integergp, andh, are such thapy ¢ [1; Ni] ={1,...,N,} andhs € [1; N, ]. There is thus a one-to-one
correspondence between integgrand the integerb, and p, describing particle-hole excitations.

In this picture, the integerb, correspond to holes in the increasing sequence of integdisingy thes-
deformed ground state roots, whergascorrespond to extra integers appearing in the equation amdbe seen
as defining some new position of "particles". Given a soiutm»a} corresponding to a fixed choice of integers
¢1 < --- < {y, itis convenient to introduce their counting function:

_ _ po(w) 1 No+1 8
Eiea) (0) = &y (0 ] {uea))Y) = + 5 § 0 (w — pe,) + - = (2.4)
( 1 ) 21 2L = 2L L

By construction, it is such tha, (u¢,) = £a/L, for ra=1...,N. Actually, £, (w) define$ a set of background
parametersu,}, a € Z, as the uniquesolutions to¢ ., (ua) = a/L. The latter allows one to define the rapidities
Hp,» TESP.Un,, Of the particles, resp. holes, entering in the descrimib{nga}'l\'K

2.2 The thermodynamic limit

When the thermodynamic limit of the model is considereds 'mci)ssible to provide a slightly more precise de-
scription of the solution to the Bethe equations for the gubstate{/la} as well as for any particle-hole type
B-deformed excited statepga} *. above it withNx — N being fixed and not depending aror N. Introducing the
counting function for the ground state

E@) = (o1t} = 2 zﬂLZH(‘“ 1)+ T e F) =2, 25)

it can be shown that, in the thermodynamic limit, it behawes a

E(w) =& (w) +O(L‘1) where ¢ (w) = pz(;)) + 5 and N/L—-D. (2.6)

There, the CQL‘l) is uniform and holomorphic i belonging to a strip of some fixed width around the real axis,
p is the so-called dressed momentum, defined as the uniqugsdio the integral equation

q
P - [60-0P () = po @)

-q

The parameteq corresponds to the right end of the Fermi intervaly; g ] on which the ground state’s Bethe
roots condensate. It is fixed by the value of the chemicalriaieh by demanding that the dressed enesdy),
defined as the unique solution to the below integral equati@anishes atq:

q
s(l)—fK(/l—p)s(/J)lelzso(/l) with eo()) =22—h  and e(xq) = 0. (2.8)
-q

We also remind the relatiompe = D wherepgs = p(q) is the Fermi momentum.

"Note that diferent sets of rootgu, } and{u,, ) lead to diferent sets of background parameters
*The uniqueness of solutions follows from the fact that tHatgm to (2.2) are such that, (8) = u, (0) + 2ixB/L. This allows one to
show that,; (w) is strictly increasing o + 2izg/L and maps it ont®. Moreover, one can check thﬁt(aga,) #00onC\ (R + 2inB/L).



In the following, we will focus on the excited states in thg= N + 1-particle sector only. In order to describe
the thermodynamic properties of syétieformed excited states, it is convenient to introduceatisaciated shift
function

N-+1

Fiea @) = F (@ [ {ue ™) = L[E @) - & ()] = 5 Ze(w aa)——Ze(w ma)——w (2.9)

It can be shown that this counting function admits a thermeadyic limit F4 that solves the linear integral equation

q
du
A ]—fKu—y)F [y‘ b ]— S -0 - ) [0 ) - (- )

'8( ’ {tna) o AU fuan,) Z[ ) I
Therepup,, resp. un,, are to be understood as the unique solutiond(4@,) = pa/L, resp.£ (un,) = ha/L, where
&is given by (2.6). Note that we have explicitly insisted oa #uxiliary dependence of the thermodynamic limit
of the shift function on the positions of the partigledes. However, in the following, whenever the value of
{tp,} and {un,} will be dictated by the context, we will omit it. We also rerdithat the above shift function
measures the spacing between the ground state fgasd the background parameters defined by’f\{ga}:
pa—da=Fg(la) - [L&'(A2)] 7 (1+O(L7Y)).

The integral equation for the thermodynamic limit of theftshinction Fz can be solved in terms of the dressed
phasep (4, u) and dressed charg&(1)

q q
qb(/l,u)—fK(/l—T)gb(T,y)g—; = %9(/1—/1) and Z(/l)—fK(/l—T)Z(T)g—; =1. (2.10)
- -q
Namely,

Fp (1) = Fg (a’ }jjfj; )= (iB-1/2Z) - ¢(1,0) = > [6(dpp,) — & (A, pn,) (2.11)
a=1

a

Here, we also remind two very nice relationships that ex@siviben the dressed phase and dressed charge

ZA)=1+¢(,-0)-¢(,q and ZH(Q)=1+¢(-9.0) -¢(g0) . (2.12)

The first one is easy to obtain and the second one has beenaibtai[58, 78].

The shift function allows one to compute many thermodynaliniits involving the parameter§u,,}. For
instance, introducing the combination of bare momentumearadgyug(1) = po(2) — teg(4) /X, one readily sees
that for an particlghole excited statgu,,} atg = 0

N+1 n
jim {Z Uo (1a) - Z Uo (tc,) }w_o = D Ulup,) — lun,) (2.13)

a=1

Above and in the followingu stands for the combination of dressed momenta and ener§igés- p (1)—ts (1) /X
It admits the integral representation

q
a() =t ()~ [ ) sk (2.14)
-q



The functionuy admits a unique zero of first order @&n It is believed that this property is preserved foClearly,
in virtue of Rouché’s thearem, this holds true @darge enough. We will not purse the discussion of this priyper
here as it goes out of the scope of this paper and will use itvearking hypothesis. In other words, we assume
that given a fixed ratio/x, there exists a uniqué, such thaur'(1g) = 0 andu”(1p) < 0.

We do stress however that this working hypothesis shoultd@obnsidered as a restriction but a simplification
of the exposition at most. Indeed, it follows frdmi(1)] — +co0 whenR (1) — +oo that, for any value o€ > 0,
U has a finite number of real zeroes. The case whdras multiple real zeroes of arbitrary order could be treated
within out method but would make the analysis heavier.

As a concluding remark to this section, we would like to strémat all functions that have been introduced
above (the dressed momentyoythe dressed energy the dressed chargeand the dressed phase) are holomor-
phic in the strip

Us={zeC : |3(9)| <20} (2.15)

around the real axis. The parameieratisfiesc/8 > 6 > 0 and is chosen siiciently small so thap is injective on
Us and infiey, [R (Z(1))] > 0. We will tacitly assume such a choice in the following eaatetthe stripUs will
be used.

3 The method and main results

The zero-temperature one-particle reduced density matfirite volume refers to the below ground state expec-
tation value:

o) = (w (1) | @ () @' (0.0)[w (12a14) ) (12| (3.9)

The parameter{sia}’l\‘ correspond to the set of Bethe roots parameterizing thengrstate of (2.1). We recall that
the fields evolve in space and time according to

(D(X, t) — eiXP—itH NLS(D(O, 0) e—iXP+itH NLS , (32)

whereHys is the Hamiltonian of the model given in (2.1) aRds the total momentum operator. The action of
P on the eigenstates ¢fy s has been computed in [4].

We denote by(x,t) = limy -+ on(X t) the, presumably existing, thermodynamic limitaf(x, t). We will
not develop further on the existence of this limit, and tdke &s a quite reasonable working hypothesis.

3.1 Description of the method

In this article, we carry out several manipulations thatllea to propose a series representatiorpfart) giving
a straightforward access to its leading large-distdog-time asymptotic behavior.

The starting point of our analysis is the model in finite volunWe will first provide certain re-summation
formulae forpn(X,t) starting from the form factor expansion of (3.1). The latteolves a summation over all
the excited statesg over all solutions to (2.2)-(2.3) & = 0). This sum has a very intricate structure which
prevents us from analyzing its thermodynamic limit rigaigurom the very beginning. We therefore introduce a
simplifying hypothesis. Namely, denoting the energy of atited state byE, and the one of the ground state by
Egs we argue that all contributions issued from excited statesacterized b¥ey — Egs = O (L) do not contribute
to the thermodynamic limit of the form factor expansiorpg{x, t). In the light of these arguments, we are led to
analyze anfective form factor serigsy.er (X, t) and a certairy-deformatiornon-er (X, t | y) thereof. Our conjecture
is thatpn:er(X, t | ¥ = 1) = pneer(X, t) has thesamethermodynamic limit agn (X, t).



We studyy — pnee (X, t | y) by means of its Taylor cdicients aty = O:

am
(m) -
pN;eﬂ-‘(X’ t) = W PNet (X T 7)|7:0 . (3.3)

All rigorous, conjecture-free, results of this paper atatiee to these Taylor cdicients. We show that these
admit a well defined thermodynamic Iin}ig;)(x, t). In addition, we provide two dlierent representations for this
limit, each being a finite sum of multiple integrals.

e The first representation is in the spirit of the ones obtaindd4, 63]. It corresponds to some truncation of
a multidimensional deformation of a Fredholm series foredRplm minor.

e The second representation is structured in such a way thdbiws one toread-gf straightforwardly the
first few terms of the asymptotic expansion;;@?(x, t). The various terms appearing in this representation
are organized in such a way that the identification of thoatdte negligibledgexponentially small) in the
X — +oo limit is trivial.

The above two results are derived rigorously without anyr@gdmation or additional conjecture. However,
in order to push the analysis a little further and provideailtesghat would have applications to physics, we need
to rely on several conjectures. Namely, we assume that

1. the series of multiple integrals that arises upon summmthe thermodynamic limits of the Taylor dfie

cientsZ;":"op(e';)(x, t) /ml is convergent;

2. this sum moreover coincides with the thermodynamic lhjin-e (X, t | ¥ = 1) and hence, due to our first
conjecture, withp (x, t).

These conjectures allow us to claim thgix, t) can be represented in terms of a series of multiple integfdle
latter series corresponds to a multidimensional defownatif the Natte series expansion for Fredholm minors
of integrable integral operators [62]. This multidimemsb Natte series has all the virtues in respect to the
computation of the long-timikarge-distance asymptotic behavioragk, t); it is structured in such a way that one
readilyreads-gf from its very form, the sub-leading and the first few leadiagnts of the asymptoics.

So as to conclude the description of our method, we wouldtbk&tress that the aforementioned conjectures
of convergence are supported by the fact that they can beptovhold in the limiting case of a generalized free
fermion model [62]. Unfortunately, the highly coupled rmatwf the integrands involved in our representations
does not allow one for any simple check of the convergencpepties in the generaleo > ¢ > 0 case.

3.2 Large-distancglong-time asymptotic behavior of the one-particle reducedlensity matrix

We have now introduced enough notations so as to be ablegerirthe physically interesting part of our analysis.

Let x > O be large and the ratig/t is fixed. Let1y be the associated, presumably uniqcfe(R.14)), saddle-
point ofu(1) = p(1) — te (1) /x. Assume in addition thaty # +q and1g > —g. Then,under the validity of the
aforementioned conjecturethe thermodynamic limit of the zero-temperature oneiglarteduced density matrix



o (x,t) admits the asymptotic expansion

—2in (1) &X[utio)-u@] |5cho|2
,D(X,t):\/ 17 ’ 2 > - 3 1 oo (/1)4-0(1)
1740) =X (4 v [FPCOT [ (x - v @) Uaieeg (o +o)

e 2iXpr |f¢q—Q|2

+ > —— (1+0(2))
[| (X + V|:t)] [ng(—q)—]_] [_| (X — VFt)] [qu(Q)]
i
+ >(1+0(1) . (3.4)

[i (X + VEt)] [Fg(—q}]2 =i (X Ve )] [Fo@)+1]

The critical exponents governing the algebraic decay irdib&nce of separation are expressed in terms of the
thermodynamic IimitFjj;j of the shift function (a3 = 0) associated with an excited state of (2.1) having one
particle atup and one hole gtn, namely,
Zh_ 20 pa-0 FEw=-22 0. @5

The type of algebraic decay in (3.4) can be organized in tassels. There is a square root power-law decay
stemming from the saddle-poifts"(1g) — xp(’(/lo))%. All other sources of algebraic decay appear in the so-
called relativistic combinations+ vet and exhibit non-trivial critical exponents driven by thefsfunction of the
underlying type of excitation. We recall that/r corresponds to the velocity of the excitations on the figfit
Fermi boundaryvg = £'(q) /p' ().

Each of the three terms in these leading asymptotics hamipditade 47__40|2, |7-“(g’|2 or |7-‘q_q|2) given by the
thermodynamic limit of properly normalized in the lendtimoduli squared of form factors of the conjugated field
®". More precisely,

Fo() = - p(la)  Fq(A)=-

2. . .
. |7—’Cf°| involves the form factor oo™ taken between thN-particle ground state and an excited state above
theN + 1 particle ground state with one particledgtand one hole a.

. |Tq‘q|2 corresponds to the case when one considers an excited state theN + 1-particle ground state
with one particle at-q and one hole ai.

. |ﬂ?|2 corresponds to the case where the form factor average’ af taken between the N and the+i+
particle ground state.

The explicit (but rather cumbersome) expressions for thplitimes together with a more precise definition
are postponed to appendix A.3.

Finally, 1j 4., [ Stands for the characteristic function of the interM@| +oo [. It is there so as to indicate that,
to the leading order, the contribution stemming from thedgagoint only appears in the space-like regitge- g.
We stress that by pushing the calculations to an even higlder in x, one can show that hole-type excitations
in a vicinity of the saddle-point also contribute in the tililee regime wherelp € | —q; q[. Their contribution is
however much more dampen.
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Remarks

The oscillating phases and amplitudes appearing in (3edyaamniniscent of the type of excitations that give rise
to their associated contribution. Each term in (3.4) cands®aated with some macroscopic state of the model.
For instance, the one occurinag the first line of (3.4) corresponds to a macroscopic staggarterized by one
particle atlg and one hole af. There are infinitely many microscopic realizations of saamacroscopic state.
For instance, any excited state realized as one particlg ahe hole ag,

o n, particlesu; and holeg." located afy in the thermodynamic Iimitygz,yﬂ)N — gfora=1....n,,
a a N,L—+c0

o N_ particles,u(p',z and holeguﬂi located at-q in the thermodynamic Iimit,u(p',z,pﬂ: W d fora=1,...,n_.
would give rise to the same (from the point of view of ene&y= &(1g) , momentumP = p(lp) — p(Q),...)
macroscopic state. In a joint collaboration with Kitanitgillet, Slavnov and Terras we have shown [42] that
indeed, in the zero-time case, the contribution of a giverroscopic state to the asymptotics is obtained by
summing up over all such zero-momentum excitations on e&theoFermi boundaries. Clearly, this picture
persists in the time-dependent case as well. The offlgrdnce being that, in the time-dependent case, the number
of relevant macroscopic states contributing to the asytigstés bigger (one has to include the contributions of
excitations around the saddle-point in addition to thetexions on the Fermi boundary). Moreover, we would like
to draw the reader’s attention to the fact that it is pregiset sum over such zero momentum excitations on the
Fermi boundary that gives rise, through some intricate esimopic mechanism of summation, to the relativistic
combinationgx + vgt)** (in what concerns the left Fermi boundary) aixd- vet)*- (in what concerns the right
Fermi boundary) arising in the asymptotics. This mechardambe considered as yet another manifestation of
conformal field theory on the level of asymptotics.

Our analysis leads us to propose an alternative interfoetaf the universality hypothesis. Namely, when
dealing with asymptotics (large-distanatg) of correlation functions, one is brought to the analysishef con-
tributions of "relevant” saddle-points. As one can expeminfthe saddle-point type analysis of one-dimensional
integrals, the leading asymptotics are only depending eiaital behavior around the saddle-point of the driving
term. All other details of the integrand do not matter forrfixthe exponent governing the algebraic decay. There-
fore, it is quite reasonable to expect that models shariagstime types of saddle-points exhibit the same type
of critical behavior. The universality hypothesis [24]tstg that models sharing the same symmetry class have
the same value for their critical exponents can be now exinéted as the fact that the symmetries of a model
uniguely determine the structure of the driving terms in $hddle-points that are relevant for the asymptotics.
As a consequence, the leading power-law decay stemmingtfrertocal analysis around these saddle-points is
always characterized by the same critical exponents regardf the fine, model dependent, function content of
the integrals describing the correlation functions.

We draw the reader’s attention to the fact that the termsaapyein the 29 and 3 lines of (3.4) correspond
solely to excitations on the Fermi boundaries and confirm@R&/Luttinger liquid-based predictions for the
long-distance asymptotitgtt = 0 due to the identifications following from (2.12):

Zqg) Z () Z )
2 2 2

"The o(1) corrections being excluded

Z1 ()
2

Fo(@+1= , FO(-0) = - , Fq'(a) = -Z(q) , Fq'(-q)-1=- Z(q) . (3.6)

'X2 . . .
#Taking thet — 0 limit of (3.4) is slightly subtle. The first line produces antribution proportional to~26% . In thet — O limit, this
function approaches, in the sense of distributions, a Diag function. The presence of thigx) function is expected from the form of
the commutation relations between the fields. However,aratgex limit of interest to us, it does not contribute.
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However, we do stress that (3.4) clearly shows the need toegor the CFLuttinger liquid picture so as
to provide the correct long-tinlarge-distance asymptotic behavior of the correlatiorcfioms in gapless one-
dimensional quantum Hamiltonians. In particular, our hssdisprove the predictions obtained in [2], and more
recently the large-distandeng-time asymptotic behavior predicted in [12].

4 The form factor series

In this section, we will provide two new representations thoe zero-temperature reduced density matrix (3.1)
starting from its form factor issued expansion:

N dXto(4a) N+1
I (v (e )

PN (X 1) = = :
" €1<§’N+1 ,\iﬁl eixuo(/“a) ||l// ({ﬂt’a}ll\Hl)
a=1

(a€Z

@'(0.0)[u (14al)) )|
et

(4.1)

The above series runs through all the possible choicesedéns(;, a=1,...,N + 1 such that; < --- < fny1.

Below, we shall argue in favor of several reasonable apprations that allow us to reduce the form factor
series to another,fiective one, whose structure is simple enough so as to be @lglentinue the calculations
directly on it.

4.1 The dfective form factors

It has been shown in [64] (slightly fllerent determinant representations for these form faciave hlready ap-
peared in [61, 72]) that the form factors of the operabdrtaken between thil-particle ground statela}’l\‘ and

any particle-hole type excited sta(ma}TJfl as described in (2.3) takes the form
(¥ 0O (D — oty - o e -
|< ( tal1 ) ~ | ( 21)>| _ 'l({{ﬁa}}%)[F{fa}’f{fa}’ﬂ'DN({{Eai%)[F{{’a}’f{{’ahf]- (4.2)
o (tee )l (220 i1 i1

This representation involves two functionals, the soethBmooth part of the form fact@N;l and the so-called
discreet parDy. These are functionals of the counting functéfor the ground state, of the counting function
&, for the excited state and of the associated shift fundgigy).

It has been show in [64], that, in the larhdimit and for anyn particle-hole type excited state, wittbounded
independently of, these functionals satisfy

5 N {pa}2 = R {pa}2 ~ {pa}T In_l-
(QN;lDN)({ha}T |Fita €itar- €] = Gna (ha)? [Fo. &, éro] - Dn (ha)? [Fo.&.6r] {1+ 0O~ - (4.3)
We stress that the functionals appearing onrtisof the above equation act on

i) the thermodynamic limit §f2) of the shift function ag = 0 associated to the excited state labeled by the
set of integerga})'*t (2.11),

ii) the thermodynamic limi (1) of the counting function (2.6),

i) the counting function associated witky: &r,(4) = £(2) + Fo() /L.

12



We do stress that the shift functidty depends implicitly on the rapidities of the particlgs, )} and holegun, }}
entering in the description of the excited state of intereft(2.11). We chose not to wrlte this dependence
explicitly in (4.3) as the auxiliary arguments &% are undercurrent by those of the functlonélﬁ and gNl
Given any holomorphic function in a neighborhoodrofthe explicit expressions f@y [v,&.6] (andgN [v& 6]
involves two sets of paramete{oisa}l and{,uga}T+l which aredefinedas follows

e uy, k € Z is the uniqué solution to& (ux) = k/L, ie thesecondargument of the functionals;
e A, ke[1; NJisthe uniqué solution to&,(1x) = k/L, ie thethird argument of the functionals.

We insist that here and in the following, the paramejgr®r 1, entering in the explicit expressions for these
functionals arealwaysto be understood in this way. Also, we remind that the integgiare obtained from the
integers{ pa}’} and{hy}? as explained in (2.3).

e The discreet part

The functionalDy represents the universal part of the form-factor:

N+1 (4.4)

b 1{4Sin2[7rFo(/1k)]} N (ﬂga —Ht’Nﬂ)z deﬁl[ 1 ] .
H 2nLe (pe,) H 2rLér (da) 1

a— Mensa My — /lb

{Paly
Dn ({ha}l)[Fo,f érol =

The largeN, L behavior of (4.4) can be computed explicitly and is givenArRj-(A.4). However, it is the above
finite product representation 8fy that is suited for carrying out resummations.

e The smooth part

The functiona@\N,l represents the so-called smooth part of the form factor:

VN1 (un+1) V-1 (un+1) W ( {pa )] )ﬁ {VN;E(/uha) Hh, — HN+1 + iec}
dety,1 [E® [¢]] dety [ED [&r,]] ] Viie(p,) Hp, — fine1 + i€C

{tna 17
XW'\'( iﬁai )de‘i\' [0k + YVik[Fol ({AalY; {z)Y+) | dety [5Jk +7V1k[Fo]( Aaly {ma}'\'”)] . (45)
alp

§N;y( )[Fo,f &Rl =

a=1 e=+

Above, we have introduced several functions. For any seepnégc parametet(s’.za {Yal) ) e Ufx U}

N

{za)] "1 (Za = Yo — iC) (Ya — 2 — iC) w— dp +iec
Wn 1 = N N d V € 46
( ) apet Ya = Yo —iC) (za — 2 —iC) an e () = ]—[a) p + i€C (4.6)

a=

Also we have set

K (ea — Heo)
27TL§’(/lgb)
*The uniqueness follows from the fact that the dressed mamept() is a biholomorphism on some figiently narrow stripUs

around the real axis and tha{l) e R = 1 € R.
"The uniqueness follows from Rouché’s theorem when L is largrugh.

K (/la - /lb)

._.(/1)
and  [Erol = ik — —ZHLé”FO(/lb)

=0 [¢] = 63 - (4.7)
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Finally, for any set of generic paramet{tza}rl‘; {ya}Tl) € U x UM the entries of the two determinants in
the numerator read

n+1 n
[T (z—Ya) 1 (A — A4 +iC)
Vi . a= a= K —
\4<€[V] ({Za}g’ {ya}T—l) = | nl n+]i e_Zi(nZ:((Zk) Z_g)l (48)
[T (& - 2) [] (z—ya+ic)
azk a=1
n+1 n
[T (z—Ya) 1 (& — 2 —iC)
o . a= a= K (z —
Vie] ((z)3 yalY) = i : L ol (4.9)

n n+1 .
[T (@& ~-2) [] (- ya—ic)
azk a=1
Note that the singularities of the associated determiraizs= z;, j # k are only apparentf [44, 64].

4.2 Arguments for the dfective form factors series

It is believed that when computing th& = OK form factor expansion of a two-point functigi®.S. | 0,0, |G.S.)

on the intermediate excited states (as in (4.1)), the dmuticon of those excited states whose energiggei
macroscopically from the ground state’s omelfy a quantity scaling as some positive powelLdfvanishes in
theL — +oo limit. This can, for instance, be attributed to an extrenuglick oscillation of the phase factors and
the decay of form factors for states having large excitatimmenta and energies. Therefore, we shall assume
in the following that the only part of the form factor expassiin (4.1) that has a non-vanishing contribution to
the thermodynamic limip (X, t) of py (X, t) corresponds to a summation over all those excited stateshvetne
realized as some finite (in the sense that not scaling Withumbern, n = 0,1, ..., of particle-hole excitations
above the(N + 1)-particle ground state. Indeed, these are the only excidssthat can have a finitee (hot
scaling withL) energy gap above the ground state infhparticle sector.

Even when dealing with excited states realized as a finitebeum of particle-hole excitations above the
(N + 1)-particle ground state, it is still possible to generate anwscopically diferent energy from the one of the
N-particle ground state if the rapidities of the particlesdrae very largei¢ scale withL). This case corresponds,
among others, to integeps becoming very large and scaling with We will drop the contribution of such excited
states in the following.

Limiting the sum over all the excited states in tfi¢ + 1)-particle sector to those having the same per-site
energy that the ground state means that dfextvely neglects correcting terms in the lattice dizdt thus seems
very reasonable to assume that, on the same ground, onlgdbag largd- asymptotic behavior of the form
factors will contribute to the thermodynamic limit pf; (x,t). It is clearly so when focusing on states with a low
numbem of particlghole excitations. However, in principle, problems couldewhen the numbearbecomes of
the order ofL. Our assumption lead to the following consequences:

e we discard all summations over the excited states having ktge excitation energy. This means that we
introduce a "cut-&i" in respect to the range of the integers entering in the gagam of the rapidities of the
particles. Namely, we assume that the integmrare restricted to belong to the et

B = {n €Z : -wW_<n< WL} \[1; N+1] where  w ~ L7 . (4.10)

TThe computations presented in appendices B.2 and B.3 caehas a proof of this statement in the case of a generaligedgimion
model.

#Note that we could choos®_to scale as*¢, wheree > 0 is small enough but arbitrary otherwise. We chaosel/4 for definiteness.
cf appendix B.1 for a better discussion of the origin of suchaperty.
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N+1
e The oscillating exponenE Ug (1) — Z Uo (e, ) is replaced by its thermodynamic limit as given in (2.13).

e \We drop the contribution of the (]L‘l -In L) terms in the large-size behavior of form factors given i3)4.

Note that, within our approximations, the localization IméiBethe root$uga}'\'+l for an excited state whose
particles’ (resp. holes’) rapidities are labeled by thegetrspa}}_, (resp.{ha};_,) does not dependn the specific
choice of the excited state one considers. Hence,fleetesely recover a descnptlon of the excitations that is in
the spirit of a free fermionic model.

Our simplifying hypothesis suggest to raise the below atioje

Conjecture 4.1 The thermodynamic limit of the reduced density ma(x,t) coincides with the thermody-
namic limit of the gective reduced density mattix.es (X, t):

lim pn(Xt) = I|m oNerr (X 1) (4.11)
N,L—+o0 —-+00

wherepn.er (X, t) is given by the series

N+1 n e |XU(Hha)

pner (k)= > ne_.xu(,lpa) BN”gNl)(iE:i)[Fo(*

n=0 P1<-<Pn h;<---<h, a=1
paGBEXt haEBTt

{pad ) . ..
{,UE} ) 1§’§Fo] : (4'12)

a

ThereBL ={neZ : —-wp <n<w}, 8=8\[1; N+1] andf;'nt [1; N+1]. Also, thex refers to the
running variable of iy on which the two functlonals act.

The dfective form factor series (4.12) possesses seveftatent features in respect to the form factor expansion-
based series that would appear in a generalized free fenrmaatel Cf (B.20)). Namely,

e the shift functionFy depends perimetrically on the rapidities of the particlad holes entering in the
description ofeachexcited state one considers,(2.11). It is thus summatiodependent

e Each summand is weighted by the fac@}n;l that takes into account the more complex structure of the
scattering and of the scalar products in the interactingehotihis introduces a strong coupling between
the summation variablei,}} and{hy}}. Indeed, the explicit expression f@N;l involves complicated
functions of the rapiditiegup, }7 and{un, }.

A separation of variables that would allow one for a resunimnatf (4.12) is not possible for precisely these
two reasons. To overcome this problem we proceed in sevieas.sFirst, we introduce gdeformation of the
effective form factor series such tha.er (X, t17),,=1 = oner (X, 1):

N+1

n e IXU(pha) { a}
oner(Xt]y) = nZ(:) p1<Z:<p i Zh n - (i) ( NN QN )/)({Ea}) [)’Fo(*
PasB rl1<eg<'mn -

i’;gi ) Y ;fypo] . (413)

a

For any finiteN andL, it is readily checked by using the explicit representati¢h4) for/D\N,n and (4.5) fo@N;y
that they-deformationon:er (X, t | v) is holomorphic iny belonging to an open neighborhood of the closed unit

15



disc. Hence, its Taylor series aroupd= 0 converges up tg = 1. We will then show in theorem C.1 that, given
any fixedm, themt" Taylor codficient of pn.er (X, t | y) aty = 0:

, (4.14)
y=0

P (1) = ——me(t|w

can be re-summed into a representation where the existétice thermodynamic Iimipg;;)(x, t) is readily seen.
This fact is absolutely not-clear on the level of (4.14) ag tb (A.3)-(A.4), each individual summand vanishes
as a complicated power-law in L that depends on the exciteeé sonsidered. We will then show that one can
represent the thermodynamic Iimﬁ;}‘)(x, t) in another way. This representation is given in terms of aefisiim of
multiple integrals and corresponds to a truncation of theadled multidimensional Natte series that we introduce
below. The latter description gm‘eﬁ'f‘)(x, t) gives a straightforward access to its asymptotic expansion

The proof of the existence of the thermodynamic limit anddtvestruction of the truncated multidimensional
Natte series fop(m)(x, t) constitute the rigorous and conjecture free part of ouryaml This is summarized in
theorem 4.1.

Working on the Taylor cdﬁments,o(m) (x,t) instead of the full functiorpn.ez(X,t | y) taken aty = 1 has
the advantage of separating all questions of convergentieeaiepresentations we obtain from the question of
well-definiteness of the various re-summations and deftiomgrocedures that we carry out pﬁ?’eﬁ(x, t) (and

subsequently op(m)(x, t) once that the thermodynamic limit is taken). Indeed, byrtgkhem® y-derivative at

v =0, we always end up dealing with a finite number of sums. Howeéfrere had carried out the forthcoming
re-summation directly on the level pz(x, t), we would have ended up with a series of multiple integreadseiad

of a finite sum. The convergence of such a series constituseparate question that deserves, in its own right,
another study. Nonetheless, in the present paper, in codamovide physically interesting results, we will take
this convergence as a reasonable conjecture in a subsgqrprent the paper.

4.3 An operator ordering

Prior to carrying out the re-summation of the form factor axxgion fOI‘p(m) (%, 1), we need to discuss a way
of representing functional translations and generabnatithereof. These objects will allow us to separate the
variables in the sum (4.14), and carry out the various rersations. A more precise analysis and discussion of
these constructions is postponed to appendix D. In theviollp, we denote by’ (W), the ring of holomorphic
functions in¢ variables onW c C’. Also, here and in the following € ¢ (W), with W non-open means thdtis

a holomorphic function on some open neighborhoot\ofFinally, for a setS on which the functionf is defined

we denotd|f||s = sup.s |f().

Throughout this paper we will deal with various examplBs (, @ﬁ), ...) of functionals¥ [v] acting on
holomorphic functions. The functionv will always be defined on some compact sulbgebf C whereas the
explicit expression fo [v] will only involve the values taken by on a smaller compadt c Int(M). In fact, all
the functionals that we will consider share the regulariyperty below:

Definition 4.1 Let M, K be compacts ifi such that Kc Int (M). Let W, be a compact it £, e N = {0,1,...}.
An ¢,-parameter family of functional$ [-] (2) depending on a set of auxiliary variablese W, is said to be
regular (in respect to the paifM, K)) if

i) there exists constantsC> 0 and C > 0 such that for any ,fg € &' (M)
Ifllc +lglk <Cr = [|F[f1O)-F 9O, <ClIf —dlk (4.15)

where the indicates that the norm is computed in respect to the setxifiary variablesz € W,.
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ii) Given any open neighborhoodif 0in C%, for somefy € IV, if v (4, y) € & (M x W) is such thativiliw, <
Cs, then the functiorfy, 2) — 7 [v (x, y)] (2) is holomorphic on Wx W,. Here, thex indicated the running
variable 2 of v (1, y) on which the functionaF [-] (2) acts.

The constant & appearing above will be called constant of regularity of thectional.

This regularity property is at the heart of the aforemerdbnepresentation for the functional translation and
generalizations thereof that we briefly discuss below. H@wneprior to this discussion we need to define the
discretization of the boundary of a compact.

Definition 4.2 Let M be a compact with n holes (8 M has n bounded connected components) and sucid Mat
can be realized as a disjoint union ofinl smooth Jordan curveg, : [0;1] — oM, iedM = | [¥1va([0;1]).
A discretization (of order s) oM will correspond to a collection ofn + 1) (s+ 2) points {2 = ya(X;) with
j=0,...,s+1landa=1,....,n+1where x = 0< X3 <--- < Xs £ 1 = X1 iS @ partition of[0; 1] of mesh
2/s: |Xjs1 — xj| < 2/s.

4.3.1 Translations

Suppose that one is given a compltin C without holes whose boundary is a smooth Jordan cunvigd ;1] —
0M. LetK be a compact such thit c Int (M) and¥ a regular functionaldf definition 4.1) in respect tM, K),
for simplicity, not depending on auxiliary parameters

It is shown in proposition D.1 that, then, fgif small enough one has the identity

all \[_ T G -Ge(za)
) )] lim {geg T[yfs]} : (4.16)

S—+00
lsx=0

ot

The functionW, appearing above is defined in terms of an auxiliary funatidn, 1) that is holomorphic o x M

S (tiy1 — ¢ )
w(a‘ ?Z’:} ) ZW Ya) - (1,22) whereas fs(a]{sal}) = f(ﬂ)=2%-2§i—;. (4.17)

Finally, gs (1) is a diferential operator in respectég, witha=1,...,s

G (1) = Zlﬁ(tja/l)% . (4.18)
=1 s

I

The definitions ofs and fs involve a set ofs + 1 discretization points; of dM.

The limitin (4.16) is uniform in the parameteysandz, belonging toM and in|y| small enough. Actually, the
magnitude ofy depends on the value of the constant of regulaCify If the latter is large enough, one can even
sety = 1. The limit in (4.16) also holds uniformly in respect to anyitié order partial derivative of the auxiliary
parameters. In particular,

[ gt bl

a=1

a

u pa} )] =i : P oM egs(ya) s(za) il f
{un,} =0 soth ]—[ {ayaa (9£ }l_[ ym —F [T -
v=0

(4.19)

17



Figure 1: Example of discretized contours. In thethe compacM is located inside of its boundafg,: whereas
the compacK corresponds td,q as defined in (4.28). In this casé has no holes. In thehs the compacM is
delimited by the two Jordan curvé&s, and%,,; depicted in solid lines. The associated compagof definition
4.1) corresponds to the loag (Ka) depicted by dotted lines. The compadtdepicted in thehs has one hole.
This hole contains a compak inside.

We refer to appendix D for a proof of the above statement. Heeewould like to describe in words how
formula (4.16) works. By properly tuning the valuepfand invoking the regularity property of the functional
¥ [yfs] one gets that, for ang, {¢a}] — F [y fs] is holomorphic in a sfiiciently large neighborhood of & C°.
This allows one to act with the translation operatft§_, €%0»)-9®). Their action replaces each variakig
occurring in fs by the combinatiord;p_, [ (ta, Yb) — ¢(ta, 2o)]. Taking the limits — +co changes the sum over
ta occurring infg into a contour integral ove¥y,, cf Ihsof Fig. 1. Due to the presence of a poletat 2, this
contour integral exactly reproduces the functibipthat appears in thens of (4.16).

Note that such a realization of the functional translatian also be build in the case of compabtshaving
several holes as depicted in thes of Fig. 1. Also, there is no problem to consider regular fiorals 7 [-] (2)
that depend on auxiliary sets of parameters

4.3.2 Generalization of translations

In the course of our analysis, in addition to dealing withdiimnal translations as defined above, we will also
have to manipulate more involved expressions involvingesesf partial derivatives. Namely, assume that one is
given a regular functionaf [f, g] of two argumentsf andg. Then, the expressiond)'s [y fs, Gs];,-o : is to be
understood as the left substitution of the varidysderivatives symbols stemming froga.

More precisely, lefs be the below holomorphic function at, ..., as

Os(1) = Zw(tj,ﬂ) aj . (4.20)
=1

The regularity of the functional” ensures that the functioja,} 62“? [y fs, Qs is holomorphic inay, ..., as
small enough. As a consequence, the below multi-dimenisganes is convergent fa; small enough:

a. C’)J
“F [y s, sl o0 = Z n{njl P } T[)’fs,gs]‘ . (4.21)

nj>0 j aj=0

We stress that af (4.17) is a holomorphic function af, ..., s, the functional offs codficients of the above
series give rise to a family of holomorphic functions in theiablesss, . .., ¢s. This analyticity follows, again,
from the regularity of the functionat [ f, g] and the smallness of|.
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The: - : ordering constitutes in substitutieg < d,;, j = 1,..., sin such a way that all dierential operators
appear to the left. That is to say,

om C’)nj S 1 oM om
vl F [y s Gsljy—o : Z]—[ l_l o [ oy T[Yf&gs]’ y=0 - (4.22)
j= j

>0 j= aj=0ij=0

Although there where no convergence issues on the levelpafreston (4.21), these carpriori arise on the level
of therhsin (4.22). Clearly, convergence depends on the precise &drthe functional¥, and should thus be
studied on a case-by-case basis. However, in the case mdshte us, this will not be a problem due to the quite
specific class of functionals that we will deal with.

At this point, two observations are in order.

e (4.22) bears a strong resemblance wittsatimensional Lagrange series.

e The functional (offs) codficients appearing in thehs of (4.22) are completely determined by the func-
tional 7 [y fs, s] whose expression only involves standanon-operator valued) functions. Should this
functional have two (or more) equivalent representatidingn any one of them can be used as a starting
point for computing the cd&cients in (4.21) and then carrying out the substitutionZ}.2

Actually, for the class of functionals that we focus on, nov&@rgence issues arise. Indeed, in all of the cases,
them™ y-derivative aty = 0 of the: - : ordered functionals of interest appears as a finite linearbboations (or
integrals thereof) of expressions of the type

r T

— om _ _
& = P {U geals(ea) . H eGsb) . [yfs]}l O where age[1; N] and e wp € {+1} . (4.23)
- Y

Abovey, are some auxiliary and generic parameters whetgaare implicit functions ofy and¢s,...,¢s. For
L-large enoughy,, is the unique solution to the equatieyx (1,,) = aa/L.

The prescription that we have agreed upon implies that omal@lHirst substitut@s <— gs as defined in (4.20).
Then, one computes the" y-derivative aty = 0 of (4.23), this in the presence of non-operator valuedtfans
Os. In the process, one has tdférentiate in respect tp the functional# [y fs] and the arguments @s (1,,).
Using thatl,, o = ia,, ONE artives to

b=1 b=1

ly=0  b=1 -Ns=0 j=1

The sum is truncated at most@t=m, j = 1,...,mdue to taking them™ y-derivative aty = 0. It is readily
verified that the{n;}—dependent cdﬁcientsc{nj} [ fs] are regular functionals df with suficiently large constants
of regularity. It remains to impose the operator substtuin the level of (4.243; — 4, with all differential
operatorsd,,, k = 1,..., s appearing to the left. It is clearly not a problem to imposehsan operator order
on the level of the polynomlal part of the above expressiardeéd, the regularity of the functlonai§n [fs]
implies that these are holomorphic 4, ..., ¢s belonging to an open neighborhodd, of 0 € CS. Hence
Iy, 82;‘ “Cln;) [fs]|§k:0 is well-defined for any set of integetsx}. In fact, in all the cases of interest for us, the
neighborhoodVy is always large enough so as to make the Taylor series issordtlie products of translation
operators[]|,_, e8:(ua) [TF_, ev%:b) convergent. Their action can then be incorporated by afieitien of fs
leading to

Z ]—[ {nll :nJ } }[E]Is‘k=0 (4.25)

n,....ns=0 j=1
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with

R = fo() + ) ot —lo) {Z & (tos ) + ) v (ty, yk)} :

= 2n (-2 |- k=1

In this way, one obtains a (truncated to a finite number of $¢rsrdimensional Lagrange series. The procedure
for dealing with such series and taking their> +oo limits is described in proposition D.2. In the following] al
operator valued expressions ordered by should be understood in this way.

4.4 Resummation of the finite-volume Taylor cofficients

In order to carry out the re-summation of théeetive form factor expansion with the help of functionahstations
and generalizations thereof, we need to regularize theesgpum for the functionaizn;, with the help of an
additional parametes. This regularization will allow us to represent it as a regdlnctional that, moreover, has
a form suitable for carrying out the intermediate calcolasi

The parameterg
It is easy to see that

n

(D %;ﬁ(iﬁjﬁ) [YFo i€ 6] = L@O{BN (iﬁ}}i) [YFs 1€ 56,8, Griy (iﬁ}}i) [yFs i€ ;fypﬁ]} (4.26)

We now introduce a prescription for taking tfe— O limit. When considered as a separate object fidx

the functionalGy., may exhibit singularities should it happen that{e?™ () — 1} = 0, cf (4.5)-(4.9). Fory|
small enough, as it will always be the case for us, such patergroes correspond to the existence of solutions to
Fs(1;) = 0. Forg e Ug, with

Ugo = {z€C : 10R(80) >R () > R () and I (9| < I (o)) (4.27)

R (Bo) > 0 large enough and (Bg) > 0 small enough, there are no solutions of

n
Fﬁ(a)‘ ?Z/:ﬁ ) =0 for weUs, thisuniformlyin 0<n<mand ([3, {Yall, {za}’f) e Ug, x UM x UM,
It is clear that the optimal value ¢@f preventing the existence of such solutions depends on ttih wiof the
strip Us and on the integem.

Hence, our strategy is as follows. We will always start ounpatations on a representation that is holomor-
phic in the half-planéRs > 0, as for instance (4.13)-(4.14). In the intermediate datmns whose purpose is to
allow one to relate the initial representation to another, ame will assume thag € Uﬂo. This will allow us to
avoid the problem of the aforementioned poles and reprée;mn terms of a regular functional that is moreover
fit for carrying out the intermediate calculations. Then¢®that we obtain the final expression, we will check
that this new representation is in fact holomorphic in thi-piane R (8) > 0 and has thus a unigue extension
from Uﬁo up toB = 0. As the same property holds for the initial representatimth will be equal g8 = 0.

Having agreed on such a prescription for dealing withghegularization and treating thee — 0 limit, the
effective form factor expansion-based representatiop(,@;f(x, t) (4.13) can be simplified with the use of the two
properties below.
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The functional G,
GivenA € R*, we define the compadt contained inJs:
Ka={zeC : |34 <5, |R4 <A}, (4.28)

and denote the open disk of radiuby Do, = {ze C : |7 < r}.
As follows from lemma A.2, give\ > 0 and large andh € N* fixed, there exists

e a complex numbeBy with a suficiently large real part and an imaginary part small enough
e a positive numbeyy > 0 small enough
e aregular functlonaﬂ?(ﬁ)

such that, uniformly in G n < m, (.8, {ip, 7. tin,)7) € Doz, x Ug, x KR x KA one has

sl e o)
bd with H (A Zl - _#ha.(4.29)

ha]_ P

éN;y(iEjﬁ)[)’Fﬁ & fyFﬁ] W)[H (*

Thex in the argument O%A(ﬂ) appearing above indicates the running variablélain which this functional acts.

The explicit expression for the functlorEéAI('B) is given in lemma A.1. The main advantage of such a repretsemta
is that all the dependence on the auxmary parameters issobely contained in the functioH given in (4.29).
The constanyy is such that

{Yal] )
E 1
I (“" (2l
The functional%;(‘f,g is regular in respect to the to the péiy,, ¢ (Ka)) where% (Ka) in a loop inUs around
Ka as depicted in thehs of Fig. 1 andMy, corresponds to the compact with one hole that is delimite@dipypnd

%out- This hole contain&a. Finally, the parameteggy € C andyp > 0 are such that the constant of regula@y,
satisfies to the estimates

rd(OMg, EK)
oM | + 220(0My,. T(K,)

Similarly to the discussion carried out in section 4.3.2 andording to proposition D.1, one has that, uni-
formlyinn,pe{0,...,m}, andz;,y;j, j = 1,..., mbelonging toKa:

P {z)] . N 5 (2)-a ) O
577 g;;(‘;) [H (*‘ { J L ]]l 0 — rI—I>Too{n 92 (7)) G2 (v1) . a_ypgé;(ﬁ? [@] }’ ) (4.32)
’)/:

1 . . _
<5 uniformly in (y,,B, AN {za}Q) € Doz, % Ug, x KA x KR and 0<n<m. (4.30)

(4.31)

yili 1a,p=0

The compacMy, has one hole. Hence, as discussed in section D.3 one hassideotwo sets of discretiza-
tion pointstyp, p=1,...,r + 1for ¢, andtyp, p=1,...,r + 1 for 6oy The functionm, appearing in (4.32) is
alinear polynomial in the variableg,, witha=1,2andp=1,...,r

r r
t1p1 — U, t2p1 — T2

@ (A ] {nap)) = Z —= =P + Z e eNTY (4.33)

1 2im (trp - 2) £ 2ir (tp - A)

Finally, 0z (1) is a diferential operator in respectig, witha=1,2andp=1,...,r
r r

1 0 1 0
Tor (1) = + —. 4.34
Gor () pzl o pZ’i A9 (4.34)
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The functional Dy

One can draw a small logg,yt aroundKzq in U; as depicted in théhs of Fig. 1. LetMg be the compact without
holes whose boundary is delimited #¥... Then, giverL large enough, the function®y, as defined by (4.4), is
a regular functional (in respect to the paif§, Kq)) of yFs with g € Uﬁo andly| < yp. The parametergy andyg
are as defined previously. This regularity is readily seewbing down the integral representation:

(W) ¢
7':[3 w .
56 &yry(w) = j/L Sin’ J=1....,N (4.35)

which holds provided thdt is large enough (indeed then all's are located in a very small vicinity of the interval
[-d;q]). Therefore, according to the results developed in appelddind outlined in section 4.3, one has that,
uniformly inB € Ug, and 0< p,n<m

P {Pa}] ( {upa}E). . ]}
ayp{DN({ha})[yF {n, )1 &6y y=0

1_[ 91.s(pa)-Trs(una) . 5,7 {BN (iﬁ:}}g) [yys & ;§ws]}‘y20 ] . (4.36)

= lim
S—+o0

a=1 k=0

The functiona +— vs (1) appearing above is holomorphic in some open neighborhoédah Mg and given
by
S (tj+l - tj) Sj
vs(A 1 sal3) = vs () = (8- 1/2) Z() - (1, 0) + ) ST B

j=1

(4.37)

The parametersy, j = 1,..., scorrespond to a discretisationf (definition 4.2) of the loog6,y: aroundKyg in
U, that has been depicted in thes of Fig. 1. ¢; are some dfiiciently small complex numbers aigf s (1) is a
differential operator in respect ig:

Gus() =- ) o(t,1) a% : (4.38)
j=1

We remind that the parametets appearing in the second line of (4.36) through the expraggict) for Dy,
are the uniquésolutions tat,,, (1a) = @/L. As such, thely's become holomorphic functions ¢fa}7 when these
belong to a sfiiciently small neighborhood of the origin {®.

Representation for the Taylor codficients

To implement the simplifications induced by the functiomahslations on the level @t(m) (x,t), we first observe
that all of the rapiditieg p, andun, occurring in the course of summation in (4.13) belong totherval [-A_ ; B_]
with LE(-AL) = —w — 1/2 andLé(BL) = w + 1/2 (AL > BL). Hence, a fortiori, they belong to the compact
Koa_ . We can thus represent the smooth part functionﬁ% - We are interested solely in tind" y-derivative

THere, as previously, the uniqueness follows from RouctiéEsiiem. By writing down an integral representationéfgr one readily
convinces oneself that, fersmall enough and given any fixeda, is holomorphic ing,};. It is also holomorphic iry belonging to some
open neighborhood of = 0.
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of (4.13) aty = 0. AsDyj, o Y21 andgj.’;)AL [@,] has no singularities around= 0, all terms issuing fronm
particlghole excitations witm > m will not contribute to the value of the derivative. Hence, @& truncate the

sum ovem in (4.13) atn = m. Once that the sum is truncated, we represent the functﬂ‘;ﬁ‘wa{DN :(‘Z)AL}W 0
with the help of identities (4.36) and (4.32). This leads to
E2 (un,)
(m) _ a
PN; o (%) = lim |Im00 lmw
Fo0Sreo T nz(:)P1<Z:<Pnhl<Z:<hn1:[ E2(up,)
PaEBY  haeBi
om {
¥ {DN( Paty )[m € 9| 9O 1] } o ] (4.39)
‘§p=0:77ap
We have set
E2(1) = ™0 with  §(1) =Gus(2) +Gor (1) - (4.40)

Above, in order to lighten the notation we have not writtepliitly the dependence of;, @, on the auxiliary
parametersy, 17a p Nor the one oE_ (1) on the discretization indicasands. However, we have kept the hat so
as to insist on the operator valuednes&of We do insist that (4.39) has to be understood as it was disduis
section 4.3.

Starting from representation (4.39#&&(& t) can be related with thei" y-derivative of the form factor like
representation of the functioriaXy [yvs, E_Z] given in (B.20). Namely, for such an identification to holeheo
has to extend the upper bound in the summation aieom mup toN + 1. This does not alter the result as it

corresponds to adding up a finite amount of terms that arediggdo the presence ¢fderivatives. Then, one
should use the identity

" {Pal] 7

Y {D“({ha}l)[ws’f AN 1}' 0
Sp=Y=Tla,p

_. MYTE2(ua) TIN,E2() =~ ({pall |

B {n,a:I:lE_z(/la) H';':ll E_Z(,ua)DN({ha} )[)/Vs,f gy"s] 72A|_[ r]} 0" (4.412)

p=0=11ap

Just as itis the case for the parametgrappearing in the expression DR, the ones appearing in the pre-factors
of therhsin (4.41) are unique solutions #,.(1s) = S/L. It is an expression of the type (4.23), and to deal
correctly with it one should implement:a : prescription for the way the flerential operator8,, or g, , should
be substituted in thens of (4.41).

With the help of identity (4.41), one is able to force the appece of the product of functioB. whose
presence is necessary for identifying the sum over thegbadhiole type labeling of integers in (4.39) with the
functional 97X [yvs /E\_Z]ly_o given in (B.20). This leads to the below representation:

Nap

m) ) . ) om N+l E? (lla) =21 518
Pn: eﬁ(X, t) = ,4';'210 SI—I>T0<> rI_l)TDO : { H E2(/1a) XN [yvs, E_] %y;ZAL[wr] }' 70=0 D (4.42)
Sp=Y=Ta,p

"The latter is a functional ofs andg as discussed in subsection 4.3.2
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4.5 Taking the thermodynamic limit

It is shown in appendix C, theorem C.1 thﬁr‘)ﬁ(x, t) admits a well defined thermodynamic limit that we denote

pg;)(x, t). This limit is given in terms of a multidimensional analogafea (truncated) Fredholm series. This series
is close in spirit to the type of series that have appeared4n§3]. It is also shown in that appendix (proposition
C.1) that it is allowed to exchange

e the thermodynamic limiN,L — +oco, N/L — D
with
o thed) differentiation along with its associated operator subsbituti
e the computation of the translation generated@py,
¢ the computation of the-dimensional Lagrange series associated @it}
¢ the computation of the —» +00 ands — +co limits,
e the analytic continuation i from R (8) > By up toB = 0.

The result of such an exchange of symbols is ,ﬂg?t(x, t) admits the representation

q
A PO L ORI MEOLT N
{E_Z(Q)-e = X yvs E2| g;{gN[wr]} L. (4.43)

(m) _ . . . .
peﬁ(X,t)—Whm lim lim Ilim 5

—+00 S0 S+00 [—+00 ym
This formula deserves a few comments. In the case of compleed functionE_, the functionalX_w|yvs, E2]
E

appearing in (4.43) corresponds to a Fredholm minor (B.34nontegrable integral operatdr+ V acting on
L2([-9;q]). The kerneV of this operator is given by (B.35).

Figure 2: The contowﬁéw) consists of the solid line. The conto%é‘”’ corresponds to the union of the solid and
dotted lines. The localization of the saddle-poigtcorresponds to the space-like regime. Both contours lie in

U5/2.

The subscripﬁﬁé‘”’ in X w[yvs, EE] refers to an auxiliary compact contour entering in the diédiniof the
E
kernelV. The parametew delimiting the size of this contour plays the role of a regaktion. The limit of an
unbounded contomfé”) can only be taken aftarands are sent to infinity and the analytic continuation up to

B = 0is carried out. Finally, in (4.43) also appears the fuma‘lé?fz)w. It can be thought of as the thermodynamic
limit of the functionalf?;(_ﬁz\),v. Its precise expression and properties are discussed maefnl.
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We also would like to stress that the paramgtedefining the regiorlljﬁ0 from which one should carry out the
analytic continuation up t8 = 0 depends onw as stated i |n lemma A.1. This dependence is chosen in such a way
that that the constant of regulari@, for the functionatz®) 5y IS large enough so as to make licit all the necessary
manipulations with the translation operators and germmhns thereof.

We stress that formula (4.43) constitutes the most impboresult of appendix C. Indeed, it provides one
with a convenient representation for the thermodynami ]a':ﬁ)(x, t). The latter constitutes the first step towards

extracting the large-distanceand long-time asymptotic behavior qu;f‘)(x, t). The proof of such a representation
for the thermodynamic limit is however quite technical aadgthy. It can definitely be skipped on a first reading.
Moreover, should one be solely interested in a "short patléxtracting the asymptotics, we stress that formula
(4.43) can be readily obtained without the use of any corafit and long computations. It is enough to take the
thermodynamic limit formally on the level of formula (4.4Z8uch a formal manipulation leads straightforwardly
to the representation (4.43).

4.6 The multidimensional Natte series and asymptotics

Theorem 4.1 The thermodynamic limit of the Taylor gﬁelents,o(m)(x, t) admits the below truncated multidi-
mensional Natte series representation

P (x, t)— g G AN eluo-algyFy; p| Ao [yFy’] (o)( /10)
—2rXU o) (x — tye + i0%)[FRD] (x4 tye) Pl W\ q
oo 1) weoes(1)

+

(X —tve + iO+)[7F5q(Q)] (x+ tvF)[VFau(‘q)‘l]2 (x—tve + i0+)[7F3(Q)+1] (x + tv,:)[VFg(‘Q)]2

HE (u@) s z) DFEIBOFE Pl o ([ (z) ) d'z
(Q)ZZ 2 f(w) gumw( iz} )(Ziﬂ)n}l g (4.44)

1% 6k) (X —tvg + |O+)[7FL(Q)] (x + tvg)DFECAl’

There, we have introduced the notations

{L}z{zt, teJ“z} : q:l}, {L}:{Zt, teJ{lz} : etz—l}u{q}, |{Z|.}|E#{Zt, teJ{lz} : etzl}.

(4.45)
FY, Fi°, Fq" have been defined {8.5)and, in general, we agree upon
Z(a
FQ(A)EF(a’ o ): 2D S+ Yz (4.46)
tEJ‘k’ tGJ(k)
=1 e=—1

The functiongf% is related to the thermodynamic limit of the smooth part effibrm factor. Its expression can
be found in(A.8). The functional®, A. and Ay are given by

. () ()v(A
[0 ()" GHL+ v (@) GHL - v (-)) §E0AI-Aa) 3 [ T i

Bly, =
P L @1 fzap @ fzap a0 @@

, (4.47)
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where G is the Barnes double Gamma function,

Al pl = —F 1@ r( 1rvig) )—1 - ADW= exp{— I i —Vu)_;(“)dp} . (4.48)

[2qp @@\ —v(@ [ear@ - . A-
and

_-29 _(1-v(-q)\[2ap (-9 o o — q\2
Al p]—mr( v(~q) ) eang_1  and Fol.pl=eix Z[V](AO)(/lo+q) - (4.49)

The second sum appearing in the last ling(4f44)runs through all the elementsbelonging to

n
‘Kn:{lzz(kl,...,kml) i kne1€N* and kg e N,a=1,...,n such that Zalgﬁkml:n}. (4.50)

a=1

Once that an element @&, has been fixed, one defines the associated set of triq}fr‘ts J

J“z} = {(tl, to, t3) , 11 € |[1; n+1]], to € |[1; kt1]| s t3€ |[1; tl—nétl’m.l]l} . (4.51)

The third sum runs through all the elemetxtste% belonging to the set

ty Kn+1
gn(lz) = {{Et}tejm D g €{+1,0} Vte J{Q} with Z =0 fort1=1...,n and Z €n+lpl = 1} .
ta=1 p=1

In other Words,an(E) consists of n-uples of parametesslabeled by tripletst = (ty, to, t3) belonging to Nt
Each element of such an n-uple takes its valudsin0}. In addition, the components of this n-uple are subject to
summation constraints. These hold for any valug @fr t, and are djferent whether one deals with=1,...,n
orwitht; =n+ 1
The integral appearing in thethsummand occurring in the second line (@&.48)is n-fold. The contours of

integration‘ﬁe(t‘"’) depend on the choices of eIement@,i,(i?) and are realized as n-fold Cartesian products of one-
dimensional compact curves that correspond to variousrdeitions of the base cur\féé‘”) depicted in Fig. 2.
In the w— +c0 limit, these curves go to analogous deformations of the basm%é""). All these contours lie in
Us/2

/The integrand Iﬂ;i‘}) ({u@)}; {z}) [v] is a regular functional of, that is simultaneously a function ofz)
and z with t running through the set“g). This functional depends on the choice of an elemgng% from 8n(R)
and on x. It appears originally as a building block of the Nageries (cf appendix B.5 for more details).

We stress that all summands involving the functic@g}y are well defined g8 = 0. The potential singularities
present irgn(@ are canceled by the zeroes of the pre-factors.

Proof —

As a starting point for the proof, we need to introduce th@wedet of functions depending on the auxiliary
parameters, by p andb, p. As it has been discussed in section 4.3.2, these functidhallew us to compute
the (functional) cofficients necessary for carrying out the operator substitutide set

E2(1) = e ™0 with G(2) =Tus(D) +Tar (1) » (4.52)
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where

r

S r
GeW=-Yo(pd)ap  and  To(h=Y o Y R (4.53)
p=1 p p

1 t]_’p—/i 1 tzﬁp—/i
It is readily checked that foy small enough# given below is a regular functional of, @, andg:

_ f [ixu()+G' (D] yvs(Dda _
F [yvs G @ ](y) = EX(Q)-e X[y E2| 45 [a] . (4.54)

In particularf [yvs, G, @] (y) is holomorphic iny, at least fory small enough. In order to implement the operator
substitution, we have to compute the Taylor ffeéents of the series expansion Bf[yvs, g, @ ](y) into powers

of byp, bppwith p=1,...,r anday with p = 1,...,s. These Taylor cagicients aresolelydetermined by the
functional ¥ [yvs, @, @ |(y) depending on thelassicalfunctiong (4.20). Therefore, one can uaay equivalent
representation fof [yvs, 0, @, ]|(y) as a starting point for computing the various partial dérres in respect to
bj.p Or ap. In other words, one can usayequivalent series representafidar the Fredholm mlnox(bﬂ(w) yvs, E2].
Clearly, diferent series representations for the Fredholm minor valll o diferent type of expressions for the
Taylor codficients. However, in virtue of the uniqueness of the Taylafiocients, theirvaluescoincide. As
shown in [62], the Fredholm minor we're interested in adrfits so-called Natte series representation. The latter
series of multiple integrals is built in such a way that itegiva quasi-direct access to the asymptotic behavior of
X%éw) [yv. EE]. It is thus clear that this is THE series representationithiiitfor providing the large-distangleng-

time asymptotic expansion of the two-point function. Welwhus take this series representation as a starting
point for our calculations.

The first remarkable consequence of the use of the Nattesserthat the exponential pre-factor in front of
X(g(w) [yvs, E?] in (4.54) exactly compensatdbe one appearing in the Natte series (B.48). Once that firese

factors are simplified, one should take th8 y-derivative of the remaining part of the Natte series regmestion
(B.48) for X_w [yvs, E_Z]gy(ﬁz)w [w,]. One of the consequences of taking th-y derivative is that the Natte series
GE il

given in (B.48) becomes truncatedrat m due to the properties of the functiohlé‘;i”) (cf appendix B.5):

m . O+
_m7‘~[7Vs,§, Wr]()’)b, e|x[u(ao) u(@)] &5(10)-5(@) " { Blyvs,u+i0"] Ag [yvs]

aym —27ru”(/lo)x XV2V5(Q)+72\'§( q Vzw[wr]} Xl]q +oo[ (10)

+ eIX[LI( o)- Ll(q)] eg( )-9(0) (9 (Bﬂ_) ['yVS; u-+ |0+] [ ] + (Bﬂ+) [yV51 u+ IO+]g [w ]
Y™ | xT-rvd-a)P oA Yyl =0 ay XA+ (rrda)+1)? o

4 g 9(@-ixu(a) Zm:Z Z 1_[ { ag(zt)} aay {H(Et)({u(zt) z)) [yvs] Blyvs,u+i0* ] [ r]} dT]Zt

=
1 T ey 10 o >A )+~ q) =0 (2im)
O et
(4.55)

It follows from lemma A.1, representation (B.50) and the leipformulae for the functional$B, Ay and A.

(4.47)-(4.49) that the functionals occurring in (4.55) alleegular ¢f definition 4.1). Moreover, as follows from
the previous discussion relative to the procedure of takivegs — O limit, at this stage of the calculations,
R (B) > 0 is large enough so that the constant of regula®iy, of the functlonalg(ﬂ is suficiently large to be

One natural representation that can be used as a startingfpotaking the derivatives is the Fredholm series-likeresentation for
X [YVss E2]. In fact, it is this series representation that has been fagetle computations carried out in theroem C.1.
E
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able to apply proposition D.1 and corollary D.1 (due to thinestes (4.31) foCy,,, the constanyg occurring in
(D.4) is greater then 1 fow large enough, which is the limit of interest) to this funai@. proposition D.1 and
corollary D.1 are also directly applicable to all functitsaf yvs in as much as, at the end of the day, one sets
v=0.

Clearly, there is no problem to implement the substituagn- d,,, andbj , = 8, , on the level of (4.55) in
such a way that all the partial derivative operators appetie left of ally; , andg, dependent functions. The first
two lines in (4.55) will give rise to translation operatots. the case of the ultimate line in (4.55), this operator
substitution will produce expressions of the type

> 5w “}nn{@;;;;} FIEE) (11 Jloxstar™

Np=0ng p>0 p=1 Np! ag‘p p=1 a=1 p=1 a=1
am Blyvs; u+|O] d"z
—{Hl) g — . (4.56
x MU otz bl 25 1 e Ty @59
Sp=Y=Tap
WhereQ andQ;, , take the form
1 1
Qp({z}) = ¢ (tp. q) - &d(tp.z2) and Q ({z}) = - € : (4.57)
P (p ) tg(‘;, (p ) *P tap—0q tg(‘;, tap—2

One can compute thes — +co limit of such series of integrals by applying corollar.1 and observing
that%f(tw) is a Cartesian product of a finite number of compact one difoeakcurves that are containedUify ;.
In fact, the result of this corollary allows one to carry ol toperator substitution in (4.55) directly under the
integration sign. In other words, one is allowed to replgge < 01s andQy, — T2, directly on the level of
(4.55), this without pulling out the partiagl, or n,, derivatives out of the integrals. Hence, one is brought to
computing the action of translation operators. The later lose estimated by applying proposition D.1. Again,
there is no problem to apply this proposition either becauseompute then™ y-derivative aty = 0 (so thaty
can be as small as desired in the case of functionajs Hfor because the constant of regularity is large enough
for Eé(ﬁ) As follows from this proposition, one can permute the péitiderivative symbols ay = 0 with the
actlon of the finitesandr translation operators. It then remains to takerthe +oo and thes — +oo limits. As in
each case the convergence is uniform, the limit can be talkeatlg under the finite sum, compact integrals and
partial y-derivatives symbols.

Then, in order to compute théfect of thes — +oo limit we apply the identity (4.16) (alsof appendix D.3):

n n
lim ﬂeﬁl,s(za)—@,s(ya).y[yvs] = Z|yFs| with Fz(2)=Fp (/1’ ga}% ) : (4.58)

S—+00 2} 1

valid for any regular functiona¥, |y| small enough and,, y, all lying in Us. Here, we would like to remind that
Fs appearing above correspond to the thermodynamic limitefitieformed shift functiongf (2.11). Similarly,

| 1z . {za}Q)_ o1 1
H( ‘ {yall )] with H(/l yal |~ . (4.59)

n

1 O r -0 r\Ya, (ﬁ) _ (ﬂ)
Jm, [ [ g e = 92,
a=

All this for ({za}’f : {ya}’f) € K21 Then, by applying lemma A.1 backwards, we get

® [y Zh1 )] (@)({Za}ﬁ)
gﬂW[H ‘{ya}” ] Griy A (4.60)

"This corollary can be applied Eé - Precisely because its constant of regularity is large enoug
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The functlongn) has been defined in (A.8).
Therefore, we obtain

(m)(x 0= ergmgino ay™m

gm {3 [yfalo; u+ i0+] Ao [yfalo] gX[u(10)-u(g)] ® ( o )
=270’ (o) X e+ Ea-gl 7\ d
gx[u(-a)-u(@]

¥ (BA) |yFahu+i0* g@( —q)
WFad@] +[1yF%-a]° [ g ] 1| q

(BA.) [yFY;u+i0*] B|yFz;u+i0*]

Q(fi( ) 'X“(“’ZZ Z 95 [Fz@] +[yFzal

n=1 Kn &En({ka}), (W) X

N e

(ter)) . =72.1 () {z,} | d"z }
<@ @D FE| 682, (1) ) g sy

HereFZ (1) = FZ (1) +iBZ (1) andFZ has been defined in (4.46).
Once that the functional translations have been computesi sbhould carry out the analytic continuation of
the expression in brackets frgéne Ug, up tog = 0 and then send to +co. For this, we recall that the functions

H{<) admit the below decompositiof((B.50)):

HIS U @) ) 2 [rF2 ] = RS (0FZ @) @ (z) [ ] (F21 @) ™ [ (e - )2. (4.62)

tedi, zie{zy}

It follows from the wayH,(]‘;f(‘}) depends on the set of itstype arguments (4.62) and from the expression for the
functional 8[v, U] (4.47) andgn(@ (A.8) that all of the expressions one deals with contain thraltination

G?(1-yF3 (-9)G*(1+yF2 (@) [ | (e—Ziﬂvﬁi*@t) - 1)2 dety, [| + yVIFZ, F2 ]| det, [| + v V[FE, F2]|
z€{zy }

In virtue of proposition A.1, the function appearing abosehblomorphic inB,v,{z.},{z-}) € {R(B) > 0} x
D [tA] l(z+)
Z)o,l X U6 X U6

The functionHYs (1yF3* (z)}. (u(2)}. {z:}) is analytic in(y.) € Doy, x Ug, (here¥p is chosen so that
|y|E7Z (zt)| < 1/2 uniformly in the variableg;, t € J“z} belonging toUs), and integrable in respect to tkg} ey,

variables. The remaining part gf(ﬂ has also the same properties. As the integrals are compagtlyorted
it follows that the whole expression appearing inside of'thig" brackets in (4.61) is holomorphic ify,8) €
Doz, X Gﬁo. As a consequence, the" y-derivative aty = 0 can be continued up = 0. To get the value of the
analytic continuation at this point it is in fact enough tb8e- 0 in (4.61).

The last step consists in taking the limit— +oco. This operation will result in an extension of the integoati
contours from bounded onﬁw) to ones going to mﬁmtyﬁ(‘”). Hence, one needs to check that the resulting
integrals will be convergent. Note that the functiB@ (z) are bounded whenever or any of the variables

belonging to the sefz,} or {z_} goes to infinity. Also, the functlorg(ﬁ) is bounded at infinity by a polyno-
mial in z; of degreen, this uniformly in respect tg-derivatives of order 0...m. Therefore as the functions
A ({F2 (@)} tu(=)}. {z}) go to zero exponentially fast in all directions whef&® ) goes toco, the integrals

over%f(t"") are indeed convergent.
u
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4.7 Some more conjectures leading to the dominant asymptas of p(x, t)
Under the assumption that

1. the Taylor series of, .5, ympg;)(x, t) /mlis convergent up tey = 1,

2. its sum givep(x,t),

3. the multidimensional Natte series given below is consetg

We get thaip (x, t) is obtained from (4.44) by removing thg" y-derivative symbol and setting = 1. It then
remains to identify the cdgcients in the first two lines with the properly normalizedrthedynamic limit of form
factors of the field as given in (A.46), (A.47) and (A.48). Ghen obtains the below series of multiple integral
representation for the thermodynamic limit of the onediplrtreduced density matrix:

i B/ (Ao) eX[u0)-ua] [ o]
ek \/t el T o oo T (0
oA XTI L (- [T o+ v a0
—2ixpe |=—0|? 0|2
N & 2 |7 | . 73]

[ G- vl o R0l (w1 i o e [P0
00 ({et)) . Zy Zy.
& (z) ) Ho (@) @) [F2]8|Fzip] v
@Sy ZSQ(W)Q«» | ({L ) L (4.63)

iz )11 } (X — tve + i(‘)+)[':zz_*(ti1)]2 (X + tVF)[Fsz(—Q)]Z . (2im)"

n=1 Kn en(K)

It follows from the above representation and from conjex@irl that

Corollary 4.1 The reduced density matrix admits the asymptotic exparmsaiven in subsection 3.2.

Proof —

The proof is immediate as far as the multidimensional Nagtées definingo (x,t) is convergent. Indeed,
then, the fine structure of the functiohé,{;f(‘}) given in (B.51) implies that all the contributions stemmiingm
integrations are subdominant in respect to the first twosline(4.63), this provided theit:i* (iq)| < 1/2 for
all configurations of variables ifz.} that belong td 1o, +q}. This condidtion is not satisfied, especially{i, }|
becomes large. One should then invoke conjecture B.1 gtiat, in fact, higher order oscillating terms in the
representation (B.51) fdfl,(f;i‘}) are more dampen than it is apparent from the sum in (B.51)s iBhénough to
show that, indeed, the ftierent type of higher oscillating tems stemming frb’fﬁi‘}) are subdominant in respect
to the first two lines of (4.63). Actually, in this way, one ozers the whole expected tower of critical exponents
for the terms corresponding purely to oscillations at istegultiples ofu (q) — u(—q) as predicted in [2]. [

Conclusion

In this article, we have proposed a new method allowing onleuitnl two types of series of multiple integral
representation for the correlation functions of integeafiodels starting from their form factor expansion. One
of these series which we called the multidimensional Nagtées yields a straightforward access to the large-
distancdong-time asymptotic behavior of the two-point functiohs this way, we were able to extract the long-
time/large-distance asymptotic behavior of the reduced densdtyix for the non-linear Schrédinger model.
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In order to provide applications to physically pertinenses, the method we have developed has to recourse
to a few conjectures. The first one is relative to the convergef the series of multiple integrals representing
the correlators. This conjecture is supported by the fremifen case, where the convergence is rather quick,
especially in the large-distanteng-time regime. The second conjecture concerns the hiligsiof using an
effective series instead of the one appearing in the form faetgpansion of two-point functions. Both series have
been assumed to have the same thermodynamic Nntit— +co. This conjecture is supported, on the physical
ground, by the argument that sums over states whose ensmgiksas some power of the system-size ought to
give a vanishing contribution to the sum over form factorseothat the thermodynamic limit is taken. It would
be very interesting and important from the conceptual poiriew to prove these two conjectures in the case of
models that are away from their free fermion points.

However, we do insist that we have organized the analysisiéh & way that all of the aforementioned
convergence issues are separated from the asymptoticsanprt. Therefore, all the part of this work related
purely to the asymptotic analysis is rigorous. Moreover,dgeexpect that the scheme of asymptotic analysis
we have developed can be applied in full rigor to many caseshndre free of convergence issues. We do also
stress that, for the moment, the proofs of convergence @ssef multiple integral representations for correlation
functions of models away from their free-fermion point anegeneral, an open problem. Apart from very specific
representations related to the spif2 XXZ chain, the proof of convergence of a series representér two-point
functions could have been carried out only in the case of #ee Yang model by F. Smirnov.

We have chosen to develop our method on the example of thpamiele reduced density matrix in the non-
linear Schrédinger model. The case of the current-to-atircerrelation functions in this model will appear in
[46]. It seems however that the method is quite general apticaple to a vast class of integrable models where
the form factors of local operators are known. In partigutahould be applicable not only to lattice models where
the form factors admit determinant-like representatids 53, 61, 72] but also to integrable field theories where
the form factors of local operators can be computed throbghrdsolution of the so-called bootstrap program. It
would be interesting to extend the method to other integratmdels where the description of the solutions to the
Bethe equations is more involved, as in the case of the XX&-§{# chain where the spectrum if not of purely
particlghole type. Also, similar series of multiple integrals degieg on a large parameter appear in the context
of the form factor expansion for the two-point functions lieigrable field theories. There, the form factors can
be obtained from the resolution of the so-called bootstragnam. For instance, the method seems applicable to
the analysis of certain two-point functions (and their fatistance asymptotics) in the sine-Gordon model whose
form factors have been obtained in [80, 81]. In the latteecage expect to deal with some multidimensional
deformation of the "8 Painlevé transcendent, a new type of special function whleseription and asymptotic
behavior is interesting in its own right.
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A Thermodynamic limit of the Form Factors of conjugated fields

A.1 Thermodynamic limit of form factors

It has been shown in [64] with the help of techniques intredlin [45, 77] that the normalized modulus squared
of the form factor of the conjugated field taken between tlvaigd state{/la}’l\' and any finiten particlghole type
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excited statéy,,}\'** admits the below behavior in the thermodynamic lijt. — +co, N/L — D

(0 (7)1 0.0 |w () ) . |
Mol o 1 ot o) o

Above, Fg corresponds to the thermodynamic limit of the shift functassociated to the excited state of interest
(atB = 0). The auxiliary parameters &y are undercurrent by the various functionals appearing @bdwhe
parametergy are defined as the unique solutiong{@,) = a/L.

Hkl’ ,Ufa

The discreet part

The first two functionals appearing in (A.1) correspond ®l#eding inL behavior of the so-called singular part
DN[F{é’a}’f{t’a},f] of the form factor, namely

= {pal] \ & {ﬂpa}n; {pa}} InL
O 1P ) i 21 = Dow[Fol Run E PR ol (1+0( 1)) (#2)

Given any function/(1) holomorphic in some neighborhood [ofq; q], one has

1 Jq YDA

Do.[v] =

] (=) o (Anet — ip.\* qGA(L— v (-q)) G2 + v(Q)) /7
[[v V(q)+21—[( N+1 ,up) + L (A3)

[ [V (0] et = iy 20y @0 [2qLer ()@ DD

The parametefy, 1 appearing above is defined as the unique solutidréfdAn,1) = N + 1, % [v] (1) is given by
(4.48) andG stands for the Barnes double Gamma function. Finally, weeagpon

no, )
RNn( {tpa); {Pa} )M _ 11[ & (ttng 1) @ (1py- tp,) €51 (162) Il¢ (Hpas 1py) &2 (it 1y,
| h 2 (ﬂpa,ﬂha)so(ﬂha,upa)e“[y](ﬂha)

deﬁ[ha}pb]

Xﬁ Sln[m/(,uha HFZ Pa— N - l+v(,upa) Pas N +2—ha—v(un,), ha+v(un,) .
N 1 pa+V(/.lpa) N+2_ha, ha

Fnl @2 (tpes i)

a=1

a=1
(A.4)
There
@09\, (v)-v@) A
plw,q fv —v(w _A-u
NV (w)=2v()In|———=]+2 ———da and Au) = A.5
@ = 2@ F ) J T e rTr T R
Above, we have used the standard hypergeometric-typesemagion for products df-functions:
n
ar,....an | _ 115 (&
F( bl,...,bn)_gr(bk)' (A-6)
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Description of gn(ﬁi

In order to give an explicit representation @F@ we need to introduce a few notations. First,Agtcorrespond
to the thermodynamic limit of thg-deformed shift function associated to the choice of thediags {u,} for the
particles andun,} for the holes. The auxiliary arguments of the shift functwili be kept undercurrent. Also, let
m e N andU; be the open strip (2.15) arouiid

Then there existgy > 0 small enough anfy € C with R (Bp) > 0 large enough and (3p) > 0 small enough
such that

@120 uniformlyinn=0,....m and (y,w.B. {p,)]. (un,}]) € Doz, xUsxUgyxUxU] . (A7)

Let all parametergn,, a = 1,...,n belong to a compad{y,. > [ —q;q] for somee > 0 and let¢y,.. be a small
counterclockwise loop around this comp#g,., theng@ admits the below representation

60 ({ﬂpa}) _ e—2i7r5§iC[7Fp] (qi+€ic) ﬁ 1—[ { i, — 0 + eic e27C[YFs] (una+eic) } ColFs]

nyy {tn,} Mp, — O + €iC 2inC[yFg] (pa+eic)

a=1 e=x
" (tpy — tny ~ 1) (ttn, — 1, — i) dely, |1 + YVIyFp yFgl| dety, 1 +yVIyFs vFsl|
<[] . . . (AB)
apet (Hpa = Hpy =€) (un, — pn, — iC) def [l — K/2x]

ThereC[F] stands for the Cauchy transform paq; q] andCO[Fﬁ] is given by a double integral

q
du F Fs()F
C[Fs] (1) = f ﬁ% and  Co[Fg] = - % dady . (A.9)
-q -q

The integral kernels/ andV read

’ w- “pa ((U Hha + IC) (w ovl(w K (w w )
Vvpllw o) = 27rcu R ]_[{ Flm(@)-Clzim(w+io) ———~ (A.10)
1

@=m)(@—rp+19)| @ -1
and
v ’ -1 w—-q : (a)—,llpa)(w—/.lha—iC) v(w mv](w— K(a) w)
Vvplw o) = o ——— — ¢ - el 'C)W (A.11)
©=0-1¢ 3 | (@~ pny) (0~ pep, —ic) |

The representation (A.8) is valid for = 0,....m and (y. . {p,)7. {n,}7) € Doy, x Ug, x UY x K3, and
defines a holomorphic function of these parameters belgngithis set.

It is also valid aty = 1, provided that® (8y) > 0 is taken large enough for condition (A.7) to be fulfilled at
vy=1.

Finally as follows from proposition A.1 given below, the drat Z)o;L[Fﬁ]RN,n[Fﬁ]Qﬂ is holomorphic in
RB > 0, and can thus be analytically continued frﬁ]@, up tog = 0. Itis in this sense that the formula (A.1) for
the leading asymptotics in the sikeof the form factors ofb™ is to be understood.

Proposition A.1 [64]

Letme N, § > 0 small enough define the width of the strip BroundR and ({ypa} (1)) € UD x KDy,
wheree > 0 and the compact K. is as defined by4.28)

Letv, h andr be holomorphic function in the stripglaroundR and such that Us) c {z : R (2) > 0} and
I (h(2) is bounded on k. Setvg (1) = v (1) +iph(1).
Then, there exists
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e By € Cwith R (Bg) > 0large enough and (8y) > 0 small enough
e yo > 0and small enough
e asmall loop%y,. c Us around the compact &,

such that uniformly in8 € Ug, the functiond > e 20+ _ 1 has no roots inside d&y... In addition, the
function

(tpa] (n)7 . v.8) > G (L= y7 (- Q))G(2+7T(Q))]—[ e 2mline) — 1) - dety, [ + vV [yr yvs] (tepa) . iana) D))

a=1
(A.12)
is holomorphic functions in PIx Kg, . X Doz, x Uﬂo, this uniformly in0 < n < m.

It admits a (unique) analytic continuation tofk Kg, . x Do1x{zeC : R(2 = 0}. In particular, it has a
well definedsd — 0 limit. TheB — 0 limit of this analytlc continuation is still holomorphic ifiup,}7, {un 1) €
Ul x Kg

Q+e”

In (A.12) we have insisted explicitly on the dependence efitttegral kernefy’ on the auxiliary parameters
({kpal7s {Mha}rf ), cf (A.10). The same proposition holds when the keriek replaced byV as it has been defined
in (A.11).

Alternative representation for gn(ﬁ;

It so happens that the smooth part of the form factor's asgtigstadmits a representation as a functional acting
on a unique functiotd. More precisely,

Lemma A.1 Let me N and the strip U be fixed. Let A- 0 be some constant defining the size of the compact K
(4.28). Then, there exists &,m dependent parameters

e 3o € C with R (8p) > 0 large enough and (8p) > 0 small enough

¢ yo > 0 small enough
such that uniformly i“i{Ya}T, {Za}E) e KN x KD, [yl <70, 8€ Ug,andO<n<m
{Yall (m ( {Yal] ) . ( {ya)? ) g 1
g * 1 th H /l 1 = - A13
on ({za}l) @) )| " (2] Z v 1-n (A13)

The functlonalg(ﬂ) acts on a bounded loo@” (Ka) c Us around the compact K The functlonaléé(ﬂ/i [@] is
a regular funct|onal (cf definition 4.1) ab in respect to the pai{My,, ¢ (Ka)) where the compact M has its
boundaries given b¥,,t and %, as depicted in the rhs of Fig. 1. For air € &' (Mg, ) such that|@|l4 k) < Cx,,

where G, is a constant of regularity of the function%ly(ﬁ)\, one has

%(ﬁz (o] = ColrGs] ]—[ exp{ - 56—13(2) {2inC [yGy| (z+iec) +In(z- g+ IeC)}}
== ¢(Ka)

dety, [I +y¥ [yGﬁ, YGg, w” dets, [I +yV [yG,g, YGg, w]]

xexp{ dydz ——aw@In(z-y- |c)}
def [I — K/21] exp{2in %, C[yGg) (a+ iec) |

. {2 n)?

O

(A.14)
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In the above formula, one should understanglas a one parameter family of functionalswmfgiven by

Go () = Gylo] (0 = (8- 12ZW -0 - o@D (A.15)

% (Ka)

In the second line ofA.25) there appear Fredholm determinants of integral operatarirg on a contouréa.
The contouré corresponds to a loop arourfd (Ka) such thatéa c Us. The kernels read

Vv, py ] (@, ) = i‘“—‘qexp{ 56 zdi_iw(z) |n(w_‘z)}.eC[Zinv](w)—C[zm](w+ic>M (A.16)

2t w—q+ic w-2Z+ic e 2np(w) — 1
€(Ka)
and
— -1 w-q dz w-12Z : —ciml(n—ic) K (0 — @)
. ’ no Tt _ e e In( : ) . eC[ZIm/](w) C[2inv](w—ic) _ A.17
7vp @] (0, ) 2t w—-(q-ic xp{ ngmw(z) w-2Z-ic } edmp(w) — 1 (A-17)
€(Ka)

The A, m and-dependent parametefly andyp are such that the constant of regularity,Csatisfies to the
estimates given i¢.31)and is such that one has

V ol < Can  |[70Gs ]|l < 1/2 and [Hllsk,) < Cg, uniformly in ({ya)], (za}]) € KA x K3 .

Proof —
We first check thaﬁﬂ is a regular functional.

e Gg[w] is aregular functional as it is linear #r and¢ (Ka) is compact.

o the estimatese” — &/| < eV |x—y], straightforward majorations of integrals in terms of sigpm and
derivation under the integral sign theorems ensure thatf &fle exponential pre-factors in (A.25) are also
regular functionals ofs.

The associated constants of regularity can be taken asdardesired. It thus remains to focus on the Fredholm
determinants. For this let us first assume that we are ablEkaipe contourséoyyin delimiting the boundary of
the compacMgy, in such a way that there exists

BoeC and ¥ >0 suchthat &7S[VIW _ 120 v(1,y,87) € Usx Wy x Ug, X Doz, (A.18)

this for any holomorphic functiomr (4, y) on Mg, x W, W, c C%, that satisfiefi@llgkxw, < Coa-

If this condition is satisfied, then the integral kerneté [yGg, yGp, @ |(w, ') andy”’ |yGg, yGp, w|(w, o)
are holomorphic inv, w’ belonging to a small neighborhood 6k andy € W,. The contouréa being compact,
the two integral operatorgV’ [yGg, yGg, w| andyV [yGg, yGp, w| are trace class operators that have an analytic
dependence ope W,.

Recall that ifA, B are trace class operatotif||{ stands for the trace class norm) then

Idet [l + A] - det[l + B]| < |A - BJ|;, Ah+IBh+1 (A.19)

Also [75], if A(y), y € Wy ¢ C%, is an analytic trace class operator then[tlet A(y)] is holomorphic or,
These two properties show that, indeed, in (A.25), the tvamlRolm determinants of integral operators acting on
the contourés are regular functionals afr.
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Hence, it remains to prove the existenceygfandgo such that condition (A.18) holds. Given(1,y) €
0(Mg, x W,), the functionw — e[« _ 1 has no zeroes provided that

YoGslw(= NI (W) <1/2  and I (Gglw(+ )] (1) >0 uniformly in (1, y,8) € UsxWyxUTg, . (A.20)
One has that
3(Gsl@] (1) > R (Bo) inf [R(Z())]-(I Bo) + 1/2) |3 @), ~ lItlly2 Izl sup 2 1p (1.2
BT o) Int 0 u, ~ 19lly2 WW(KA)xwaUI? > 19(4.29)] .
€ (Ka)
Hence,J (G [@] () > 0 as 500N awls(kxw, < Coa With
-1
Co=fesw §S0want {x e jnf (% @WI- GG+ 125 @), - Iole] - (A2

AEUg
€(Ka)

Here'R (Bo) > O is taken large enough f@y, as defined above to be positive. Therdflly «,xw, < Cg, With
Cy, as given above, one has

d
up |Gy [ ] (@) < (LOR (6o) + 9 (5o) + 1212y, + e + ey Sup 52 1612
VoW, e (Ka)
< (11K (Bo) + 28 (Bo) + DI Zlly; - (A.22)

Hence, if we takéx'al = 2(11R (Bo) + 28 (Bo) + D lIZlly,, the condition|yGﬁ [w]| < 1/2 will be satisfied for all
[yl < 7¥o. It remains to tuné’ (Bp) so that conditions

d(@My,, € (K
Cyp - —— OMg @) 0 gpg 21 Cyp . (A.23)
|0Mg,| + 27d(0My,, € (Kn)) d(Ka, € (Ka))

are satisfied.

One can always choose the contoig,yin defining dMg, in such a way that @Mg,, ¢ (Ka)) > c this
uniformly in A>0. These contours can also be chosen such that there existindependent constaii with
|6 MgA| < CciA. ltis also clear that the conto# (Ka) surrounding the compad{a can be chosen such that
|€ (Ka)| < A for someA-independent constamp and also (Ka, € (Ka)) > ¢’. It is then enough to take
R (Bo) > cﬂOA3 with ¢z, being properly tuned in terms ofc’, ¢y, ¢; so that conditions (A.23) hold

Note that the second condition in (A.23) guarantees thauteionH as given in (A.13) satisfigiH ||, k,) <
Cg, uniformly in the parametel(swpa}g, {,uha}g) € Ka x KQ.

Having proved thaféy({i)\ is a regular functional with a regularity constady, > O suficiently large, we can
evaluate it onH. Then, it is readily seen th&z [@] (1) coincides with the shift functiofrs once upon taking
@ = H as given in (A.13). All other integrals involving = H are computed by the residues.@t andup,. All
calculations done, one recovers the representation (8r8hé functiorgn(@. We stress that the parametegsand
Bo ensuring the regularity of the functiorﬁé’ﬁ are also such th@n@ is well defined due to conditions (A.2Qa.

Regular functional for §N;y

A very similar representation to the one given in the presimmma exists for the function@N;y.
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Lemma A.2 Let me N and the strip U be fixed. Let A- 0 be some constant defining the size of the compact K
(4.28). Then, there exists A, m adgedependent constants

e Bp € C with R (8p) > 0large enough and (8y) > 0 small enough,
e o > 0 small enough,

such that for L large enough and uniformly (ifup,}7. {n,}7) € KR x K, [yl <7oand0<n<m

{,Upa}rf )
{n, )1

with H(a’ Hpalg ) > . (A.24)

Mhal al/l l’[pa - ha

éNy(ipa}}l)['yFﬁ IRIAE 5;;“2 [H (*

n

The functlonaW) acts on a bounded loo@ (Ka) ¢ Us around the compact K The functlonal,f?(ﬁ) [@] is
a regular functlonal (cf definition 4.1) ab in respect to the paifMgy,, ¢ (Ka)) where the compact M has its
boundaries given b¥,,t and 4, as depicted in the rhs of Fig. 1. For air € &' (Mg, ) such that|@|l4 k) < Cx,,

where G, is a constant of regularity of the functlon%IA(ﬂ)

791 = walrGal [ [ | [Texo{ - oo @ lin(vuclsGl) @+ In(a-ner +ic0)}

== %(Ka)
dety, [I + 777|\\| [yGﬁ,yGﬁ, w]] dety, [I + y?N [yGﬁ,yGﬁ, w]]

dein1 [E@ [¢]] det [ED[é,q,]] T nee |¥Gul@]] (un+a)
) (A.25)

dydz

xexp{— >
2i
% (K A§ )

w(y)w(z)ln(z—y—ic)}

In the above formula, one should understang @& the one-parameters family of regular functionalszofis
defined by(A.15). We did not make the functional dependence pbGw explicit in (A.25). The functionals W
and W have been defined {@.6). We have added theGz| symbol so as to make it clear that the parameters
{/la} entering in their definition are functionals G through the relatiom, = 1 (a/L).

In the second line ofA.25) there appear Fredholm determinants of mtegrafj operatarsng on a contour
%a. The contourga corresponds to a loop arourtd (Ka) such thatéa ¢ Us. The kernels read

— 1 w-—punsmt dz w-1Z Vnolv] () K(w - a)’)
Alvp o) = 5ot o0l § SEo@in(G2T )| G savot 429
%(Kn)

and

= n_ —l w-puna dz w-1Z Vnplv] (@) K (w - o)
VN[ o, @) (w, @) = P PTT—r exp{ 56 2iﬂw(Z) In (w — ic)} Va1l (@) @ - (A 27)
E(Ka)

The constant of regularity & satisfies to the estimates already giverg4r81)and is such that

¥ llollewn < Con  [[70Gslwl||y, < 1/2 and [Hlksk,) < Cg, uniformly in ({r2pa)- (un)) € KAX KR .

Proof —
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The proof is very similar to the one of lemma A.1. Hence, weyapecify that forL-large enough, and as
soon as conditiorhyGﬂ [w] (/1)| < 1/2, 2 € Uy is satisfied, the parametets are seen to be regular functionals of
w through the integral representation

o) - p St
A [@] = j S Eren@ —JIL (A.28)

q

All other details are left to the reader. [ ]

A.2 Specific values of the functionalgy(ﬁ)\ and Eé;(’fA)

In this subsection, we estimate the value of the functi@‘y@ [w] for a specific type of functiorz. This result
will play a role later on.

Lemma A.3 Let the functionv (1) = v(2 | {zk}g,{yk}Tl) be the unique solution to the linear integral equation
driven by the resolvent R of the Lieb kernel(lie- K/2r) (I + R/2r) = 1):

n+1l

v(d) + yf—Ru W) = (B-1/2Z () + ZW 2) - Zw i) - (A.29)

Let A> 0 be large enough and such th@,m(}g,{yk}gﬂ) e K x KL, Letgo € C and¥, be the two numbers
associated to the constant A as stated in lemma A.1. Thenndgefin

n+1 n 1 a ’yV(T)
A = —_— - — - — dr A.30
@ (1) = g —q T 2ia- 7 (/1 7 (A.30)
the below identity holds

n n+l

[T I1 (Yo —2a—ic)(za—Yo—iC) det, [6kg + yvkg [yv]] det, [(5k[ + ’yﬁk[ [yv]

%) o] = —ic=22=2 A.31
vall n+l L . def [l — K/2x] (A-31)
[T (Ya=Yo—ic) [1 (za—2—ic)
ab=1 ab=1
The non-trivial entries of the two determinants are giveri49). The auxiliary variableg{z}", {yx} n+l) on which

these entries depend are undercurrent by the set of auxiliariables on which depends

Proof —
The functionv is bounded on the strigs. As a consequence, the associated functidi.30) is also bounded
by anAindependent constant. The estimates (4.31) for the ccin.»a‘tem‘:]ularltngA for the functlonag A Ensure

that there existé large enough such thioll4k,) < Cy, uniformly in ({z}], {yi}71) € KR x Ki*L. Thus, %(ﬁ) [@]
is then well definied.
A direct calculation leads to

n+1 n

exp SEEW(Z” ( cu—Z' ) — a)—qtiC 1_[ (‘U_ya' nw Zaxic C[2|m/](a)+lc) Cl2inv](w) (A 32)
2i w—-z+ic w-q Llo-yazicll w-z
Gy B B
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By using the linear integral equation satisfiedvognd the representation (A.15) we get that
Gsl@] (1) =v(1). (A.33)

As a consequence, the kern€land ¥ simplify

n+1 n

, w - w—2Zy+iC K(w-o
7 postel sstel ol @) = [ | 22 [0 ey (.39
and
n+1 n . K ,
7[7(3,8 [@],yGg [@] ,w] (w, ") =- l_[ wcj;a)/—alic 1_[ w;z_az—alc zﬂ(eg:w_(‘:;)z ) (A.35)
a=1 a=1

The associated Fredholm determinants can now be reduceutéesize determinants by computing the poles
atw = zywitha = 1,..., n (by definition ofyp andgo, sincely| < yo andg € Ug,, there are no poles of &« -1

inside of%a).
This leads to
dety, [| +y7(Gy[@].Gplw] . wl| = deh[dic + Vi [yv] ((zal] (el (A.36)
dety, [I + 7 [Gslw] .Gylw]  w]| = det, [(skf + Wi [y] ({za)], {ya}2+1)] : (A.37)

The claim then follows once upon applying the identity

n n+l

[T IT (Yo — Za —ic) (za — yb —iC)
 asibe dyd .
- n+11b1 - = p{— (z?lﬂ)zzw(y)w(z)ln(z—y—lc)}
[T Ya=Yo—1ic) 1 (za— 2 —ic) %(Ka)
ab=1 ab=1

« Colrelal] g 27 2 Ceslel]@rieo [1 exp{ - 95%@ (2){2inC [yGylw] | (z+ iec) +In(z- q + iec)) }

== %(Ka)
(A.38)

Lemma A.4 Lety be small enough and L large enough such #&k(u) is the unique solution to the non-linear
integral equation

N-+1 n+1 N
WW=GB-2DZW - 60 + Y ¢(hpa) = D ¢(AYa) = D, ¢(4a) (A.39)
a=1 a=1 a=1

The parameterd, appearing above are functional of-) through the relatior¥,,,w (12) = a/L, ua are such that
¢ (ua) = a/L and the parameters,ye U2 are arbitrary. Finally, L is assumed large enough so thatpaltameters

({,ua}'l\”l, {Ia};‘, {ya}Tl) € Kya, Of the2N + 2 + n-uple belong to Ka . Then, givergy andyg as in lemma A.2,
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one has the identity

lei (Yb - Iiﬁl - iC) (Iia - VYo — iC)

defl; [2%[£]] deq! [2V]¢,,0]]

70 [y(.| Yali™u (Y | ic 4

' {Ai,)] U {ua) ) n+l . ,
IT (Ya-Yo—ic) T1 (i, - 4, —ic)
ab=1 ab=1

x det [k + PWie[y D] ({(2,17 1ya)]™) | det [oc + Wil (405 val7h) | (A.40)

Proof —

It has been shown in proposition D.3 that fer small enough andl large enough the solutior™) to the
non-linear integral equation occurring in thes of (A.39) is unique and exists. Moreover this solution is foded
on U by anL-independent constant.

As discussed in the proof of lemma A.1, the cont@l(iK24, ) can always be taken such that, uniformlyLin
d(¥(Kza, ), Koa, ) > ¢ > 0 for some constart. Hence, the principal argumenbf H is uniformly away from the
compactKzp, . As a consequence, it follows from the expressionHaand the estimates for the spacing between
the parameters, and .,

ta — Aa = 20/ (ua) / (Lp (ua)) + O(L‘Z) , uniformlyina=1,...,N (A.41)

that||H||<,oﬂ(K2AL) is bounded by ah independent constant, this uniformly inlarge enough. In particular, fdr
large enough, due to the estimates (4.31) for the con€lant of regularity forgyA(;’;)AL, we get that|H|lx«k,) <
Cy,y, - One can thus acts with the functiorﬁé;f‘_;)AL onH. A straightforward residue calculation shows that

Gg

| DU () ) =0
H( ’{7ia}EU{ya}?+ll = (A.42)

This means that all tha, appearing in the expression (A.25) for the functiof?.t;(g)AL [H] coincide with the

parametersl, defined above. The claim of the lemma then follows from shtfigward residue computations
and multiple cancelations. The Fredholm determinantsaedo finite rank determinants that can be computed
by the residues ab = 4;,,a=1,...,n. [ ]

A.3 Leading asymptotic behavior of one particl¢gone hole form factors

We now build on the formulae for the leading asymptotic bévaef form factors so as to provide, properly
normalized in the size of the model, expressions for theskargjmit of the form factors of the fields between
the N-particle ground state and + 1-particle excited states corresponding to one hole at btigecends of the
Fermi zone and one particle either at the other end of the iFmne or at the saddle-point of the function
u(4) given in (2.14). Such thermodynamic limits of properly natired form factors appear as amplitudes in
the large-distangng-time asymptotic expansion of the reduced densityimalihe explicit expressions that we
write down will allow for such an identification. We do strakat all shift functions appearing below are taken at
B = 0. The fact that (A.46)-(A.48) are well-defined in this lirffallows from proposition A.1.

In the following, let{1} = {/la}’l\‘ stand for the Bethe roots corresponding to the ground giatesiN-particle
sector. Lei{yg} = {yg}’l\”l stand for the Bethe roots corresponding to the ground state{N + 1)-particle sector.
Taking into account thafg stands for the thermodynamic limit of the correspondindt $hnction cf (3.5), we
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define

2

( L )[Fg;(q)+1]2+[Fg;(—q)]2 ‘<lﬁ({#8}) | ®7(0,0) | w((a))) (A.43)

o G RECY

Similarly, given the seug®} = {uq"})"** corresponding to a particle-hole excitation such tat= 0 andhy =

N + 1, we denote bﬁ]q the thermodynamic limit of the corresponding shift funotef(3.5), and define

7 = im

N,L—+oco

2

((tua®)| @7(0.0)|u({1}) )
i) -l )]

Finally, given the setyéo} = {péo}’l\'”corresponding to a particle-hole excitation such tiat N + 1 and

Mp, = Ao We denote b)FéO the thermodynamic limit of the corresponding shift funotef (3.5), and define

P L\ [Ft@] +[Fe-a-1]°
g7 = lim (E)

N,L—)+oo

(A.44)

70" = lim (L)[Féo(Q)]2+[Fgo(_m]2+1 (w(l1) | @' 0.0 |u(i) ) p (A.45)
NLo+oo \ 2 1) - ot
By using (A.1) and expressions (A.3)-(A.5) we are lead to
7 = s o[8[ ) g&?’l( b ) exp|iZ (F(-0) P - [Fe@ )} - (A.46)
174 = A_[F3° p| B[Fa". p) g&?{( o ) exp{iZ (IFa%-a) - 11° - [Fg"@ 1)} . (A.47)
and finally
70 = A, [F0 p| 8[F.p| 69 © ) exp{iZ (IFU-a) - [Fo@) + 1)} . (A.48)
0 2

The functionalsB, A. andAy appearing above have been defined in (4.47), (4.48) and)(4.49

B The generalized free-fermion summation formulae

In this appendix, we establish summation identities alhgyne to recast the form factor expansion of an analogue
of the fieldconjugated-field two-point function that would appear inemeralized free fermion model in terms
of a finite-size determinant. The representation we obtairstitutes the very cornerstone for deriving various
representations for the correlation functions in the axdéng case. In particular, it allows one for an analysis
of their asymptotic behavior in the large-distafiaeg-time regime. We first establish re-summation formulae
allowing one to estimate discreet analogs of singular naleg This will open the way for obtaining Fredholm
determinant like representations out of the form factoedasxpansions.
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B.1 Computation of singular sums

Let¢ stand for the thermodynamic limit of the counting functi@m) andE_ be a non-vanishing and holomorphic
function in some open neighborhotl} of R such thatkR (In E:Z) has, at most, polynomial growtle

|% [In E2(1) - iCl/l"]| <C, |% (ixl"‘l)|+C3 , forsomeC;, C,, C3eR* andk>1 uniformlyine Us.

(B.1)
The neighborhoodl; is always taken such th&tis a biholomorphism ol
In the following, we study the below singular sums over the{gg:
SﬁL)[EZZ] ) = Z E-*(ua) - with u being the unique solution to(uy) = a/L . (B.2)
2rL¢" (a) (ua — )

acBL
The summation runs through the $@t = {a€ Z . —-w_ < a < w_} wherew, is someL-dependent sequence in
k-1
N such that. = o(w) and(wg - L™})" " = o(L).

Proposition B.1 Let Ny be a compact neighborhood pfq; q] lying in Us, then under the above assumptions
and provided that L is large enough, one has, uniformly ia N

SP[E?| () = g—‘;Ezz(u) + 1P[E2] () (B-3)
GbkL
-2 -2
SPEw = [5oh - gy + WIETw ©9

GokL

o [(dE2w A[EPW]  E2)Le @)
od ) 2x =1 T '@ —1 T " Ssi (ale ()]

(gbk; L

SP[E2| (1) + 1P[EZ () . (B

The integration goes along the cur¢g depicted on Fig. 4. Also, givena N,

dz EZ2(2) 1 dz EZ2(2) 1 dz EZ2(2)

27 (z- D) 1- e 2rLe@ 7@- N EE@ -1 | 2x@-A
G €L God,L

IP[EZ2] () = (B.6)

The contourssy, .. are depicted in Fig. 3 where&g,q, is depicted on Fig. 4.
The functionalsr(lL)[E:Z] (1) are such thatr(iL)[E:Z] (4) = O((L/wp) 1), uniformly in € A,

Proof —
Let Nq be a compact neighborhood [pfq;q] in Us. Then, forL large enough it is contained inside of the
contouré;.. U %L as depicted in Fig. 3, and thus
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T~ . R +io
L
1 oW, 1
-A B A W, 2
L L L 20 L "20
L ~— — -- >
‘f_l R —-la

Figure 4: Contour&i. (solid lines) andé,g. (dashed lines) in the case kiodd (hs) andk even (¢hs) in the
caseC; < 0. The dotted line&,q are pre-images of the segmentsW + €,1/2;e,W + €,1/2 + i€’ ], with
v=1lorrandg = -1 ande = 1. The sign ok’ depends on the left or right boundary, the paritkaind the sign
of C;.

SP[EZ| () L= f £ R

T 2inle() — 1 21 (z—- 1) T2l _ 1
LV
B E=%(2 1 q E=%(2 eAnLs(2) 1 IEZ2(1)
T ) @@ 1% T | -\ @1 T @ — 1
L L
d/.l E:Z(H) . E:Z(/l) (L) -2
- primy el I[E?] () (B.7)

(gbk; L

In order to obtain the last line, we have deformed the contdur into the contouréy U %haL as depicted in
Fig. 4. The endpointsA are chosen large (in order to inclugg) but fixed, in the sense thatindependent.

The representation foS(ZL)[E:Z] (1) follows by differentiation. The computations fGnE)L)[EZZ] (1) are carried
out similarly with the sole dference that there is no polezat A.

In now remains to prove the statement relative to the asytispgsehavior inL of the functionalslr(")[E:Z].
The main dificulty is that the functiorE_ (1) might have an exponential increase whigpelongs to the upper or
lower half-plane. We establish the claimed estimates feféth -part of the contour. This can be done similarly
for €., and we leave these details to the reader.
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We first perform the change of variables= £71(s) and seu,. = wi /L + 1/2L. The contour of integration is
then mapped to the contour depicted onrtheof Fig. 3. We stress that the parameter 0 is chosen in such a
way that%;.. U %) lies inUs. The aforementioned change of variables leads to

dz EZ2(2) 1 B (Fds E2 A 1 Lo 2irsl]-1
R N P& St T T T (1-ereee]
2 t
FidsE?2 1 -1
+ E:foz iz o&(is+eu) ET(sten) -] {1+e>2’r } . (B.8)

We first establish a bound for the integral over the lireu[;u_]. It follows from the integral equation (2.7)
satisfied byp that,

p(1) =A1+7D-2cD/A+0(1?)  when R (1) > oo (B.9)
Hence, uniformly in O< 7 < a and fors € R large,

ENs+iv) = ys + 2int + O(s?)  where ys=2rs—aD(1+1)+ % €R. (B.10)
The condition (B.1) implies that there exists constdhts 0, C’ > 0 such that

|% [In EZZ(/l)H <C |%(i/lk)| +C’,  uniformlyindeU . (B.11)

As a consequence, uniformly inQr < a,

IA

|gp\ [In E:Z ° f_l (S+ |T)]| C |8 [(ws)k + 2irkt (lﬁs)k—l + O(Sk_z)“ +C’

crk(zn)k|s4k-1|s(1+ o(s—l))| +C. (B.12)

IA

There exists aig such thallO(s‘l)| < 1for|g > s, this uniformly in 0< T < a. Moreover, for such asp,
we define

C’=C+ max|9% [InE-20 (s + ir)]| , (B.13)
with the maximum being taken ovig < spand 0< 7 < a. Hence, foransse Rand 0< 7 < «
|9% [NEZos(s+ ir)]| < 2kCa (20)<|5 L+ C” . (B.14)

Therefore, we obtain the estimate

—uL
ds E=2
on &

1

-1 .
o ) e e T

{1 _ eZﬂLae—ZiﬂSL}_l

uL

< sup
26£(R+i) {lZ— A" (2

fwe remind that is a biholomorphism in oJ; and thatp’ > 0 of R.

e’ Wi 4+ 1 ekCa2nfut
}. L+ ~ _0o(L™), (B.15)

7L erle 1
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where we have used th@t_ - L‘l)"‘l = 0o(L). Itremains to estimate the integral over the lines ¢{:;

FidsE2 1 L)1
;eofz Z of (IS+EUL)(§—1(is+euL)—/1)r {1+e2” } <

(~ 2CK2n) ()< r

1
— | —/——=—d. (B.16
SE?{(I)J;?}] {|§, o0& (is+ GUL)| |[§_1 (is+eu.) - /l]|r} T bf 1rer ° ( )

By making the change of variablgs= Lt and then applying Lebesgue’s dominated convergence tineanee
can convince oneself that the integral in the second lin@df) is a GL™1).

The last class of integrals to consider stems from integmatalongéyq. . In order to carry the estimates, we
need to use the finer condition (B.1). Here we only treat tise odk even andC; < 0. All other cases are treated
very similarly. An analogous reasoning to (B.12) leadsfamily in0<r < ato

R [In E2o& (st ir)] = T(¢k(2ﬂ)k Cist + O(sk‘z)) for ¥s>0. (B.17)

There existss, such that forls > s, one ha#o(§“2)| < k(2n)K |Clsk‘1| /2. As a consequence, ft8f > 5 and
Fs>0

R[NEZog(sxir)| < - ¢! uniformly O<t<a. (B.18)
Therefore
e |5 f (E2/¢') o ey ~ien)
21 (A —p)f = 2 [& 1(eu|_ —ier) - 1]

Goa,L
a

[§_l(6u|_ —ler) — /l]_r
<2 sup I -

7€[0;a] f’ oé‘:_ (EUL - |ET)
eef{+1}

dr o kEUCHS _ o (ke
€ 2 =0o(uf™ ") . (B.19)

B.2 The generating function: form factor-like representation

From now on, we assume that the functién takes the formE=2 (1) = x40+ whereu (1) is given by (2.14)
andg is a bounded holomorphic function on the sttip aroundR (2.15). We also assume thate & (Us).

We remind that the parametelis,}, ., (resp. {1a}acz) are defined as the unique solutionsL®(u,) = a, (resp.
L&, (1a) = @), where¢ is given by (2.6) and, (1) = £ (1) + v (4) /L. We define the functionaky [, E2| as

N+1 H E2 (/la)

XN [V EZ] Z Z Z Nel D (iﬁ:;rg)[v,f,fv]- (B.20)

n=0 P1<-<Pn hy<--<h E
preBH hkeB'l'_“n J:I Olfa)

The functionalﬁN,n has been introduced in (4.4). The sums in (B.20) run througkredn — uplesof integers
p1 < -+ < pp belonging toBﬁXt = B\ [1; N] and through ordereah — uplesof integersh; < --- < hy
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belonging to '[‘ =[1; N]. Finally, B, = {jeZ : —w_ < j <w.} and the sequenos_ ~ L3. In particular,
whenL — +co0, W grows much faster theN. The integergp,} and{h,} define the sequendg < --- < {n,1 @S
explained in (2.3).

The functionalXy[v, E?] admits two diferent representations. On the one hand, as written in (BRQ0y, E?]
is closely related to a form factor expansion of certain podint functions in generalized free-fermion models.
On the other hand, after some standard manipulations [6@]can also reca®{y|v, EE] in terms of a finite-size
determinant which goes to a Fredholm minor in M — +co limit.

We derive this finite-size determinant representationgy, E2] below.

Proposition B.2 Under the aforestated assumptions concerning the furetiorandy, the functional X[v, E?]
admits a finite-size determinant representation

21 _ Joye-21, 9| | VO, ) POy, )
Xn v, E_]_{SO [E?] + aa}lazodem Ske + TR ] , (B.21)
where
sin [rv ()] sin [zv (1) ] _ _
v, = 4 P =0 E-(E (1) {0P[vEZ?|()-O0V|E?| ()}, (B.22)
P, 1) 4Sinfrv (4)12:'”[”(“)] E-()E-(u) - OV, EZ?|(2) - OV, EZ?| () . (B.23)
Also, we have set
2 -2
OBy E2?| (1) =i 27r (”) + e_in;yu(fil + ilP[EZ| () (B.24)

ChkL
The contour of integration has been depicted on Fig. 5 aﬁr?i (@esp. I‘)) is given by(B.3) (resp.(B.6)).
o L (AL = —wi - 1/2
L& (BL) = w +1/2

Figure 5: Contouréy. appearing in the definition a®®)[v, E-2](2), contour g (solid line) and contourgq
(dashed line). The contot#i is such that, fo*%/ﬂ > 4q, it stays uniformly away from the real axis.

Proof — We first recast the sum over the integfpg} and{h,} corresponding to particle-hole like excitations into
the equivalent sum over all possible choices of intedgré, < --- < fny1 With {3 € B = B'”t U BeXt cf (2.3).
As all the sums are finite, there is no problem in permuting)ﬂuiers of summation. Therefore

1T E? (1a) (o
Xk = 3 By (Pl need (B.25)
e T1E2 (ue) o

(2B a=1
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The determinant entering in the definitionX[v, E?] can be represented as

1-¢ 0
= detys1 [w Ob, N+l] = (1 + —) de‘N
/.la_ /lb aa |(1/ 0

1 a

N
Ha ,UN+1_de _
—Ap  UN+1— A

"atw)
a=1 Aa — UN+1 Ha— Ap

There we have used that for any polynonabf degree 1, one had(1) = Q(0) + Q’(0).

It follows from the above representation that the summan(Bi&5) is a symmetric function of thd + 1
summation variableg,, that is moreover vanishing whenev&r = €5, k # a . Therefore, we can replace the
summation over the fundamental simpléx< --- < £n41 in the (N + 1) power Cartesian produﬁ’ﬁ”1 by a
summation over the whole spa@'*l, provided that we divide the result X + 1)!. Once that the summation
domain is symmetric, we can invoke the antisymmetry of therd@nant so as to replace one of the Cauchy
determinants byN + 1)! times the product of its diagonal entries. This last operaproduces a separation of
variables [60]. Eventually, the result can be recast in tnmfof a singleN x N determinant:

. (B.26)

N 4sir? [2v (12)] =
XN [V, EE] g gv(zv) nezz; 27TL§/(#n) ( %)lazo dety [Mjk + aPjk (lln)] , (B.27)
with
2
Mo = b SO [E2] (1) + (1= 6 ot (SO g -sP[EF @) . @29)

Sp‘) being given by (B.2), (B.3)-(B.5) anﬁjk (un) being aun-dependent rank 1 matrix:

E2(h)  Sp[EZ?] @

5jk (lln) = _(’un ~ /lj) 2L

(B.29)

Using the fact thaﬁjk (un) is a rank one matrix that contains all the dependence of tlerrdaant on the
summation variabl@y, it is readily seen that

Z E- (ﬂn) ( _)la:.o dety [Mjk + aﬁjk (lln)] = [SE)L)[EZZ] * ﬁi

- dely [Mjk + CKij] (B.30)

= 2L (un) oa @ |4=0
where
E2(A) oUe—2 (L[ =-2
Pk = —Wsl [E_ ](ﬂk) -S) [E_ ](/1]) : (B.31)

Applying (B.4), (B.5) and then using tha¥ (1x) = L&, (k) — v (k) = k— v (Ak), we obtain that

OB, E22] () - OV, E2| (1)
2irrl (A — A¢) ’

E (&) _ &, ()

M B = M G ()

+E () E- (W) (B.32)

whereO®)[v, E=?| is given by (B.24). Note that we have slightly deformed thefaf the contourséh. in
respect to Fig. 4. Very similarly, we find

. E_ (/11') ~ E_ (/11') E_ ()
KET () 27

PO(2;. )
4L sinmy (/lj) sinnv (1) .

o[y, EZ2] () OV, EZ? (1)) = (B.33)

wherepP®) (/lj, /lk) is given by (B.23). It then remains to factor out the pre-daestfrom the determinant. [
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B.3 Thermodynamic limit of Xy [v, E:Z]
Proposition B.3 The thermodynamic limit ofg([v, EE] is well defined and can be expressed in terms of a Fred-

holm determinant minor. NamerN)Ev, EE] o e [v, EE] with
- E

Kol €2]-

q

S, w|E?|+2 f M i [y ()] F (4) E- (1) Oy v E?| (ﬂ)]-det[l +V] [ EZ?] . (B.34)

E T E
-q

Here | + V is an integral operator ofi—q; q] acting on 12 ([ —q; q]) with a kernel

sin [zv ()] sin[zv (u)]

Viu =4 2im (A - p)

E.()E. () {o(gém) [ E2] (1) - Oy EZ] (u)} (B.35)

and the contoufs’dependent functionals Qv |- E22| (1) and S, | E=?] are given by
E E

- (" duEZ2(w) EZ2() _ i __
2 _ 2] _ 2
O(hﬂéw) [V, E- ](/l) =1 P Py + o2 1 and S%”éw)[E_ ] = o EZ°(1) . (B.36)
& W
F. (1) is the unique solution to the integral equation
q
sin[zv ()] F. (A1) + f V (4, ) sin[rmv ()] F+ (@) du = sin [rv ()] E- (1) O () [v, E:Z] ) . (B.37)
E

-q
Also, ™ = ) n {z eC: |R@|< W} and %) have been depicted on Fig. 2.

This representation can be seen as a generalization ofghksrebtained in [60]. Also, the contoﬁﬁé"") can
be thought of as the — +co limit of the contour@py .

Proof —
It is a direct consequence of the estimates obtained in appénl for Ir(L)[E:Z] together with the fact that
defy [6kg + o(L‘l)] — 1in the case of remainder$lo?) that are uniform in the entries, that

0
Xn [, E2] N0 (sgé@[E_z] + a—a)la:-o det[l +V + aP] (B.38)
with | +V + aP acting on[ —-q; q] and
P(Au) = ; sin frv (D] sin [y ()] E- (2) E- (&) O o0 [, E| () O oo [, E2| () (B.39)

Note that there is no problem with the integration over amitﬁicontour‘géw) in O%ém) [v, E:Z] (u) andS(gé@ [E:Z]
in as much aﬁféw) is built precisely in such a way to ensure the exponentiahget the integrand at infinity.
Using thatP is a one dimensional projector, we get that
q
det|l +V +aP] =det|l +V] [1 + af(l + V), 1) P (1, A) dadu | . (B.40)
-q
It then remains to take the-derivative and use the definition Bf, (1). [

"By no meang=, ought to be confused with the shift function
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B.4 An algebraic representation for the Fredholm minor

Proposition B.4 For L large enough, the finite N Fredholm minon{(v, EE] defined in(B.21)can be represented,
through purely algebraic manipulations, as the below fisiten:

n+1

56 (zm)Zn (ZI )n+1 1_[ (L)(Yk, v (Yk)) - EZz(yk)} g E2 (i)

Ynel — % ' ; n 4 sir? [7v ()]
eI [Za - ﬂib] Q {(Zk ~ ) Léf;(dik)} - (4D

Xn v,

.....

Above, appear two contourgy which stands for a small counterclockwise loop arojirdy; | as depicted on

Fig. 5 and#) = GokL U 61:L U €L YU GhaL Y %q As shown on Fig. 5% stands for a small counterclockwise
loop encircling@y. Finally, the function f)(y, v) is supported org'™® and reads

1 1 1
fOy,v) = Ly () + mlﬁ;&’) + mlﬁ;L(Y) - m_lﬁ%(Y) + lgg (¥) - (B.42)

wherel, stands for the indicator function of A.

Proof —

The functionalO™[v, E-?] () as defined in (B.24) is holomorphic in somefiiently small open neighbor-
hood of[ —q; q]. Hence, there exists a small counterclockwise l@gm@round][ —q; q] (cf Fig. 5) such that the
kernelV(Y(4, 1) admits the integral representation

OV, E-?|(2) dz
(-2 (z-p) 2in)?"

VO, 1) = 4sinfrv (A)] sin[zv ()] E- (A) E- (,1)95 for Apuef{ly,...,An} . (B.43)

In (B.43) we have used thaly,..., Ay are all inside of¢y for L large enough. We first expand tiex N
determinant appearing in the final expressionXqfyv, E2] into its discreet Fredholm series:

VO, ) - PO@, /lz)] N det, [V (A, 4i,) + PO, 43,)|
dety |6 = B.44
TN[ “TTg) M) n; A n! TR, [LE (4] (B.44)
iac[1;N]
Next, observe that
n n (L) -2
det [VO(,, 4,) + aPO, 4)] =  —2 {0 [v. E- ](Za)}
(2I7T)2n a1 Zy — Ai,
g
X ﬁ {4sir? [mv (4,)] E2 (41,)} x det, (Za— Aip) " (B.45)
v (A (A + .
11 la la 1 —iO(L)[V, E:Z] (/llb) 1

It can be readily seen that for amyelonging to the interior oﬁ

(L) —_
o® [v, E:Z] (2= f ';ﬂy w E2(y)  with €0 =G UL UG UGqU GoaL » (B.46)
210
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and 1) is as given by (B.42). Then, using the multilinear strucifra determinant, one gets that

(L) ) i (Za - /lib)_l a _ (Za - /lib)_l 1
So [E— ]+ cdehyg | 2 by - 2 L)[e-2
0a) -9 -i0Ov, E2?|(4,) 1 -0y, E- ](/1- ) S [E: |
-1
dy -2 (L) (Za_/lib) 1 -2 (L) [ 1 ]
= | =EZ4(y) f%M(y, v (y)) de = f(y, v .
[ SEE0) 190 ) dehs At 1 () 10y (y))l_[ [y e
20 (g(L)
(B.47)
The leads to the claim, once upon inserting this repredentaito the discreet Fredholm series. [

B.5 The Natte series for a Fredholm minor

In this subsection, we recall the form of the Natte seriesasgntation for the Fredholm minor (B.34) involved in
the representation of form factor sums in generalized feemibnic models. We refer the reader to theorem 2.2
and proposition 7.2 of reference [62] for further detailattige to this Natte series expansion.

Let E2 = e xU1)-9() pe such that
e uandg are holomorphic in the open neighborhddg), of R;
e U has a unique saddle-poing on the real axis which is of order i u”’(1g) < O;

e the functiony is holomorphic in an open neighborhoag, c Us» of [ —q; q].

Also, let& ™ = €1 n {zeC : |RZ <w}. The contourss"™ and% ™ have been depicted in Fig. 2.
Forw > | 10| + g > 0 andx large enough, the Fredholm minXr w[v, E?] defined in (B.34) admits the below
“E
Natte series representation

q
X, Iv.E2] - Lio*]g{ [ixu)+ g W] [ AoV] 1] g:eo [ (A0) gtiaratio), U+ 10 g
xv2(@)+v2(=q) —27xu (o) x1+2v(0)
A_[v,4] d"z
e o e LA A XX f()Hr(fx”( @izl | | eftg(zt)(2 =g (B.48)
n>1 K, &En({ka}) (g‘ teJi)

The+i0" regularization ofu only matters in the time-like regime (wheg| < g). The functionalsB, A, and Ay
are given respectively by (4.47) (4.48) and (4.49). Thetiaa and the structure of the sums appearing in the
second line of (B.48) are exactly as explained in theorem 4.1

The Natte series is convergent folarge enough in as much as, fotarge enough,

Y M [ e

Kn Enllkal) tedi

o (ﬂ)ncs . (B.49)

X

<
()

Therec; andc, are some constants depending on the values takendnydg in some small neighborhood of the
(o) ; .
base curvesz ™ and byv on a small neighborhood ¢f-q; q], whereas

C3 = gmin(l/z, 1- quzixp% [v(a)]| - TE) where Y, = Zsup{ IRIv@-v@E9]| : lz-tdl <€, 7= J_r} .
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Heree > 0 is suficiently small but arbitrary otherwise. We stress that, fihthese norms change, then so would
change the constants, ¢, andcz but the overall structure of the estimatesiwould remain.

The Natte series expansion (B.48) has a well defimed +co limit: all the concerned integrals are convergent
as the function9—|r(]{;§‘}) approach zero exponentially fast in respect to any varididé runs toco along %E(t"").
Moreover, this limit does not alter in any way the estimat®2l9) ensuring the convergence of the Natte series
(the constants;-c3 arew-independent).

We now list several properties of the functidH&f}”:

o H{D ({u(z)}; (z}) [V] is a function of{u(z;)} and{z}. It is also a regular functional of
o H{D ({u(z)}; (z}) [yv] = O(y") and the O holds in theL1 N L=)(£ ™)) sense.

e H{<) can be represented as:

HU (u @)z D] = A% (v @) u@) s () [ e @) 2ex [ (2@ - 1) . (8.50)
tEJ‘k’ te\]ﬁk!
E[:l

H<" is a holomorphic function fofR (v)| < 1/2 andx [v] (1) has been defined in (4.48).

o One haH{®) = O (x~) and forn > 2

n/2] b [n/2]-b (eix[u(/lo)—u(—Q)] )”b(eix[u(q)—u(—q)] )m"”’

({erh) _ —00
Hux" = O(x™)+ Z Z x2v(=a) xel @+ (-a)]

S [Rad
>, o M, - B5D)
b=0 p=0 m=b-[4

re(x1;00 X 2

The O(x~°) appearing above holds in tket N L“)(%é"")) sense. In order to lighten the formula, we have dropped
the argument-dependent part. However, we do stress théx(ke®) as well as[H,ﬁ{;fg})]mp’b’T depend on the same

set of variables aH,(ﬁ;(). Also, we agree upon = 1 for 1o > q, n = -1 for |1g| < q and we made use of the
shorthand notation

¢, = @U@y 2@ o = @PUEACD  gnd e = (1 + ) €U (B.52)

Finally, the functions{Hg{;i})]mp’b’T are only supported on a small vicinity of the poiaig and . In such a case,
the contour of integration reduces to an integration fohezriablez; to a smalloDg,,. aroundv, (V. = =0,
Vo = Ag). These functions are such that

Their dependence axis as follows. If a variable; is integrated in a vicinity o, The function[H,(]{;f(‘})]mp’b’T
contains then a fractional power ©fl2@)—() ‘multiplied by a function of; which has an asymptotic expansion
into inverse powers ok. This asymptotic expansion holds 6@g,.. The codicients in this asymptotic expan-
sions contain poles & = v.. By computing the integrals associated to the terms in thysnatotic expansion
through the poles & = v, one obtains that function cficients associated to" terms producen fing a contri-
bution that is In x/X)". Finally, the structure of these poles is such that, uponpedimg all the partial derivatives
and for any holomorphic functiohin the vicinity of the pointstq, 1o, one should make the replacement:

Z &th(z) = b (h (o) — (=) +(m-7yp) (h(q) - h(=Q)) + (01 + 6r:-1 + (1 + 1) 67,0/2) h(v) . (B.53)

tEJ( )

There is one last property which we conjecture to be trueHerdetailed representation (B.51) Hﬁ;i‘}) but
that has not been proven so far. Namely,
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Conjecture B.1 For a given n the sum i{B.51) only contains those combinations of the integergyh andr
that satisfy to the constraint

(m—np+6ﬁ1)2+b+(m+n(b— p)—6T,_1)2 >n. (B.54)

C Multidimensional Fredholm series for lim N%mp(m) (%, 1)

We begin this appendix by deriving the so-called discreelticimensional Fredholm series representation for

pg\lm)eﬁ(x t). We will prove in theorem C.1 that this representation hasell defined thermodynamic limit that
we denoth(m)(x t). This analysis will allow us to provide in proposition C.1tymother representation for the
thermodynamic I|m|1;o(m)(x, t). This alternative representation fpg;‘)(x, t) is used in subsection 4.6 so as to

construct the multidimensional Natte seriesﬁ@)(x, t).

Theorem C.1 p(m) (%, t) admits a well defined thermodynamic Ilmi'gf)(x t) that is given by a multidimensional
Fredholm series

ngm Ao n n+ XU ({1 al ) n+1 3
(m)(xt)_zc(nll) d fd/l 56 d"z fd ly ¢ Yali") 10t f(Yk,VV(Yk))deh[(yml zk)]

m_q (2iﬂ)n(p (Ziﬂ)n% 2in)™ TTeoq (2 — ) (Yk—Zk) (Yne1 — A) Za— Ap
n n+l
I[TIIM—Aa—-ic)(Ada—Yp—ic) n d 5 v, d 5 /v\
X ni‘ll =1 1_[ {asirP[ryv ()]} emgkﬁy k;[:r] det;[lkf +Ky2:€ 1} :
100y —i0) T1 (ta=do—ic) & otll +yRj2e]det i —Kjor ]

(C.1)

The function f appearing above is supported on the con®®us %é"") v % The contoury is a small loop

around| —q; q] whereasz, is a small loop arounds,,. Both%, and %, lie below the curvéﬁé"") as depicted on
Fig. 6. All of the aforementioned contours lie inside of thigpdJs (2.15) The function f is supported c#i and
reads

1 , w) |
(o O) = LoW - Smg—gla®  wih  ¢=6 0. (C2)

There1a stands for the indicator function of the set A. The functicappearing in the R-summand of(C.1)
corresponds to the unique solution of the linear integraliapn driven by the resolvent R of the Lieb kernel
(ie [I - K/2x][l + R/2x] = I):

n+1

V(D + yf—Ru W) =-Z() /2 + Z«su EDWICAE €3)

Hence,v depends on the integration variabldg (witha = 1,...,n)and y (witha=1,...,n+ 1), iev(1) =

(/1 | {a)] {ya}”+1) We kept this dependence implicit(in.1) so as to shorten the formulae. The entries of the
finite-size determinants are as defined4r®). They depend on the same set of auxiliary variables. &nally,
we agree upon

n+l

U 2™ 1) = 300 - Zuoua)+(1 » f U@ Y. (c4)
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Figure 6: The contou(rféw) consists of the solid line. The conto corresponds to the union of the solid and
dotted lines. The loof# is depicted in solid lines whereas the lo6pis depicted in dotted lines.

Proof —

In order to implement the substitution of the operat@ysandd,, , (cf section 4.3) in the representation (4.42)
we introduce, exactly as it was done in the proof of theorel #he functionsE_ (1) (4.52) (whose definition
involves the functiong = 01 s + 02 cf (4.53)) as well as; (4.37) andw; (4.33).

We then consider the discreet Fredholm series represemtati 97'Xy [yvs, E ] obtained in proposition
B.4. This will allow us to compute the relevant Taylor fiogdents €f subsection 4. 3 equatlon (4.21) and (4.22))
arising in the representation (4.42) @\I;eﬁ(x, t). One has that

m (N+1
a {HE () - HE (1a) - XN [yvs,Ez] A(@AL [wr]} _
ly=0
O (=1)" _
Z::I( ) Z é‘(zln_)zn (2I7T)n+l f—u_)) [ﬁl in ’;(?A . (C.5)

n=0 ..,
|ae|[l N]| tq

The contoursg®, ¢q have been defined in proposition B.4. We stress that the stiom@vern in (C.5) could
have been stopped at= m since, prior to taking the-derivative aty = 0, then™ term of the series (B.41) is a
smooth function ol that behaves as @"). We have set

.....

Fir o yve = l_[ { 4sirf [ryvs(4i,)] } Tt O yvs (W) [yn.ﬂ—zJ

wdet, ']eix'u(”(uk};{uk};{yk}ly) , (C.6)
L A 4 — 4 — — 2 A
k=1 gy"s( 'k)( Ik) I I (Yn+l /llk) (yk ) “ *

the functionf(L(y, v (y)) is given in (B.42) and we have set

n+1 n N
UOQA s d 0 1Y) = DU = D ui) = Ulanea) + Y () —uuy) . (C.7)
k=1 k=1 k=1
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Last but not least,

mo s (%) gm M1 o o) s
® 1_ a | 4 [Ty e np
(L) [ i1, Ingy 2A|_] Z 1_[ {np! } aym{eal,s(llN+1) HE:l eﬁl,s(#iﬁ 1_[ ')’VS (tp)

n1,=.-6ns p=1
N+l N _ n+l
% n e T2r(u)) n 92 (A7) l_[ 200 7 i [¥vslly-0 gy"(g)AL [wr]} . (C.8)
j=1 i=1 sa=0 ly=0

The functionall'") is evaluated at the discretization point (efinition 4.2, subsection 4.4 and subsection
4.2)tp, p=1,..., sfor the contouréy: encircling the compadty. Gout has been depicted in thies of Fig. 1.
The functionall™ reads

N
O] (w) = Z d(u,uj)— @, 4;))  with pj and; defined by £(uj) = j/L and &,(4j) = j/L . (C.9)

We do stress that the variablgg with k = 1,...,n+ 1, andup or 1p with p = 1,...,N + 1 appearing
in (C.5)-(C.8) are all located inside of the comp&gh, , whereA is such that ¢ (-A.) = -w. — 1/2. As a
consequence, the singularitiestat t; , of the functions, (1) (C.8) are always disjoint from the variablgg 1
or A;,. Indeedty , andty , with p = 1,...,r stand for discretization points of the contc£luyin appearing in the
rhsof Fig. 1,cf subsection 4.4. These two contours are such %in, K2a, ) > 0 uniformly inL.

According to the prescription that has been adopted inaedti3, one has to compute th#' y-derivative of
representation (C.8) prior to implementing the operattisstution. For this, consider any smooth functiwiy)
such thaw (y) = O(y") aty = 0. By applying the Faa-di-Bruno formula, we get that

am N wiad() N 1 9% 9%
| | 20(a) 7 16) | | = Z [fr(ap) 7 6)
ﬁym{wm a:l_eg Fron (7] }wzo {; o1 0o }ly:oxayf’o {%ZAL [Wr]}w:o

{o! 5N+1'

..... p /l(J) Kp.j 6[0
.n<,-—‘:> } (7o) - ©10

There the in front of the sums indicates that these are constrained.fif$t sums runs through all choices of
N + 2 integers!, > 0 such that

W(£’N+1)(o) N 6|k |e§2,r(‘l' )
SOy {5

a foy 1 oy
|

Tp=Hp

N+1
ti, =0, for p=1,....,n, {¢N;12n and Zﬁp:m. (C.11)
p=0

The second sum runs through all the possible choices of segs®f integerk j with

fp
p=0,....,N and j=1,...,{, suchthat ijp,j ={p. (C.12)
j=1
Finally, we agree upon
lp
|ko| = > knj and have set 4§ =3} [ (vp)]yp=0 With &, (1p) = P/L . (C.13)
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In (C.13), we have explicitly insisted on the fact thigtis a function of the parametef,. By substituting the
representation (C.10) on the level of (C.5)-(C.8), one caplement the operator substitutiepq — J., and
bjk = dy,, on the level of (C. 8)

The functionalsr, andg 2A

large enough, an@y deflnmguﬂ0 is chosen in such a specific wathat the constant of regulariy,, _ of %YA(’;)AL
satisfies (4.31), one gets that

are regular in the sense of definition 4.1. Moreovel, and hence &, are

(Sal§ o Firin [yvsC Hsal]  and  {aply Utnzpls = 90 @ (-1 17ap1)] (C.14)

are holomorphic in respect {9a}; € N, {n1,p)]Uln2,p)] € Ngr, where/Ng is anr andsindependent neighborhood
of 0 € C. As the constant of regularit§,, is large enough anf}| can be taken small enough, the size of the
neighborhoodVy is large enough in order to ensure the convergence of thessefrdiferential operators issuing
from the exponentials¥% and &2, once upon the operator substitution is carried out. Irueixf corollary D.1,
and similarly to the summations (4.56)-(4.57), the actibthe translation operators can be computed directly
under the integral sign in (C.5) (the integration contowem@ Cartesian products of one dimensional compact
curves) and prior to taking the partigd or y-derivatives in (C.10). There are also thé&eliential operators arising
from the substitutions, < 4d,, in (C.8) for those parametess, that are written down explicitly. The resulting
d,,-derivatives should appear outside of the integrals thataitten down in (C.5). However, the integrand of
these compactly supported integrals is a continuous fomaif the integration variables that is holomorphic in
respect tosp}3, this uniformly in respect to the integration variables. asonsequence, one can exchange the
derivation and integration symbols in this case as well.

Note that the constraints (C.13) on thg’s ensure that in (C.10) there is at maost nintegersk, j that difer
from zero. As a consequence, there will be at nmstanslation operators in respect to thg variables to take
into account once that the operator substitution is madereNeecisely, the substitutionjx — 4d,,, shifts the

parametergj in @ (1, {njx}) (4.33) to the below value

T]j’k = nZJrl i + Z ! , (C.15)
1 lik—Yp 4 ik — Hip th—#N+1 tjk_Tp k- Hp
[p:ﬁO

where the ulimate sum in (C.15) only involvesterms. Under the substitutioa, — d.,, the exponentials in
(C.8) produce a translation of the functiea— v, where

Vs(; {sa)) = vs (1; {ca}) + Z e ml ) { (tjnuN+1) - ¢(tj7yn+1) + Z ¢(tj’ﬂia) - ¢(tj’)’a)} . (C.16)

=1 2|7T t] -1 a=1

After carrying out all these manipulations, we are led torg@esentation

(m) _ 1)” ™Y 7
PN; eﬁ(x 0= IILnO sl—lmoo rI—I>Too I Z é (Zm.)Zn f (2i )n+1 F('-) [ﬁl in 72A|_] ) (C.17)
I

fin particular it depends on Icf lemma A.2
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whereL(r'(“L)) is a truncated Lagrange series:

p=1

m £ s
) 1 1 ON+L _ n .
LD F o] = ). l_[{n } ekl [ L O RN e
s ly=0

N o G Vel g0 N ikl
XZ/ U | [ﬂi] i l_[ a—X{gy’\(é)&[wr(*l{m,k})]}'y:o . (C.18)

JI 33’[" a=1 aTLll(al Ta=Ha

We now take the — +co limit of (C.17)-(C.18). The very construction af; (4 | {;k}) along with the choice

of parameters;;x given by (C.15) associated with the fact tlﬁﬁy@AL is a regular functional with a $iiciently
large regularity constant, leads &f proof of proposition D.1)

n+1
im 79, (o] = 79 [H( YalT*! U {ralar,ro )] C.19
M Gy o (@] =9, * {ia}1 U {une1}t U {tada, 20 ( )

this uniformly inya, a 12 andr, belonging toK,a, . This uniform convergence also holds in respect to any finite
order partial derivative in these parameters. The unif@ssrof this limit in respect to the integration parameters
occurring in (C.17) allows one to take it directly under thiegral sign over a compact domain.

As a consequence, we get that

_ N e (0D Ka 3 N plkal )
i 3 L] 5 1 <o rmal
; a=1 =1 Y a=1 aTa Ta=Ha
et 370, s
N
1 Ma{Aw [ (‘{%PHULlw)W
= — @GV H (= & aal)]} . (C.20
l:([) £a| 5723 r0i2AL {ﬂa}T+lU{ﬂia(Yia)}2 lya=0 ( )
#11,...,In

To get therhs of this equality we have, in addition to exchanging the Isvdhd derivatives, applied the Faa-di-
Bruno formula backwards. The constant of regularit@f)ZAL being large enough, the actionféfg)ZAL onH as
written in the second line of (C.20) is indeed well defined.

After collecting the various, derivatives into a single one, we arrive to the represemati

m S S
. 1 9™\ om _
r'LTwﬁ(r'IB[ 11,.+1n yzAL]_ Z n{na! agga} {n F(L) Lyvs] (ta) Tigedn [Wsl}y—o - (€21
a=

nl,..(.),ns a=1 ga_:o
where we have set
~ { }n+l U {/l }N
.1 ..... |n [yvs] = Ti’l:-..,in [)/Vs] g}//\(’ﬁsz [H (>l< {/i/z}N+l {/{T‘ai? . (C22)

Since, no confusion is possible on the level of (C.21)-(;.2%2y-dependence of the parametgpsp=1,...,N
is kept implicit again.

The truncateds-dimensional Lagrange series (C.21) together withsits> +oco limit has been studied in
appendix D.5.2. It follows from the latter analysis that ge> +co limit is uniform in respect to the parameters
({YK}n+l, {z}}) on which i, i, depends. Therefore, this limit can be taken under the iategigns. Similarly,

.....
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one can exchange the limit with tmg" y-derivative symbol. It follows from the results gatheredaippendix
D.5.2 that

o om 5T [p]
i, i, 22171 0] = 0] el ] e

S—+00 [ —+00

The answer is expressed with the help/8, the unique solution (fop-small enough) to the non-linear integral
equation driven by the function&fV):

NI N £ (@)
W =08-2/220) -9 (1.0 + (L) = D601y - Z p(L12)  with { w<1>(a/L)
Ha =
ill ..... |n
(C.24)

Also, in (C.23), appears the Fredholm determinant of theslinntegral operator acting on a small Iagparound
[-q:;q] whose kernel is given in terms of the functional derivathfé® [p] () /6p (). The definition of the
functional derivative is given in (D.11).

Lemma A.4 allows one to reexpress the functioﬁ%@AL appearing (C.22) in the case where the parameters

Aa andy, are defined exactly as in (C.24) in terms of the unique salutib.
This leads to the below representation:

M 1y - N0 (D" T dmly asirf |myr )| [ 1 ]
pNEﬁ(X’t)_[I?ILnOnZ;)C n! aym Z SE(ZUT)Z” (2I7T)n+1 {Lgyv(L)(/llk)(zk /llk) deb Za_/lib

|ae|[1 N]| %
n n+l . .
y n ( Vil — Z ) T R B 1§ T_Il(yb i, = i¢) (i, = Yp —ic)
— — (L) n+1
1\0he =20 O = ) deagq[l N had (ll)] [T 6a-3-19) [1 (- 4y i0)
op ({) p=yy(L) ab=1

) I O (v Oiyi)
deTN.'_]_ [E(,u) [é:] ] detN [E(/l)[gyv(l—)]]

Above we have written down the dependence of both deterrtsrar4;,} and{y,} as a common argument.
There is no problem to carry out the analytic continuatiofGr80) frompg € Gﬂo up toB = 0. The potential
singularities that could appear in the determinants areskiemcanceled by the prefactpfy_, sir? [ﬂyv(")(/lik)].
From now on, we can thus sgt= 0
In order to prove the theorem, it remains to take the thermaahjc limit of (C.30) ag = 0.

(dem [ + PVl D1] dety[61c + Wil ]])(u.a}l, ali™) (C.25)

L — +oo behavior of (1)

It was shown in this appendix that) admits a largel asymptotic expansiont™(1) = v(A | {4,)]; {YalT) +
O(L™1). There the O is holomorphic and uniform in some open neididomat of the real axis and the function
v(2) = v(2 | {Ai)], {Ya) n+l) stands for the unique solution to the linear integral egma(C.3) (here we have
already seB = 0).

As all of the functions we deal with are smooth functions/6t, we are thus able to replace everywhefte
by v, up to O(L ™) corrections.
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Building on the largd. asymptotics of (V) andv(M it is shown in subsection D.5.2, (D.43)-(D.44), that

oV [p] R -
i = def_qq) 1 +75.|(1+0O(L)) . (C.26)

with a O that has the same uniformness properties as statek bé\bove, we did not insist that the Fredholm
determinant defl + yR/2r] corresponds to an action ¢rq;q].

detcgq | —y

)

p:yv(l—)

L — +oo limit of ¢/

The thermodynamic limit of/(Y ({14} ; {ua) ; {ya} | 7) is readily computed by using that

VV(L) (1a) + P (ua)
L 2n

£ (a) - £,,0(1a) =0 = - (a—1a) + O(L7?) . (C.27)

The remainder (@L‘Z) is uniform ina e [1; NJ and holomorphic in respect to the variabigsandz, belonging

to Us/2. By using the Euler-MacLaurin formula, the linear integeglation (C.3) satisfied byand the integral
representation (2.13) farone gets that

U1 5 a5yl 1y) = U({ )5 alT™ 17) + O (L) (C.28)

with a O that, again, is uniform and holomorphic in respegiif@r y, belonging toUs,,. It is also holomorphic
in R (B) > 0.
By using the densification of the parametegsandu, on[ —q;q], itis likewise easy to check that

dety,1 [E¥) [£] ] dety [EW[¢,,0]] = def [I - K/2x] - (1+O(L?)) . (C.29)

L — +oco limit of the remaining terms

It is also readily seen due to the densification of the pararsgt on [ —q; q] that the sums over the discreet
setsq;, can be replaced by integrals oJerq;q] up to QL1) corrections. Finally, it remains to estimate the
contributions of the functiong®. If one focuses on the contributions of the integrals ogela = 1,...,n+ 1
along the curve;, .. and%pqL, then one readily convinces oneself that one deals withytpe of integrals
studied in the proof of proposition B.1. Namely, these aexisely the integrals appearing when deriving the
estimates for the functionaléL) given in (B.6). Clearly, each of these integrals can be egtiohsuccessively.
By repeating word for word the proof given in proposition Bahe has that each of these integrals produces a
O(L/w.) = o(1) contribution. Hence, this part of the contdd) does not contribute to the thermodynamic
limit.

As a consequence one obtains the following represental'rqu”;l")eﬁ(x, t):

- C( l)n om dn+1 eIX‘Ll({/la {Ya} +l|7’) Hm'l f(yk, yv(yk)) [Yn+l - Zb]
(x1) = ! f 56 (2in)2 e

Y A+l -
e A [CEY AIVEESVRED I
n n+l —~
[TT1(-2a—ic)(da—yp—ic) n det, |0k, + ka [V(L)] det, |Ske + ka [V(L)]
% nefll b=1 l_[ {4 Sir? [FYV(L)(/lk)]} [ 4 ¢ ] [ ¢ ¢ ]

T 0 —yo—i0) T (s — o — ic) K1 det[l +yR/2r] def [l - K/2x]
ab=1 ab=1

X (l + 0(1))|7:0 . (C30)
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In order to obtain the representation (C.1) for the thermadyic limit it remains to drop the @) corrections.
[ ]
We now provide an alternative representation for the thegmamic I|m|tpex)(x t).

Proposition C.1 The functiorp(e’QE(x, t) admits the representation

(m)(x t)= lim lim lim lim

W—+00 B—0 S—=+00 F—+co

m - f [ixu(D)+g' ()] yvs(D)da .
{E @e X [yvs B2 99, [wr]} . (C.31)
- ' ly=0

The contoufg("") CK("") {z eC : |% (z)| < W} corresponds to a compact approximatio@f"’) as depicted
in Fig. 2. Itis such thasvlmg %é"") = %é‘”). The functional Xw has been defined i8.34).
— 400 E

The functionagy(fgz)w [@] appearing in(C.31)acts on the loog¥ (K2w) and has been defined in lemma A.1.

The compact approximatidﬁé"") of the contoufﬁé"") appearing in (C.31) is there to ensure the well-definiteness
of the translation operators. Indeed, in the setting dsedisn subsection 4.15 and appendix D, the translation
operators area priori, only defined for functionals that involve the values of thaigument on some compact
subset ofC. As a consequenca,priori, thew — +co limit andr — +co limit do not commute.

Also, theg — 0 limit and thew — +oo limits do not commute. These limit should be understood Hsvis.
Givenw fixed and large enough, one considers the regular functféy@a‘j as introduced inlemma A.1. The value

of w defines an associat@g € C andyg > 0 such thaf?y(@w is a regular functional fg8 € Gﬂo and|y| < yo with a
regularity constant large enough (in particular satigfydn31). TheséR (Bp) andyg are such thal (Bp) — +oo
andyp — 0 whenw — +oco.

Proof —

Let E-2 be as given in (4.52)-(4.53);s as in (4 37) andwz; (4.33). In order to implement the operator
substitution, we first expand the functlomiﬂ(m v, E?2 2] appearing in thehs of (C.31) into a series very similar
to the one occurring in the proof of proposmon B.4. The saleeption is that, this time, the sums ovgs
are directly replaced by integrals oVerq; q] of the corresponding variables. Also, the functit? (resp. its
associated contous’ ™) should be replaced bf (resp.4'™ = 4 U %). At the end of the day, one deals with
the multi-dimensional Lagrange series below

q
lim lim lim |( L d'A dz d"y
W—+00 S—+00 [ —>+00 n! (2i7‘r)n (2i7T)n (2| )n+l
n=0 -q %q

Y_ 7o [749,] - (C.32)

The functional¥ appearing above reads

—ixu(/la)
T [)/V ] I"I+1 f(yka VVs(yk)) ( yn+1 - Zk ) . det,l [4 SlrF[ﬂ"yvs(/lk)] ] —IX fq ’(/l)yvs(/l)d/l —IXLI(q) a=1
s| = - U/ evA
kﬂl (2~ ) (Y — 2) ket Vet~ % A i —
= a=1

And we have set

m s Moy am Ml s) S
A [ B) ] [ap] ™ @ [T e o
o [¢gy;M] B Z 1_[ { np! | oy™ | ehs(@ [Tp_, e9rs(t) g {F [yvs] (tp)}

Hn+1 e9.s(¥k) f [ (Dyvs(A)da

e01,5(a) Hk— e, s(/lk) 7 [')/Vs]

Sa—

2)W[wr]} . (C.33)
[y=0
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The functionall” is evaluated at the discretization poitgsp = 1,..., sfor the contouré,,: appearing in the
Ihsof Fig. 1.

One can implement the operator substitution on the levelCo83) as it was done in the proof of theorem
C.1. The well-foundedness of these manipulations (in @ai the justification of the exchange of various limits,
partial derivatives and integrals over compact contowrg)stified along very similar lines. Once upon taking the
r — +oo limit we end-up with the below multidimensional Lagrangeie

L [FeB )= > 11 {ntl :gp} a% {n{r[ws](tp)} F [va]yo% [:] }W:o' (C.34)

Ng,....Ns p=1 =1 =0
-5 p:

There, we agree upon

S n+1

~ X _ . tb+1

Vs (A {sal) = vs (4 {sal) + bzlm{d’(tb q)+Z¢(tb, L) - qu(tb,ya)} (C.35)
Also, the functionw is to be considered as a functionahaf
n+1 n q
1 YVS(T)

A) = _— - C.36
@[5 () = Z 2T P (C.36)

The multidimensional Lagrange series (C.34) has beene;iundlappendix D.5.1. lts — +oo limit is uniform
in respect to the auxiliary parametérs}], {Z}} and{ya}Tl. Hence, just as in the proof of theorem D.1, one is
allowed to exchange the — +co limit with the integration over the compact contours. One t&n apply the
results of appendix D.5.1 leading to

F (90, @ V] }
0

o 1+ %7271 . 2

m,
Jim 07 a,) - 2f
The functiony appearing above is the unique solution to the linear integgaation (C.3). One can build on
this result so as to simplify the obtained expression. Thmession for the functional functioﬁy(f’z)w[w[v]] is
simplified with the help of lemma A.3.

By using the linear integral equation satisfiedhbtpgether with the representation wfn terms of¢ andug
(2.14), we get that the oscillating factor presenfilyv| coincides with the one appearing in theorem C.1:

n+1 n q

Dlulva) - Dlula) - u@ -y f W (2) v () d1 = U (14a)]. tyal T 1 ) - 2iBpe - (C.38)

a=1 a=1 —-q

We are thus led to the below representation forrtigeof (C.31)

lim
W—+00 —0

lim ez"ﬁpF ) C(=D)" a7 f 95 ety @XUAITNRI) [T £ (v, yv(yid) eh[ym—zb]
T (2I7r)2n (2I7r)n B B Za— Ap
H (zc — ) (Vi — 2) (Yne1 — i)

n n+l )
11 0b-da-ie)(ta-¥-ic) det 6 + YWie Y]] detn |8 +¥Vie ]
= n[45ir‘2[ﬂw(/lk)]] [ KT V] [ ke +¥Vke v]

n+1

[T (Ya—Yb—ic) H (Ada— Ap —ic) k=1
ab=1 ab=1

det[l + yR/2r] def [l — K/2x]

(C.39)
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Tha auxiliary arguments of the entri¥g [v] and Vi, [v] are undercurrent by those of
One can carry out the analytic continuation frgne Ug, up tog = 0 as the potential singularities of the two
determinants are canceled by the pre-facigfs, Sir?[zyv(Ak)].

There is no problem to take thve — +co limit of the above integrals. Indeéﬁ’é”) is chosen in such a way
that &U0), a = 1,...,n + 1 is decaying exponentially fast i wheny, — co along%t™. As the rest of the

integrand is a @Qy3), a = 1,...,n+ 1 at infinity, the integrals alon@é"") are convergent. Once upon taking the
B — 0 and thew — +oo limits, we recover the representation given in (C.1). [

D Functional Translation operator

In this appendix, we build a convenient for our purposesasgmtation of a functional translation. Our repre-
sentation applies to fliciently regular classes of functionals acting on holomarphnctions. Our construction
utilizes multidimensional Lagrange series (see eg. [1]).

D.1 Lagrange series

Theorem D.1 [1]
LetDor ={ze C : |7 <r}. Assume that

o ] ({ga}i), j=1,...,sand f({ga}i) are holomorphic functions dta}$ belonging to the Cartesian product
S .

or?’

o there exists a series of radij k r such that forlgj| = rj, j = 1,...,s, one hase; ({sa})| < rj.

Then, the multidimensional Lagrange series

is convergent and its sum is given by
f ({za})
0

det | — P ({sa})

L= (D.1)

Hsa=(za}

Above,(z, ..., zs) stands for the unique solution to the system=zyp; ({za}) such that|zj| < rforall j. The
unigueness and existence of this solution is part of thelasion of this theorem.

D.2 Some preliminary definitions

Throughout this appendiXyl andK will always stand for two compacts @ such thatk c Int(M), M hasn
holes {e C c M hasn bounded connected components) &idi can be realized as disjoint union# 1 smooth
Jordan curvésy, : [0;1] —» M = U™1y,([0;1]).

a=1

we remind thaty, satisfiesya (0) = ya (1) andyayq 1 is injective.
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Let h be a holomorphic function ol and set

s(41 ii Al tap ii(tmﬂ fag) h(ta.p) (D.2)
S'ap + ap) » .
p=1a-1 2'” taulo—/l p=1a=1 2'7T tap )

The pointst, , correspond to the discretization points v associated with the Jordan curvgs as given in
definition 4.2. It follows readily that the functioh— fg(1 | {¢a}) is holomorphic in1 € K. Moreover, given any
holomorphic function (1,y) € @ (M x Wy) whereW, is a compact irC%, £, € N, one has that

v(g,y)+h(@) . _ : .
fs(21{r (tap-¥)}) o fmdg =v(Ly)+h(1)  uniformlyinleK andyeW,. (D.3)
oM
This convergence holds sin€g A,y) = v(Z,y) + h() / (¢ — A) is uniformly continuous 0@M x K x W.
In the following, given a holomorphic functiomon M (and hence also on some open neighborhool pf
andS a subset oM, we denotdlhl|s = sup.g [h(9)!.

D.3 Pure translations

We are now in position to establish a representation fostedion operators for functionals acting on holomorphic
functions.

Proposition D.1 Let 7 [-](2), z € W, c C% be a regular functional in respect to the pdiM, K) and let the
functions §, v and h and the compacts M and K be defined as above. Then, fcémahy e kgy) e Niy+1

n+l m by ok gm

k] S
lim 1—[ 5_kj 11 e(tap¥)dsap . %T{yfs (- 1 {sap})| @ == ay" ; —F [y (. y) +vh ()] (D .

Sap=0 =1
Above, the inside of the argument of indicates the running variable dricl the functional [-] (y) acts. This
convergence holds uniformly (i, y, z) belonging to compact subsets®4,,, x Int (W) x Int(W,), where

Cq: ﬂd(aM, K)
2|Vlimsow, + [hllp 10M] + 27 d(OM, K) ’

3yo = (D.4)

|0 M| stands for the length @GfM, d(0 M, K) for the distance of K téd M and G > 0 is the constant of regularity
of 7. Finally, Do, = {z€ C : |4 < yo}.

Proof — We first consider the case= 0 andk; = - -- = k, = 0. We assume thatis taken large enough so that
s n+l
p=1a=1

Then, forly| < 2yp and|ga| < 2]|vlIm, ONe has

S n+1| —t | 2|(9|\/||
f ( h ) Laprt — apl ( h )— , (D.
[yt (21 tapl)| < suplsa| Il xp§_la§_ i ] < suplsa| + Il 5y < Cr - (D6)
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Hence,
(y, {Sap) z) = F [yfs (* | {gap})] (20 is holomorphic in (y, {Sap) z) € Do2yy X Z)S(gﬁvln) xW,, (D.7)

this for anyslarge enough. As a consequence, the below multi-dimenisi@ysor series is convergent uniformly
in (y,Y, 2 € Doy, x Wy x W, and

s n+l +00

V | s n+l (t ,Y) Nap oMap
[[[]ee 7t rlsl@], o= 2 TGS 7 b sl

p=1a= Nap>0 p=1 a=1

[y

=7 [yfs(x1 Mtap V)| D . (©-8)

Moreover, for anyy € Wy andy € Do, 2y, ONE has the bourﬁavf v(ta,p, y)})HK +y1 (v G Wk + lIhlk) < Cg.
As a consequence, by (4.15)

7 [yfe (1 (tap Y] @) = F [y (3 + ¥0 (9] )| Do, X

fs(1 {(tapy))) - vy -h|| = 0,

\Ny S—+00

< yoC’

due to (D.3). The norm in the first line is computed in respediyty, 2) € EOQY0 x Wy x W,. The one in the
second line in respect (@, y) € K x W,. We insisted explicitly on the variable-dependence of theefions so as
to make this fact clear.

It remains to show that the convergence also holds unifoonlgll compacts ofDq ,, x Int (Wy) x Int (W)
when considering partial derivatives in respecttg, . . ., Y, of finite total order.

One can exchange any such partial derivatives with the Tagides in (D.8) in as much as its partial sums
define a sequence of holomorphic functions that is uniforcolyvergent 0@0,2)/0 xWy xW,. The same arguments

can be applied to the sequence of holomorphic functiBfsfs (+ | {v (tap. ¥)})] (2) - n

Corollary D.1 Assume that the conditions and notations of propositionHaldl. Letz(4) = €1 % -+ X ¢y, and

¢ = ¢, x---xE,, be Cartesian products of compact curvesisuch thatz (%) c Int (W) and €@ c Int (W,).
Then one has

. s m+l 1 oNap ty (9 s n+l n&p am
Jm, Z nn{(nap)'ag”w} f[yyfdfz na_ lp_[ [ (tap )™ Z57 s+ Hsan) | -2

— =0
Nap=0 p=1 a=1 o) ) =1 1la= Sap

fdf’vyfdf’zzﬂ kam Tl (s3) + 5.2 . (09)
RO R

this uniformly iny belonging to compact subsets®§,,.

Note that it¥ depends on a third set of variables belonging to a compactesults hold as well in respect to
this third set uniformly on the compact.

Proof —
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Proposition D.1 allows one to conclude, in virtue of the anifi convergence of the sequences, thatyfor
belonging to compact subsets©f,, one has the equality

+00 s n+l Nap ty kj .S n+l ap
im, 3 fovferl 1T a5 LT Tb ™ S5 b1 sl o2

- nap'ag R AR cap=0
nap_O%([y) 20 p=1 a=1 j=10Y; p=la-1 ap

[y akl m

- f dory f oz | Lo [yv () + ()] (1.2 . (D.10)
i—1 OY. Y

¢y)  gle)

The integrals occurring in the first line of (D.10) are ovemgaact curves and the integrand is smooth in respect
to the integration variabley, z) and the auxiliary parametesg p. As a consequence, the parijgl,-derivatives
can be pulled outside of the integration symbols. [

D.4 Weighted translation

One can generalize the notion of functional translatiorhlie help of multi-dimensional Lagrange series and
consider more complex objects. For this purpose, we neattrimduce some more definitions. Also, from now
on we only focus on the case of a compBttvithout holes.

LetI'[-] (u) be a one parameter family of functionals such that:

e There exists a consta@ > 0 such that ifv (4, y) is holomorphic in(4,y) € M x W, with W, ¢ C% and
IMlkxw, < Cr then(4,y) =T [v (x, ¥)] (4) is holomorphic inM x W,

e There exists a contof in Int (K) such that fot|p|| + |I7llk < Cr one has

oI’ [v]

Sy ({) (“)|v:rd§ + O(Hp_THK) . (Dll)

Flo] () Tl () = f<p— Y

oL [v] (u) /6v (&) will be called the functional derivative @f. This functional derivative is such that, for any
7 holomorphic onM with ||7||x < Cr, there exists an open neighborhodt{%’) of the contours” in (D.11)

such that
(1, ) > 52”(];)“) - is holomorphic inu, ) € M x V(%) . (D.12)
e There exists a consta@y. > 0 such that fofir]|x + [[vllk < Cr one has
T[] Wiy < Cr vl and IC[7] () =T [v] Wy < Crllv—llk - (D.13)

The properties of the function&l[-] (1) ensure the solvability of an associated integral equation

Lemma D.1 Let the compacts MK and the one parameter family of functiora]-] (1) be as defined above. Let
he ¢ (M) andr, y be such that

2|0M| )< r min(1, Cr)
2xd@M.K)) = 2(r+ )

, (D.14)

2yo(r + IIhllm)(1+

. and Il'ryo(l+ 2|10M| )<m|n(1,Cr)

27d(M, K) 2

Then,|y| < yo, there exists a unique solutignto the equatiornp (1) = T [yp(:) + yh(-)](2). This solution is
holomorphic in(4,y) € M x Doy,
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Proof —
Suppose that andp’ are two solutions. Then fgy| < 2y one has, by construction @, that|y||[o + hllx +
lylllo” + hllx < Cr. As a consequence,

lo=¢|ly = Iy e+ M =T [y + 0|, <2CHollo =0 |l <lle=¢1ly - (D.15)

Thereforep = p’ on M, this uniformly inly| < 2yo.
In order to prove the existence, one considers the sequérm@amorphic functions oM: hy = h and, for
n > 1hy(2) = h(2) +T [yha-1 (-)](2). Itis readily seen by straightforward induction that, forrac N and|y| < yo,

Yollhnllk < C/2 and IPn+1 = bl < llbn = hn-allv /2. (D.16)

Hencehn is a Cauchy sequence in the space of holomorphic functioriat¢K). It is thus convergent to some
holomorphic functiorh on Int(M). Sinceh (1) = h(2) +T [37] (1), it can be analytically continued to a holomor-

phic function onM. Then, the functiop = h-h solvesp (1) =T [y (o + h)] (1).
[ ]

Proposition D.2 Let fs be as in(D.2) and assume that the functiong[p] («) satisfies to the assumptions given
above. LetF[](2), with ze W, c C%, be a regular functional in the sense of definition 4.1. Set

Lr(y,2) = SETOO : ﬁ o[ fs(xlisp) ] (t)dg, 7"[71‘5 ( | {S‘p})] | . (D.17)
r=1

§p:0

where: - : indicates that the expression is ordered in such a way tHahalpartial derivatives appear to the left
(cf. subsection 4.3) and &re the discretization points éfM.

Then there existgy > 0 such thatLr (y, 2) defines a holomorphic function 6f, 2) € 50770 X W,.
The convergence of the rhs (B.17)to Lr (y, 2) is uniform onDy,,, x W,, and this in respect to any partiad or
z-derivative of finite orderLr (y, 2) is given by

¥ lyel (2)

o' [v]
dets | —75V (1) @) v=yp

In the denominator appears the Fredholm determinant of itheal integral operator acting on the contow’
with an integral kernebr" [v] (1) /6v (1);,=,,- The contouré is defined in(D.11).

Lr(y,2) = with p being the unique solution top (1) = h(2)+T [yp] (1) . (D.18)

Proof —
We have, by definitionfr (y, 2) = lims_, o Ls(y, 2 with

Lo(7) = Z n{n, o nr”r[yf( R TRl (0.19)
----- Ns r Ga=

The above series representation #y(y, 2) corresponds to a particular case of a multidimensional dragg
series.

We start by checking the convergence conditions. Catenote a common constant of regularity for the
functionals7 andT, ie for anyv (4, y) € & (M x W) , with Wy ¢ C% such thaivllw, < C one has

FlvEN(D) e ﬁ(Wnyz) and T[v(.Y)](D) e (MxW) . (D.20)

65



Then letr > 0 andygy > 0 be as given by (D.14) but witG being replaced witlC, s be large enough so that
o1 lta — tapa] < 2/0M[ andly| < 2yo. It then follows from (D.6) thafly fs(- | {sa})llx < C. Itis also easy to see
that for|gp| < r and for anyt, € M, one hasl[y fs(x | {sp})] (t;)| < r/2. Therefore,

o T[yfs(x [{sph] (t),r = 1,.... sand¥F [yfs(x | {sp})] (2) are holomorphic functions dt} in D, ;
o for sl = rewithk e [1; s] one hagI[yfs(x | {sp})] (t)| < -

Hence, according to theorem D.1, the multidimensional &age series is convergent and its sum is given by
F [st (* | {Tp})] (2
0
d ik — —T[yf t;
ek [5Jk Ocx [y fs( | {S'p})]( J)]

-Es (’)’, Z) = (D21)

lsp=Tp

where(rs, ..., 7s) is the unique solution to the system= [y fs(x | {zp})] (t;) with |zj| < r for all j.

It is easy to see that, in facLs(y, 2) is a uniform limit of holomorphic functions ofy, 2) € Doz, X W..
Therefore,Ls (v, 2) is holomorphic on all compact subsets®§,,, x W,. Moreover, there one can permute any
partial y or z-derivatives with the summations in (D.19). It is also cl&arthe previously obtained bounds that,
Ls(y, 2) is well defined for anyslarge enough and this independently of the choice of thetptin

We now show that it — +oo limit exists and then we will compute it. It is readily infed from the integral
representation

T = f s d d% (D.22)
aer I (6o =T [y fs (+ | {za)] (t)]

thatrj, j = 1,..., s, solving the system; = I'[yfs(x | {rp})](t;), is @ holomorphic function of for |y| < vyo.
Hence, the functiops (4; y) = Iy fs(x | {p})] (1) is holomorphic in(4,y) € M x 50770. Also, by construction,

pstipy) =7i(y) and llollwxo,,, <T - (D.23)

Now letp be the unique solution to(12) = T [yp + yh] (1) with |jolly < T, as follows from lemma D.1.
Then, keeping the dependence implicit, we consider

p(D)=ps(A) =T [y (o + )] ()-Tlyts(+ | {otp)D] () +TTy fsCx | {o(tp)D] (4) — Iy s+ Hps(tp)D] (4) . (D.24)
¥s(d)

It follows that

’ 2C" yo |OM| 1
IWsllm < C'yo || fsC Ho(tp)h) — fs(+ | {ostp))| < W llo = pdliv < 5 1l = psll - (D.25)

Hence||lo — ps— ¥sdllm = llo — pslly /2. On the other hand, it follows from (D.24) that
lo = ps = sl = [T lve + ] = T [yist L], < 7€ [l +h = fols LoDl = 0 (D.26)
Thereforeps converges uniformly t@ on M. Hence, in virtue of the regularity of,

Flyfs(+ Hotp)D] (2 == F [ve](2)  uniformly in (y,2) € Doyo X W, . (D.27)
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It remains to compute the limit of the determinant. It foliom the functional derivative property (D.11)
that

ST oD I e = 7 (e =80 f o] (REAA L) () B CED)
By expanding the determinant appearing in (D.21) into issdiet Fredholm series we get
det oy~ 5T bC s -Z( f 0 ety [As G )] (029)
with
A ) = Z e T+ e sl (1)
¢ v=0

_or [v + o]
T o (ue) . (D.30)

R f% 1 o[y +yp](Q)
s ) Anl—pe  Ov ()

The above convergence is uniform (i, u,) € € x €. Therefore, by elementary estimates, we obtain that
the determinant of interest does indeed converge to thehBheddeterminant given in (D.18), this uniformly in

Yl < 2yo.

Therefore, we obtain thafs(y, 2) is a sequence of holomorphic functions #%,, x W,. that converges
uniformly. As a consequencer (y, z) is holomorphic on every compact subsetz_o&m x W, and one can
permute any partiaj-or z derivative of finite order with the — +oo limit.

[ ]

D.5 Examples

We now treat two examples that are of direct interest for #saimmation of the form factor series. In the below
examplesg (4, u) refers to the dressed phase (2.10). We remind that it is harfainic onUsxUs. In the following,
the compact& andM c U are such thalt—q; q] is contained in their interior. We will also consider fummtsh
that are holomorphic oM.

D.5.1 TI'[p] () as a linear functional of p

LetT'[p] (1) = f_‘;duaw (1, A) p (1). Then given a regular functiondl[-](2), z € W, c C%, there existg > 0
such that fo(y, 2) € Do, x W,

7 1l (2
det[ -q ;q] [| - )/(9,1¢]

q
Lr(n2) = with (1) — f 9,6 (. ) p () de = h(A) . (D.31)

The limit definingLr (v, 2) as in (D.18) is uniform in respect to such parameteasd|y|.

Proof —
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In order to apply proposition D.2, one should check the agsioms on the functional’. It is readily seen
that, independently of the norm efandp

ol'[T
IC 2w < 2911028l Mk and [P =T o]y, < 201028l IV = pllc - and - = 8 () = (0u0) (€10 -
The validity of the holomorphicity conditions is readilyatked by standard derivation under the integral theo-
rems. One is thus in position to apply proposition D.2 andcthanm follows. [
D.5.2 Non-linear functional T™ [p] (1)
We now treat the case of the non-linear functional below
¢ & (w) dw
r® = i) = (A7) = 56 ,w{ W @) }_—. D.32
1) = D0 i) = @ (1 ) = D PO ) s £ L) 7 (D.32)

jed jed %
Thered =[1; N] \{is,...,in}, £is given by (2.6)¢r = £+ F/L and 0< j/L < D with N/L — D. Finally, ¢ is
a small counterclockwise Jordan curve arofird|; q] such that InfK) > %5. Note thatu,, resp. 1, appearing
in (D.32) stand for the unique solutionsddua) = a/L, resp. ta¢, (1a) = a/L.

Proposition D.3 Let7[](2), ze W, c C% be a regular functional and assume thatlNare large (and such that
N/L — D). Then, there existgy > 0 such that for(y, 2) € Do,, x W, and L large enough

L
Lro (v,2 = 7:[;1/_/1) []f]z) , (D.33)
dete, |1 -5 () ]V:wm

wherep) is the unique solution tp)(1) = h(1) + F('-)[yp('-)] (1). This solution is such thai™ (1) = p (1) +

. . . R . . .
O(L™1), wherep solves the linear integral equatu{rh + y—) -p = h and theO(L™?) is a holomorphic function of
v and A and holds uniformly irfy| < yg and A € Uy. Finally,

T[] (0:0) (. 4) 1
= : - D.34
5@ T Al A5 O-IL (©:39
Above I+ R/2r stands for the resolvent of the Lieb kernel acting ef; g]. And one has
sTM [v] ~ 1
dety, [I R m)]y:ypm = dety, [| +yR/2x] (1 + O(E)) . (D.35)

Proof —
In order to apply proposition D.2, we ought to check &t satisfies to all the necessary conditions. For this
we observe that

e =inf|é(w) — 9 >0 where the inf is taken forw € 63, s€[0;D] . (D.36)

Then, we choose a constadit- 0 and considek large enough so th& < €L /2. It then follows that the functions
& (w) - j/L, for j = 1,...,N, have no zeroes oy and some immediate neighborhood thereof provided that
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v(zy) € 0(Mx W) with Wy ¢ C% and|lyxw, < C. It then follows by derivation under the integral sign
theorems that™ [v (-, y)] () is holomorphic inu, y) € M x W,

In order to establish bounds & [v (-, y)] («) for v holomorphic and such thiitllmxw, < Citis convenient
to represent

v(w)
fw g V) dt &)
E@W-J/L &@-J/L LE@-jL) f L (¢ (w)— j/L? (D.37)

As 6q c Int(K), there exists a constant > 0 such that for any function holomorphic orK, one hag/ll¢, <
¢y vk Also,

inf |¢&; (w) — 8 > €/2  where the inf is taken forw € ¢y, s€[0;D] and |t| < elL/2. (D.38)
Hence, for any € ﬁ(M x Wy) such thatvllk,w, < C < eL/2

JI

. , IS
PO [ e 1 )] < 19l 5 0] {L_l g + €0, W/}

L (e/2)?

< lIlIvenm 27|TL“|C1{1+ [||§||K+e/2]} Mlcw, - (D-39)

This provides an estimate for the const@t, entering in the bounds ") [v]”Mwa. Next one has

() O (1) = (' - p) () (p—T)(w)fé(w)} dow O
MO G0) — TO[ ) = Jze;ggﬂﬂ {0, 0oDWEL B o). o)

Where,

plw)
() -7) () (o= 1) () dtt-p @& )| do L
s ,Z;‘ﬁg P Lz(fr(w)—J/L)z 2(f) 2 @07 [ 2 = Cllb = li) - (0-41)

this uniformly inu € M andL large enough. Therefore,

ST yv] ()
v ()

57 (0c6) (1.0 )

_ - D.42
- 247, B (B-42)

It follows that there exists a fliciently small open neighborhoott (%q) of 64 such that the functional derivative
is holomorphic in(u, ) € M xV (ng) Moreover, we get that there exists lafindependent constaf such that
IT® [p] -TO []]],, = Callo - 7ll

We are now in position to apply proposition D.2. It followsth-«) can be expressed in terms of the unique

solutionp® to p®M () = h () + TO[yp®] () with [|o®)|,, < r uniformly in [y] < yo.
This means that,

ST [yv] (w)
v(d) oo e

& (u)

me uniformly in - (u,?) € cqu ) (D.43)

¥ (0:9 (#é“)f
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In this limit, the contour integréky in the Fredholm determinant can be computed and since tiuhélre deter-
minant of a trace class operator is continuous in respebettréce class norm (which is bounded by the sup norm
in the case of integral operators acting on compact contours

dety, |1 =T yv] (1) /v () bopo | = def_qq] [1 =700 (. )] = def_qq1[1 +yR/27] . (D.44)

WhereRis the resolvent of the Lieb kernel.

We now characterize the leading behavior of the solutibhwhenN,L — +co. By repeating the type of
manipulations carried our previously, and using i#f&t is bounded orK uniformly in L, we get that the non-
linear integral equation fgs“) takes the form

O - Y o 1), Oud) (W w) (E)
pOw) = h) + LéggZian(w)g(w)—j/L +o[z).
%q

There the O is uniform i € Us. The Riemann sum can be estimated by using the Euler-Mabéamnula and
the uniform boundedness pf-) on K. After carrying out the resulting contour integral ov&y we obtain

q
ds _
PV =h - ¥ [ 5R69AV+O(LY). (D.45)
~q
The O appearing in (D.45) is holomorphic jne Us. Indeed,p") just as all the other terms in (D.45) are
holomorphic orlJs. This proves thgt(") admits an asymptotic expansionlirsuch thapY(w) = p (w) +O(L‘1),
wherep is the solution to the integral equati¢h+ yR/2x) - p = h. Asp(") andp are both holomorphic itJ;, so

is the remainder. Moreover, one can convince oneself tiaths uniform inu € Us. Therefore, the regularity
of the functionalF [] (2) (4.15) leads t&[yp1] (2) = 7 [yp] (2) + O(L™Y). n
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