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Correlation fun
tions of one-dimensional bosonsat low temperatureK. K. Kozlowski1, J. M. Maillet2, N. A. Slavnov3
. Abstra
tWe 
onsider the low-temperature limit of the long-distan
e asymptoti
 behav-ior of the �nite temperature density-density 
orrelation fun
tion in the one-dimensional Bose gas derived re
ently in the algebrai
 Bethe Ansatz framework.Our results 
on�rm the predi
tions based on the Luttinger liquid and 
onfor-mal �eld theory approa
hes. We also demonstrate that the amplitudes arisingin this asymptoti
 expansion at low-temperature 
oin
ide with the amplitudesasso
iated with the so-
alled 
riti
al form fa
tors.1 Introdu
tionThe model of one-dimensional bosons intera
ting through a two-body δ-fun
tion potential isdes
ribed by the Quantum Nonlinear S
hrödinger equation (QNLS model). Re
ently [1℄, theLagrange series method was applied for the derivation of the long-distan
e asymptoti
 expansionof the �nite temperature density-density 
orrelation fun
tion in this model. In the present paper,we 
onsider the low-temperature limit of this result.1DESY, Hamburg, Deuts
hland, karol.kajetan.kozlowski�desy.de2Laboratoire de Physique, UMR 5672 du CNRS, ENS Lyon, Fran
e, maillet�ens-lyon.fr3Steklov Mathemati
al Institute, Mos
ow, Russia, nslavnov�mi.ras.ru1



The QNLS model is given by the Hamiltonian
H =

L∫

0

(
∂xΨ

†∂xΨ+ cΨ†Ψ†ΨΨ− hΨ†Ψ
)
dx . (1.1)Here Ψ and Ψ† are Bose �elds possessing 
anoni
al equal-time 
ommutation relations, c > 0 isa 
oupling 
onstant and h > 0 the 
hemi
al potential. The results obtained in [1℄ are relative tothe thermodynami
 limit L → ∞ of this model.The density operator j(x) = Ψ†(x)Ψ(x) de�nes the operator of the number of parti
les inthe interval [0, x]

Qx =

x∫

0

j(z) dz. (1.2)The generating fun
tion for the density-density 
orrelations reads
〈e2πiαQx〉T = lim

L→∞

〈ΩT |e2πiαQx |ΩT 〉
〈ΩT |ΩT 〉

, (1.3)were T is the temperature, α a 
omplex number and |ΩT 〉 any eigenstate of H that goes tothe state of thermal equilibrium in the in�nite volume limit. Indeed, the 
orrelation fun
tion ofdensities 〈j(x)j(0)〉T 
an be obtained from (1.3) as
〈j(x)j(0)〉T = − 1

8π2

∂2

∂x2
∂2

∂α2
〈e2πiαQx〉T

∣∣∣∣
α=0

. (1.4)We have shown in [1℄ that the large-x asymptoti
 expansion of the generating fun
tion (1.3)(and respe
tively of the two-point fun
tion (1.4)) is given in terms of solutions to a set of non-linear integral equations 
losely related to ones arising in the quantum transfer matrix approa
h[2, 3, 4, 5, 6, 7℄. Below, we solve these equations in the low-temperature limit. This 
omputationallows us to rea
h two goals.On the one hand, one 
an argue that the Luttinger liquid [8℄ and 
onformal �eld theory(CFT) approa
hes [9, 10, 11, 12, 13, 14, 15, 16, 17, 18℄ 
an be used to predi
t the large-xasymptoti
 behavior of the low-temperature 
orrelation fun
tions in massless one dimensionalquantum models. The QNLS model does belong to this 
lass. Thus, our results give us apossibility to 
on�rm these predi
tions by the dire
t derivation based on the algebrai
 Betheansatz. Namely, we show that in the low-temperature limit (T → 0) the asymptoti
 expansion(x → ∞, xT → ∞) of the density-density 
orrelation fun
tion takes the following form:
〈j(x)j(0)〉T = D2 − (TZ/v0)

2

2 sinh2(πTx/v0)
+
∑

ℓ∈Z∗

Aℓ e
2ixℓk

F

(
πT/v0

sinh(πTx/v0)

)2ℓ2Z2

. (1.5)Above appear the average density of the gas D, the Fermi momentum k
F
and the velo
ity ofsound on the Fermi boundary v0. The 
oe�
ients Aℓ do not depend on T . All the dependen
eof the amplitudes on T has been gathered in the pre-fa
tor (πT/v0)2ℓ2Z2 .2



This form is in full agreement with the CFT predi
tions. Moreover it provides one withasymptoti
 behavior that is also valid in the full s
aling region of xT and in parti
ular in the
T = 0 
ase.On the other hand our approa
h allows us to 
al
ulate the 
onstant 
oe�
ients Aℓ in (1.5).We show that Aℓ are related the amplitudes of the so-
alled 
riti
al form fa
tors introdu
ed in [19℄and arising in the study of the model at T = 0. More pre
isely, the 
oe�
ients Aℓ(πT/v0)

2ℓ2Z2determined for the system in the thermodynami
 limit and at small but �nite temperature T areequal to the amplitudes of the 
riti
al form fa
tors 
orresponding to umklapp-type ex
ited statesof momentum 2k
F
ℓ and determined for the system of large but �nite size L at zero temperature,with the identi�
ation v0/T 7→ iL. We will show this 
oin
iden
e by means of straightforward
al
ulations 
arried in the 
ore of this paper.This arti
le is organized as follows. In se
tion 2 we re
all the results obtained in [1℄. Inse
tion 3 we present the thermodynami
s of the QNLS model at low temperature. In parti
ularwe solve the non-linear integral equation determining the asymptoti
 expansion of the 
orrelationfun
tion in the low-temperature approximation. This allows us to obtain the rates of exponentialde
ays in se
tion 4 and the 
onstant amplitudes in se
tion 5. The expansion (1.5) is derived inse
tion 6. Various estimates of the low-temperature behavior of the integrals that we deal withare gathered in three appendi
es.2 Long distan
e asymptoti
 behavior at general temperatureThe state of the thermal equilibrium in the QNLS model is des
ribed by the Yang�Yang equation[20℄ for the ex
itation energy ε(λ)

ε(λ) = λ2 − h− T

2π

∫

R

K(λ− µ) log
(
1 + e−

ε(µ)
T

)
dµ, (2.1)and the integral equation for the total density ρt(λ)

ρt(λ)−
1

2π

∫

R

K(λ− µ)ϑ(µ)ρt(µ) dµ =
1

2π
. (2.2)The kernel K(λ) and the Fermi weight ϑ(λ) appearing above read

K(λ) =
2c

λ2 + c2
, ϑ(λ) =

(
1 + e

ε(λ)
T

)−1
. (2.3)Below the poles of the Fermi weight will play an important role. Therefore we introdu
e theroots {r±} of the equation 1 + e−ε(r±j )/T = 0, where r+

j (resp. r−

j ) belong to the upper (resp.lower) half-plane (see Fig. 1).The asymptoti
 expansion of the generating fun
tion 〈e2πiαQx〉T is given in terms of thesolutions to non-linear integral equations similar to (2.1). Let us 
hoose n points (n = 0, 1, . . . )3



ŝ+

j in the upper half-plane and n points ŝ−

j in the lower half-plane. We then introdu
e non-linearintegral equation for a fun
tion u(λ)

u(λ) = λ2 − hα − T

2π

∫

R

K(λ− µ) log
(
1 + e−

u(µ)
T

)
dµ+ iT

n∑

j=1

(
θ(λ− ŝ+

j )− θ(λ− ŝ−

j )
)
, (2.4)where hα = h+ 2πiαT and

θ(λ) = i log

(
ic+ λ

ic− λ

)
, θ′(λ) = K(λ). (2.5)Below we will show that, in the low-temperature limit and for {ŝ±} �xed, the solution to theequation (2.4) always exists. Clearly, this solution depends on the parameters {ŝ±}: u(λ) =

u(λ|{ŝ+}, {ŝ−}). By imposing the 
onstraints
1 + exp

(
−
u(ŝ±

j |{ŝ+}, {ŝ−})
T

)
= 0, j = 1, . . . , n, (2.6)we obtain a system of equations, whi
h �xes the sets {ŝ±}i that are relevant for the des
riptionof the long-distan
e asymptoti
s. The subs
ript i enumerates these sets. The long-distan
easymptoti
 expansion for the generating fun
tion 〈e2πiαQx〉T 
an then be organized into a sumparameterized by the fun
tions ui(λ) ≡ ui(λ|{ŝ+}i, {ŝ−}i) that solve (2.4) with a 
orrespondingset of roots {ŝ±}i:

〈e2πiαQx〉T =
∑

i

e−xp[ui]B[ui] + o
(
e−xmaxℜ(p[ui])

)
, (2.7)where p[ui] and B[ui] are fun
tionals of ui(λ) whose expli
it form will be spe
i�ed later.Observe that equation (2.4) 
an be re
ast in the form

ui(λ) = λ2 − hα − T

2π

∫

Ĉi

K(λ− µ) log
(
1 + e−

ui(µ)

T

)
dµ, (2.8)where the 
ontour Ĉi is su
h that the roots {ŝ±} are lo
ated between the real axis and Ĉi. Wealso demand that the 
ontours Ĉi separate the sets {ŝ±}i from all over possible roots of theequation 1 + e−ui(λ)/T = 0 and from all the roots {r±} (see Fig. 1). Then one 
an interpret theasymptoti
 expansion of 〈e2πiαQx〉T as being given by the sum over the di�erent possible 
hoi
esof 
ontours Ĉi.The expli
it expressions for the rates of exponential de
ay p[ui] and the amplitudes B[ui]
an be written down in terms of integrals over the 
ontours Ĉi. Let us introdu
e an auxiliaryfun
tions zi(λ) by

zi(λ) = − 1

2πi
log

(
1 + e−

ui(λ)

T

1 + e−
ε(λ)
T

)
. (2.9)4
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Figure 1: The roots {r±} are depi
ted by (◦), the roots {ŝ±}i are depi
ted by (•). Other rootsof the equation 1+ e−ui(ŝ±)/T = 0 are depi
ted by (×). The 
ontour Ĉi bypasses the roots {ŝ+}ifrom above and the roots {ŝ−}i from below. It also separates the points {ŝ±}i from the otherpoints {ŝ±} as well as from all the poles of the Fermi weight {r±}.Then the rates of exponential de
ays take the very simple form
p[uk] = i

∫

Ĉk

zk(λ)dλ. (2.10)The expressions for the amplitudes B[ui] are mu
h more 
umbersome. We present them inthe form
B[ui] = Bd[ui]Bs[ui], where Bd[ui] = exp

( ∫

Ĉi

zi(λ)zi(µ)

(λ− µ+)2
dλ dµ

)
, (2.11)and the symbol µ+ means that the variable µ is slightly shifted to the left of the orientedintegration 
ontour Ĉi. The reason we separate the 
oe�
ients B[ui] into two fa
tors Bd[ui] and

Bs[ui] is that these go, in the low-temperature limit, to the dis
rete and to the smooth parts of
riti
al form fa
tors respe
tively, as de�ned in [19℄.In order to des
ribe Bs[ui] we �rst introdu
e the Cau
hy transform operator L
Ĉi

on the
ontour Ĉi
L
Ĉi
[zi](ω) =

∫

Ĉi

zi(λ)

λ− ω
dλ, (2.12)and a fun
tional C0 = C0[zi]

C0[zi] =

∫

Ĉi

zi(λ)zi(µ)

(λ− µ− ic)2
dλ dµ . (2.13)
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Then
Bs[ui] = (e2πiα − 1)2e−C0[zi]

det
(
I + 1

2πi Û
(1)[zi]

)
det
(
I + 1

2πi Û
(2)[zi]

)

det
[
I − 1

2πK
(ε)
]
det
[
I − 1

2πK
(ui)
]

×
[
e
L
Ĉi
[zi](θ1+ic) − e

2πiα+L
Ĉi
[zi](θ1−ic)

]−1 [
e
−L

Ĉi
[zi](θ2−ic) − e

2πiα−L
Ĉi
[zi](θ2+ic)

]−1
. (2.14)The �rst line of (2.14) 
ontains a ratio of Fredholm determinants. The integral operators I −

1
2πK

(ε) and I − 1
2πK

(ui) have the kernels
K(ε)(λ, µ) =

K(λ− µ)

1 + e
ε(µ)
T

, K(ui)(λ, µ) =
K(λ− µ)

1 + e
ui(µ)

T

. (2.15)The �rst of these integral operators a
ts on the real axis and the se
ond one a
ts on the 
ontour
Ĉi. The operators I + 1

2πi Û
(1)[zi] and I + 1

2πi Û
(2)[zi] both a
t on a anti
lo
kwise oriented 
losed
ontour surrounding Ĉi. Their kernels are given by

Û (1)(w,w′, [zi]) = −e
L
Ĉi
[zi](w) · Kα(w − w′)−Kα(θ1 − w′)

e
L
Ĉi
[zi](w+ic) − e

2πiα+L
Ĉi
[zi](w−ic)

, (2.16)and
Û (2)(w,w′, [zi]) = e

−L
Ĉi
[zi](w

′) · Kα(w − w′)−Kα(w − θ2)

e
−L

Ĉi
[zi](w′−ic) − e

2πiα−L
Ĉi
[zi](w′+ic)

, (2.17)where
Kα(λ) =

1

λ+ ic
− e2πiα

λ− ic
. (2.18)Finally, observe that the kernels Û (1,2)(w,w′, [zi]) as well as the 
oe�
ient in the se
ond line of(2.14) depend on arbitrary 
omplex numbers θ1 and θ2 lo
ated inside of the 
ontour where theoperators Û (1,2)(w,w′, [zi]) a
t. One 
an prove (see [21℄) that the total 
ombination (2.14) doesnot depend on the spe
i�
 
hoi
e of these parameters.3 Thermodynami
s at low temperatureIn this se
tion we provide a list of ne
essary formulae des
ribing the thermodynami
s of theQNLS model at low temperature. We begin our dis
ussion with the T = 0 
ase.3.1 Zero temperatureIt is known [20℄ that for a positive 
hemi
al potential h > 0 the solution ε(λ) to the equation(2.1) has two roots ±q(T ) on the real axis: ε(±q(T )) = 0. Hereby ε(λ) > 0 for |λ| > q(T ) and6



ε(λ) < 0 for |λ| < q(T ). Let ε(λ) → ε0(λ) and q(T ) → q as T → 0. Then,
lim
T→0

T log
(
1 + e−

ε(λ)
T

)
=





0, |λ| > q,

−ε0(λ), |λ| < q,
. (3.1)It is then straightforward to 
he
k that equation (2.1) turns into a linear integral equation forthe dressed energy ε0(λ):

ε0(λ)−
1

2π

q∫

−q

K(λ− µ)ε0(µ) dµ = λ2 − h, ε0(±q) = 0. (3.2)At T = 0 the state of thermal equilibrium goes to the ground state of the QNLS model. TheFermi weight ϑ(λ) (2.3) turns into the 
hara
teristi
 fun
tion of the interval [−q, q]. Thereforethe equation (2.2) for the density takes the form
ρt(λ)−

1

2π

q∫

−q

K(λ− µ)ρt(µ) dµ =
1

2π
, T = 0. (3.3)Another important 
hara
teristi
 of the ground state is the dressed 
harge Z(λ). In theQNLS model it is proportional to the density Z(λ) = 2πρt(λ). Below, we will use a spe
ialnotation for the value of the dressed 
harge on the Fermi boundary Z = Z(±q). A formalexpression for Z 
an be given in terms of the resolvent to the operator I − 1

2πK a
ting on theinterval [−q, q]

Z = 1 +

q∫

−q

R(λ,±q) dλ, (3.4)where
R(λ, ξ)− 1

2π

q∫

−q

K(λ− µ)R(µ, ξ) dµ =
1

2π
K(λ− ξ). (3.5)Finally, we give the formulae for the average density D, the Fermi momentum k

F
, and thevelo
ity of the sound on the Fermi boundary v0:

D =

q∫

−q

ρt(λ) dλ, k
F
= πD, v0 =

ε′0
Z , (3.6)where we denoted ε′0 ≡ ε′0(q).

7



3.2 The dressed energy at low temperatureWe now des
ribe the power-law 
orre
tions to the Yang�Yang equation (2.1), whi
h appear atlow but non-zero temperature. For T small enough the solution to the equation (2.1) ε(λ) hasthe following expansion [22, 23, 24℄:
ε(λ) =

2∑

k=0

T kεk(λ) +O(T 3). (3.7)The fun
tions ε1(λ) and ε2(λ) 
an be found from the analysis of the integral in (2.1) in smallvi
inities of the Fermi boundaries ±q. The details of this analysis are given in appendix A (seealso [22, 23, 24℄).Using (A.8) and substituting the expansion (3.7) into the Yang�Yang equation we obtain
2∑

k=0

T kεk(λ)−
1

2π

2∑

k=0

T k

q∫

−q

K(λ− µ)εk(µ) dµ = λ2 − h

− T 2π

12ε′0

(
K(λ− q) +K(λ+ q)

)
− T 2K(λ− q)ε21(q)

4πε′0
− T 2K(λ+ q)ε21(−q)

4πε′0
+O(T 3). (3.8)What follows from this analysis is that ε1(λ) = 0 and

ε2(λ) = − π2

6ε′0

(
R(λ, q) +R(λ,−q)

)
, (3.9)where R(λ, µ) 
orresponds to the resolvent de�ned by (3.5).3.3 The poles of the Fermi weightWe now 
onsider the low-temperature behavior of the roots r±

k to the equation 1 + e−
ε(λ)
T = 0,namely the solutions to ε(λ) = 2πiT (k + 1/2), k ∈ Z. Obviously all these roots 
ollapse to q or

−q when T → 0. Therefore setting r±

k = q + T r̃±

k +O(T 2) (resp. r±

k = −q + T r̃±

k +O(T 2)) andsubstituting these expansions into ε(r±

k ) = 2πiT (k + 1/2) we �nd
ε
(
q + T r̃±

k +O(T 2)
)
= T r̃±

k ε
′
0 +O(T 2) = 2πiT (k + 1/2),

ε
(
−q + T r̃±

k +O(T 2)
)
= −T r̃±

k ε
′
0 +O(T 2) = 2πiT (k + 1/2).

(3.10)Thus, in the linear approximation in T , we obtain two series of roots




r+

k = ±q +
2πiT

ε′0
(k + 1/2) +O(T 2), k ≥ 0,

r−

k = ±q +
2πiT

ε′0
(k + 1/2) +O(T 2), k < 0.

(3.11)We will refer to the roots 
ollapsing to +q as the right series and the roots 
ollapsing to −q asthe left series. 8



3.4 Low-temperature limit of the u(λ) integral equationFrom now on, we fo
us on a �xed 
ontour Ĉi and 
onsider the asso
iated 
ontribution to theasymptoti
 behavior of the generating fun
tion. Therefore, below, we will omit the subs
ript iin the notations of the 
ontour Ĉi and of the fun
tions ui(λ), zi(λ), et
 asso
iated with it.Let Ĉ be the 
ontour bypassing n points ŝ+ in the upper half-plane from above and n points
ŝ− in the lower half-plane from below, where n is an arbitrary, but �xed non-negative integer.These points ŝ± are roots of the equation 1 + e−u(ŝ±)/T = 0. It is important for our purpose to�x the limits of these roots at T = 0.The T → 0 limit of equation (2.4) 
oin
ides with the one of the Yang�Yang equation, hen
e
u(λ)|T=0 = ε0(λ). Therefore it is reasonable to expe
t that, similarly to the points r±

k , the roots
ŝ±

k 
ollapse to q or to −q in the T → 0 limit. Thus, in the low-temperature limit these rootsshould form two series. There will be
• n+

p roots ŝ+ and n+
h roots ŝ− belonging to the right series;

• n−
p roots ŝ+ and n−

h roots ŝ− belonging to the left series.Obviously, there exists an integer ℓ, −n ≤ ℓ ≤ n, su
h that the numbers n±
p and n±

h are relatedby
n+
p + n−

p = n+
h + n−

h = n, n+
p − n+

h = n−
h − n−

p = ℓ . (3.12)Therefore, for T small enough, one deals with the following stru
ture for the distribution of roots
ŝ±:

{ŝ+} = {q + iT η̂+k }n+
p
∪ {−q + iT η̂−k }n−

p
, ℜ(η̂±k ) > 0, (3.13)

{ŝ−} = {q − iT ξ̂+k }n+
h
∪ {−q − iT ξ̂−k }n−

h
, ℜ(ξ̂±k ) > 0. (3.14)The parameters η̂±k and ξ̂±k admit the Taylor expansions η̂±k = η±k +O(T ) and ξ̂±k = ξ±k +O(T ).They appear in the non-linear integral equation (2.4) de�ning u(λ) and should be 
omputed bysolving the 
onditions

exp

(
−u(±q + iT η̂±k )

T

)
= exp

(
−u(±q − iT ξ̂±k )

T

)
= −1. (3.15)Substituting the parameterizations (3.13), (3.14) into the equation (2.4) and expanding upto the se
ond order in T we are led to

u(λ) = λ2 − h− T

2π

∫

R

K(λ− µ) log
(
1 + e−

u(µ)
T

)
dµ+ TG1(λ) + T 2G2(λ) +O(T 3). (3.16)Here

G1(λ) = −2πiα− iℓ

q∫

−q

K(λ− µ) dµ, (3.17)9



and
G2(λ) = K(λ− q)




n+
p∑

j=1

η+j +

n+
h∑

j=1

ξ+j


+K(λ+ q)




n−
p∑

j=1

η−j +

n−
h∑

j=1

ξ−j


 . (3.18)It is natural to expe
t that the solution to (3.16) has a form similar to (3.7)

u(λ) =
2∑

k=0

T kuk(λ) +O(T 3), (3.19)where, as we have already argued, u0(λ) = ε0(λ). Substituting (3.19) into (3.16) and using(A.10), we obtain linear integral equations satis�ed by the unknown fun
tions u1(λ) and u2(λ):
u1(λ)−

1

2π

q∫

−q

K(λ− µ)u1(µ) dµ = G1(λ), (3.20)
u2(λ)−

1

2π

q∫

−q

K(λ− µ)u2(µ) dµ = G2(λ)−
π

12ε′0

(
K(λ− q) +K(λ+ q)

)

− K(λ− q)u21(q)

4πε′0
− K(λ+ q)u21(−q)

4πε′0
. (3.21)It is then easy to see that the fun
tion u1(λ) − 2πiℓ satis�es (up to a multipli
ative fa
tor)the equation (3.3) for the total density at T = 0. As we have already mentioned, on has that

2πρt(λ) = Z(λ) in the 
ase of the QNLS model, with Z(λ) being the dressed 
harge. Hen
e,
u1(λ) = u1(−λ) = −2πiαℓZ(λ) + 2πiℓ, αℓ = α+ ℓ. (3.22)The solution to equation (3.21) 
an be expressed in terms of the resolvent R(λ, µ) (3.5)

u2(λ) = R(λ, q)


2π

n+
p∑

j=1

η+j + 2π

n+
h∑

j=1

ξ+j − 1

2ε′0

(
π2

3
+ u21(q)

)


+R(λ,−q)


2π

n−
p∑

j=1

η−j + 2π

n−
h∑

j=1

ξ−j − 1

2ε′0

(
π2

3
+ u21(q)

)
 . (3.23)It remains to �x the leading Taylor 
oe�
ients η±k and ξ±k . These 
an be parameterized bysets of integers, exa
tly as it was the 
ase for the roots r±

k (3.11). More pre
isely, one has
u(±q + iT η̂±k ) = ±2πiT (p±k − 1

2),

u(±q − iT ξ̂±k ) = ∓2πiT (h±k − 1
2),

(3.24)10



where p±k and h±k are integers. As a 
onsequen
e, in the linear order in T , we obtain
ε′0η

±
k = 2π(p±k − 1

2)± iu1(q),

ε′0ξ
±
k = 2π(h±k − 1

2 )∓ iu1(q),
(3.25)where u1(λ) is given by (3.22).Remark. Let u1 ≡ u1(±q) = 2πi(ℓ − αℓZ). From now on we assume that u1 satis�es the
onstraint

−π < ℑ(u1) < π. (3.26)Note that the generating fun
tion (1.3) is periodi
 over α [25℄: 〈e2πiαQx〉T = 〈e2πi(α+1)Qx〉T .Due to this property the 
ondition above always 
an be satis�ed by appropriate 
hoi
e of theparameter α. Therefore the 
onstraint (3.26) does not imply any additional restri
tions for theparameters of the model.We stress that the 
ondition (3.26) is pure te
hni
al. It allows us to simplify some interme-diate 
al
ulations. In parti
ular, it follows from (3.26) that all the integers p±k and h±k in (3.25)are positive. However, one 
an pro
eed further without use of the inequality (3.26).Thus, in this way, we have found the solution u(λ) to the equation (2.4) up to O(T 2) termsand the roots ŝ±

k up to O(T ) terms. There is no fundamental obsta
le to �nding higher order
orre
tions to u(λ) and ŝ±

k . However, for our purposes, the results obtained here are alreadysu�
ient.4 Correlation lengthsIn this se
tion we 
ompute the rate p[u] of the 
orrelation fun
tion exponential de
ay. In the
ase of the QNLS model, the 
onformal dimensions giving rise to the 
riti
al exponents in theasymptoti
 expansion (1.5) were 
al
ulated in [17, 18℄. We now obtain these results by takingthe T → 0 limit of equation (2.10).We have already shown in the work [1℄ how the trivial 
onstant term in (1.5) 
an be dedu
edfrom our approa
h to the asymptoti
s at �nite temperature. More pre
isely, this 
onstant stemsfrom the 
ontribution of the 
ontour Ĉ = R, in other words the 
ase where the sets of the roots
{ŝ±} are empty (n = 0). Therefore, in the following, we will only 
onsider the 
ase of non-emptysets {ŝ±} (although the results of our analysis remain valid for n = 0 as well).By moving the 
ontour Ĉ to the real axis, equation (2.10) boils down to

p[u] = i

∫

R

z(µ) dµ − i

n∑

k=1

(ŝ+

k − ŝ−

k ). (4.1)The integral over R 
an be estimated to the leading order in T with the help of (A.8), (A.10).In its turn, the �nite sum is estimated dire
tly by inserting the Taylor expansions of the roots11



ŝ±k . Ultimately, one gets that, to the linear order in T ,
p[u] = −2iαℓkF

− TZu21
2πε′0

+ TZ




n+
p∑

j=1

η+j +

n−
p∑

j=1

η−j +

n+
h∑

j=1

ξ+j +

n−
h∑

j=1

ξ−j


+O(T 2). (4.2)where we have used (3.4) and (3.6). We remind also that u1 = u1(q) = 2πi(ℓ − αℓZ). Finally,it remains to use that η±k , ξ±k are given by (3.25). This leads to

p[u] = −2iαℓkF
+

2πT

v0


(αℓZ)2 − ℓ2 − n+

n+
p∑

j=1

p+j +

n−
p∑

j=1

p−j +

n+
h∑

j=1

h+j +

n−
h∑

j=1

h−j


+O(T 2). (4.3)5 Constant amplitudeIn this se
tion, we 
ompute the low-temperature limit of the 
onstant 
oe�
ients Bd[u] (2.11)and Bs[u] (2.14). We prove that in this limit, when properly normalized in the temperature,

B[u] goes to the amplitude of a 
riti
al form fa
tor. The latter form fa
tors 
orrespond toexpe
tation values of lo
al operators taken between the ground state and ex
ited states whereall rapidities of the parti
les and holes are lo
ated on the Fermi boundary. We �rst re
all severalde�nitions and results 
on
erning the form fa
tors in the QNLS model. The reader 
an �nd amore detailed exposition in [19℄1.The form fa
tors of the QNLS model 
an be parameterized by the rapidities of parti
les andholes [26, 27, 28, 29℄. If, in the thermodynami
 limit (L → ∞) all the rapidities are lo
ated onthe Fermi boundaries ±q, then the 
orresponding form fa
tor is 
alled 
riti
al form fa
tor [19℄.Hereby the distribution of the rapidities between +q and −q is important.Consider a 
riti
al form fa
tor parameterized by the rapidities of n parti
les and n holes.Assume that, in the thermodynami
 limit, there is n+
p (resp. n+

h ) rapidities of the parti
les (resp.holes) going to +q and n−
p (resp. n−

h ) rapidities of the parti
les (resp. holes) going to −q. Wesay that a given form fa
tor belongs to the Pℓ 
lass, if the numbers n±
p,h satisfy the 
onditionsgathered in (3.12), with ℓ being some �xed integer.The 
riti
al form fa
tors 
an be presented as a produ
t of a smooth and a dis
rete part (see[19℄). The smooth part has a well de�ned thermodynami
 limit L → ∞. The dis
rete part,stri
tly speaking, has no thermodynami
 limit. First of all, it s
ales to zero as some negativepower of L, when L → ∞. Se
ond, it not only depends on the rapidities of the parti
les andholes (whi
h are equal to ±q), but also on the quantum numbers asso
iated with the ex
itedstate.In the following, we show that the fa
tor Bd[u] in (2.11) exa
tly reprodu
es the dis
rete partof the 
riti
al form fa
tor of the Pℓ 
lass, provided the distribution (3.12) is �xed. Hereby the1Formally the work [19℄ deals with form fa
tors of the XXZ spin 
hain, however the results obtained there
an be easily redu
ed to the 
ase of the QNLS model. 12



role of large L is played by the inverse temperature: v0/iT ↔ L. The integers p±j and h±j (see(3.24)) play the role of the quantum numbers des
ribing parti
les and holes.The 
oe�
ient Bs[u] (2.14) gives the smooth part of the 
riti
al form fa
tor. We �rst fo
uson the analysis related with Bs[u] as the 
omputation of its T → 0 limit is simpler then for
Bd[u].5.1 Smooth partThe 
oe�
ient Bs[u] 
an be seen as mostly depending on integrals of the following type:

If =

∫

Ĉ

f ′(λ)z(λ) dλ, (5.1)where z(λ) is given by (2.9) and f(λ) is holomorphi
 in some domain 
ontaining Ĉ and R. Thenmoving Ĉ to R we obtain
If →

∫

R

f ′(λ)z(λ) dλ − ℓ
(
f(q)− f(−q)

)
, T → 0, (5.2)sin
e all roots {ŝ±} go to ±q at T → 0. Using that, at T = 0 z(λ) = 0 for |λ| > q and

z(λ) = u1(λ)/2πi for |λ| < q, we �nd
lim
T→0

∫

R

f ′(λ)z(λ) dλ =
1

2πi

q∫

−q

f ′(λ)u1(λ) dλ, (5.3)and hen
e, due to (3.22)
lim
T→0

∫

Ĉ

f ′(λ)z(λ) dλ = −αℓ

q∫

−q

f ′(λ)Z(λ) dλ. (5.4)Using this pres
ription we obtain for the limit of the Cau
hy transforms
lim
T→0

L
Ĉ
[z](w + iγc) = −αℓL[−q,q][Z](w + iγc), γ = 0,±1. (5.5)Similarly

lim
T→0

C0[z] = α2
ℓ

q∫

−q

Z(λ)Z(µ)

(λ− µ− ic)2
dλ dµ. (5.6)Another type of integrals arises in the Fredholm determinant det

Ĉ

[
I − 1

2πK
(u)
]. Re
all thatthis operator a
ts on the 
ontour Ĉ as

[
I − 1

2πK
(u)
]
f(λ) = f(λ)− 1

2π

∫

Ĉ

K(u)(λ, µ)f(µ) dµ, (5.7)13



where K(u)(λ, µ) is given by (2.15). If f(λ) is holomorphi
 in a domain 
ontaining Ĉ and R,then one 
an easily see that
∫

Ĉ

K(u)(λ, µ)f(µ) dµ =

∫

R

K(u)(λ, µ)f(µ) dµ +O(T ), T → 0. (5.8)Sin
e u(λ) = ε0(λ) at T = 0 we 
on
lude that, in the T → 0 limit, the a
tion of the operator
I− 1

2πK
(u) 
oin
ides with the one of I− 1

2πK
(ε). The a
tion of this last operator 
learly redu
esto the interval [−q, q] when T = 0. Thus,

lim
T→0

detR

[
I − 1

2πK
(ε)
]
= lim

T→0
det

Ĉ

[
I − 1

2πK
(u)
]
= det[−q,q]

[
I − 1

2πK
]
. (5.9)Substituting all these results into (2.14) we immediately reprodu
e the smooth part of the
riti
al form fa
tor obtained in [19℄. We give these rather 
umbersome expressions in appendix C.5.2 Dis
rete partThe T → 0 limit of the fa
tor Bd[u] (2.11) is more involved. In order to 
ompute it, we �rstdeform the 
ontour Ĉ to the real axis. This provides an alternative expression for Bd[u], thatwas originally obtained in [30℄

Bd[u] = exp

( ∫

R

z(λ)z(µ)

(λ− µ+)2
dλ dµ

)
·
(
det
n

1

ŝ+

j − ŝ−

k

)2

×
n∏

j=1

e2LR[z](ŝ
−
j )−2LR[z](ŝ

+
j )

(
∂λe

−2πiz(λ)
∣∣∣
λ=ŝ−j

)−1(
∂λe

−2πiz(λ)
∣∣∣
λ=ŝ+j

)−1

. (5.10)Consider the behavior of the Cau
hy determinant in (5.10) at T → 0. We have
(
det
n

1

ŝ+

j − ŝ−

k

)2

=

n∏
j>k

(ŝ+

j − ŝ+

k )
2(ŝ−

j − ŝ−

k )
2

n∏
j,k=1

(ŝ+

j − ŝ−

k )
2

. (5.11)Now we should substitute here (3.13), (3.14) and (3.25). Hereby at T → 0 we 
an set (ŝ±

j −ŝ±

k )
2 =

(ŝ±

j − ŝ∓

k )
2 = 4q2, if the roots belong to the di�erent series. Then we obtain

lim
T→0

(
T n−ℓ2 det

n

1

ŝ+

j − ŝ−

k

)2

= (−1)n+ℓ

(
qε′0
π

)−2ℓ2 ( ε′0
2π

)2n

×

n+
p∏

j>k

(p+j − p+k )
2

n+
h∏

j>k

(h+j − h+k )
2

n+
p∏

j=1

n+
h∏

k=1

(p+j + h+k − 1)2

n−
p∏

j>k

(p−j − p−k )
2

n−
h∏

j>k

(h−j − h−k )
2

n−
p∏

j=1

n−
h∏

k=1

(p−j + h−k − 1)2

. (5.12)
14



Consider now the low-temperature behavior of the derivatives ∂λe
−2πiz(λ) at λ = ŝ±

j . Wehave
e−2πiz(λ) =

1 + e−
u(λ)
T

1 + e−
ε(λ)
T

. (5.13)Sin
e 1 + e−
u(ŝ±

j
)

T = 0 we obtain
T∂λe

−2πiz(λ)
∣∣∣
λ=ŝ±j

=
−u′(ŝ±

j )

1 + e−
ε(ŝ±

j
)

T

=
−u′(ŝ±

j )

1− e−
ε(ŝ±

j
)−u(ŝ±

j
)

T

. (5.14)Substituting here (3.19), (3.22) we arrive at
lim
T→0

T∂λe
−2πiz(λ)

∣∣∣
λ=ŝ±j

=

{
−ε′0

(
1− e−2πiαℓZ

)−1
, if ŝ±

j belongs to the right series,
ε′0
(
1− e−2πiαℓZ

)−1
, if ŝ±

j belongs to the left series. (5.15)The estimate of the T → 0 behavior of the Cau
hy transforms LR[z](ŝ
±

j ) is a more 
om-pli
ated problem. It is easy to see that one 
annot use (5.5) in this 
ase. Indeed, on the onehand the Cau
hy transform L[−q,q][z](ω) on the interval [−q, q] has a logarithmi
 singularity at
ω = ±q. On the other hand, we have seen that all ŝ±

j go to ±q at T → 0, therefore LR[z](ŝ
±

j )should diverge as a multiple of log T in the low-temperature limit. In fa
t, the equation (5.5)only allows one to a

ess to this divergent part; however it does not give an a

ess to the �nitepart of the T → 0 behavior of the Cau
hy transform.Similar problem o

urs at studying the T → 0 behavior of the double integral
A =

∫

R

z(λ)z(µ)

(λ− µ+)2
dλ dµ. (5.16)The above double integral 
an be redu
ed to a single one

A =

∫

R

z(λ)z(µ)

(λ− µ+)2
dλ dµ =

∫

R

(
∂µLR[z](µ+)

)
· z(µ) dµ. (5.17)Thus, in order to estimate this integral at T → 0 one should know the behavior of LR[z](µ) onthe whole real axis in
luding the points ±q. This question is studied in details in appendix B.Here we restri
t ourselves to present the results of these 
omputations.First of all, we list the leading T → 0 behavior of the exponents of the Cau
hy transforms

LR[z](ŝ
±

j ). There are four 
ases to distinguish:
• ŝ+

k belongs to the right or to the left series,
• ŝ−

k belongs to the right or to the left series.15



Using the parametrization (3.13), (3.14) and (3.25) we have
lim
T→0

{
eLR[z](±q+iT η̂±

k
)

(
qε′0
πT

)±
u1
2πi
}

= exp

{
− αℓ

q∫

−q

Z(µ)−Z
µ∓ q

dµ− u1
4

}
Γ(p±k )

Γ(p±k ∓ u1
2πi)

, (5.18)
lim
T→0

{
eLR[z](±q−iT ξ̂±

k
)

(
qε′0
πT

)±
u1
2πi
}

= exp

{
− αℓ

q∫

−q

Z(µ)−Z
µ∓ q

dµ+
u1
4

}
Γ(h±k ± u1

2πi )

Γ(h±k )
. (5.19)Thus, for a given partition (3.13), (3.14) of roots ŝ±

j into the right and left series, we obtain
lim
T→0

n∏

j=1

e2LR[z](ŝ
−
j )−2LR[z](ŝ

+
j )

(
qε′0
πT

)−
2ℓu1
πi

= exp



4ℓαℓ

q∫

−q

Z(µ)−Z
µ− q

dµ+ 2iπnαℓZ





× Γ2

(
{p+k − u1

2πi}, {h+k + u1
2πi}, {p−k + u1

2πi}, {h−k − u1
2πi}

{p+k }, {h+k }, {p−k }, {h−k }

)
, (5.20)where we use the standard hypergeometri
 type notation for ratios of Γ-fun
tions:

Γ

(
a1 , . . . , ap
b1 , . . . , bq

)
=

p∏

k=1

Γ(ak) ·
q∏

k=1

Γ(bk)
−1. (5.21)In its turn, the exponent of the double integral (5.16) exhibits the following leading T → 0behavior

lim
T→0

exp



∫

R

z(λ)z(µ)

(λ− µ+)2
dλ dµ



(
qε′0
πT

)−
u21
2π2

= e
C1

[

u1(λ)

2πi

]

G2
(
1,

u1
2πi

)
. (5.22)The fun
tional C1[F ] appearing above reads

C1[F (λ)] =
1

2

q∫

−q

F ′(λ)F (µ) − F (λ)F ′(µ)

λ− µ
dλ dµ + 2F (q)

q∫

−q

F (λ)− F (q)

λ− q
, (5.23)and G(1, x) = G(1 + x)G(1 − x), where G(x) is the Barnes fun
tion.Now we substitute u1/2πi = ℓ−αℓZ. Combining (5.12), (5.15), (5.20), and (5.22) and using

C1[αℓZ(λ)− ℓ] = C1[αℓZ(λ)]− 4ℓαℓ

q∫

−q

Z(µ)−Z
µ− q

dµ, (5.24)we obtain
B

(0)
d [u] = lim

T→0
Bd[u]

∣∣∣∣
qε′0
iπT

∣∣∣∣
2α2

ℓ
Z2

= eC1[αℓZ(λ)]

(
sinπαℓZ

π

)2n

G2(1, αℓZ − ℓ)

×Rn+
p ,n+

h
({p+}, {h+}|αℓZ − ℓ) Rn−

p ,n−
h
({p−}, {h−}|ℓ− αℓZ), (5.25)16



where
Rn,m({p}, {h}|ν) =

n∏
j>k

(pj − pk)
2

m∏
j>k

(hj − hk)
2

n∏
j=1

m∏
k=1

(pj + hk − 1)2
Γ2

(
{pk + ν} , {hk − ν}

{pk} , {hk}

)
. (5.26)We have thus reprodu
ed the dis
rete part of form fa
tors given in [19℄ up to the repla
ement

v0/T 7→ iL.6 Final resultWe have 
al
ulated the low-temperature limits of the exponential de
ay and 
onstant 
oe�-
ient in the long-distan
e asymptoti
 expansion of the generating fun
tion 〈e2iπαQx〉T for givendistribution of the roots ŝ±j . In this se
tion we sum up all the obtained 
ontributions for ℓ �xed.Let us �rst summarize the results obtained in the previous se
tions. The asymptoti
 expan-sion of the generating fun
tion 〈e2iπαQx〉T at low temperature has the form
〈e2iπαQx〉T ≃

∑

ℓ∈Z

Qℓ e
2iαℓkF x x → ∞, T → 0, xT → ∞ , (6.1)where the 
oe�
ients Qℓ are

Qℓ = B(0)
s [αℓZ]

(
πT

qε′0

)2α2
ℓ
Z2

G2(1, αℓZ − ℓ)e
C1[αℓZ(λ)]− 2πTx

v0
((αℓZ)2−ℓ2)

W+W− . (6.2)Here the smooth part B(0)
s [αℓZ] is given by (C.1), the fun
tional C1 by (5.23). To des
ribe thefa
tors W± we �rst de�ne a fun
tion W (ν, r) depending on 
omplex ν and integer r as

W (ν, r) =

∞∑

n,n′=0
n−n′=r

∑

1≤p1<···<pn<∞

∑

1≤h1<···<hn′<∞

n∏

j=1

e
− 2πTx

v0
(pj−1)

n′∏

k=1

e
− 2πTx

v0
hk

×
(
sinπν

π

)2n′

Rn,n′({p}, {h}|ν), (6.3)where Rn,n′({p}, {h}|ν) is given by (5.26). Then
W± = W (ν, r)

∣∣∣
ν=±(αℓZ−ℓ),

r=±ℓ

, (6.4)It is easy to see that the fa
tors W± 
orrespond to the sums over all the possible 
hoi
es ofintegers {p±a }n±
p

1 and {h±a }
n±
h

1 whi
h parameterize the possible 
on�gurations of the roots ŝ±j at
ℓ �xed. Su
h the sums were 
omputed in [31℄

W (ν, r) =
G2(1 + r + ν)

G2(1 + ν)

e
−πTx

v0
r(r−1)

(
1− e

− 2πTx
v0

)(ν+r)2
. (6.5)17



Setting here ν = ±(αℓZ − ℓ), r = ±ℓ and substituting (6.5) into (6.2) we obtain after simplealgebra
Qℓ = Ãℓ

(
πT/v0

sinh πTx
v0

)2α2
ℓ
Z2

, with Ãℓ = B(0)
s [αℓZ]

G2(1, αℓZ)

(2qZ)2α
2
ℓ
Z2

eC1[αℓZ(λ)] , (6.6)where we have used ε′0 = Zv0. Thus we arrive at the following asymptoti
 expansion
〈e2iπαQx〉T ≃

∑

ℓ∈Z

e2iαℓkF x

(
πT/v0

sinh πTx
v0

)2α2
ℓ
Z2

Ãℓ . (6.7)Note that the obtained result obviously is a periodi
 fun
tion of α as it was expe
ted. It isalso straightforward to see that the 
ombination Ãαℓ
(πT/v0)

2ℓ2Z2 
oin
ides with the amplitudeof the 
riti
al form fa
tor of the operator e2iπαQx [19℄ 
orresponding to the umklapp-type ex
itedstate of the momentum 2αℓkF
, where v0/T plays the role of the system size.Finally, in order to obtain the long-distan
e asymptoti
 expansion of the density-density
orrelation fun
tion it is enough to apply the di�erential operator (1.4) to the equation (6.7).Hereby one should distinguish two 
ases: ℓ = 0 and ℓ 6= 0. In the last 
ase one has due to (C.1)

B(0)
s [αℓZ]

∣∣∣
α=0

= 0, ∂αB
(0)
s [αℓZ]

∣∣∣
α=0

= 0. (6.8)Therefore the se
ond α-derivative should be applied on the 
oe�
ient B(0)
s [αℓZ].On the 
ontrary B

(0)
s [αℓZ] = 1 at α = 0 and ℓ = 0 (see [1℄). Therefore the se
ond α-derivative should be applied on the 
ombination exp[2iαℓkF

x]
(
sinh(πTx/v0)

)−2α2
ℓ
Z2 , otherwisethe se
ond x-derivatives vanishes. Thus, taking the se
ond α and x derivatives of (6.7) as it isexplained above we arrive at (1.5) with

Aℓ =
D2

2

∂2

∂α2
Ãℓ

∣∣∣
α=0

. (6.9)It is readily 
he
ked that in the x → ∞, xT → 0 limit equation (1.5) does reprodu
e the long-distan
e asymptoti
 expansion of the density-density 
orrelation fun
tion of the one dimensionalBose gas at T = 0, together with the 
orre
t values of the amplitudes [21℄.A
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A Estimates of integrals with regular fun
tionsIn this appendix we estimate the 
lass of integrals that appears in equations (2.1) and (2.4). We�rst fo
us on the integrals of the form:
J [ε] = T

∫

R

f(λ) log
(
1 + e−

ε(λ)
T

)
dλ. (A.1)For our purpose, it is enough to 
onsider the 
ase when f(λ) is bounded on the real axis anddi�erentiable in vi
inities of ±q, although the result of the analysis remains valid at mu
h lessrestri
tive assumptions. Due to the properties of ε(λ) (3.1) it is 
lear that

lim
T→0

J [ε] = −
q∫

−q

f(λ)ε(λ) dλ. (A.2)In order to �nd power-law 
orre
tions to the equation (A.2), one should estimate the 
ontribu-tions 
oming from the vi
inities of ±q more thoroughly. Let δ > 0 be su
h that δ → 0 as T → 0,while δ/T → ∞ as T → 0. We 
an split the integral J into �ve parts J = J−+J−q+J0+Jq+J+.The integrals J± 
orrespond to the domains λ > q + δ and λ < −q − δ. They behave as
O(e−ε(±q±δ)/T ) and hen
e produ
e O(T∞) 
ontributions. The integral J0 runs along the do-main −q + δ < λ < q − δ. By fa
toring out e− ε(λ)

T from the logarithm, we get that
J0[ε] = −

q−δ∫

−q+δ

f(λ)ε(λ) dλ +O(T∞). (A.3)Finally the integrals J±q 
orrespond to the domains ±q − δ < λ < ±q + δ and generate allpower-law 
orre
tions in T to (A.2). We now derive the leading power-law 
orre
tion to (A.2)
oming from the δ-vi
inity of q. For doing this, we 
an repla
e the fun
tions entering the integralby the leading non-vanishing terms of their Taylor expansions. Namely, we repla
e f(λ) by f(q)and ε(λ) by (λ− q)ε′0 + Tε1(q). Re
all that ε0(q) = 0 and we denote ε′0 ≡ ε′0(q). Then
e,
Jq[ε] = Tf(q)

δ∫

−δ

log

(
1 + e−

λε′0
T

−ε1(q)

)
dλ+ h.o.c., (A.4)where h.o.c. means the higher order 
orre
tions in T . After 
hanging of variables λ = µT/ε′0 weobtain

Jq[ε] =
T 2f(q)

ε′0

δε′0/T∫

−δε′0/T

[
log
(
1 + e−µ−ε1(q)

)
+
(
µ+ ε1(q)

)
Θ
(
−µ− ε1(q)

)]
dµ

− T 2f(q)

ε′0

−ε1(q)∫

−δε′0/T

(
µ+ ε1(q)

)
dµ+ h.o.c., (A.5)19



where Θ(λ) is the Heaviside step-fun
tion. Using now that δ/T → ∞ we arrive at
Jq[ε] =

T 2f(q)

2ε′0

(
ε1(q)−

δε′0
T

)2

+
T 2f(q)

ε′0

∞∫

−∞

[
log
(
1 + e−µ

)
+ µΘ(−µ)

]
dµ

=
T 2f(q)

2ε′0

(
ε1(q)−

δε′0
T

)2

+
π2T 2f(q)

6ε′0
+ h.o.c. . (A.6)Similarly one has

J−q[ε] =
T 2f(−q)

2ε′0

(
ε1(−q)− δε′0

T

)2

+
π2T 2f(−q)

6ε′0
+ h.o.c. . (A.7)Combining (A.6), (A.7) with (A.3) we obtain after simple algebra

J [ε] = −
q∫

−q

f(λ)ε(λ) dλ +
T 2π2

6ε′0

(
f(q) + f(−q)

)

+
T 2f(q)ε21(q)

2ε′0
+

T 2f(−q)ε21(−q)

2ε′0
+ h.o.c. . (A.8)In a similar way, one 
an obtain the low-temperature expansion of integrals involving thefun
tion u(λ)

J [u] = T

∫

R

f(λ) log
(
1 + e−

u(λ)
T

)
dλ. (A.9)Sin
e u0(λ) = ε0(λ), exa
tly the same 
onsiderations lead us to the estimate

J [u] = −
q∫

−q

f(λ)u(λ) dλ+
T 2π2

6ε′0

(
f(q) + f(−q)

)

+
T 2f(q)u21(q)

2ε′0
+

T 2f(−q)u21(−q)

2ε′0
+O(T 3). (A.10)B Estimates of integrals with singular fun
tionsB.1 The Cau
hy transform in the vi
inities of ±qIn this se
tion we determine the leading T → 0 behavior of LR[z](λ). Its depends on where λ islo
ated. Re
all that

LR[z](λ) =
−1

2πi

∫

R

log

(
1 + e−

u(µ)
T

1 + e−
ε(µ)
T

)
dµ

µ− λ
. (B.1)
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If λ is separated from ±q, then obviously
lim
T→0

LR[z](λ) =
1

2πi

q∫

−q

u1(µ) dµ

µ− λ
=

1

2πi
L[−q,q][u1](λ), (B.2)where u1(λ) is given by (3.22).Let now λ → q as T → 0. We denote λ = λ±, if λ approa
hes q from the upper (resp.lower) half-plane. Let again δ > 0 be su
h that δ → 0 as T → 0, while δ/T → ∞ in the

T → 0 limit. Consider the 
ontributions to the integral (B.1) 
oming from di�erent intervalsof integration. Obviously, when T → 0 the integrals over domains λ > q + δ and λ < −q − δprodu
e exponentially small 
orre
tions. On the other hand z(λ) 
an be approximated by u1(λ)
2πion the interval [−q − δ, q − δ]:

−1

2πi

q−δ∫

−q−δ

log

(
1 + e−

u(µ)
T

1 + e−
ε(µ)
T

)
dµ

µ− λ±
→֒ 1

2πi

q−δ∫

−q−δ

u1(µ) dµ

µ− λ±
, T → 0. (B.3)Extra
ting the divergent part we obtain

1

2πi

q−δ∫

−q−δ

u1(µ) dµ

µ− λ±
→ 1

2πi

q∫

−q

u1(µ)− u1
µ− λ±

dµ+
u1
2πi

log

(
λ± − q + δ

λ± + q

)
, δ → 0, (B.4)and we remind that u1 = u1(±q).It remains to 
ompute the integral over [q − δ, q + δ]. Following the method of the previousse
tion we linearize the fun
tions u(µ) and ε(µ) in the vi
inity of µ = q. Then we have

Iq ≡
−1

2πi

q+δ∫

q−δ

log

(
1 + e−

u(µ)
T

1 + e−
ε(µ)
T

)
dµ

µ− λ±
→֒ −1

2πi

δ∫

−δ

log


1 + e−

µε′0
T

−u1

1 + e−
µε′0
T


 dµ

µ− (λ± − q)
. (B.5)Repla
ing µε′0/T = ξ we arrive at

Iq =
−1

2πi

δε′0/T∫

−δε′0/T

[
log

(
eξ + e−u1

eξ + 1

)
+ u1Θ(−ξ − c)

]
dξ

ξ − t±
+

u1
2πi

log

(
t± + c

t± +
δε′0
T

)
, (B.6)where c is an arbitrary positive 
onstant and we have set t± = (λ± − q)ε′0/T . We 
an send now

δ/T → ∞. Substituting into (B.6)
1

ξ − t±
= ±i

∞∫

0

e∓iω(ξ−t±) dω, (B.7)21



we arrive at
Iq =

∓1

2π

∞∫

−∞

dξ

∞∫

0

dω

[
log

(
eξ + e−u1

eξ + 1

)
+ u1Θ(−ξ − c)

]
e∓iω(ξ−t±)

+
u1
2πi

log

(
t± + c

t± +
δε′0
T

)
. (B.8)The integral over ξ 
an be 
al
ulated by means of an integration by parts followed by a 
ompu-tation of the residues at eξ + e−u1 = 0 and eξ + 1 = 0:

1

2π

∞∫

−∞

dξ

[
log

(
eξ + e−u1

eξ + 1

)
+ u1Θ(−ξ − c)

]
e∓iωξ =

1− e±iωu1

2ω sinh(πω)
∓ u1e

±iωc

2πiω
. (B.9)Thus, we arrive at

Iq =
u1
2πi

log

(
t± + c

t± +
δε′0
T

)
± 1

2π

∞∫

0

dω

ω

[
∓iu1e

±iωc − π

sinh(πω)

(
1− e±iωu1

)]
e±iωt± . (B.10)Due to (3.26) the last integral is 
onvergent. It 
an be 
omputed in terms of the Γ-fun
tions via

∞∫

0

e−pω dω

ω

[
b− a− π

sinh(πω)

(
e−aω − e−bω

)]
= (a−b) log

( p

2π

)
+2π log

Γ
(
p+b
2π + 1

2

)

Γ
(p+a

2π + 1
2

) . (B.11)Thus, we obtain
Iq =

u1
2πi

log

( ±2πiT

(λ± − q + δ)ε′0

)
± log

Γ
(
1
2 ± (λ±−q)ε′0

2πiT ± u1
2πi

)

Γ
(
1
2 ±

(λ±−q)ε′0
2πiT

) . (B.12)Combining this result with (B.4) we �nd the following estimate
LR[z](λ±) =

1

2πi

q∫

−q

u1(µ)− u1
µ− λ±

dµ +
u1
2πi

log

(
λ± − q

λ± + q

)

− u1
2πi

log

(
(λ± − q)ε′0
±2πiT

)
± log

Γ
(
1
2 ±

(λ±−q)ε′0
2πiT ± u1

2πi

)

Γ
(
1
2 ± (λ±−q)ε′0

2πiT

) , T → 0, λ ∼ q. (B.13)Similarly, if λ → −q as T → 0 one has
LR[z](λ±) =

1

2πi

q∫

−q

u1(µ)− u1
µ− λ±

dµ +
u1
2πi

log

(
λ± − q

λ± + q

)

+
u1
2πi

log

(
(λ± + q)ε′0
±2πiT

)
± log

Γ
(
1
2 ± (λ±+q)ε′0

2πiT ∓ u1
2πi

)

Γ
(
1
2 ±

(λ±+q)ε′0
2πiT

) , T → 0, λ ∼ −q. (B.14)22



B.2 The double integralConsider now the low temperature behavior of the integral A given in (5.17). As usual we splitthe integration domain into several pie
es A = A−+A−q+A0+Aq+A+. The integral A+ (resp.
A−) over the domain λ > q + δ (resp. λ < −q − δ) are again exponentially small in respe
t tothe T → 0 limit. When λ ∈ [−q − δ, q − δ], we 
an use the expression (B.2) for LR[z](λ+) andalso repla
e z(λ) by u1(λ)

2πi . This gives
A0 ≡

1

(2πi)2

q−δ∫

−q+δ

dλu1(λ)∂λ

q∫

−q

dµ
u1(µ)

µ− λ+
. (B.15)Integrating by parts we arrive at

A0 =
−1

(2πi)2

q−δ∫

−q+δ

dλ

q∫

−q

dµ
u′1(λ)u1(µ)

µ− λ+
+

u1(q − δ)

(2πi)2




q∫

−q

u1(µ) dµ

µ− − q + δ
−

q∫

−q

u1(µ) dµ

µ− + q − δ


 . (B.16)Here we have used that u1(λ) = u1(−λ). This last property also allows one to symmetrize theintegrand, so that upon sending δ → 0, we get

−1

(2πi)2

q−δ∫

−q+δ

dλ

q∫

−q

dµ
u′1(λ)u1(µ)

µ− λ+
=

1

2(2πi)2

q∫

−q

u′1(λ)u1(µ)− u1(λ)u
′
1(µ)

λ− µ
dλ dµ, δ → 0.(B.17)Extra
ting then the divergent part from the single integrals in (B.16) we �nd

A0 → C1

[
u1(λ)

2πi

]
+

2u21
(2πi)2

log

(
δ

2q

)
, δ → 0, (B.18)where the fun
tional C1[F ] is de�ned in (5.23).Consider now the 
ontribution Aq 
oming from the interval q − δ < λ < q + δ:

Aq =

q+δ∫

q−δ

(
∂λLR[z](λ+)

)
· z(λ) dλ. (B.19)Substituting here (B.13) we arrive at Aq = A

(1)
q +A

(2)
q +A

(3)
q , where

A(1)
q =

1

2πi

q+δ∫

q−δ

z(λ)∂λ




q∫

−q

u1(µ)− u1
µ− λ±

dµ− u1
2πi

log(λ± + q)


 dλ, (B.20)

A(2)
q =

−u1
(2πi)2

q+δ∫

−q−δ

log

(
1 + e−

u(λ)
T

1 + e−
ε(λ)
T

)
dλ

λ+ − q
, (B.21)23



and
A(3)

q =
−1

2πi

q+δ∫

−q−δ

∂λ



log

Γ
(
1
2 +

(λ+−q)ε′0
2πiT + u1

2πi

)

Γ
(
1
2 +

(λ+−q)ε′0
2πiT

) − u1
2πi

log

(
(λ+ − q)ε′0

2πiT

)


× log

(
1 + e−

u(λ)
T

1 + e−
ε(λ)
T

)
dλ. (B.22)It is easy to see that A

(1)
q → 0 as δ → 0, be
ause the integrand is a bounded fun
tion as

T → 0. The integral A(2)
q 
an be estimated similarly to (B.5):

A(2)
q =

u21
(2πi)2

log

(−2πiT

δε′0

)
− u1

2πi
log

Γ
(
1
2 −

u1
2πi

)

Γ
(
1
2

) , T → 0, δ → 0. (B.23)As for the remaining integral A(3)
q , its leading behavior is obtained by a linearization of thefun
tions u(λ) and ε(λ) in the vi
inity of λ = q. After the 
hange of variables ξ = (λ− q)ε′0/Tfollowed by an integration by parts, we �nd in the δ → 0, T → 0 limit

A(3)
q =

1

2πi

∞∫

−∞



log

Γ
(
1
2 +

ξ+u1

2πi

)

Γ
(
1
2 +

ξ
2πi

) − u1
2πi

log

(
ξ + i0

2πi

)


(
1

1 + e−ξ−u1
− 1

1 + e−ξ

)
dξ. (B.24)We 
lose the integration 
ontour in the upper half-plane and 
ompute the integral (B.24) byresidues. These are lo
ated at ξ = −u1 + πi(2k + 1) and ξ = πi(2k + 1), k = 0, 1 . . . . Hen
e,

A(3)
q =

∞∑

k=1

[
log

Γ2(k)

Γ
(
k + u1

2πi

)
Γ
(
k − u1

2πi

) − u1
2πi

log

(
k − 1

2 − u1
2πi

k − 1
2

)]

= logG
(
1,

u1
2πi

)
+

u1
2πi

log
Γ
(
1
2 −

u1
2πi

)

Γ
(
1
2

)

+ lim
N→∞

[
log

G2(N + 1)

G
(
N + 1 + u1

2πi

)
G
(
N + 1− u1

2πi

) − u1
2πi

log
Γ
(
N + 1

2 − u1
2πi

)

Γ
(
N + 1

2

)
]
, (B.25)where G(x) is the Barnes fun
tion and G(1, x) = G(1 + x)G(1 − x). Using the asymptoti
behavior of the Γ and Barnes fun
tions for z → ∞ with z 6∈ R−

logG(z + 1 + a)− logG(z + 1) = a log
√
2π + a

2 (2z + a) log z − az + o(1),
log Γ(z + 1 + a)− log Γ(z + 1) = a log z + o(1),we �nd that the limit in the last line of (B.25) vanishes. Hen
e,

A(3)
q = logG

(
1,

u1
2πi

)
+

u1
2πi

log
Γ
(
1
2 − u1

2πi

)

Γ
(
1
2

) . (B.26)24



Combining this result with (B.23) we �nd
Aq →

u21
(2πi)2

log

(−2πiT

δε′0

)
+ logG

(
1,

u1
2πi

)
, T → 0, δ → 0. (B.27)Similar 
al
ulation in the vi
inity of the point −q leads us to the following below 
ontribution
oming from the interval q − δ < λ < q + δ:

A−q ≡
−q+δ∫

−q−δ

(
∂λLR[z](λ+)

)
· z(λ) dλ → u21

(2πi)2
log

(
2πiT

δε′0

)
+ logG

(
1,

u1
2πi

)
, T → 0, δ → 0.(B.28)Thus, taking into a

ount (B.27), (B.28) and (B.18) we �nally obtain

A → C1

[
u1(λ)

2πi

]
− 2

( u1
2πi

)2
log

(
qε′0
πT

)
+ 2 logG

(
1,

u1
2πi

)
, T → 0. (B.29)C Smooth part of the amplitudeIn this se
tion we give the exa
t expression for the smooth part of the amplitude B

(0)
s [αℓZ] =

limT→0Bs[u]. Provided the 
ondition (3.12) holds, we have
B(0)

s [αℓZ] = (e2πiα − 1)2e−C0

det
(
I + 1

2πi Û
(1)[αℓZ]

)
det
(
I + 1

2πi Û
(2)[αℓZ]

)

(
det
[
I − 1

2πK
])2

×
(
e−αℓL[Z](θ1+ic) − e2πiα−αℓL[Z](θ1−ic)

)−1 (
eαℓL[Z](θ2−ic) − e2πiα+αℓL[Z](θ2+ic)

)−1
. (C.1)Here L[Z](ω) stands the Cau
hy transform of the dressed 
harge Z(λ) on the interval [−q, q],and C0 is given by (5.6). The integral operator I− 1

2πK a
ts on the interval [−q, q] and its kernelwas de�ned by (2.3). The operators I+ 1
2πi Û

(1)[αℓZ] and I+ 1
2πi Û

(2)[αℓZ] a
t on a anti
lo
kwiseoriented 
losed 
ontour surrounding [−q, q]. Their kernels are
Û (1)(w,w′, [αℓZ]) = −e−αℓL[Z](w) · Kα(w −w′)−Kα(θ1 − w′)

e−αℓL[Z](w+ic) − e2πiα−αℓL[Z](w−ic)
, (C.2)and

Û (2)(w,w′, [αℓZ]) = eαℓL[Z](w′) · Kα(w −w′)−Kα(w − θ2)

eαℓL[Z](w′−ic) − e2πiα+αℓL[Z](w′+ic)
, (C.3)where Kα(λ) is given by (2.18). Finally parameters θ1 and θ2 are arbitrary 
omplex numberslying inside of the 
ontour where the operators Û (1,2)(w,w′, [αℓZ]) a
t. If we set θ1 = −q and

θ2 = q, then we reprodu
e the smooth part of form fa
tors of the Pℓ 
lass obtained [19℄.25
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