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Correlation funtions of one-dimensional bosonsat low temperatureK. K. Kozlowski1, J. M. Maillet2, N. A. Slavnov3
. AbstratWe onsider the low-temperature limit of the long-distane asymptoti behav-ior of the �nite temperature density-density orrelation funtion in the one-dimensional Bose gas derived reently in the algebrai Bethe Ansatz framework.Our results on�rm the preditions based on the Luttinger liquid and onfor-mal �eld theory approahes. We also demonstrate that the amplitudes arisingin this asymptoti expansion at low-temperature oinide with the amplitudesassoiated with the so-alled ritial form fators.1 IntrodutionThe model of one-dimensional bosons interating through a two-body δ-funtion potential isdesribed by the Quantum Nonlinear Shrödinger equation (QNLS model). Reently [1℄, theLagrange series method was applied for the derivation of the long-distane asymptoti expansionof the �nite temperature density-density orrelation funtion in this model. In the present paper,we onsider the low-temperature limit of this result.1DESY, Hamburg, Deutshland, karol.kajetan.kozlowski�desy.de2Laboratoire de Physique, UMR 5672 du CNRS, ENS Lyon, Frane, maillet�ens-lyon.fr3Steklov Mathematial Institute, Mosow, Russia, nslavnov�mi.ras.ru1



The QNLS model is given by the Hamiltonian
H =

L∫

0

(
∂xΨ

†∂xΨ+ cΨ†Ψ†ΨΨ− hΨ†Ψ
)
dx . (1.1)Here Ψ and Ψ† are Bose �elds possessing anonial equal-time ommutation relations, c > 0 isa oupling onstant and h > 0 the hemial potential. The results obtained in [1℄ are relative tothe thermodynami limit L → ∞ of this model.The density operator j(x) = Ψ†(x)Ψ(x) de�nes the operator of the number of partiles inthe interval [0, x]

Qx =

x∫

0

j(z) dz. (1.2)The generating funtion for the density-density orrelations reads
〈e2πiαQx〉T = lim

L→∞

〈ΩT |e2πiαQx |ΩT 〉
〈ΩT |ΩT 〉

, (1.3)were T is the temperature, α a omplex number and |ΩT 〉 any eigenstate of H that goes tothe state of thermal equilibrium in the in�nite volume limit. Indeed, the orrelation funtion ofdensities 〈j(x)j(0)〉T an be obtained from (1.3) as
〈j(x)j(0)〉T = − 1

8π2

∂2

∂x2
∂2

∂α2
〈e2πiαQx〉T

∣∣∣∣
α=0

. (1.4)We have shown in [1℄ that the large-x asymptoti expansion of the generating funtion (1.3)(and respetively of the two-point funtion (1.4)) is given in terms of solutions to a set of non-linear integral equations losely related to ones arising in the quantum transfer matrix approah[2, 3, 4, 5, 6, 7℄. Below, we solve these equations in the low-temperature limit. This omputationallows us to reah two goals.On the one hand, one an argue that the Luttinger liquid [8℄ and onformal �eld theory(CFT) approahes [9, 10, 11, 12, 13, 14, 15, 16, 17, 18℄ an be used to predit the large-xasymptoti behavior of the low-temperature orrelation funtions in massless one dimensionalquantum models. The QNLS model does belong to this lass. Thus, our results give us apossibility to on�rm these preditions by the diret derivation based on the algebrai Betheansatz. Namely, we show that in the low-temperature limit (T → 0) the asymptoti expansion(x → ∞, xT → ∞) of the density-density orrelation funtion takes the following form:
〈j(x)j(0)〉T = D2 − (TZ/v0)

2

2 sinh2(πTx/v0)
+
∑

ℓ∈Z∗

Aℓ e
2ixℓk

F

(
πT/v0

sinh(πTx/v0)

)2ℓ2Z2

. (1.5)Above appear the average density of the gas D, the Fermi momentum k
F
and the veloity ofsound on the Fermi boundary v0. The oe�ients Aℓ do not depend on T . All the dependeneof the amplitudes on T has been gathered in the pre-fator (πT/v0)2ℓ2Z2 .2



This form is in full agreement with the CFT preditions. Moreover it provides one withasymptoti behavior that is also valid in the full saling region of xT and in partiular in the
T = 0 ase.On the other hand our approah allows us to alulate the onstant oe�ients Aℓ in (1.5).We show that Aℓ are related the amplitudes of the so-alled ritial form fators introdued in [19℄and arising in the study of the model at T = 0. More preisely, the oe�ients Aℓ(πT/v0)

2ℓ2Z2determined for the system in the thermodynami limit and at small but �nite temperature T areequal to the amplitudes of the ritial form fators orresponding to umklapp-type exited statesof momentum 2k
F
ℓ and determined for the system of large but �nite size L at zero temperature,with the identi�ation v0/T 7→ iL. We will show this oinidene by means of straightforwardalulations arried in the ore of this paper.This artile is organized as follows. In setion 2 we reall the results obtained in [1℄. Insetion 3 we present the thermodynamis of the QNLS model at low temperature. In partiularwe solve the non-linear integral equation determining the asymptoti expansion of the orrelationfuntion in the low-temperature approximation. This allows us to obtain the rates of exponentialdeays in setion 4 and the onstant amplitudes in setion 5. The expansion (1.5) is derived insetion 6. Various estimates of the low-temperature behavior of the integrals that we deal withare gathered in three appendies.2 Long distane asymptoti behavior at general temperatureThe state of the thermal equilibrium in the QNLS model is desribed by the Yang�Yang equation[20℄ for the exitation energy ε(λ)

ε(λ) = λ2 − h− T

2π

∫

R

K(λ− µ) log
(
1 + e−

ε(µ)
T

)
dµ, (2.1)and the integral equation for the total density ρt(λ)

ρt(λ)−
1

2π

∫

R

K(λ− µ)ϑ(µ)ρt(µ) dµ =
1

2π
. (2.2)The kernel K(λ) and the Fermi weight ϑ(λ) appearing above read

K(λ) =
2c

λ2 + c2
, ϑ(λ) =

(
1 + e

ε(λ)
T

)−1
. (2.3)Below the poles of the Fermi weight will play an important role. Therefore we introdue theroots {r±} of the equation 1 + e−ε(r±j )/T = 0, where r+

j (resp. r−

j ) belong to the upper (resp.lower) half-plane (see Fig. 1).The asymptoti expansion of the generating funtion 〈e2πiαQx〉T is given in terms of thesolutions to non-linear integral equations similar to (2.1). Let us hoose n points (n = 0, 1, . . . )3



ŝ+

j in the upper half-plane and n points ŝ−

j in the lower half-plane. We then introdue non-linearintegral equation for a funtion u(λ)

u(λ) = λ2 − hα − T

2π

∫

R

K(λ− µ) log
(
1 + e−

u(µ)
T

)
dµ+ iT

n∑

j=1

(
θ(λ− ŝ+

j )− θ(λ− ŝ−

j )
)
, (2.4)where hα = h+ 2πiαT and

θ(λ) = i log

(
ic+ λ

ic− λ

)
, θ′(λ) = K(λ). (2.5)Below we will show that, in the low-temperature limit and for {ŝ±} �xed, the solution to theequation (2.4) always exists. Clearly, this solution depends on the parameters {ŝ±}: u(λ) =

u(λ|{ŝ+}, {ŝ−}). By imposing the onstraints
1 + exp

(
−
u(ŝ±

j |{ŝ+}, {ŝ−})
T

)
= 0, j = 1, . . . , n, (2.6)we obtain a system of equations, whih �xes the sets {ŝ±}i that are relevant for the desriptionof the long-distane asymptotis. The subsript i enumerates these sets. The long-distaneasymptoti expansion for the generating funtion 〈e2πiαQx〉T an then be organized into a sumparameterized by the funtions ui(λ) ≡ ui(λ|{ŝ+}i, {ŝ−}i) that solve (2.4) with a orrespondingset of roots {ŝ±}i:

〈e2πiαQx〉T =
∑

i

e−xp[ui]B[ui] + o
(
e−xmaxℜ(p[ui])

)
, (2.7)where p[ui] and B[ui] are funtionals of ui(λ) whose expliit form will be spei�ed later.Observe that equation (2.4) an be reast in the form

ui(λ) = λ2 − hα − T

2π

∫

Ĉi

K(λ− µ) log
(
1 + e−

ui(µ)

T

)
dµ, (2.8)where the ontour Ĉi is suh that the roots {ŝ±} are loated between the real axis and Ĉi. Wealso demand that the ontours Ĉi separate the sets {ŝ±}i from all over possible roots of theequation 1 + e−ui(λ)/T = 0 and from all the roots {r±} (see Fig. 1). Then one an interpret theasymptoti expansion of 〈e2πiαQx〉T as being given by the sum over the di�erent possible hoiesof ontours Ĉi.The expliit expressions for the rates of exponential deay p[ui] and the amplitudes B[ui]an be written down in terms of integrals over the ontours Ĉi. Let us introdue an auxiliaryfuntions zi(λ) by

zi(λ) = − 1

2πi
log

(
1 + e−

ui(λ)

T

1 + e−
ε(λ)
T

)
. (2.9)4
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Figure 1: The roots {r±} are depited by (◦), the roots {ŝ±}i are depited by (•). Other rootsof the equation 1+ e−ui(ŝ±)/T = 0 are depited by (×). The ontour Ĉi bypasses the roots {ŝ+}ifrom above and the roots {ŝ−}i from below. It also separates the points {ŝ±}i from the otherpoints {ŝ±} as well as from all the poles of the Fermi weight {r±}.Then the rates of exponential deays take the very simple form
p[uk] = i

∫

Ĉk

zk(λ)dλ. (2.10)The expressions for the amplitudes B[ui] are muh more umbersome. We present them inthe form
B[ui] = Bd[ui]Bs[ui], where Bd[ui] = exp

( ∫

Ĉi

zi(λ)zi(µ)

(λ− µ+)2
dλ dµ

)
, (2.11)and the symbol µ+ means that the variable µ is slightly shifted to the left of the orientedintegration ontour Ĉi. The reason we separate the oe�ients B[ui] into two fators Bd[ui] and

Bs[ui] is that these go, in the low-temperature limit, to the disrete and to the smooth parts ofritial form fators respetively, as de�ned in [19℄.In order to desribe Bs[ui] we �rst introdue the Cauhy transform operator L
Ĉi

on theontour Ĉi
L
Ĉi
[zi](ω) =

∫

Ĉi

zi(λ)

λ− ω
dλ, (2.12)and a funtional C0 = C0[zi]

C0[zi] =

∫

Ĉi

zi(λ)zi(µ)

(λ− µ− ic)2
dλ dµ . (2.13)
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Then
Bs[ui] = (e2πiα − 1)2e−C0[zi]

det
(
I + 1

2πi Û
(1)[zi]

)
det
(
I + 1

2πi Û
(2)[zi]

)

det
[
I − 1

2πK
(ε)
]
det
[
I − 1

2πK
(ui)
]

×
[
e
L
Ĉi
[zi](θ1+ic) − e

2πiα+L
Ĉi
[zi](θ1−ic)

]−1 [
e
−L

Ĉi
[zi](θ2−ic) − e

2πiα−L
Ĉi
[zi](θ2+ic)

]−1
. (2.14)The �rst line of (2.14) ontains a ratio of Fredholm determinants. The integral operators I −

1
2πK

(ε) and I − 1
2πK

(ui) have the kernels
K(ε)(λ, µ) =

K(λ− µ)

1 + e
ε(µ)
T

, K(ui)(λ, µ) =
K(λ− µ)

1 + e
ui(µ)

T

. (2.15)The �rst of these integral operators ats on the real axis and the seond one ats on the ontour
Ĉi. The operators I + 1

2πi Û
(1)[zi] and I + 1

2πi Û
(2)[zi] both at on a antilokwise oriented losedontour surrounding Ĉi. Their kernels are given by

Û (1)(w,w′, [zi]) = −e
L
Ĉi
[zi](w) · Kα(w − w′)−Kα(θ1 − w′)

e
L
Ĉi
[zi](w+ic) − e

2πiα+L
Ĉi
[zi](w−ic)

, (2.16)and
Û (2)(w,w′, [zi]) = e

−L
Ĉi
[zi](w

′) · Kα(w − w′)−Kα(w − θ2)

e
−L

Ĉi
[zi](w′−ic) − e

2πiα−L
Ĉi
[zi](w′+ic)

, (2.17)where
Kα(λ) =

1

λ+ ic
− e2πiα

λ− ic
. (2.18)Finally, observe that the kernels Û (1,2)(w,w′, [zi]) as well as the oe�ient in the seond line of(2.14) depend on arbitrary omplex numbers θ1 and θ2 loated inside of the ontour where theoperators Û (1,2)(w,w′, [zi]) at. One an prove (see [21℄) that the total ombination (2.14) doesnot depend on the spei� hoie of these parameters.3 Thermodynamis at low temperatureIn this setion we provide a list of neessary formulae desribing the thermodynamis of theQNLS model at low temperature. We begin our disussion with the T = 0 ase.3.1 Zero temperatureIt is known [20℄ that for a positive hemial potential h > 0 the solution ε(λ) to the equation(2.1) has two roots ±q(T ) on the real axis: ε(±q(T )) = 0. Hereby ε(λ) > 0 for |λ| > q(T ) and6



ε(λ) < 0 for |λ| < q(T ). Let ε(λ) → ε0(λ) and q(T ) → q as T → 0. Then,
lim
T→0

T log
(
1 + e−

ε(λ)
T

)
=





0, |λ| > q,

−ε0(λ), |λ| < q,
. (3.1)It is then straightforward to hek that equation (2.1) turns into a linear integral equation forthe dressed energy ε0(λ):

ε0(λ)−
1

2π

q∫

−q

K(λ− µ)ε0(µ) dµ = λ2 − h, ε0(±q) = 0. (3.2)At T = 0 the state of thermal equilibrium goes to the ground state of the QNLS model. TheFermi weight ϑ(λ) (2.3) turns into the harateristi funtion of the interval [−q, q]. Thereforethe equation (2.2) for the density takes the form
ρt(λ)−

1

2π

q∫

−q

K(λ− µ)ρt(µ) dµ =
1

2π
, T = 0. (3.3)Another important harateristi of the ground state is the dressed harge Z(λ). In theQNLS model it is proportional to the density Z(λ) = 2πρt(λ). Below, we will use a speialnotation for the value of the dressed harge on the Fermi boundary Z = Z(±q). A formalexpression for Z an be given in terms of the resolvent to the operator I − 1

2πK ating on theinterval [−q, q]

Z = 1 +

q∫

−q

R(λ,±q) dλ, (3.4)where
R(λ, ξ)− 1

2π

q∫

−q

K(λ− µ)R(µ, ξ) dµ =
1

2π
K(λ− ξ). (3.5)Finally, we give the formulae for the average density D, the Fermi momentum k

F
, and theveloity of the sound on the Fermi boundary v0:

D =

q∫

−q

ρt(λ) dλ, k
F
= πD, v0 =

ε′0
Z , (3.6)where we denoted ε′0 ≡ ε′0(q).
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3.2 The dressed energy at low temperatureWe now desribe the power-law orretions to the Yang�Yang equation (2.1), whih appear atlow but non-zero temperature. For T small enough the solution to the equation (2.1) ε(λ) hasthe following expansion [22, 23, 24℄:
ε(λ) =

2∑

k=0

T kεk(λ) +O(T 3). (3.7)The funtions ε1(λ) and ε2(λ) an be found from the analysis of the integral in (2.1) in smallviinities of the Fermi boundaries ±q. The details of this analysis are given in appendix A (seealso [22, 23, 24℄).Using (A.8) and substituting the expansion (3.7) into the Yang�Yang equation we obtain
2∑

k=0

T kεk(λ)−
1

2π

2∑

k=0

T k

q∫

−q

K(λ− µ)εk(µ) dµ = λ2 − h

− T 2π

12ε′0

(
K(λ− q) +K(λ+ q)

)
− T 2K(λ− q)ε21(q)

4πε′0
− T 2K(λ+ q)ε21(−q)

4πε′0
+O(T 3). (3.8)What follows from this analysis is that ε1(λ) = 0 and

ε2(λ) = − π2

6ε′0

(
R(λ, q) +R(λ,−q)

)
, (3.9)where R(λ, µ) orresponds to the resolvent de�ned by (3.5).3.3 The poles of the Fermi weightWe now onsider the low-temperature behavior of the roots r±

k to the equation 1 + e−
ε(λ)
T = 0,namely the solutions to ε(λ) = 2πiT (k + 1/2), k ∈ Z. Obviously all these roots ollapse to q or

−q when T → 0. Therefore setting r±

k = q + T r̃±

k +O(T 2) (resp. r±

k = −q + T r̃±

k +O(T 2)) andsubstituting these expansions into ε(r±

k ) = 2πiT (k + 1/2) we �nd
ε
(
q + T r̃±

k +O(T 2)
)
= T r̃±

k ε
′
0 +O(T 2) = 2πiT (k + 1/2),

ε
(
−q + T r̃±

k +O(T 2)
)
= −T r̃±

k ε
′
0 +O(T 2) = 2πiT (k + 1/2).

(3.10)Thus, in the linear approximation in T , we obtain two series of roots




r+

k = ±q +
2πiT

ε′0
(k + 1/2) +O(T 2), k ≥ 0,

r−

k = ±q +
2πiT

ε′0
(k + 1/2) +O(T 2), k < 0.

(3.11)We will refer to the roots ollapsing to +q as the right series and the roots ollapsing to −q asthe left series. 8



3.4 Low-temperature limit of the u(λ) integral equationFrom now on, we fous on a �xed ontour Ĉi and onsider the assoiated ontribution to theasymptoti behavior of the generating funtion. Therefore, below, we will omit the subsript iin the notations of the ontour Ĉi and of the funtions ui(λ), zi(λ), et assoiated with it.Let Ĉ be the ontour bypassing n points ŝ+ in the upper half-plane from above and n points
ŝ− in the lower half-plane from below, where n is an arbitrary, but �xed non-negative integer.These points ŝ± are roots of the equation 1 + e−u(ŝ±)/T = 0. It is important for our purpose to�x the limits of these roots at T = 0.The T → 0 limit of equation (2.4) oinides with the one of the Yang�Yang equation, hene
u(λ)|T=0 = ε0(λ). Therefore it is reasonable to expet that, similarly to the points r±

k , the roots
ŝ±

k ollapse to q or to −q in the T → 0 limit. Thus, in the low-temperature limit these rootsshould form two series. There will be
• n+

p roots ŝ+ and n+
h roots ŝ− belonging to the right series;

• n−
p roots ŝ+ and n−

h roots ŝ− belonging to the left series.Obviously, there exists an integer ℓ, −n ≤ ℓ ≤ n, suh that the numbers n±
p and n±

h are relatedby
n+
p + n−

p = n+
h + n−

h = n, n+
p − n+

h = n−
h − n−

p = ℓ . (3.12)Therefore, for T small enough, one deals with the following struture for the distribution of roots
ŝ±:

{ŝ+} = {q + iT η̂+k }n+
p
∪ {−q + iT η̂−k }n−

p
, ℜ(η̂±k ) > 0, (3.13)

{ŝ−} = {q − iT ξ̂+k }n+
h
∪ {−q − iT ξ̂−k }n−

h
, ℜ(ξ̂±k ) > 0. (3.14)The parameters η̂±k and ξ̂±k admit the Taylor expansions η̂±k = η±k +O(T ) and ξ̂±k = ξ±k +O(T ).They appear in the non-linear integral equation (2.4) de�ning u(λ) and should be omputed bysolving the onditions

exp

(
−u(±q + iT η̂±k )

T

)
= exp

(
−u(±q − iT ξ̂±k )

T

)
= −1. (3.15)Substituting the parameterizations (3.13), (3.14) into the equation (2.4) and expanding upto the seond order in T we are led to

u(λ) = λ2 − h− T

2π

∫

R

K(λ− µ) log
(
1 + e−

u(µ)
T

)
dµ+ TG1(λ) + T 2G2(λ) +O(T 3). (3.16)Here

G1(λ) = −2πiα− iℓ

q∫

−q

K(λ− µ) dµ, (3.17)9



and
G2(λ) = K(λ− q)




n+
p∑

j=1

η+j +

n+
h∑

j=1

ξ+j


+K(λ+ q)




n−
p∑

j=1

η−j +

n−
h∑

j=1

ξ−j


 . (3.18)It is natural to expet that the solution to (3.16) has a form similar to (3.7)

u(λ) =
2∑

k=0

T kuk(λ) +O(T 3), (3.19)where, as we have already argued, u0(λ) = ε0(λ). Substituting (3.19) into (3.16) and using(A.10), we obtain linear integral equations satis�ed by the unknown funtions u1(λ) and u2(λ):
u1(λ)−

1

2π

q∫

−q

K(λ− µ)u1(µ) dµ = G1(λ), (3.20)
u2(λ)−

1

2π

q∫

−q

K(λ− µ)u2(µ) dµ = G2(λ)−
π

12ε′0

(
K(λ− q) +K(λ+ q)

)

− K(λ− q)u21(q)

4πε′0
− K(λ+ q)u21(−q)

4πε′0
. (3.21)It is then easy to see that the funtion u1(λ) − 2πiℓ satis�es (up to a multipliative fator)the equation (3.3) for the total density at T = 0. As we have already mentioned, on has that

2πρt(λ) = Z(λ) in the ase of the QNLS model, with Z(λ) being the dressed harge. Hene,
u1(λ) = u1(−λ) = −2πiαℓZ(λ) + 2πiℓ, αℓ = α+ ℓ. (3.22)The solution to equation (3.21) an be expressed in terms of the resolvent R(λ, µ) (3.5)

u2(λ) = R(λ, q)


2π

n+
p∑

j=1

η+j + 2π

n+
h∑

j=1

ξ+j − 1

2ε′0

(
π2

3
+ u21(q)

)


+R(λ,−q)


2π

n−
p∑

j=1

η−j + 2π

n−
h∑

j=1

ξ−j − 1

2ε′0

(
π2

3
+ u21(q)

)
 . (3.23)It remains to �x the leading Taylor oe�ients η±k and ξ±k . These an be parameterized bysets of integers, exatly as it was the ase for the roots r±

k (3.11). More preisely, one has
u(±q + iT η̂±k ) = ±2πiT (p±k − 1

2),

u(±q − iT ξ̂±k ) = ∓2πiT (h±k − 1
2),

(3.24)10



where p±k and h±k are integers. As a onsequene, in the linear order in T , we obtain
ε′0η

±
k = 2π(p±k − 1

2)± iu1(q),

ε′0ξ
±
k = 2π(h±k − 1

2 )∓ iu1(q),
(3.25)where u1(λ) is given by (3.22).Remark. Let u1 ≡ u1(±q) = 2πi(ℓ − αℓZ). From now on we assume that u1 satis�es theonstraint

−π < ℑ(u1) < π. (3.26)Note that the generating funtion (1.3) is periodi over α [25℄: 〈e2πiαQx〉T = 〈e2πi(α+1)Qx〉T .Due to this property the ondition above always an be satis�ed by appropriate hoie of theparameter α. Therefore the onstraint (3.26) does not imply any additional restritions for theparameters of the model.We stress that the ondition (3.26) is pure tehnial. It allows us to simplify some interme-diate alulations. In partiular, it follows from (3.26) that all the integers p±k and h±k in (3.25)are positive. However, one an proeed further without use of the inequality (3.26).Thus, in this way, we have found the solution u(λ) to the equation (2.4) up to O(T 2) termsand the roots ŝ±

k up to O(T ) terms. There is no fundamental obstale to �nding higher orderorretions to u(λ) and ŝ±

k . However, for our purposes, the results obtained here are alreadysu�ient.4 Correlation lengthsIn this setion we ompute the rate p[u] of the orrelation funtion exponential deay. In thease of the QNLS model, the onformal dimensions giving rise to the ritial exponents in theasymptoti expansion (1.5) were alulated in [17, 18℄. We now obtain these results by takingthe T → 0 limit of equation (2.10).We have already shown in the work [1℄ how the trivial onstant term in (1.5) an be deduedfrom our approah to the asymptotis at �nite temperature. More preisely, this onstant stemsfrom the ontribution of the ontour Ĉ = R, in other words the ase where the sets of the roots
{ŝ±} are empty (n = 0). Therefore, in the following, we will only onsider the ase of non-emptysets {ŝ±} (although the results of our analysis remain valid for n = 0 as well).By moving the ontour Ĉ to the real axis, equation (2.10) boils down to

p[u] = i

∫

R

z(µ) dµ − i

n∑

k=1

(ŝ+

k − ŝ−

k ). (4.1)The integral over R an be estimated to the leading order in T with the help of (A.8), (A.10).In its turn, the �nite sum is estimated diretly by inserting the Taylor expansions of the roots11



ŝ±k . Ultimately, one gets that, to the linear order in T ,
p[u] = −2iαℓkF

− TZu21
2πε′0

+ TZ




n+
p∑

j=1

η+j +

n−
p∑

j=1

η−j +

n+
h∑

j=1

ξ+j +

n−
h∑

j=1

ξ−j


+O(T 2). (4.2)where we have used (3.4) and (3.6). We remind also that u1 = u1(q) = 2πi(ℓ − αℓZ). Finally,it remains to use that η±k , ξ±k are given by (3.25). This leads to

p[u] = −2iαℓkF
+

2πT

v0


(αℓZ)2 − ℓ2 − n+

n+
p∑

j=1

p+j +

n−
p∑

j=1

p−j +

n+
h∑

j=1

h+j +

n−
h∑

j=1

h−j


+O(T 2). (4.3)5 Constant amplitudeIn this setion, we ompute the low-temperature limit of the onstant oe�ients Bd[u] (2.11)and Bs[u] (2.14). We prove that in this limit, when properly normalized in the temperature,

B[u] goes to the amplitude of a ritial form fator. The latter form fators orrespond toexpetation values of loal operators taken between the ground state and exited states whereall rapidities of the partiles and holes are loated on the Fermi boundary. We �rst reall severalde�nitions and results onerning the form fators in the QNLS model. The reader an �nd amore detailed exposition in [19℄1.The form fators of the QNLS model an be parameterized by the rapidities of partiles andholes [26, 27, 28, 29℄. If, in the thermodynami limit (L → ∞) all the rapidities are loated onthe Fermi boundaries ±q, then the orresponding form fator is alled ritial form fator [19℄.Hereby the distribution of the rapidities between +q and −q is important.Consider a ritial form fator parameterized by the rapidities of n partiles and n holes.Assume that, in the thermodynami limit, there is n+
p (resp. n+

h ) rapidities of the partiles (resp.holes) going to +q and n−
p (resp. n−

h ) rapidities of the partiles (resp. holes) going to −q. Wesay that a given form fator belongs to the Pℓ lass, if the numbers n±
p,h satisfy the onditionsgathered in (3.12), with ℓ being some �xed integer.The ritial form fators an be presented as a produt of a smooth and a disrete part (see[19℄). The smooth part has a well de�ned thermodynami limit L → ∞. The disrete part,stritly speaking, has no thermodynami limit. First of all, it sales to zero as some negativepower of L, when L → ∞. Seond, it not only depends on the rapidities of the partiles andholes (whih are equal to ±q), but also on the quantum numbers assoiated with the exitedstate.In the following, we show that the fator Bd[u] in (2.11) exatly reprodues the disrete partof the ritial form fator of the Pℓ lass, provided the distribution (3.12) is �xed. Hereby the1Formally the work [19℄ deals with form fators of the XXZ spin hain, however the results obtained therean be easily redued to the ase of the QNLS model. 12



role of large L is played by the inverse temperature: v0/iT ↔ L. The integers p±j and h±j (see(3.24)) play the role of the quantum numbers desribing partiles and holes.The oe�ient Bs[u] (2.14) gives the smooth part of the ritial form fator. We �rst fouson the analysis related with Bs[u] as the omputation of its T → 0 limit is simpler then for
Bd[u].5.1 Smooth partThe oe�ient Bs[u] an be seen as mostly depending on integrals of the following type:

If =

∫

Ĉ

f ′(λ)z(λ) dλ, (5.1)where z(λ) is given by (2.9) and f(λ) is holomorphi in some domain ontaining Ĉ and R. Thenmoving Ĉ to R we obtain
If →

∫

R

f ′(λ)z(λ) dλ − ℓ
(
f(q)− f(−q)

)
, T → 0, (5.2)sine all roots {ŝ±} go to ±q at T → 0. Using that, at T = 0 z(λ) = 0 for |λ| > q and

z(λ) = u1(λ)/2πi for |λ| < q, we �nd
lim
T→0

∫

R

f ′(λ)z(λ) dλ =
1

2πi

q∫

−q

f ′(λ)u1(λ) dλ, (5.3)and hene, due to (3.22)
lim
T→0

∫

Ĉ

f ′(λ)z(λ) dλ = −αℓ

q∫

−q

f ′(λ)Z(λ) dλ. (5.4)Using this presription we obtain for the limit of the Cauhy transforms
lim
T→0

L
Ĉ
[z](w + iγc) = −αℓL[−q,q][Z](w + iγc), γ = 0,±1. (5.5)Similarly

lim
T→0

C0[z] = α2
ℓ

q∫

−q

Z(λ)Z(µ)

(λ− µ− ic)2
dλ dµ. (5.6)Another type of integrals arises in the Fredholm determinant det

Ĉ

[
I − 1

2πK
(u)
]. Reall thatthis operator ats on the ontour Ĉ as

[
I − 1

2πK
(u)
]
f(λ) = f(λ)− 1

2π

∫

Ĉ

K(u)(λ, µ)f(µ) dµ, (5.7)13



where K(u)(λ, µ) is given by (2.15). If f(λ) is holomorphi in a domain ontaining Ĉ and R,then one an easily see that
∫

Ĉ

K(u)(λ, µ)f(µ) dµ =

∫

R

K(u)(λ, µ)f(µ) dµ +O(T ), T → 0. (5.8)Sine u(λ) = ε0(λ) at T = 0 we onlude that, in the T → 0 limit, the ation of the operator
I− 1

2πK
(u) oinides with the one of I− 1

2πK
(ε). The ation of this last operator learly reduesto the interval [−q, q] when T = 0. Thus,

lim
T→0

detR

[
I − 1

2πK
(ε)
]
= lim

T→0
det

Ĉ

[
I − 1

2πK
(u)
]
= det[−q,q]

[
I − 1

2πK
]
. (5.9)Substituting all these results into (2.14) we immediately reprodue the smooth part of theritial form fator obtained in [19℄. We give these rather umbersome expressions in appendix C.5.2 Disrete partThe T → 0 limit of the fator Bd[u] (2.11) is more involved. In order to ompute it, we �rstdeform the ontour Ĉ to the real axis. This provides an alternative expression for Bd[u], thatwas originally obtained in [30℄

Bd[u] = exp

( ∫

R

z(λ)z(µ)

(λ− µ+)2
dλ dµ

)
·
(
det
n

1

ŝ+

j − ŝ−

k

)2

×
n∏

j=1

e2LR[z](ŝ
−
j )−2LR[z](ŝ

+
j )

(
∂λe

−2πiz(λ)
∣∣∣
λ=ŝ−j

)−1(
∂λe

−2πiz(λ)
∣∣∣
λ=ŝ+j

)−1

. (5.10)Consider the behavior of the Cauhy determinant in (5.10) at T → 0. We have
(
det
n

1

ŝ+

j − ŝ−

k

)2

=

n∏
j>k

(ŝ+

j − ŝ+

k )
2(ŝ−

j − ŝ−

k )
2

n∏
j,k=1

(ŝ+

j − ŝ−

k )
2

. (5.11)Now we should substitute here (3.13), (3.14) and (3.25). Hereby at T → 0 we an set (ŝ±

j −ŝ±

k )
2 =

(ŝ±

j − ŝ∓

k )
2 = 4q2, if the roots belong to the di�erent series. Then we obtain

lim
T→0

(
T n−ℓ2 det

n

1

ŝ+

j − ŝ−

k

)2

= (−1)n+ℓ

(
qε′0
π

)−2ℓ2 ( ε′0
2π

)2n

×

n+
p∏

j>k

(p+j − p+k )
2

n+
h∏

j>k

(h+j − h+k )
2

n+
p∏

j=1

n+
h∏

k=1

(p+j + h+k − 1)2

n−
p∏

j>k

(p−j − p−k )
2

n−
h∏

j>k

(h−j − h−k )
2

n−
p∏

j=1

n−
h∏

k=1

(p−j + h−k − 1)2

. (5.12)
14



Consider now the low-temperature behavior of the derivatives ∂λe
−2πiz(λ) at λ = ŝ±

j . Wehave
e−2πiz(λ) =

1 + e−
u(λ)
T

1 + e−
ε(λ)
T

. (5.13)Sine 1 + e−
u(ŝ±

j
)

T = 0 we obtain
T∂λe

−2πiz(λ)
∣∣∣
λ=ŝ±j

=
−u′(ŝ±

j )

1 + e−
ε(ŝ±

j
)

T

=
−u′(ŝ±

j )

1− e−
ε(ŝ±

j
)−u(ŝ±

j
)

T

. (5.14)Substituting here (3.19), (3.22) we arrive at
lim
T→0

T∂λe
−2πiz(λ)

∣∣∣
λ=ŝ±j

=

{
−ε′0

(
1− e−2πiαℓZ

)−1
, if ŝ±

j belongs to the right series,
ε′0
(
1− e−2πiαℓZ

)−1
, if ŝ±

j belongs to the left series. (5.15)The estimate of the T → 0 behavior of the Cauhy transforms LR[z](ŝ
±

j ) is a more om-pliated problem. It is easy to see that one annot use (5.5) in this ase. Indeed, on the onehand the Cauhy transform L[−q,q][z](ω) on the interval [−q, q] has a logarithmi singularity at
ω = ±q. On the other hand, we have seen that all ŝ±

j go to ±q at T → 0, therefore LR[z](ŝ
±

j )should diverge as a multiple of log T in the low-temperature limit. In fat, the equation (5.5)only allows one to aess to this divergent part; however it does not give an aess to the �nitepart of the T → 0 behavior of the Cauhy transform.Similar problem ours at studying the T → 0 behavior of the double integral
A =

∫

R

z(λ)z(µ)

(λ− µ+)2
dλ dµ. (5.16)The above double integral an be redued to a single one

A =

∫

R

z(λ)z(µ)

(λ− µ+)2
dλ dµ =

∫

R

(
∂µLR[z](µ+)

)
· z(µ) dµ. (5.17)Thus, in order to estimate this integral at T → 0 one should know the behavior of LR[z](µ) onthe whole real axis inluding the points ±q. This question is studied in details in appendix B.Here we restrit ourselves to present the results of these omputations.First of all, we list the leading T → 0 behavior of the exponents of the Cauhy transforms

LR[z](ŝ
±

j ). There are four ases to distinguish:
• ŝ+

k belongs to the right or to the left series,
• ŝ−

k belongs to the right or to the left series.15



Using the parametrization (3.13), (3.14) and (3.25) we have
lim
T→0

{
eLR[z](±q+iT η̂±

k
)

(
qε′0
πT

)±
u1
2πi
}

= exp

{
− αℓ

q∫

−q

Z(µ)−Z
µ∓ q

dµ− u1
4

}
Γ(p±k )

Γ(p±k ∓ u1
2πi)

, (5.18)
lim
T→0

{
eLR[z](±q−iT ξ̂±

k
)

(
qε′0
πT

)±
u1
2πi
}

= exp

{
− αℓ

q∫

−q

Z(µ)−Z
µ∓ q

dµ+
u1
4

}
Γ(h±k ± u1

2πi )

Γ(h±k )
. (5.19)Thus, for a given partition (3.13), (3.14) of roots ŝ±

j into the right and left series, we obtain
lim
T→0

n∏

j=1

e2LR[z](ŝ
−
j )−2LR[z](ŝ

+
j )

(
qε′0
πT

)−
2ℓu1
πi

= exp



4ℓαℓ

q∫

−q

Z(µ)−Z
µ− q

dµ+ 2iπnαℓZ





× Γ2

(
{p+k − u1

2πi}, {h+k + u1
2πi}, {p−k + u1

2πi}, {h−k − u1
2πi}

{p+k }, {h+k }, {p−k }, {h−k }

)
, (5.20)where we use the standard hypergeometri type notation for ratios of Γ-funtions:

Γ

(
a1 , . . . , ap
b1 , . . . , bq

)
=

p∏

k=1

Γ(ak) ·
q∏

k=1

Γ(bk)
−1. (5.21)In its turn, the exponent of the double integral (5.16) exhibits the following leading T → 0behavior

lim
T→0

exp



∫

R

z(λ)z(µ)

(λ− µ+)2
dλ dµ



(
qε′0
πT

)−
u21
2π2

= e
C1

[

u1(λ)

2πi

]

G2
(
1,

u1
2πi

)
. (5.22)The funtional C1[F ] appearing above reads

C1[F (λ)] =
1

2

q∫

−q

F ′(λ)F (µ) − F (λ)F ′(µ)

λ− µ
dλ dµ + 2F (q)

q∫

−q

F (λ)− F (q)

λ− q
, (5.23)and G(1, x) = G(1 + x)G(1 − x), where G(x) is the Barnes funtion.Now we substitute u1/2πi = ℓ−αℓZ. Combining (5.12), (5.15), (5.20), and (5.22) and using

C1[αℓZ(λ)− ℓ] = C1[αℓZ(λ)]− 4ℓαℓ

q∫

−q

Z(µ)−Z
µ− q

dµ, (5.24)we obtain
B

(0)
d [u] = lim

T→0
Bd[u]

∣∣∣∣
qε′0
iπT

∣∣∣∣
2α2

ℓ
Z2

= eC1[αℓZ(λ)]

(
sinπαℓZ

π

)2n

G2(1, αℓZ − ℓ)

×Rn+
p ,n+

h
({p+}, {h+}|αℓZ − ℓ) Rn−

p ,n−
h
({p−}, {h−}|ℓ− αℓZ), (5.25)16



where
Rn,m({p}, {h}|ν) =

n∏
j>k

(pj − pk)
2

m∏
j>k

(hj − hk)
2

n∏
j=1

m∏
k=1

(pj + hk − 1)2
Γ2

(
{pk + ν} , {hk − ν}

{pk} , {hk}

)
. (5.26)We have thus reprodued the disrete part of form fators given in [19℄ up to the replaement

v0/T 7→ iL.6 Final resultWe have alulated the low-temperature limits of the exponential deay and onstant oe�-ient in the long-distane asymptoti expansion of the generating funtion 〈e2iπαQx〉T for givendistribution of the roots ŝ±j . In this setion we sum up all the obtained ontributions for ℓ �xed.Let us �rst summarize the results obtained in the previous setions. The asymptoti expan-sion of the generating funtion 〈e2iπαQx〉T at low temperature has the form
〈e2iπαQx〉T ≃

∑

ℓ∈Z

Qℓ e
2iαℓkF x x → ∞, T → 0, xT → ∞ , (6.1)where the oe�ients Qℓ are

Qℓ = B(0)
s [αℓZ]

(
πT

qε′0

)2α2
ℓ
Z2

G2(1, αℓZ − ℓ)e
C1[αℓZ(λ)]− 2πTx

v0
((αℓZ)2−ℓ2)

W+W− . (6.2)Here the smooth part B(0)
s [αℓZ] is given by (C.1), the funtional C1 by (5.23). To desribe thefators W± we �rst de�ne a funtion W (ν, r) depending on omplex ν and integer r as

W (ν, r) =

∞∑

n,n′=0
n−n′=r

∑

1≤p1<···<pn<∞

∑

1≤h1<···<hn′<∞

n∏

j=1

e
− 2πTx

v0
(pj−1)

n′∏

k=1

e
− 2πTx

v0
hk

×
(
sinπν

π

)2n′

Rn,n′({p}, {h}|ν), (6.3)where Rn,n′({p}, {h}|ν) is given by (5.26). Then
W± = W (ν, r)

∣∣∣
ν=±(αℓZ−ℓ),

r=±ℓ

, (6.4)It is easy to see that the fators W± orrespond to the sums over all the possible hoies ofintegers {p±a }n±
p

1 and {h±a }
n±
h

1 whih parameterize the possible on�gurations of the roots ŝ±j at
ℓ �xed. Suh the sums were omputed in [31℄

W (ν, r) =
G2(1 + r + ν)

G2(1 + ν)

e
−πTx

v0
r(r−1)

(
1− e

− 2πTx
v0

)(ν+r)2
. (6.5)17



Setting here ν = ±(αℓZ − ℓ), r = ±ℓ and substituting (6.5) into (6.2) we obtain after simplealgebra
Qℓ = Ãℓ

(
πT/v0

sinh πTx
v0

)2α2
ℓ
Z2

, with Ãℓ = B(0)
s [αℓZ]

G2(1, αℓZ)

(2qZ)2α
2
ℓ
Z2

eC1[αℓZ(λ)] , (6.6)where we have used ε′0 = Zv0. Thus we arrive at the following asymptoti expansion
〈e2iπαQx〉T ≃

∑

ℓ∈Z

e2iαℓkF x

(
πT/v0

sinh πTx
v0

)2α2
ℓ
Z2

Ãℓ . (6.7)Note that the obtained result obviously is a periodi funtion of α as it was expeted. It isalso straightforward to see that the ombination Ãαℓ
(πT/v0)

2ℓ2Z2 oinides with the amplitudeof the ritial form fator of the operator e2iπαQx [19℄ orresponding to the umklapp-type exitedstate of the momentum 2αℓkF
, where v0/T plays the role of the system size.Finally, in order to obtain the long-distane asymptoti expansion of the density-densityorrelation funtion it is enough to apply the di�erential operator (1.4) to the equation (6.7).Hereby one should distinguish two ases: ℓ = 0 and ℓ 6= 0. In the last ase one has due to (C.1)

B(0)
s [αℓZ]

∣∣∣
α=0

= 0, ∂αB
(0)
s [αℓZ]

∣∣∣
α=0

= 0. (6.8)Therefore the seond α-derivative should be applied on the oe�ient B(0)
s [αℓZ].On the ontrary B

(0)
s [αℓZ] = 1 at α = 0 and ℓ = 0 (see [1℄). Therefore the seond α-derivative should be applied on the ombination exp[2iαℓkF

x]
(
sinh(πTx/v0)

)−2α2
ℓ
Z2 , otherwisethe seond x-derivatives vanishes. Thus, taking the seond α and x derivatives of (6.7) as it isexplained above we arrive at (1.5) with

Aℓ =
D2

2

∂2

∂α2
Ãℓ

∣∣∣
α=0

. (6.9)It is readily heked that in the x → ∞, xT → 0 limit equation (1.5) does reprodue the long-distane asymptoti expansion of the density-density orrelation funtion of the one dimensionalBose gas at T = 0, together with the orret values of the amplitudes [21℄.AknowledgementsWe are very grateful to N. Kitanine and V. Terras for useful and numerous disussions. J. M.M. and N. S. are supported by CNRS. We also aknowledge the support from the GDRI-471 ofCNRS "Frenh-Russian network in Theoretial and Mathematial Physis" and RFBR-CNRS-09-01-93106L-a. N. S. is also supported by the Program of RAS Mathematial Methods of theNonlinear Dynamis, RFBR-11-01-00440a, SS-8265.2010.1. K. K. K. is supported by the EUMarie-Curie Exellene Grant MEXT-CT-2006-042695. N. S. and K. K. K would like to thankthe Theoretial Physis group of the Laboratory of Physis at ENS Lyon for hospitality, whihmakes this ollaboration possible. 18



A Estimates of integrals with regular funtionsIn this appendix we estimate the lass of integrals that appears in equations (2.1) and (2.4). We�rst fous on the integrals of the form:
J [ε] = T

∫

R

f(λ) log
(
1 + e−

ε(λ)
T

)
dλ. (A.1)For our purpose, it is enough to onsider the ase when f(λ) is bounded on the real axis anddi�erentiable in viinities of ±q, although the result of the analysis remains valid at muh lessrestritive assumptions. Due to the properties of ε(λ) (3.1) it is lear that

lim
T→0

J [ε] = −
q∫

−q

f(λ)ε(λ) dλ. (A.2)In order to �nd power-law orretions to the equation (A.2), one should estimate the ontribu-tions oming from the viinities of ±q more thoroughly. Let δ > 0 be suh that δ → 0 as T → 0,while δ/T → ∞ as T → 0. We an split the integral J into �ve parts J = J−+J−q+J0+Jq+J+.The integrals J± orrespond to the domains λ > q + δ and λ < −q − δ. They behave as
O(e−ε(±q±δ)/T ) and hene produe O(T∞) ontributions. The integral J0 runs along the do-main −q + δ < λ < q − δ. By fatoring out e− ε(λ)

T from the logarithm, we get that
J0[ε] = −

q−δ∫

−q+δ

f(λ)ε(λ) dλ +O(T∞). (A.3)Finally the integrals J±q orrespond to the domains ±q − δ < λ < ±q + δ and generate allpower-law orretions in T to (A.2). We now derive the leading power-law orretion to (A.2)oming from the δ-viinity of q. For doing this, we an replae the funtions entering the integralby the leading non-vanishing terms of their Taylor expansions. Namely, we replae f(λ) by f(q)and ε(λ) by (λ− q)ε′0 + Tε1(q). Reall that ε0(q) = 0 and we denote ε′0 ≡ ε′0(q). Thene,
Jq[ε] = Tf(q)

δ∫

−δ

log

(
1 + e−

λε′0
T

−ε1(q)

)
dλ+ h.o.c., (A.4)where h.o.c. means the higher order orretions in T . After hanging of variables λ = µT/ε′0 weobtain

Jq[ε] =
T 2f(q)

ε′0

δε′0/T∫

−δε′0/T

[
log
(
1 + e−µ−ε1(q)

)
+
(
µ+ ε1(q)

)
Θ
(
−µ− ε1(q)

)]
dµ

− T 2f(q)

ε′0

−ε1(q)∫

−δε′0/T

(
µ+ ε1(q)

)
dµ+ h.o.c., (A.5)19



where Θ(λ) is the Heaviside step-funtion. Using now that δ/T → ∞ we arrive at
Jq[ε] =

T 2f(q)

2ε′0

(
ε1(q)−

δε′0
T

)2

+
T 2f(q)

ε′0

∞∫

−∞

[
log
(
1 + e−µ

)
+ µΘ(−µ)

]
dµ

=
T 2f(q)

2ε′0

(
ε1(q)−

δε′0
T

)2

+
π2T 2f(q)

6ε′0
+ h.o.c. . (A.6)Similarly one has

J−q[ε] =
T 2f(−q)

2ε′0

(
ε1(−q)− δε′0

T

)2

+
π2T 2f(−q)

6ε′0
+ h.o.c. . (A.7)Combining (A.6), (A.7) with (A.3) we obtain after simple algebra

J [ε] = −
q∫

−q

f(λ)ε(λ) dλ +
T 2π2

6ε′0

(
f(q) + f(−q)

)

+
T 2f(q)ε21(q)

2ε′0
+

T 2f(−q)ε21(−q)

2ε′0
+ h.o.c. . (A.8)In a similar way, one an obtain the low-temperature expansion of integrals involving thefuntion u(λ)

J [u] = T

∫

R

f(λ) log
(
1 + e−

u(λ)
T

)
dλ. (A.9)Sine u0(λ) = ε0(λ), exatly the same onsiderations lead us to the estimate

J [u] = −
q∫

−q

f(λ)u(λ) dλ+
T 2π2

6ε′0

(
f(q) + f(−q)

)

+
T 2f(q)u21(q)

2ε′0
+

T 2f(−q)u21(−q)

2ε′0
+O(T 3). (A.10)B Estimates of integrals with singular funtionsB.1 The Cauhy transform in the viinities of ±qIn this setion we determine the leading T → 0 behavior of LR[z](λ). Its depends on where λ isloated. Reall that

LR[z](λ) =
−1

2πi

∫

R

log

(
1 + e−

u(µ)
T

1 + e−
ε(µ)
T

)
dµ

µ− λ
. (B.1)
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If λ is separated from ±q, then obviously
lim
T→0

LR[z](λ) =
1

2πi

q∫

−q

u1(µ) dµ

µ− λ
=

1

2πi
L[−q,q][u1](λ), (B.2)where u1(λ) is given by (3.22).Let now λ → q as T → 0. We denote λ = λ±, if λ approahes q from the upper (resp.lower) half-plane. Let again δ > 0 be suh that δ → 0 as T → 0, while δ/T → ∞ in the

T → 0 limit. Consider the ontributions to the integral (B.1) oming from di�erent intervalsof integration. Obviously, when T → 0 the integrals over domains λ > q + δ and λ < −q − δprodue exponentially small orretions. On the other hand z(λ) an be approximated by u1(λ)
2πion the interval [−q − δ, q − δ]:

−1

2πi

q−δ∫

−q−δ

log

(
1 + e−

u(µ)
T

1 + e−
ε(µ)
T

)
dµ

µ− λ±
→֒ 1

2πi

q−δ∫

−q−δ

u1(µ) dµ

µ− λ±
, T → 0. (B.3)Extrating the divergent part we obtain

1

2πi

q−δ∫

−q−δ

u1(µ) dµ

µ− λ±
→ 1

2πi

q∫

−q

u1(µ)− u1
µ− λ±

dµ+
u1
2πi

log

(
λ± − q + δ

λ± + q

)
, δ → 0, (B.4)and we remind that u1 = u1(±q).It remains to ompute the integral over [q − δ, q + δ]. Following the method of the previoussetion we linearize the funtions u(µ) and ε(µ) in the viinity of µ = q. Then we have

Iq ≡
−1

2πi

q+δ∫

q−δ

log

(
1 + e−

u(µ)
T

1 + e−
ε(µ)
T

)
dµ

µ− λ±
→֒ −1

2πi

δ∫

−δ

log


1 + e−

µε′0
T

−u1

1 + e−
µε′0
T


 dµ

µ− (λ± − q)
. (B.5)Replaing µε′0/T = ξ we arrive at

Iq =
−1

2πi

δε′0/T∫

−δε′0/T

[
log

(
eξ + e−u1

eξ + 1

)
+ u1Θ(−ξ − c)

]
dξ

ξ − t±
+

u1
2πi

log

(
t± + c

t± +
δε′0
T

)
, (B.6)where c is an arbitrary positive onstant and we have set t± = (λ± − q)ε′0/T . We an send now

δ/T → ∞. Substituting into (B.6)
1

ξ − t±
= ±i

∞∫

0

e∓iω(ξ−t±) dω, (B.7)21



we arrive at
Iq =

∓1

2π

∞∫

−∞

dξ

∞∫

0

dω

[
log

(
eξ + e−u1

eξ + 1

)
+ u1Θ(−ξ − c)

]
e∓iω(ξ−t±)

+
u1
2πi

log

(
t± + c

t± +
δε′0
T

)
. (B.8)The integral over ξ an be alulated by means of an integration by parts followed by a ompu-tation of the residues at eξ + e−u1 = 0 and eξ + 1 = 0:

1

2π

∞∫

−∞

dξ

[
log

(
eξ + e−u1

eξ + 1

)
+ u1Θ(−ξ − c)

]
e∓iωξ =

1− e±iωu1

2ω sinh(πω)
∓ u1e

±iωc

2πiω
. (B.9)Thus, we arrive at

Iq =
u1
2πi

log

(
t± + c

t± +
δε′0
T

)
± 1

2π

∞∫

0

dω

ω

[
∓iu1e

±iωc − π

sinh(πω)

(
1− e±iωu1

)]
e±iωt± . (B.10)Due to (3.26) the last integral is onvergent. It an be omputed in terms of the Γ-funtions via

∞∫

0

e−pω dω

ω

[
b− a− π

sinh(πω)

(
e−aω − e−bω

)]
= (a−b) log

( p

2π

)
+2π log

Γ
(
p+b
2π + 1

2

)

Γ
(p+a

2π + 1
2

) . (B.11)Thus, we obtain
Iq =

u1
2πi

log

( ±2πiT

(λ± − q + δ)ε′0

)
± log

Γ
(
1
2 ± (λ±−q)ε′0

2πiT ± u1
2πi

)

Γ
(
1
2 ±

(λ±−q)ε′0
2πiT

) . (B.12)Combining this result with (B.4) we �nd the following estimate
LR[z](λ±) =

1

2πi

q∫

−q

u1(µ)− u1
µ− λ±

dµ +
u1
2πi

log

(
λ± − q

λ± + q

)

− u1
2πi

log

(
(λ± − q)ε′0
±2πiT

)
± log

Γ
(
1
2 ±

(λ±−q)ε′0
2πiT ± u1

2πi

)

Γ
(
1
2 ± (λ±−q)ε′0

2πiT

) , T → 0, λ ∼ q. (B.13)Similarly, if λ → −q as T → 0 one has
LR[z](λ±) =

1

2πi

q∫

−q

u1(µ)− u1
µ− λ±

dµ +
u1
2πi

log

(
λ± − q

λ± + q

)

+
u1
2πi

log

(
(λ± + q)ε′0
±2πiT

)
± log

Γ
(
1
2 ± (λ±+q)ε′0

2πiT ∓ u1
2πi

)

Γ
(
1
2 ±

(λ±+q)ε′0
2πiT

) , T → 0, λ ∼ −q. (B.14)22



B.2 The double integralConsider now the low temperature behavior of the integral A given in (5.17). As usual we splitthe integration domain into several piees A = A−+A−q+A0+Aq+A+. The integral A+ (resp.
A−) over the domain λ > q + δ (resp. λ < −q − δ) are again exponentially small in respet tothe T → 0 limit. When λ ∈ [−q − δ, q − δ], we an use the expression (B.2) for LR[z](λ+) andalso replae z(λ) by u1(λ)

2πi . This gives
A0 ≡

1

(2πi)2

q−δ∫

−q+δ

dλu1(λ)∂λ

q∫

−q

dµ
u1(µ)

µ− λ+
. (B.15)Integrating by parts we arrive at

A0 =
−1

(2πi)2

q−δ∫

−q+δ

dλ

q∫

−q

dµ
u′1(λ)u1(µ)

µ− λ+
+

u1(q − δ)

(2πi)2




q∫

−q

u1(µ) dµ

µ− − q + δ
−

q∫

−q

u1(µ) dµ

µ− + q − δ


 . (B.16)Here we have used that u1(λ) = u1(−λ). This last property also allows one to symmetrize theintegrand, so that upon sending δ → 0, we get

−1

(2πi)2

q−δ∫

−q+δ

dλ

q∫

−q

dµ
u′1(λ)u1(µ)

µ− λ+
=

1

2(2πi)2

q∫

−q

u′1(λ)u1(µ)− u1(λ)u
′
1(µ)

λ− µ
dλ dµ, δ → 0.(B.17)Extrating then the divergent part from the single integrals in (B.16) we �nd

A0 → C1

[
u1(λ)

2πi

]
+

2u21
(2πi)2

log

(
δ

2q

)
, δ → 0, (B.18)where the funtional C1[F ] is de�ned in (5.23).Consider now the ontribution Aq oming from the interval q − δ < λ < q + δ:

Aq =

q+δ∫

q−δ

(
∂λLR[z](λ+)

)
· z(λ) dλ. (B.19)Substituting here (B.13) we arrive at Aq = A

(1)
q +A

(2)
q +A

(3)
q , where

A(1)
q =

1

2πi

q+δ∫

q−δ

z(λ)∂λ




q∫

−q

u1(µ)− u1
µ− λ±

dµ− u1
2πi

log(λ± + q)


 dλ, (B.20)

A(2)
q =

−u1
(2πi)2

q+δ∫

−q−δ

log

(
1 + e−

u(λ)
T

1 + e−
ε(λ)
T

)
dλ

λ+ − q
, (B.21)23



and
A(3)

q =
−1

2πi

q+δ∫

−q−δ

∂λ



log

Γ
(
1
2 +

(λ+−q)ε′0
2πiT + u1

2πi

)

Γ
(
1
2 +

(λ+−q)ε′0
2πiT

) − u1
2πi

log

(
(λ+ − q)ε′0

2πiT

)


× log

(
1 + e−

u(λ)
T

1 + e−
ε(λ)
T

)
dλ. (B.22)It is easy to see that A

(1)
q → 0 as δ → 0, beause the integrand is a bounded funtion as

T → 0. The integral A(2)
q an be estimated similarly to (B.5):

A(2)
q =

u21
(2πi)2

log

(−2πiT

δε′0

)
− u1

2πi
log

Γ
(
1
2 −

u1
2πi

)

Γ
(
1
2

) , T → 0, δ → 0. (B.23)As for the remaining integral A(3)
q , its leading behavior is obtained by a linearization of thefuntions u(λ) and ε(λ) in the viinity of λ = q. After the hange of variables ξ = (λ− q)ε′0/Tfollowed by an integration by parts, we �nd in the δ → 0, T → 0 limit

A(3)
q =

1

2πi

∞∫

−∞



log

Γ
(
1
2 +

ξ+u1

2πi

)

Γ
(
1
2 +

ξ
2πi

) − u1
2πi

log

(
ξ + i0

2πi

)


(
1

1 + e−ξ−u1
− 1

1 + e−ξ

)
dξ. (B.24)We lose the integration ontour in the upper half-plane and ompute the integral (B.24) byresidues. These are loated at ξ = −u1 + πi(2k + 1) and ξ = πi(2k + 1), k = 0, 1 . . . . Hene,

A(3)
q =

∞∑

k=1

[
log

Γ2(k)

Γ
(
k + u1

2πi

)
Γ
(
k − u1

2πi

) − u1
2πi

log

(
k − 1

2 − u1
2πi

k − 1
2

)]

= logG
(
1,

u1
2πi

)
+

u1
2πi

log
Γ
(
1
2 −

u1
2πi

)

Γ
(
1
2

)

+ lim
N→∞

[
log

G2(N + 1)

G
(
N + 1 + u1

2πi

)
G
(
N + 1− u1

2πi

) − u1
2πi

log
Γ
(
N + 1

2 − u1
2πi

)

Γ
(
N + 1

2

)
]
, (B.25)where G(x) is the Barnes funtion and G(1, x) = G(1 + x)G(1 − x). Using the asymptotibehavior of the Γ and Barnes funtions for z → ∞ with z 6∈ R−

logG(z + 1 + a)− logG(z + 1) = a log
√
2π + a

2 (2z + a) log z − az + o(1),
log Γ(z + 1 + a)− log Γ(z + 1) = a log z + o(1),we �nd that the limit in the last line of (B.25) vanishes. Hene,

A(3)
q = logG

(
1,

u1
2πi

)
+

u1
2πi

log
Γ
(
1
2 − u1

2πi

)

Γ
(
1
2

) . (B.26)24



Combining this result with (B.23) we �nd
Aq →

u21
(2πi)2

log

(−2πiT

δε′0

)
+ logG

(
1,

u1
2πi

)
, T → 0, δ → 0. (B.27)Similar alulation in the viinity of the point −q leads us to the following below ontributionoming from the interval q − δ < λ < q + δ:

A−q ≡
−q+δ∫

−q−δ

(
∂λLR[z](λ+)

)
· z(λ) dλ → u21

(2πi)2
log

(
2πiT

δε′0

)
+ logG

(
1,

u1
2πi

)
, T → 0, δ → 0.(B.28)Thus, taking into aount (B.27), (B.28) and (B.18) we �nally obtain

A → C1

[
u1(λ)

2πi

]
− 2

( u1
2πi

)2
log

(
qε′0
πT

)
+ 2 logG

(
1,

u1
2πi

)
, T → 0. (B.29)C Smooth part of the amplitudeIn this setion we give the exat expression for the smooth part of the amplitude B

(0)
s [αℓZ] =

limT→0Bs[u]. Provided the ondition (3.12) holds, we have
B(0)

s [αℓZ] = (e2πiα − 1)2e−C0

det
(
I + 1

2πi Û
(1)[αℓZ]

)
det
(
I + 1

2πi Û
(2)[αℓZ]

)

(
det
[
I − 1

2πK
])2

×
(
e−αℓL[Z](θ1+ic) − e2πiα−αℓL[Z](θ1−ic)

)−1 (
eαℓL[Z](θ2−ic) − e2πiα+αℓL[Z](θ2+ic)

)−1
. (C.1)Here L[Z](ω) stands the Cauhy transform of the dressed harge Z(λ) on the interval [−q, q],and C0 is given by (5.6). The integral operator I− 1

2πK ats on the interval [−q, q] and its kernelwas de�ned by (2.3). The operators I+ 1
2πi Û

(1)[αℓZ] and I+ 1
2πi Û

(2)[αℓZ] at on a antilokwiseoriented losed ontour surrounding [−q, q]. Their kernels are
Û (1)(w,w′, [αℓZ]) = −e−αℓL[Z](w) · Kα(w −w′)−Kα(θ1 − w′)

e−αℓL[Z](w+ic) − e2πiα−αℓL[Z](w−ic)
, (C.2)and

Û (2)(w,w′, [αℓZ]) = eαℓL[Z](w′) · Kα(w −w′)−Kα(w − θ2)

eαℓL[Z](w′−ic) − e2πiα+αℓL[Z](w′+ic)
, (C.3)where Kα(λ) is given by (2.18). Finally parameters θ1 and θ2 are arbitrary omplex numberslying inside of the ontour where the operators Û (1,2)(w,w′, [αℓZ]) at. If we set θ1 = −q and

θ2 = q, then we reprodue the smooth part of form fators of the Pℓ lass obtained [19℄.25
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