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Abstract

We study the spectrum of an integrable antiferromagnetic Hamiltonian of the gl(M |N)
spin chain of alternating fundamental and dual representations. After extensive numer-
ical analysis, we identify the vacuum and low lying excitations and with this knowl-
edge perform the continuum limit, while keeping a finite gap. All antiferromagnetic
gl(n + N |N) spin chains with n > 0 and N 6= 0 are shown to possess in the continuum
limit 2n − 2 multiplets of massive particles which scatter with gl(n) Gross-Neveu like
S-matrices, namely their eigenvalues do not depend on N . We argue that the con-
tinuum theory is the gl(M |N) Gross-Neveu model, that is the massive deformation of

the bgl(M |N)1 Wess-Zumino-Witten model. As we can see on the example of gl(2m|1)
spin chains, the full particle spectrum is much richer. Our analysis suggests that for
a complete characterization of the latter it is not enough to restrict to large volume
calculations, as we do in this work.
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1 Introduction

At present, the continuum limit of antiferromagnetic Lie superalgebra spin chains is poorly

understood. High degeneracies or continuous spectra [EFS05,SS07, IJS08,FM11] and singu-

lar IR scattering amplitude behavior [EFS05, SP10] emerge in the continuum large volume

limit. We interpret this as a hint of new physical phenomena, a good example being the

spontaneous symmetry breaking in 2D [JRS03]. Strikingly, when q-deformed, connections

with theories with no obvious supergroup symmetry appear, the Euclidean black hole for

instance [SP10, IJS08]. High degeneracies and singular scattering amplitudes might [FM11]

or might not [SP10] persist when the q-deformation is turned on, so that the stability with

respect to it is a subtle issue.
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Previous, above mentioned, research has mostly dealt with osp(2|2) ≃ sl(2|1) spin chains.

Although the good understanding of the representation theory of sl(2|1) is a valuable as-

set [Ger98], it still did not help to answer the very important question: does the large

volume continuum massive theory have an sl(2|1) symmetry or not? In order to answer

this question we find it more productive to consider gl(M |N) spin chains in general, even

though very little can be said about their representation theory. So, strategically we fol-

low [EFS05], but use the greater gl(M |N) symmetry together with the relatively new coho-

mology techniques developed in [CCMS10] in order to get a perspective view on the novel

features of superspin chains. Our goal is to formulate a meaningful factorisable scattering

theory for the gapped continuum limit of superspin chains. This is an even harder task

then it sounds for two reasons. First, the critical behavior of superspin chains is far from

obvious, mainly due to the lack of classification results analogous to those of Lie algebra spin

chains [Aff86,AH87,DdV88,AM89,Mar90,Mar91] and [Mar02]. Second, there are few non

conformal relativistic field theories with supergroup symmetry that have been understood by

now, even partially [SWK02,SP10,BL00,GLL00].

So, clarifying the continuum limit of superspin chains must ultimately result in a better

understanding of formally simple field theories such as the gl(M |N) and osp(R|2S) Gross-

Neveu models, which play an important role in disordered electronic system [Ber, GLL00,

LeC09], provide instances of continuous families of conformal field theories [CS09b,CMQ+10]

and appear in strong-weak coupling dualities with sigma models [CS09b,GLL00,CR09]. Due

to strong violation of unitarity, it is not obvious how to treat these super Gross-Neveu models

directly in the continuum by standard bootstrap methods [ZZ79, ORW87]. Insight from

coordinate Bethe ansatz for chiral Gross-Neveu models [AL80a,AL80b,AL79,DdV89] has led

us to consider the spin chain of gl(M |N) alternating fundamental and dual representations

as the most natural candidate for an integrable discretization of the gl(M |N) Gross-Neveu

model. The spin chain of only gl(M |N) fundamental representations is discarded because it

cannot lead to a relativistic field theory [Sal00,EK94]. This is an immediate consequence of

the fact that the tensor products of the M |N dimensional representation of sl(M |N) do not

generate the dual M |N dimensional representation if N > 0. This little observation helps to

clearly realize how different is the fusion in superspin chains compared to usual spin chains.

The article is organized as follows. In sec. 2 we define the spin chain and its integrable

dynamics. In sec. 3 we explain how to perform numerical calculations for spin chains of

modest size, but arbitrary gl(M |N) symmetry, using the walled Brauer algebra. Then we

present numerical results on the spectrum. Sec. 4 is of primary technical importance. We

discover a class of solutions to the gl(M |N) Bethe ansatz equations (BAE) which can be

fully characterized in terms of solutions to the gl(M − 1|N − 1) BAE. This provides an

explicit embedding of the gl(M − 1|N − 1) spectrum into the gl(M |N) spectrum. We give

an algebraic explanation to this relationship. Further, in sec. 5 we identify the vacuum

solution of gl(M |N) BAE and write it down explicitly in terms of the gl(M − N) vacuum

solution. We then classify gl(M |N) excitations that lead to a gl(M −N) like spectrum and
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the simplest ones that do not. For the latter, we analyze numerically the form of the solutions

to the BAE. Finally, in sec. 6 we consider the continuum limit of gapped spin chains with

alternating inhomogeneities. Excitations which can be characterized in terms of solutions to

gl(M −N) BAE lead to a spectrum of massive particles with gl(M −N) Gross-Neveu mass

ratios and S-matrix eigenvalues. We argue that the continuum limit of the spin chain is the

gl(M |N) Gross-Neveu model. We finish with analyzing some low lying excitations of the

gl(2m|1) spin chain which are not of gl(2m− 1) type and lead to new massive particles.

2 Transfer matrices, Hamiltonians and their spectra

Let V be the fundamental module of gl(M |N), V ∗ denote its dual and ρ : gl(M |N) 7→ gl(V )

together with ρ̄ : gl(M |N) 7→ gl(V ∗) be the corresponding representations. If {eα}
M+N
α=1

is a graded basis of V with grading |α| := |eα| ∈ Z/2Z and {eα}M+N
α=1 is the dual basis

eα(eβ) = δαβ, then Eαβ are the standard generators of gl(M |N) acting in V as Eαβ · eγ =

δβγeα and in V ∗ as Eαβ · eγ = −(−1)(|α|+|β|)|α|δαγe
β. Let us label the V factors of the

spin chain C(L) = (V ⊗ V ∗)⊗L from left to right by a subscript 1, . . . , L. Similarly, we label

the V ∗ factors by a subscript 1̄, . . . , L̄. For E ∈ EndV we denote by Ek ∈ EndC(L) the

endomorphisms acting as E on Vk and trivially, up to grading signs, everywhere else in the

chain. Similarly, for E ∈ EndV ∗, Ek̄ ∈ End C(L) will act as E on V ∗
k̄

and trivially, up to

grading signs, everywhere else.

The C(L)–endomorphisms Pkl = (−1)|β|ρk(Eαβ)ρl(Eβα) provide a representation for the

symmetric group acting on the V factors of C(L). Similarly, Pk̄l̄ = (−1)|β|ρ̄k̄(Eαβ)ρ̄l̄(Eβα)

generate a representation for the symmetric group acting on the V ∗ factors of C(L). On

the other hand, Qkl̄ = −(−1)|β|ρk(Eαβ)ρ̄l̄(Eβα) generate a representation of the Temperley-

Lieb algebra T2L(n) with loop weight n = M −N . Together, the P ’s and Q’s generate the

gl(M |N)–centralizer algebra of C(L), that is the set of all endomorphisms of the spin chain

that commute with the gl(M |N) action [Ser01]. This centralizer algebra is a representation

of the walled Brauer algebra BL,L(n), which can be viewed as a subalgebra of the Brauer

algebra B2L(n). We shall discuss in detail the algebra BL,L(n) and its representations in

sec. 3.1.

In terms of walled Brauer algebra generators we introduce the R–matrices

Rij(u) = u+ Pij Rı̄j(u) = u−Qı̄j

Rī(u) = u−Qī Rı̄̄(u) = u+ Pı̄̄ ,

which satisfy the Yang-Baxter algebra

Rij(u− v)Rik(u)Rjk(v) = Rjk(v)Rik(u)Rij(u− v) (2.1)

Rij(u− v)Rik̄(u)Rjk̄(v) = Rjk̄(v)Rik̄(u)Rij(u− v)

Rī(u− v + n)Rik(u)R̄k(v) = R̄k(v)Rik(u)Rī(u− v + n)
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and similar “dual” relations, that is the above relations with all barred indices replaced

with unbarred ones and all unbarred indices with barred ones. We define two one-parameter

families of monodromies

Ta(u) = RaL̄(u+ n/2)RaL(u) . . . Ra1̄(u+ n/2)Ra1(u) (2.2)

T̄ā(u) = RāL̄(u)RāL(u+ n/2) . . . Rā1̄(u)Rā1(u + n/2) (2.3)

acting on Va ⊗ C(L) and Vā ⊗ C(L), respectively, and corresponding transfer matrices

t(u) = stra Ta(u), t̄(u) = strā T̄ā(u) . (2.4)

Yang-Baxter relations (2.1) imply a Yangian structure given by the two relations

Rab(u− v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u − v) (2.5)

Rab̄(u − v + n/2)Ta(u)T̄b̄(v) = T̄b̄(v)Ta(u)Rab̄(u − v + n/2) (2.6)

and their duals. The following commutation relations immediately follow

[t(u), t(v)] = [t(u), t̄(v)] = [t̄(u), t̄(v)] = 0 .

The nested algebraic Bethe ansatz for the most general gl(M |N) spin chain was considered

in [BR08]. The Bethe ansatz equations and the spectrum of t(u) formally depend on the

nesting order, that is an ordering of a basis of V and the induced ordering of the dual basis

of V ∗. If the basis {eα}
M+N
α=1 of V diagonalizes the Cartan subalgebra, then, without loss of

generality, we label the basis vectors so that the total ordering reads

e1 > e2 > · · · > eM+N , (2.7)

where, however, we keep unspecified the grading of the basis vectors. Let wt(eα) = ǫα

denote the weights of basis vectors called fundamental weights. The ordering (2.7) induces

a weight space ordering ǫ1 > · · · > ǫM+N which fixes the simple root system ∆0 = {αi :=

ǫi − ǫi+1}
M+N−1
i=1 . The choice of grading, which we denote by Σ = {σα = |eα| = |α|}M+N

α=1 ,

is equivalent to the choice of a Cartan matrix, or a Dynkin diagram. Changing the grading

can be equivalently seen as changing the total ordering (2.7). As a result, the simple root

system, the positive root system and the Borel subalgebra changes with Σ. So, keep in mind

that the notion of highest weight always depends on the grading choice and changes when Σ

changes.

Define the operator matrix elements of the monodromies (2.2, 2.3) as T = Eij⊗Tij, where

Tij ∈ End C(L) and T = Ta, Tā. Choosing the reference state Ω to be the highest weight state

of C(L), the eigenvalues of t(u) can be written in terms of polynomials (Ta)ii(u)Ω = Λi(u)Ω

Λi(u) =






(u+ (−1)|1|)L(u + n/2)L, i = 1

uL(u+ n/2)L, 2 ≤ i ≤ r

uL(u+ n/2 − (−1)|M+N |)L, i = M +N
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and simple root Q-polynomials

Qk(u) =
ν(k)∏

j=1

(u− u
(k)
j )

as follows

Λ(u) =

M+N∑

k=1

(−1)|k|Λk(u)
Qk−1(u+ (−1)|k|)Qk(u− (−1)|k|)

Qk−1(u)Qk(u)
(2.8)

where the u
(k)
j , k = 1, . . . , r = M +N − 1 are the Bethe roots appearing at the k–th step of

the nesting. There are solutions of the following system of nested Bethe ansatz equations

Λk(u
(k)
j )

Λk+1(u
(k)
j )

= −(−1)|k|+|k+1|
Qk−1(u

(k)
j )Qk(u

(k)
j + (−1)|k+1|)Qk+1(u

(k)
j − (−1)|k+1|)

Qk−1(u
(k)
j + (−1)|k|)Qk(u

(k)
j − (−1)|k|)Qk+1(u

(k)
j )

, (2.9)

ensuring the analyticity of eigenvalues (2.8), where k = 1, . . . , r and j = 1, . . . , ν(k) and it has

to be understood that Q0(u) = QM+N (u) = 1. We stress that the BAE (2.9) are equivalent

to the analyticity requirement of the transfer matrix (2.8) if and only if none of the Bethe

roots of the same type coincide, which is an essential requirement in the algebraic Bethe

ansatz construction.

The BAE take a more familiar look [OW86]

L∏

k=1

e〈Λk,α〉(x
(α)
j − yk)e〈Λk̄,α〉(x

(α)
j − yk̄) = −(−1)|α|

∏

β∈∆0

να∏

i=1

e〈α,β〉(x
(α)
j − x

(β)
i ) , (2.10)

when written in terms of new variables

iu
(k)
j = x

(k)
j −

i

2

k∑

l=1

(−1)|l| , (2.11)

the Takahashi functions

et(x) =
x+ it/2

x− it/2
,

the highest weights Λk = ǫ1 and Λk̄ = −ǫM+N of modules Vk and V ∗
k̄

in C(L), and the weight

space scalar product 〈ǫi, ǫj〉 = δij(−1)|i|. The degree of a root αk = ǫk − ǫk+1 is defined

as |αk| = |k| + |k + 1|. We shall be mostly considering the homogeneous case (2.2, 2.3)

corresponding to yk = yk̄ = 0, although the inhomogeneous deformation yk, yk̄ 6= 0 shall also

be required. There are j = 1, . . . , να equations for every α ∈ ∆0.

The weight of the reference state is wt(Ω) =
∑L

k=1 Λk +
∑L

k̄=1 Λk̄ = L(ǫ1− ǫM+N ). Bethe

vectors ω described by the Bethe roots (2.10) are highest weight vectors of weight

wt(ω) = wt(Ω) −
r∑

k=1

αkν
(k) . (2.12)

We define the dynamics of the spin chain by the momentum and Hamiltonian operators

H =
d

du

∣∣∣∣
u=0

log
t(u)t̄(u)

Λ1(u)Λ̄M+N (u)
, exp iP = (−1)|1|+|M+N | t(0)t̄(0)

Λ1(0)Λ̄M+N (0)
. (2.13)
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In order to have explicit expression for the spectrum of these operators, the eigenvalues (2.8)

of t(u) are not enough. One also needs to evaluate the eigenvalue of t̄(u) on a given Bethe

eigenvector of t(u). A fundamental difference w.r.t. gl(N) spin chains is that one cannot solve

this problem by fusion. This is because tensor products of the fundamental representation

V of sl(M |N) will never generate the dual representation V ∗ as a direct summand, nor even

as a subquotient. To develop a clear idea about how this should be done, let us recall that

a set of Bethe vectors for t(u) can be constructed in the framework of the algebraic Bethe

ansatz (ABA) by using only the commutation relations (2.5). Then, the eigenvalue of t̄(u) on

such a Bethe vector can be calculated, in principle, by using the second type of commutation

relations (2.6). We shall not pursue this rather tedious route. Instead, we guess the eigenvalue

of t̄(u) on a given Bethe vector of t(u) as follows.

First, notice that a different set of Bethe vectors can be obtained by performing the

ABA for t̄(u), that is by using the commutation relations dual to eq. (2.5). We perform the

nesting by ordering the dual basis vectors {eα}M+N
α=1 of the auxiliary space V ∗ according to

their weights wt(eα) = −ǫα

eM+N > · · · > e2 > e1 . (2.14)

We denote the Bethe roots appearing at step k of the nested ABA by ū
(M+N−k)
j , because the

simple root which must be associated to them is wt(eM+N−k+1)−wt(eM+N−k) = αM+N−k.

Then, the eigenvalues of t̄(u) can be written in term of polynomials (Tā)ii(u)Ω = Λ̄i(u)Ω

Λ̄i(u) =






(u− (−1)|1| + n/2)LuL, i = 1

(u+ n/2)LuL, 2 ≤ i ≤ r

(u+ n/2)L(u+ (−1)|M+N |)L, i = M +N

and simple root polynomials Q̄k(u) =
∏ν̄(k)

j=1(u− ū
(k)
j ) in complete analogy with (2.8)

Λ̄(u) =

M+N∑

k=1

(−1)|k|Λ̄k(u)
Q̄k−1(u − (−1)|k|)Q̄k(u + (−1)|k|)

Q̄k−1(u)Q̄k(u)
. (2.15)

Analyticity conditions for Λ̄(u) take the same form as eqs. (2.10) in terms of variables

ū
(k)
j = x̄

(k)
j −

i

2

M+N∑

l=k+1

(−1)|l| (2.16)

and parameters ν̄(k). A Bethe vector constructed in this way, which we denote by ω̄, has

weight

wt(ω̄) = wt(Ω) −
r∑

k=1

αk
¯ν(k) .

At this point, the eigenvalues of t(u) w.r.t. the second set of Bethe vectors ω̄ is not

known. If we can match Bethe vectors ω with Bethe vectors ω̄ then the problem is solved.

Due to the subtle completeness issue of ABA for super spin chains, it is not clear at all if
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the matching can actually be performed. We assume it can and we do it as follows: a Bethe

vector ω of t(u) is identified with a Bethe vector ω̄ of t̄(u) if

ω =ω̄ ⇔

{
ν(k) = ν̄(k)

{x
(k)
j }ν(k)

j=1 = {x̄
(k)
j }ν̄(k)

j=1

k = 1, . . . r . (2.17)

The first condition in the braces means wt(ω) = wt(ω̄). Eqs. (2.8, 2.15, 2.11, 2.16) allow us

to compute both the eigenvalues of t(u) and t̄(u) on a Bethe vector ω = ω̄ in (2.17).

After this long detour, we come back to the spectrum of the operators (2.13), which can

now be explicitly computed

E = −
ν(1)∑

j=1

(−1)|1|

x
(1)
j

2 + 1/4
−

ν(r)∑

j=1

(−1)|M+N |

x
(r)
j

2 + 1/4
(2.18)

P ≡
ν(1)∑

i=1

(−1)|1|θ1(x
(1)
j ) +

ν(r)∑

i=1

(−1)|M+N |θ1(x
(r)
j ) mod 2π , (2.19)

where θt(u) = i log et(u) + π = 2 tan−1 2u
t for some fixed branch cut choice. First thing to

be noticed is the explicit dependence of the definitions (2.13) on the grading. Therefore, it

looks like the type of the chain – ferromagnetic or antiferromagnetic – also depends on it,

which is also suggested by the grading signs in (2.18). However, the charges H and P can

be written explicitly as a representation of an element of the periodic walled Brauer algebra

H =

L∑

i=1

−(−1)|1| − (−1)|M+N | + Pii+1 + Pi−1i −
2

n

(
{Qīi+1, Qīi} + {Qi−1i, Qīi}

)
(2.20)

where { , } denotes the anticommutator, all (un)barred indices are defined modulo L and

the affine generators are expressed in terms of non-periodic walled Brauer algebra elements

PL1 := P1L = P12 . . . PL−1L . . . P12, PL1 := P1L = P12 . . . PL−1L . . . P12 and QL̄1 := Q1L̄ =

P1LQLL̄P1L. The following general formulas have been used

d log t(0)

du
=

L∑

i=1

R−1
īi

(n
2

)
Ṙīi

(n
2

)
+

L∑

i=1

R−1
iı̄

(n
2

)
˙̌Rii+1(0)Riı̄

(n
2

)

d log t̄(0)

du
=

L∑

i=1

Ṙīi

(n
2

)
R−1

īi

(n
2

)
+

L∑

i=1

Riı̄

(n
2

)
˙̌Riı−1(0)R−1

īi

(n
2

)
.

The latter can be derived using only the cyclicity of the supertrace, which holds for a graded

tensor product when even endomorphisms are considered, relations of the form PijRjk(u) =

Rik(u)Pij , PijRjk̄(u) = Rik̄(u)Pij , stra Paj = 1 and their duals. We see from eq. (2.20)

that the grading enters in the definition of the Hamiltonian only as a shift, therefore having

nothing to do with ferro or antiferromagnetism. The equivalence of the solutions of BAE in

different gradings, and therefore of specH , is at present somewhat understood in terms of

particle hole transformations [Tsu98,Tsu10], although the relationship between Bethe vectors

in different gradings not at all.
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A relation between the spectrum ofH and −H can be constructed, but one has to consider

different chains. Let HM|N denote the integrable Hamiltonian of the gl(M |N) spin chain.

Then on has the following relation

HM|N = −HN |M . (2.21)

To prove it one uses the algebra homomorphism between the walled Brauer algebras BL,L(n)

and BL,L(−n) provided by P 7→ −P and Q 7→ −Q. This automorphism is realized in the spin

chain representation by the shift of the grading function |i| 7→ |i|+1, which maps gl(M |N) 7→

gl(N |M). As we shall see in the next section, the sign in front of our Hamiltonian (2.20)

ensures that we are dealing with antiferromagnetic spin chains for n = M−N > 0. Eq. (2.21)

allows to fold back the gl(N |M) spin chains with N < M to gl(M |N) spin chains with

n > 0 by changing the sign of the Hamiltonian (2.20), but now they will be ferromagnetic.

As the gl(N |N) chain in eq. (2.20) is poorly defined, we shall discard it from the main

discussion and come back to it only in the conclusions. From now on we restrict to gl(M |N)

antiferromagnetic spin chains (2.20) for which n = M −N > 0.

3 Numerical diagonalization of the Hamiltonian

Diagonalizing the matrix (2.20) is not the smartest thing to do if one is solely interested in

its spectrum, especially if one intends to consider on the same footing all the gl(M |N)–spin

chains. This is because many eigenvalues have multiplicities corresponding to the dimension

of irreducible gl(M |N) representations appearing (generically as quotients of submodules) in

the spin chain. These multiplicities quickly grow with the rank and the computing power

per eigenvalue increases respectively. An approach which allows to select the eigenvalues

corresponding to a given gl(M |N)–irreducible representation and eliminate the corresponding

degeneracy would be considerably more efficient. To implement this approach one interprets

the Hamiltonian H in eq. (2.20) as an element H of some algebra, namely the walled Brauer

algebraBL,L(n = M−N), in a particular representation provided by the gl(M |N)–centralizer

of the C(L) spin chain. As we shall explain shortly, the algebra BL,L(n) can be abstractly

defined independently of the gl(n+N |N) spin chains and, in particular, it does not depend

on N . Centralizers of gl(n + N |N) spin chains provide N dependent representations for

BL,L(n). The important thing is that the representation theory of BL,L(n) is understood

well enough, so that one can find the spectrum of the algebraic Hamiltonian H by working

in other representations where its spectrum is much less degenerate compared to that of the

gl(n+N |N) spin chain, namely it does not depend on N .

3.1 Walled Brauer algebra and its standard modules

The walled Brauer algebra BL,L(n) can be conveniently viewed as a subalgebra of the Brauer

algebra B2L(n). The defining relations of B2L(n) can be found in [BSR98]. The words of

B2L(n) admit a representation as graphs on 4L labeled vertices with 2L edges connecting the
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PiI Ei Pi−1PiPi+1

Figure 1: The identity I and the generators Ei,Pi of the Brauer algebra of dimension (2L−1)!!
are represented on the left; the walled Brauer algebra generator Pi−1PiPi+1 is represented
on the right.

vertices pairwise in all (4L− 1)!! possible ways (crossings are allowed). The identity I of the

Brauer algebra and the generators Ei,Pi are represented by the graphs on the left in fig. 1.

In order to multiply the diagrams one arranges the first 2L vertices horizontally with

the remaining 2L vertices on top of the first ones. The product of a diagram d1 with a

diagram d2 is the diagram d1d2 obtained by i) placing the diagram d1 on top of the diagram

d2, ii) identifying the top of the diagram d2 with the bottom of the diagram d1 and iii)

replacing every loop generated in this process by n. The walled Brauer algebra BL,L(n) is

the subalgebra of B2L(n) generated by the elements Qiı̄ := E2i−1, Qı̄i+1 := E2i, Pi,i+1 :=

P2i−1P2iP2i−1, Pıı+1 := P2iP2i+1P2i. The generators PiPi+1Pi are represented on the right

in fig. 1. For every B2L(n) diagram with vertices labeled as in fig. 1, imagine moving all odd

vertices to the left of a wall, all the even ones to the right, while keeping the connectivity

unchanged. Then BL,L(n) is spanned by the set of B2L(n) diagrams, such that only strictly

horizontal edges cross the wall. In this representation of BL,L(n) we label the L up and L

down vertices on the left of the wall by the set 1, . . . , L from left to right and similarly those

on the right by the set 1̄, . . . , L̄. The Pii+1 generators act on the left of the wall, the Pıı+1

act on the right, while the generators Qiı̄ and Qı̄i+1 act across the wall.

Next we give a brief description of a set of modules of BL,L(n) over which we actually

numerically diagonalize the algebraic Hamiltonian H. These modules shall be related in

the following to gl(n + N |N) traceless tensors of fixed co– and contravariant shapes. For

λ and µ partitions of the non-negative integers |λ|, |µ| = f ≤ L, we denote by ∆L,L(λ, µ)

the standard modules of BL,L(n). There are constructed in the following way. Let Sym(f)

denote the symmetric group on f objects and S(λ), S(µ) denote its simple modules labeled

by the corresponding partitions. Then, ∆L,L(λ, µ) has as basis the tensor products between

the set of some diagrams on 2L points, with L of them on the either side of the wall, and

some basis of S(λ) and S(µ). The diagrams are such that every point is either free or belongs

to a horizontal edge crossing the wall. The number of edges is fixed to L − f . We give a

rough idea about how the action of the walled Brauer algebra can be constructed by diagram

matic multiplication in fig. 2: i) in a first step, before the diagrammatic multiplication, assign

labels to the free points of the diagrams on each side of the wall; ii) in a second step, after
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u ⊗ v u ⊗ v

u ⊗ v u ⊗ v(2, 1) · u⊗ (1, 2) · v
11

11

1 1

22

22

2 2

−

Figure 2: Example of diagrammatic multiplication of a basis element of ∆3,3(λ, µ), where
λ = {1, 1}, µ = {2}, u ∈ S(λ) and v ∈ S(µ).

the diagrammatic multiplication, apply a surjective homomorphism from labeled diagrams

to the tensor product of unlabeled diagrams with S(λ) and S(µ), that is to ∆L,L(λ, µ).

All labeled diagrams with more then L − f horizontal edges that can appear as a result of

the diagrammatic multiplication belong to the kernel of this homomorphism. In particular,

∆f,f (λ, µ) ≃ S(λ) × S(µ). All the detailed definitions can be found in [CVDM08].

We implement the action of BL,L(n) in ∆L,L(λ, µ) on a computer and investigate the

spectrum of the algebraic Hamiltonian H. Before presenting and discussing the numerical

results of sec. 3.3 one should explain how to extract from these data the spectrum of the

original spin chain Hamiltonian H .

3.2 Traceless tensors

Consider the gl(M |N) tensor (V ⊗ V ∗)⊗f . There is an obvious action of Sym(f) × Sym(f)

on the V and V ∗ factors. Let λ, µ be partitions of f , which we symbolically write as λ, µ ⊢ f .

One can apply a Young symmetrizer of shape λ to the V factors and a Young symmetrizer

of shape µ to the V ∗ factors to get a tensor of shape t(λ, µ) [Wey53]. We say that t(λ, µ)

has rank (f, f), covariant shape λ and contravariant shape µ or, shortly, shape (λ, µ). The

number of Young symmetrizers of shape λ is equal to the number of standard Young tableau

of shape λ, which is also equal to dimS(λ). Therefore, the number of tensors of shape

(λ, µ) is dimS(λ)× dimS(µ). Every tensor t(λ, µ) is a gl(M |N) module, which appears as a

direct summand in (V ⊗V ∗)⊗f . The symmetric group Sym(f)×Sym(f) acts in the space of

tensors of the same shape (λ, µ), transforming them into each other. The latter subspace is

isomorphic to a direct sum of S(λ) ⊗ S(µ) modules of Sym(f) × Sym(f). These statements

can be compactly written as follows

(V ⊗ V ∗)⊗f ≃
Sym(f)×Sym(f)

⊕

λ,µ⊢f

dim t(λ, µ)S(λ) ⊗ S(µ) .

Consider now the subspace t0(λ, µ) ⊂ t(λ, µ) of traceless tensors. Notice that this is

a gl(M |N) submodule, which will not necessarily be a direct summand of t(λ, µ). More

generally, one can consider the gl(M |N) submodules tn−1(λ, µ) ⊂ t(λ, µ) composed of tensors

whose all contractions of n covariant indices with n contravariant indices vanish. These
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provide a filtration of the tensor t(λ, µ)

t0(λ, µ) ⊂ t1(λ, µ) ⊂ · · · ⊂ tf (λ, µ) = t(λ, µ) . (3.1)

It is very important to observe that the subquotients tn(λ, µ)/tn−1(λ, µ) of this filtration

are isomorphic to traceless tensors of lower rank (f − n, f − n). For instance, taking a

trace of t1(λ, µ) one gets a traceless tensor of rank f − 1 because, by definition, all double

contractions of t1(λ, µ) must vanish. Now, the preimage of single traces of t1(λ, µ) modulo the

kernel t0(λ, µ) of the single trace homomorphisms is precisely to t1(λ, µ)/t0(λ, µ). Therefore,

t1(λ, µ)/t0(λ, µ) is isomorphic to traceless tensors of rank (f − 1, f − 1).

We see that traceless tensors t0(λ, µ) have a fundamental role — all direct summands of

the spin chain (V ⊗ V ∗)⊗L can be built out of them. As a consequence, the full spectrum of

the spin chain Hamiltonian can be reconstructed from the spectra in the subspaces of traceless

tensors of shape λ, µ ⊢ f , f = 0, 1, . . . , L. In fact, not all of these shapes are possible. We

shall determine the class of shapes for which the traceless tensors do not vanish later.

The traceless tensors are not necessarily irreducible. One way to build submodules of a

traceless tensor t0(λ, µ) is by embedding into it quotients of traceless tensors of lower rank

as follows. Let t0(λ
′, µ′) be a traceless tensor, λ′, µ′ ⊢ f − k, λ′ ⊂ λ, µ′ ⊂ µ and eλ, eµ denote

some Young symmetrizers of shape λ, µ. The tensor

eλeµt0(λ
′, µ′) ⊗

(
(V ⊗ V ∗)⊗k

)gl(M|N)
⊂ t(λ, µ)

might have an intersection with a non-trivial submodule of t0(λ, µ). The latter will generally

be isomorphic to only a quotient of t0(λ
′, µ′), because the Young symmetrizers eλ, eµ are

projectors. An illustrative example is the indecomposable gl(N |N) tensor t(1, 1) = V ⊗

V ∗. The traceless subspace t0(1, 1), isomorphic to the adjoint representation, is spanned by

elements of the form Gi
jei ⊗ej subject to the constraint strG = Gi

i(−1)|i| = 0, where {ei}2N
i=1

is a basis of V and {ei}2N
i=1 is the dual basis. The quotient t1(1, 1)/t0(1, 1) is one dimensional.

A coset representative for this quotient is, for instance, (−1)|i|ei ⊗ ei. The traceless tensor

t0(1, 1) is also indecomposable, but reducible. It has a unique proper non-trivial submodule

spanned by the gl(N |N) traceless invariant ei ⊗ ei.

Represent now the covariant part of every tensor t0(λ, µ) of fixed shape (λ, µ) and ranks

(f, f) by f dots on the left of an imaginary wall and the contravariant part by f dots on the

right of that wall. Then the walled Brauer algebra generators Pii+1 will act on the left of

the wall as in S(λ) and the Pıı+1 generators will act on the right as in S(µ) by transforming

dimS(λ)×dimS(µ) different traceless tensors of shape (λ, µ) into each other. The generators

Qiı̄ and Qı̄i+1 will act across the wall by contracting a covariant index with a contravariant

one. In view of the tracelessness condition this action is trivial. Thus, the space of all traceless

tensors t0(λ, µ) of the same shape (λ, µ) is isomorphic to a direct sum of dim t0(λ, µ) modules

∆f,f (λ, µ) ≃ S(λ) × S(µ) of the walled Brauer algebra. A very important observation is the

triviality of the centralizer of a traceless tensor

Endgl(M|N) t0(λ, µ) ≃ C . (3.2)
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This is a generalization of the Schur lemma for gl(n) traceless tensors, which are irreducible.

The statement (3.2) follows immediately from the action of the walled Brauer algebra in

the space of traceless tensors of shape (λ, µ) that we have just described. It means that

traceless tensors are a very special type of indecomposables, namely any gl(M |N) Casimir

is diagonalizable and proportional to the identity in a traceless tensor. It should be noticed

that this is typical of highest weight or Kac modules [Kac77b,Kac77a].

Assumption 1 Traceless tensors are highest weight modules.

This means that there is a Borel subalgebra b of gl(M |N) ≃ b ⊕ n− and a b–highest weight

vector v ∈ t0(λ, µ) such that the full tensor t0(λ, µ) can be generated from v by repeated

action of n−. We shall see later how to choose b for given t0(λ, µ).

Consider now the vector space δL,L(λ, µ) of all possible embeddings of traceless tensors of

shape (λ, µ) and ranks (f, f) into the spin chain (V ⊗ V ∗)⊗L. It consists of tensor products

of tensors t0(λ, µ) with gl(M |N)–invariants of (V ⊗V ∗)⊗(L−f). Notice that there is a unique

gl(M |N) invariant in V ⊗ V ∗, which can be written as ei ⊗ ei. Representing this invariant

by an edge connecting two vertices across the wall and the traceless tensors t0(λ, µ) as we

did before, we can visualize δL,L(λ, µ) as a diagram with L vertices on each side of the wall

and L− f edges connecting pairs of vertices across the wall. Thus, we reconstruct the same

diagrammatic representation of δL,L(λ, µ) as for ∆L,L(λ, µ). This proves that all the relations

between the generators of BL,L(n) satisfied in ∆L,L(λ, µ) will be satisfied in δL,L(λ, µ) as

well. The converse is generally not true, meaning that δL,L(λ, µ) is generally only a quotient

of (dim t0(λ, µ) direct sums of) ∆L,L(λ, µ). We stress that neither δL,L(λ, µ) nor ∆L,L(λ, µ)

are necessarily simple BL,L(n) modules and, therefore, the quotient can be non-trivial.

The ABA in some grading Σ provides gl(M |N) Bethe eigenvectors of highest weight with

respect to the Borel subalgebra bΣ determined by Σ and the ordering (2.7). Therefore, in

order to match the numerical spectrum of H in ∆L,L(λ, µ) with the exact spectrum of H by

the ABA we need to know the highest weight of a traceless tensor t0(λ, µ) at least in one

grading Σ. We explain below how to evaluate it.

Consider the Young diagrams corresponding to the shape (λ, µ) of a full tensor t(λ, µ).

The basis vectors in the tensor subspace of co(ntra)variant shape λ (µ) can be represented by

co(ntra)variant Young supertableaux of shape λ (µ), that is Young diagrams of shape λ (µ)

with a fundamental weight ǫi (−ǫj) inscribed in every box. The pattern of weights within the

Young diagrams must satisfy the supersymmetrization rules, that is i) in the same row the

bosonic (fermionic) weights are weakly (strongly) ordered w.r.t. each other, ii) in the same

column the bosonic (fermionic) weights are strongly (weakly) ordered w.r.t. each other and

iii) bosonic weights are weakly (strongly) ordered w.r.t. fermionic weight in the same row

(column). The weight of a supertableau is the sum of all weights it carries in its boxes.

Both λ and µ must fit into a hook whose horizontal (vertical) arm is of width M (N),

otherwise t(λ, µ) vanishes identically because it is not possible to fill in the Young diagrams

and get Young supertableaux compatible with the supersymmetrization rules. The highest
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−ǫ8

−ǫ9

Σ

vΣ(λ)
v̄Σ(µ)

h̄Σ(µ) hΣ(λ)

Figure 3: Covariant Young tableau λ and contravariant Young tableau µ of (5, 4)–hook shape
for gl(5|4). Bosonic fundamental weights belong to B = {ǫ2, ǫ3, ǫ5, ǫ6, ǫ9}, while fermionic
weights to F = {ǫ1, ǫ4, ǫ7, ǫ8}. Correspondingly −B = {−ǫ9,−ǫ6,−ǫ5,−ǫ3,−ǫ2} and −F =
{−ǫ8,−ǫ7,−ǫ4,−ǫ1}. The values of r4, r5, c3, c4, r̄2, . . . , r̄5, c̄3, c̄4 are zero.

weight of a supertableau depends on the grading. The choice of grading is a splitting of the

set of basis vectors into two sets B (F ) = {ǫi | |i| ≡ 0 (1)}< which are ordered w.r.t. the

total ordering (2.7). Equivalently, it can be represented by paths connecting the two corners

of the (M,N)–hooks as represented in fig. 3. Fix these paths and consider Young diagrams

λ, µ with rows λi, µi and columns λ′i, µ
′
i. Then, the highest weight of t(λ, µ) can be written

in the following form

ΛΣ(λ, µ) =

M∑

i=1

[riǫb(i) − r̄iǫb̄(i)] +

N∑

i=1

[ciǫf(i) − c̄iǫf̄(i)] (3.3)

where b(i) and f(i) are the elements at position i in the ordered sets B and F , b̄(i) and f̄(i)

are the elements at position i in the ordered sets −B and −F , ri = max(0, λi −
∑b(i)

j=1(1 −

(−1)|i|)/2), ci = max(0, λ′i −
∑i

j=1(1 − (−1)|i|)/2, r̄i = max(0, µi −
∑M

i=b̄(i)(1 − (−1)|i|)/2)

and c̄i = max(0, µ′
i −

∑N
i=f̄(i)(1 + (−1)|i|)/2) are number of boxes in a row or column of λ

or µ overpassing the grading paths as represented in fig. 3.

The highest weight component of a tensor t(λ, µ) w.r.t. the grading Σ will belong to

the traceless subspace t0(λ, µ) if the highest weight Young supertableau of shape (λ, µ) does

not contain some fundamental weight ±ǫi in both λ and µ. Otherwise, the corresponding

highest weight component of t(λ, µ) w.r.t. the grading Σ will either i) not belong to t0(λ, µ)

or ii) generate a submodule of t0(λ, µ) isomorphic to the embedding of a quotient of a lower

rank tensor t0(λ
′, µ′). If the latter case holds, then the possible Young diagrams (λ′, µ′)

are obtained from the Young diagrams (λ, µ) by removing pairs of boxes from the highest

weight Young supertableau of shape (λ, µ): a box of λ carrying some weights ǫi together with

a box of µ carrying the opposite weight −ǫi. Moreover, in the case ii) the highest weight
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of the top 1 of t0(λ, µ) will be smaller then the highest weight of the submodule t0(λ
′, µ′).

Therefore, t0(λ, µ) cannot be a Kac module w.r.t. bΣ.

We call gl(M |N)–admissible the shapes (λ, µ) for which the gl(M |N) traceless tensors

t0(λ, µ) neither vanish nor are isomorphic to lower rank traceless tensors. We are now ready

to answer the very important question: what are the admissible shapes of traceless tensors?

According to the previous discussion on the highest weight component of a tensor t(λ, µ),

a shape (λ, µ) is admissible if there exists a grading Σ such that the highest weight Young

supertableau of shape (λ, µ) does not contain any fundamental weight ±ǫi both in λ and in

µ. Consequently, for a traceless tensor t0(λ, µ) of admissible shape there is a grading Σ and

a corresponding highest weight (3.3) such that no cancellation between the ri and r̄i or ci

and c̄i terms can occur. If vΣ(λ), v̄Σ(µ) denote the number of nonzero “reduced rows” ri, r̄i

and hΣ(λ), h̄Σ(µ) denote the number of non-zero “reduced” columns ci, c̄i, then one must

have

∃Σ such that vΣ(λ) + v̄Σ(µ) ≤M, hΣ(λ) + h̄Σ(µ) ≤ N (3.4)

for a gl(M |N)–admissible shape (λ, µ), as represented in fig. 3 These admissible shapes nicely

reduce to hook shapes for purely covariant or contravariant gl(M |N) tensors and to staircases

for gl(n) traceless tensors [BCH+94].

We say that a shape (λ, µ) of a traceless tensor t0(λ, µ) is Σ–admissible if the inequalities

in eq. (3.4) are satisfied. Let KΣ(Λ) be the Kac module of highest weight Λ w.r.t. bΣ. We

can make now assumption 3.2 more precise.

Assumption 1′ The following isomorphism holds for Σ–admissible shapes (λ, µ)

t0(λ, µ) ≃ KΣ(ΛΣ(λ, µ)) .

This assumption in combination with the general theory of Kac modules [Kac77b,Kac77a]

is very useful for counting highest weight vectors. Namely, if (λ, µ) is Σ–admissible then the

number of highest weight vectors in t0(λ, µ) w.r.t. bΣ is equal to the number of irreducible

subquotients. Noticing that a highest weight vector cannot generate more then a highest

weight module, we prove the following claim in app. A.

Claim 1. Highest weight vectors of (V ⊗ V ∗)⊗L w.r.t. any Borel subalgebra belong to sub-

modules isomorphic to traceless tensors t0(λ, µ), λ, µ ⊢ f = 0, 1, . . . , L of admissible shape.

To sum up, we have explained the connexion between traceless tensors t0(λ, µ) of admis-

sible shapes (λ, µ) and standard modules ∆L,L(λ, µ). Secondly, if (λ, µ) is Σ-admissible, then

eq. (3.3) allows to compute the highest weight of t0(λ, µ) w.r.t. the Borel subalgebra bΣ.

Evaluating the highest weight of t0(λ, µ) w.r.t. arbitrary Borel subalgebras is more delicate,

mainly because of indecomposability issues. Finally, claim 1 indicates a natural relation-

ship between traceless tensors and Bethe vectors, which have the highest weight property,

constructed in the framework of ABA.
1The top of a module is the quotient by the intersection of all maximal ideals. The top of a Kac module

is the irreducible representation of highest weight.
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Table 1: Lowest eigenvalue of H in ∆L(λ, µ) with opposite sign.
L n (12, 2) (2, 2) (13, 21) (13, 3) (21, 21) (21, 3) (3, 3)

5

1 32.130 29.797 29.461 27.453 27.156 24.101 21.446
±0.591i

2 23.237 21.904 22.626 20.498 20.506 17.999 15.548
±0.339i

3 20.763 20.130 20.554 18.530 18.762 16.572 14.472

4 19.968 19.487 19.588 17.682 18.139 16.180 14.153

6

1 41.558 39.639 38.640 36.835 36.559 33.762 31.264
±0.355i ±0.513i ±0.127i

2 29.537 28.282 28.802 26.976 26.984 24.784 22.607
±0.267i ±0.426i ±0.148i

3 26.123 25.600 25.884 24.210 24.365 20.713
±0.194i ±0.258i 22.550

4 24.917 24.557 24.566 23.031 23.416 21.800 20.021
±0.129i

3.3 Spectrum

We present the spectrum of H in various ∆L,L(λ, µ) standard modules of BL,L(n) in tab. 3.3.

At a first glance, it appears that the vacuum always lies in ∆L,L(∅, ∅). To check more thor-

oughly this vacuum hypothesis we need an additional assumption on the spectrum. Consider

the spectral sets of H defined as

spec f =
⋃

λ,µ⊢f

spec∆L,L(λ, µ) .

Notice from tab. 3.3 that the lowest eigenvalue in spec f always lies in ∆L,L(1f , 1f ), where

1f denotes the Young diagram with a single column of length f . We have checked this

observation extensively.

Assumption 2 The lowest eigenvalues of H in spec f always lies in ∆L,L(1f , 1f).

Comparing only the lowest eigenvalues in ∆L,L(1f , 1f) allows us to gain several spin chain

length units and check the vacuum hypothesis further, see tab. 3.3.

To extract the spectrum of the gl(n + N |N) spin chain Hamiltonian (2.20) from the

spectrum of the algebraic Hamiltonian H we do the following. For every pair of Young

diagrams (λ, µ) with f = 0, 1, . . . , L boxes and of admissible shape we pick a grading Σ

such that the inequalities in eq. (3.4) are satisfied. Then we try to reproduce the spectrum

of H in ∆L,L(λ, µ) by means of eq. (2.18) from numerical solutions of BAE (2.10) in the

the form determined by the grading Σ and for root numbers corresponding to the highest

weight ΛΣ(λ, µ) in eqs. (2.12, 3.3). 2 Not all eigenvalues can be reproduced in this way. This

2One could work with a single form of BAE, say, that corresponding to the distinguished gradation Σ0.
However, the weight of Bethe vectors reproducing eigenvalues of H in ∆L,L(λ, µ) will no longer be given by
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Table 2: Lowest eigenvalue of H in ∆L(1k, 1k) with opposite sign.
L n k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

5

1 40.000 38.846 36.564 32.710 26.385 20.000
2 28.062 26.369 26.156 25.082 22.606 20.000
3 24.625 22.950 22.944 22.640 21.407 20.000
4 23.123 21.631 21.456 21.456 20.828 20.000

6

1 48.000 46.723 45.626 41.538 36.782 30.397 24.000
2 33.550 32.126 32.126 30.902 29.253 26.647 24.000
3 29.388 27.989 28.024 27.617 26.885 25.476 24.000
4 27.574 26.339 26.146 26.086 25.754 24.921 24.000

7

1 56.000 55.134 53.631 50.894 46.015 40.796 34.399 28.000
2 39.054 37.826 37.699 36.992 35.260 33.307 30.660 28.000
3 34.172 32.971 32.939 32.748 31.954 30.981 29.504 28.000
4 32.046 30.991 30.800 30.800 30.420 29.885 28.962 28.000

8

1 64.000 63.035 63.296 59.127 55.589 50.296 44.799 38.400 32.000
2 44.569 43.488 43.488 42.533 41.457 39.453 37.325 34.664 32.000
3 38.970 37.917 39.480 37.652 37.146 36.134 35.019 33.515 32.000
4 36.530 35.611 35.428 35.391 35.169 34.603 33.944 32.982 32.000

happens because, as we have explained in sec. 3.2, the vector space δL,L(λ, µ) of all possible

embeddings of gl(n+N |N) traceless tensors t0(λ, µ) into (V ⊗ V ∗)⊗L can be identified with

only a quotient of the standard module ∆L,L(λ, µ) of BL,L(n). When an eigenvalue of H can

be reproduced this way, we assume that a corresponding non-vanishing Bethe vector exist.

Otherwise, we assume that there is no eigenstate of H corresponding to that eigenvalue. So,

we rely on the completeness of the ABA, at least as far as the spectrum is concerned.

Denote the spectrum of the gl(M |N) spin chain Hamiltonian (2.20) by specHM|N . The

central idea of this section was the existence of an abstract algebra BL,L(n) such that the cen-

tralizers of the series N = 0, 1, 2, . . . of gl(n+N |N) spin chains C(L) provide different, N de-

pendent, representations of BL,L(n). This suggests that the intersection ∩N∈Z+ specHn+N |N

might be non-trivial. In fact, with the cohomological techniques developed in [CCMS10] one

can prove the following relationship between the spectral sets specHN+n|N with n fixed

specHn|0 ⊂ specHn+1|1 ⊂ specHn+2|2 ⊂ · · · ⊂ H . (3.5)

This “embedding of spectra” is a very interesting and general feature of supergroup spin

chains and one might wonder how does it carry on to the field theory description of the

continuum limit. In this respect, two scenarios are possible. The first possibility is that

specHn+N ′|N ′ becomes a very excited subset within specHn+N ′′|N ′′ , where N ′ < N ′′, and

decouples from it in the thermodynamic limit L → ∞. This means that the vacuum energy

per site of Hn+N ′|N ′ is higher then the vacuum energy per site of Hn+N ′′|N ′′ in the thermo-

dynamic limit. The second, more interesting, possibility is that the vacuum energies per site

eq. (3.3) if the shapes of (λ, µ) do not satisfy the inequalities (3.4) w.r.t. Σ0.
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for both Hamiltonians coincide in the thermodynamic limit. The first possibility occurs, for

instance, in the V ⊗L chains with Hamiltonian ±
∑
Pi,i+1.

In next section we describe the mechanism which is behind the embedding of spectra (3.5)

at the level of BAE. The answer to the question of how excited specHn+N ′|N ′ is within

specHn+N ′′|N ′′ for N ′ < N ′′ will have to wait until sec. 4.

4 Restriction and lift of BAE

At the end of the previous section we have explained the phenomenon (3.5) of embedding

of spectra. For it to work, it was important that there is a series {gl(n + N |N)}N∈Z+ of

spin chains endowed with Hamiltonians Hn+N |N which are all different representations of

the same algebraic Hamiltonian H ∈ BL,L(n). 3 The integrability did not matter. In this

section we would like to understand how this curious phenomenon arises at the level of BAE

describing the spectra of very general gl(M |N) integrable Hamiltonians and what structure

is responsible for it.

Fix a grading Σ = {σi = (−1)|i|}M+N
i=1 of the ordered basis vectors (2.7) of the gl(M |N)

fundamental representation V and let ∆
M|N
0 = {αj = ǫj − ǫj+1}r

j=1 be the corresponding

simple root system, where r = M+N−1 is the rank. We have explained how to construct the

ABA in the grading Σ for the spin chain (V ⊗V ∗)⊗L in sec. 2. The Bethe vectors are highest

weight vectors of weight (2.12) w.r.t. the Borel subalgebra bΣ determined by the grading Σ

and the ordering (2.7), that is by ∆
M|N
0 . We shall restrict to Bethe vectors whose weights

are given by highest weight Young supertableaux of Σ–admissible shapes (λ, µ) according to

eq. (3.3). Due to fundamental rôle of traceless tensors explained in sec. 3.2 and claim 1, it

is clear that with the imposed restriction, one must consider the ABA in all the gradings

in order to recover the full spectrum of the spin chain Hamiltonian H . For a fixed grading

and a corresponding simple root system, fig. 3 and eq. (3.3) implies that we are restricting

to Bethe vectors of weight w =
∑M+N

i=1 wiǫi, w
i ∈ Z such that for every simple bosonic root

αj = ǫj − ǫj+1 one has wi ≥ wi+1, while for every simple fermionic root one has the following

implications

wj < 0 −→ wj+1 < 0 , wj = 0 −→ wj+1 ≤ 0 (4.1)

wj+1 > 0 −→ wj > 0 , wj+1 = 0 −→ wj ≥ 0 .

The main reason for introducing this restrictions and working with BAE in multiple gradings

is the bounds on the number of Bethe roots resulting from eqs. (4.1).

4.1 Restriction

We wish to consider the BAE in the form (2.9) corresponding to a simple root αk such that

the following assumptions hold

3Strictly speaking, it does not make sense to talk about different representations of a single matrix H.
What we mean here is that the Hn+N|N are the image of H in different representations of BL,L(n).
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A1 αk is odd, that is σkσk+1 = −1

A2 αk has no source terms or, equivalently, k 6= 1, r

With these assumptions, we have ν(k) BAE for αk−1 of the form

σk−1Λk−1(u
(k−1)
j )

σkΛk(u
(k−1)
j )

= −
Qk−2(u

(k−1)
j )Qk−1(u

(k−1)
j + σk)Qk(u

(k−1)
j − σk)

Qk−2(u
(k−1)
j + σk−1)Qk−1(u

(k−1)
j − σk−1)Qk(u

(k−1)
j )

, (4.2)

ν(k) equations for αk

1 =
Qk−1(u

(k)
j )Qk+1(u

(k)
j + σk)

Qk−1(u
(k)
j + σk)Qk+1(u

(k)
j )

(4.3)

and ν(k+1) equations for αk+1

σkΛk+1(u
(k+1)
j )

σk+2Λk+2(u
(k+1)
j )

=
Qk(u

(k+1)
j )Qk+1(u

(k+1)
j + σk+2)Qk+2(u

(k+1)
j − σk+2)

Qk(u
(k+1)
j − σk)Qk+1(u

(k+1)
j + σk)Qk+2(u

(k+1)
j )

. (4.4)

Notice that if ν(k−1) = ν(k+1) then one can reduce the BAE (2.9) for the gl(M |N) spin chain

(V ⊗V ∗)⊗L to the BAE for the gl(M − 1|N − 1) spin chain of the same type (V ⊗V ∗)⊗L by

R1 identifying the Bethe roots corresponding to αk−1 and αk+1

{u
(k−1)
j }ν(k−1)

j=1 = {u
(k+1)
j }ν(k+1)

j=1 (4.5)

R2 multiplying the BAE for αk−1 and αk+1 corresponding to, say u
(k−1)
j = u

(k+1)
j

σk−1Λk−1(u
(k−1)
j )

σk+2Λk+2(u
(k−1)
j )

= −
Qk−2(u

(k−1)
j )Qk−1(u

(k−1)
j + σk+2)Qk+2(u

(k−1)
j − σk+2)

Qk−2(u
(k−1)
j + σk−1)Qk−1(u

(k−1)
j − σk−1)Qk+2(u

(k−1)
j )

.

(4.6)

Indeed, eq. (4.3) is trivially satisfied because according to R1 one has Qk−1(u) = Qk+1(u).

Furthermore, multiplying BAE according to R2, the Bethe roots {u
(k)
j }ν(k)

j=1 drop off yielding

a BAE of the form (4.2) with k replaced by k+2. We call a restriction of BAE the procedure

R1–R2.

The restriction procedure can be given an algebraic meaning and, therefore, partially

explained as follows. As described in detail in [CCMS10], choose

Q = Ek+1k (4.7)

to be the odd gl(M |N) element that squares to zero and defines the gl(M − 1|N − 1) chain

(VM−1|N−1 ⊗ V ∗
M−1|N−1)

⊗L as the Q–cohomology of the gl(M |N) chain (VM|N ⊗ V ∗
M|N )⊗L.

A necessary condition for a highest weight vector ω ∈ (VM|N ⊗V ∗
M|N )⊗L to yield a non-trivial

Q–cohomology is for it to be in the kernel of Q and, therefore, one must have

[Ekk+1, Ek+1k]ω = 0 ⇒ 〈wt(ω), αk〉 = 0 . (4.8)
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Figure 4: Restriction of BAE for supergroups. The dashed lines indicate possible roots on
the left or on the right. For a root αj = ǫj − ǫj+1 with j = k, k ± 1, we have indicated with
± signs the gradings of fundamental weight ǫj determining it.

Applying this constraint to a Bethe vector of weight (2.12) one recovers the condition ν(k−1) =

ν(k+1) necessary for R1 to hold. The form of the reduced gl(M − 1|N − 1) BAE can also

be easily understood. The subquotient
(
ker〈αk,−〉

∑M+N
i=1 Cǫi

)
/Cαk of the gl(M |N) weight

space can be straightforwardly identified with the gl(M−1|N−1) weight space
∑M+N

i6=k,k+1 Cǫi.

Therefore, the subquotient
(
ker〈αk,−〉 ∆

M|N
0

)
/Cαk of the gl(M |N) simple root system ∆

M|N
0

induced by cohomological reduction can be identified with a gl(M − 1|N − 1) simple root

system ∆
M−1|N−1
0 = {α1, . . . , αk−2, ǫk−1 − ǫk+2, αk+2, . . . , αr}. The reduced BAE have the

form (2.10) corresponding to precisely the simple root system ∆
M−1|N−1
0 .

4.2 Lift

To resume, assuming A1–A2 holds for the BAE of the spin chain (VM|N ⊗V ∗
M|N )⊗L written

w.r.t. a simple root system ∆
M|N
0 , we showed that one can restrict them to the system of

BAE for the spin chain (VM−1|N−1 ⊗ V ∗
M−1|N−1)

⊗L written w.r.t. the simple root system

∆
M−1|N−1
0 = {α1, . . . , αk−2, ǫk−1 − ǫk+2, αk+2, . . . , αr} induced by cohomological reduction.

This restriction is represented at the level of Dynkin diagrams in fig. 4.

Notice that we have not imposed any condition on the roots u
(k)
j . Therefore, it is le-

gitimate to ask if the BAE satisfying A1–A2 actually admit solutions of type R1. So, we

are given a simple root system ∆
M|N
0 and a solution {u

(l)
j }ν(l)

j=1, l = 1, . . . , k − 1, k + 2, . . . , r

of the (VM−1|N−1 ⊗ V ∗
M−1|N−1)

⊗L BAE w.r.t the simple root system ∆
M−1|N−1
0 induced

by cohomological reduction from ∆
M|N
0 with Q as in eq. (4.7). We must show that there

is a solution {u
(l)
j }ν(l)

j=1, l = 1, . . . , r of the (VM|N ⊗ V ∗
M|N )⊗L BAE w.r.t. ∆

M|N
0 which re-

stricts to the given one. First of all, eq. (4.8) implies ν(k+1) = ν(k−1) = P . After defining

u
(k+1)
j = u

(k−1)
j for j = 1, . . . , P the task is reduced to finding a solution {u

(k)
j }p

j=1 to either

eq. (4.2) or eq. (4.4), where we have set p = ν(k). If p ≥ P , such a solution obviously exists.

More then that, for p > P there is a continuum of such solutions! However, recall that for a

fixed root system and corresponding BAE we have restricted to Bethe vectors such that their

weights satisfy the constraints (4.1). If the solution we are looking for exists then the weight
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of the corresponding Bethe vector ω can be written as wt(ω) = · · ·+(P −p)(ǫk − ǫk+1)+ . . . .

The constraints (4.1) imply p ≤ P . So, for p = P the solution always exists. In our numer-

ical investigations we have observed that solutions might exist even for p < P . We call the

solutions of gl(M |N) BAE constructed in this way from solutions of gl(M − 1|N − 1) BAE

lifted solutions. We discard lifted solutions with p < P for the following reason.

Claim 2. If a solution of gl(M − 1|N − 1) BAE admits lifts to solutions of gl(M |N) BAE

corresponding to Bethe vectors of different weights, then all of them have zero Q–cohomology.

We prove the claim in appendix B.

Next, we show that the lift is unique. So, we have seen that lifted Bethe vectors correspond

to lifted solutions with ν(k) = ν(k±1) = P . Let us now prove that the P equations, say, (4.2)

regarded as a constraint on the unknowns {u
(k)
j }P

j=1 admit a unique solution. We start by

multiplying both sides with Qk(u
(k−1)
j ) and then expand in {u

(k)
j }P

j=1. What we get is a

system of P linear equations for the P unknowns

sl =
∑

i1<···<il

u
(k)
i1
. . . u

(k)
il

.

Thus, for a given solution {u
(1)
j }ν(j)

j=1, j = 1, . . . , k − 1, k + 2, . . . , r of the gl(M − 1|N − 1)

BAE, this system of linear equations admits a single solution for the {sj}P
j=1. Finally, notice

that the latter determine the set {u
(k)
j }P

j=1 uniquely, because every Bethe root in this set is

a solution of the polynomial equation of degree P

P∏

j=1

(u − u
(k)
j ) = uP + s1u

P−1 + · · · − (−1)P sP−1u+ (−1)P sP = 0 .

There are important cases when one can compute the roots {u
(k)
j }P

j=1 explicitly in terms

of the other roots. This happens if

C 1.1) αk±1 is odd and sourceless

C 1.2) ν(k±2) = P ,

where we meant that either we choose the plus sign or the minus sign overall. In the case

C 1 eq. (4.2) or eq. (4.4) can be rewritten in terms of variables (2.11) as

P∏

i=1

e1(x
(k±1)
j − x

(k)
i ) =

P∏

i=1

e1(x
(k±1)
j − x

(k±2)
i ) , j = 1, . . . , P .

We immediately read off the obvious solution

{x
(k)
j }P

j=1 = {x
(k±2)
j }P

j=1 , (4.9)

which we already know is unique. Another important case is

C 2.1) k = 2, α1 is odd and P = L
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C 2.2) k = r − 1, αr is odd and P = L.

In the case C 2.1 the one has

L∏

i=1

e1(x
(1)
j − x

(2)
i ) =

L∏

a=1

e1(x
(1)
j − ya) , j = 1, . . . , L ,

while in the case C 2.2

L∏

i=1

e1(x
(r)
j − x

(r−1)
i ) =

L∏

a=1

e1(x
(r)
j − ȳa) , j = 1, . . . , L ,

where we have used eqs. (2.10) with non-zero arbitrary inhomogeneities. Again, we read off

the unique solutions

{x
(2)
j }L

j=1 = {ya}
L
a=1 , {x

(r−1)
j }L

j=1 = {yā}
L
a=1 . (4.10)

It is important to notice that inhomogeneities are essential to lift the degeneracy of solutions

in the case C 2.

4.3 Generalizations

We have argued that the restriction and lift of BAE have an algebraic origin. From this

viewpoint, assumption A2 seems unnecessary. Indeed, all of the above constructions can be

appropriately modified to accommodate the boundary case corresponding to A1 and

A2′ k = 1, r.

The necessary condition (4.8) for a non-vanishing Q–cohomology of a gl(M |N) Bethe vec-

tor ω implies that reducible solution of gl(M |N) BAE must have ν(2) = L if k = 1 and

ν(r−1) = L if k = r. The reduced BAE must have a form (2.10) corresponding to simple root

systems ∆
M−1|N−1
0 = {α3, . . . , αr} and ∆

M−1|N−1
0 = {α1, . . . , αr−2} induced by evaluating

the subquotient
(
ker〈αk,−〉 ∆

M|N
0

)
/Cαk for k = 1 and k = r respectively. To satisfy these

requirements one must replace R1–R2 with

R′ {x
(2)
j }L

j=1 = {ya}L
a=1 for k = 1 and {x

(r−1)
j }L

j=1 = {ȳa}L
a=1 for k = r.

Invoking again claim 2 and the arguments that follow it, we conclude that the lift of a

gl(M − 1|N − 1) Bethe vector to a gl(M |N) Bethe vector must be unique and satisfies

ν(1) = L for k = 1 and ν(r) = L for k = r. Finally, the corresponding lifted solution can be

evaluated explicitly if α2 is odd for k = 1 and αr−1 is odd for k = r

{x
(1)
j }L

j=1 = {x
(3)
j }L

j=1 , {x
(r)
j }L

j=1 = {x
(r−2)
j }L

j=1 .

Subsectors in integrable systems are not a new phenomenon. For example the homoge-

neous gl(2n + 1) spin chain (V ⊗ V ∗)L of sec. 2 contains a subsector corresponding to the

2L–th tensor power of the fundamental representation of osp(1|2n), see [SWK02]. We shall
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provide more examples in sec. 5. However, all these examples lack by far the generality of the

restriction and lifting procedures we have described. This is because in our case there is an

algebraic mechanism behind which relates the representation theories of {gl(n+N |N)}N∈Z+

Lie superalgebras. The same cohomological reduction mechanism exists for any Lie super-

algebra except osp(1|2n). Therefore there is no doubt that the same restriction and lift

phenomena occur also for general osp(R|2S) integrable spin chains. Moreover, the embed-

ding of spectra (3.5) was already observed on a (non-integrable) osp(2S + 2|2S) spin chain

in [CS09a].

We come back now to the spin chain of sec. 2 and answer the question about how excited

w.r.t. each other are the subsectors (3.5).

5 Vacuum and low lying excitations

In this section we present numerical evidence showing that all integrable gl(n + N |N) spin

chains (2.20) with n fixed have the same vacuum energy. In view of the embedding of

spectra (3.5), we introduce the notion of degree of an excitation, which is the smallest value

of N for which it appears in specHn+N |N . We then proceed to classify the excitations of

degree 0 and 1, and present the form of the numerical solutions of BAE reproducing them.

5.1 Bosonic lift

From (3.5), the vacuum energy of the spin chain is greater or equal to the vacuum energy of

the algebraic Hamiltonian. Supposing they coincide, from tables (3.3, 3.3) and the general

discussion of sec. 3 it follows that the vacuum state in the spin chain is a gl(n + N |N)

invariant tensor. According to eq. (2.12), the number of roots in the vacuum state should

then be ν(k) = L. Numerically, we confirm that there is indeed a solution to the gl(n+N |N)

BAE (2.10) with ν(k) = L which reproduces the vacuum energy of the algebraic Hamiltonian

H ∈ BL,L(n). According to the terminology of sec. 4, this is the gl(n + N |N) lift of the

vacuum solution for the purely “bosonic” gl(n) chain. The latter is characterized by n − 1

seas of real roots without holes.

The low rank cases gl(2|1) and gl(3|1) have to be treated independently. For the gl(2|1)

case it was realized in [EFS05] that the vacuum energy of the Hamiltonian (2.20) is exactly

−4L and the corresponding vacuum solution in the grading Σ = {+,−,+} is highly degen-

erated x
(1)
j = x

(2)
j = 0. This solution obviously does not make sense in the framework of the

ABA. The problem persists in all other gradings as well. A regularized vacuum Bethe vector

can be defined by introducing arbitrary inhomogeneities for every V and V ∗ site in the chain.

Then, according to eqs. (4.10), the vacuum solution is entirely fixed by these inhomogeneities

and the vacuum Bethe vector can be constructed. The vacuum state of the homogeneous

chain is then defined by a limiting procedure. The gl(3|1) spin chain has the same problem,

again in all the gradings, and the same cure.
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Figure 5: The grading [+m(+−)N+n−m], 1 < m < n− 1 is such that there is a chain of 2N
odd roots. On the left: lift of the gl(n) vacuum to the gl(n +N |N) vacuum. On the right:
Bethe roots for Bethe vectors in the bosonic lift w.r.t. the two choices (5.3) of Q.

We now realize the embedding specHn|0 ⊂ specHn+N |N explicitly. Following [CCMS10],

choose an odd element Q ∈ gl(n + N |N) that squares to zero, has rank N and defines the

gl(n) spin chain (V ⊗V ∗)⊗L as the Q-cohomology of the gl(n+N |N) spin chain (V ⊗V ∗)⊗L.

For this choice of Q, one can perform the lift of all gl(n) Bethe vectors to gl(n+N |N) Bethe

vectors as described in sec. 4. As we shall see in a moment, the lift depends on the choice

of Q. We call this part of the spectrum the bosonic lift. The latter is straightforward to

understand in terms of gl(n) spin chain excitations [AL80a,AL80b,AL79,DN98].

How to characterize the gl(n + N |N) symmetry of the excitations that belong to the

bosonic lift? We say that the component wi of a gl(n + N |N) weight w =
∑M+N

i=1 wiǫi is

bosonic if |i| ≡ 0 and fermionic if |i| ≡ 1. According to sec. 4, if a gl(n + N |N) Bethe

vector ω is the lift of a gl(n) Bethe vector, that is ω has degree 0, then it should be possible

(in some grading) to write its weight in the form wt(ω) =
∑M+N

i=1 wiǫi with no fermionic

components and at most n bosonic components. Equivalently, the weight of a Bethe vector ω

of degree 0 must be representable (in some grading) by highest weight Young supertableaux

of gl(n)–admissible shape (λ, µ)

λ′1 + µ′
1 ≤ n . (5.1)

These shapes are Σ–admissible and most obviously gl(n) reducible w.r.t. the gradings

Σ = {

m︷ ︸︸ ︷
+, . . . ,+,

2N︷ ︸︸ ︷
+,−, . . . ,+,−,

n−m︷ ︸︸ ︷
+, . . . ,+} = [+m(+−)N+(n−m)] , (5.2)

where λ′1 ≤ m ≤ n − µ′
1. There are many choices for the nilpotent element to define the

restriction and lift in the grading (5.2). For instance, the two possibilities

Q1 ∈ CEm+2,m+1 ⊕ CEm+4,m+3 ⊕ · · · ⊕ CEm+2N,m+2N−1 (5.3)

Q2 ∈ CEm+3,m+2 ⊕ CEm+5,m+4 ⊕ · · · ⊕ CEm+2N+1,m+2N

are represented in fig. 5. Notice that for a fixed Q the lift is unique, although it is different

for different Q’s. Multiple gradings of the type (5.2) must be considered in order to recover

the full bosonic lift.

To conclude, we write down explicitly the vacuum solution in the grading [+m(+−)N+n−m]
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with 1 < m < n− 1

x
(m)
j = x

(m+2)
j = · · · = x

(m+2N)
j (5.4)

x
(m+1)
j = x

(m+3)
j = · · · = x

(m+2N+1)
j , j = 1, . . . , L ,

where the roots {x
(l)
j }L

j=1, l = 1, . . . ,m,m+ 2N + 1, . . . , n+ 2N − 1 correspond to the gl(n)

vacuum solution. We represent the lift of the bosonic vacuum in fig. 5. We have already

mentioned, see eq. (4.10), how to treat the special cases gl(2|1) and gl(3|1) by introducing

arbitrary inhomogeneities.

5.2 Degree one excitations

5.2.1 Classification

Fix an odd element Q ∈ gl(n + N |N) that squares to zero, has rank N − 1 and defines

the gl(n + 1|1) spin chain (V ⊗ V ∗)⊗L as the Q-cohomology of the gl(n +N |N) spin chain

(V ⊗ V ∗)⊗L. Excitations of degree 1 correspond to gl(n + N |N) Bethe vectors which: i)

are non-reducible to gl(n) Bethe vectors and ii) are lifted gl(n + 1|1) Bethe vectors. We

shall call the corresponding Bethe vectors also of degree 1. According to sec. 4, the weight

of a Bethe vector ω of degree 1 admits a representation (in some grading) of the form

wt(ω) =
∑M+N

i=1 wiǫi with at most n + 1 bosonic components and at most one fermionic

component. Notice that due to the claim 2 of sec. 4, there are also excitations of degree 1

with the same weight as excitations of degree 0, that is no fermionic components and at most

n bosonic components. Taking into account sec. 3.2 as well, the weight of Bethe vectors of

degree 1 must be representable (in some grading) by highest weight Young supertableaux of

gl(n+ 1|1)–admissible shapes (λ, µ), that is at least one of the two conditions holds

λ′1 + µ′
2 ≤ n+ 1 (5.5)

λ′2 + µ′
1 ≤ n+ 1 . (5.6)

Shapes (5.5) are Σ–admissible and most obviously gl(n + 1|1) reducible w.r.t. the gradings

[(+)n−m(+−)2N (+)m], such that µ′
1 ≤ m ≤ n+1−λ′2, and the choiceQ ∈ CEm−n+3,m−n+2⊕

· · ·⊕CEm−n+2N−1,m−n+2N−2. Shapes (5.6) are Σ–admissible and most obviously gl(n+1|1)

reducible w.r.t. the gradings [(+)m(−+)2N(+)n−m], such that λ′1 ≤ m ≤ n+1−µ′
2, and the

choice Q ∈ CEm+3,m+2⊕· · ·⊕Em+2N−1,m+2N−2. The corresponding root configurations are

represented in fig. 6 on the left.

5.2.2 Low lying excitations

Assumption 2 of sec. 3.3 and tab. 3.3 clearly indicates that the lowest lying excitation of

the BL,L(n) algebraic Hamiltonian which is of degree higher then 0 lies in ∆L,L(1k, 1k)

with k = [n
2 ] + 1. Equivalently, the lowest lying excitation of the gl(n + N |N) spin chain

Hamiltonian which is of degree higher then 0 is a traceless tensor t0(1
k, 1k). Eqs. (5.5, 5.6)
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Figure 6: Root numbers for gl(n+N |N) excitations of degree 1 and shape (λ, µ) satisfying,
top left, eq. (5.5) w.r.t. some grading [(+)n−m(+−)2N (+)m] with µ′

1 ≤ m ≤ n+ 1 − λ′2 or,
bottom left, eq. (5.6) w.r.t. some grading [(+)m(−+)2N (+)n−m] with λ′1 ≤ m ≤ n+ 1 − µ′

2.
On the right: root numbers for the lowest lying degree 1 excitation.

imply this excitation is of degree 1. To reproduce it from gl(n + 1|1) BAE we have chosen

the following gradings

Σ =

{
[+m − +m] , n = 2m− 1

[+m − +m+1] , n = 2m
(5.7)

The corresponding root numbers are represented in fig. 6 on the right. We have performed

extensive numerical calculations on the form of the solution of Bethe ansatz equations re-

producing the lowest lying excitations of degree 1. 4 Compared to usual Lie algebra spin

chains, this excitation looks very strange, to say the least. Strikingly, for n odd the roots

{x
(m)
j }L−m

j=1 , {x
(m+1)
j }L−m

j=1 are always complex, while for n even the roots {x
(m+1)
j }L−m−1

j=1

are always complex. We recall that all roots are real for the vacuum solution (5.4). Thus,

this excitation is not constructed as usual by making “minor” modifications to the vacuum

solution.

Another strange feature is the non-selfconjugacy of the solutions, at least in general. This

is a consequence of the non-hermiticity of the Hamiltonian (2.20). 5 Such solutions have been

investigated already in the study [EFS05] of the gl(2|1) spin chain, but also encountered in

different contexts dealing with non-hermitian Hamiltonians [SWK00]. Instead, all lowest

lying degree 1 solutions are invariant w.r.t. a modified conjugation symmetry

gl(2m|1) : {x
(k)∗
j }ν(k)

j=1 = {x
(n+1−k)
j }ν(n+1−k)

j=1 (5.8)

gl(2m+ 1|1) : {x
(k)∗
j }ν(k)

j=1 = {x
(n+1−k)
j }ν(n+1−k)

j=1 , k 6= m+ 1 . (5.9)

The symmetry (5.9) looks surprising, because the Dynkin diagram in fig. 6 is not symmetric

w.r.t. the transposition αk 7→ αn+1−k. However, notice that the roots {x
(k)
j }ν(k)

j=1 , k 6=

m+ 1 together with the particle hole transformed roots {x
(m+1)
j }ν(m+1)

j=1 also solve the BAE

corresponding to the transposed Dynkin diagram of fig. 6, see [Tsu98] for details. For ν(m+1)

even, the solutions are (exceptionally) selfconjugate

ν(m+1) even : {x
(k)∗
j }ν(k)

j=1 = {x
(k)
j }ν(k)

j=1 , k = 1, . . . , n+ 1 . (5.10)

4We will show a plot of the root distributions in the complex place for low lying excitations of degree 1 in
a future version of this eprint.

5See [Vla86] for a proof of selfconjugacy in the case of hermitian Lie algebra spin chain Hamiltonians.
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The following picture of the distribution of roots in the complex plane in the thermody-

namic limit is emerging from our numerical analysis

gl(2m|1) :





x

(k)
j = x

(2m+1−k)
j , x

(k)∗
j = x

(k)
j , k 6= m,m+ 1

x
(m)
j = x

(m+1)∗
j = x

(±)
j ± i

4 , x
(±)∗
j = x

(±)
j

(5.11)

gl(2m+ 1|1) :





x

(k)
j = x

(2m+2−k)
j , x

(k)∗
j = x

(k)
j , k 6= m+ 1

x
(m+1)
j = x

(±)
j ± i

2 , x
(±)∗
j = x

(±)
j

. (5.12)

The gl(2m|1) complex root configurations where called ±-strange strings in [EFS05].

We see that the lowest degree 1 excitation looks pretty complicated. What about other

degree 1 excitations? We have verified that properties (5.8–5.9) hold for all low lying exci-

tations with the same root numbers as in fig. 6 on the right and, more then that, for all low

lying solutions with symmetric configurations of the root numbers ν(k) = ν(n+1−k). Many of

these excitations seem to tend to the form (5.11, 5.12) in the thermodynamic limit. These

are the best understood excitations for which we shall give a continuum description in the

next section. We have also noticed that among the low lying excitations with ν(m+1) even,

there is always a subset of selfconjugate solutions of the type (5.10). These have interesting

properties, as we shall see in a moment.

To complete the overview of low lying degree 1 excitations, let us mention that we have

also identified solutions with symmetrical configurations of the root numbers, which do not

seem to tend to the form (5.11, 5.12) in the thermodynamic limit. For these solutions

we have nothing to say, although their study might prove crucial in constructing an S-

matrix description of the continuum theory in large volume. The situation is even worse for

solutions with non symmetrical configurations of the root numbers, because ±-strange string

configurations cannot be clearly defined.

5.2.3 Selfconjugate solutions

As we have said, for ν(m+1) even and ν(k) = ν(n+1−k), there is always a subset of selfconjugate

solutions of the type (5.10). It is straightforward to show that the gl(2m|1) BAE (2.10)

subject to the constraints (5.8, 5.10) are equivalent to the BAE of the so(2m+1) fundamental

spin chain of length L with periodic boundary conditions for the first m − 1 types of roots

and antiperiodic boundary conditions for the spinorial roots. This is the generalization of the

Takhtajan-Babujian subsector of the gl(2|1) spin chain of [EFS05]. The eigenvalues of the

integrable Hamiltonian for this so(2m+ 1) spin chain are given by eq. (2.18) subject to the

constraint (5.10). While this correspondence between solutions of gl(2m|1) and so(2m + 1)

BAE is quite curious, the remarkable thing is that it extends to a correspondence between

weakly excited solutions on both sides. In particular, the vacuum solution of the so(2m +

1) fundamental chain in the thermodynamic limit [Mar91] (plus holes) is compatible with

the form (5.11) when the constraint (5.10) is taken into account. We shall see how this

correspondence can be used effectively in the next section.
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The situation is quite different for gl(2m+1|1). Notice that assumptions A1–A2 and R1

of sec. 4 hold for solutions of gl(2m+1|1) BAE (2.10) satisfying (5.9, 5.10) and, therefore, these

can be restricted to solutions of gl(2m) BAE. However, the latter are very special, because

in addition to satisfying the gl(2m) BAE they must also admit multiple gl(2m + 1|1) lifts.

According to the claim 2 of sec. 4, gl(2m + 1|1) lifted Bethe vectors correspond exclusively

to gl(2m) solutions that do not admit multiple lifts. Presumably, what happens is that the

additional conditions satisfied by these gl(2m) solutions obtained by restriction ensure the

vanishing of the corresponding gl(2m) Bethe vectors. We have checked that there are many

other low lying solutions satisfying the constraints (5.9, 5.10). However, it is most confusing

that many low lying solutions that do not satisfy the constraints (5.9, 5.10) in finite volume

seem to have a thermodynamic limit (5.12) that does satisfy the constraints (5.9, 5.10). We

are not sure how to interpret this behavior, although we are tempted to believe this indicates

that the large volume limit is a subtle issue. Therefore, we concentrate in the next section

solely on the continuum description of gl(2m|1) degree 1 excitations of the type (5.8, 5.11).

6 Continuous limit

In this section we shall consider the spectrum of the spin chain of sec. 2 in the thermody-

namic limit L→ ∞. The homogeneous spin chains are gapless and the only thermodynamic

quantity, as far as the spectrum is concerned, is the vacuum energy per site. The latter

does not provide any insight into the the continuous limit of the chain, which is expected to

be governed by a conformal field theory (CFT). Probing this CFT requires computing scal-

ing corrections to the spectrum [Car86]. However, these are much harder to compute, e.g.

see [KP91], then thermodynamic quantities. Therefore, gaining insight into the CFT solely

from the lattice is quite non-trivial. To avoid such complications, one can introduce a smooth

gap in the spin chain. The continuous limit is then expected to be a massive deformation

of the CFT. Many interesting quantities, such as the β-function, the particle spectrum, S-

matrices, can now be computed in the thermodynamic limit. The standard way to generate

a gap in the homogeneous spin chains is by introducing an alternating inhomogeneity Λ in

the monodromies (2.2, 2.3), called staggering [Fad96]. The source terms of the homogeneous

BAE (2.10) then change to

(
x

(k)
j + i/2

x
(1)
j − i/2

)L

7→

(
x

(k)
j − Λ/2 + i/2

x
(k)
j − Λ/2 − i/2

)L/2(
x

(k)
j + Λ/2 + i/2

x
(k)
j + Λ/2 − i/2

)L/2

, k = 1, r ,
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while the eigenvalues of the new energy and momentum operators become

E = −
ν(1)∑

j=1

σ1

2(
x

(1)
j − Λ

2

)2
+ 1

4

+
σ1

2(
x

(1)
j − Λ

2

)2
+ 1

4

−
ν(r)∑

j=1

σM+N

2(
x

(r)
j − Λ

2

)2
+ 1

4

+
σM+N

2(
x

(r)
j + Λ

2

)2
+ 1

4

(6.1)

P ≡
σ1

2

ν(1)∑

i=1

θ1

(
x

(1)
j −

Λ

2

)
+ θ1

(
x

(1)
j +

Λ

2

)
+
σM+N

2

ν(r)∑

i=1

θ1

(
x

(r)
j −

Λ

2

)
+ θ1

(
x

(r)
j +

Λ

2

)
,

where σ1 = (−1)|1|, σM+N = (−1)|M+N | and we have assumed L to be even. These expres-

sions reduce the the previous ones 2.18 in the limit Λ → 0.

In this section we define and study the continuous limit of the staggered gl(n + N |N)

chains of sec. 2. First we show that the bosonic lift of the staggered chain is described

in the continuous limit by the gl(n) Gross-Neveu (GN) model [AL80a,AL80b,AL79]. This

strongly suggests that the continuous limit of the staggered spin chain coincides with the

gl(n+N |N) GN model, because the latter contains the gl(n) GN model as a cohomological

subsector [CCMS10]. The identification of the continuous limit is the main result of the

paper. In the second subsection we explore the particle content of the gl(2m|1) GN model

which does not lie in the gl(2m− 1) GN model lift, that is the bosonic lift.

6.1 Bosonic lift

As we have explained in sec. 4 and 5.1, the solutions of gl(n) BAE corresponding to non-

vanishing Bethe vectors admit a unique lift to solutions of gl(n + N |N) BAE and Bethe

vectors. We called this subsector of the gl(n + N |N) spin chain the bosonic lift. The

uniqueness of the lift implies that the fermionic roots of the lifted solutions of gl(n +N |N)

BAE, in the form schematically represented in fig. 5, are uniquely determined by the even

roots. By the restriction procedure of sec. 4, the latter solve gl(n) BAE. Therefore, all

dynamical degrees of freedom (associated to holes) are determined by the even roots. The odd

roots behave as auxiliary quantities useful for defining lifted Bethe vectors. So, we conclude

that the BAE of the gl(n) spin chain describe entirely the bosonic lift of the gl(n + N |N)

spin chain. We recall some of the old results on the continuum limit of gl(n) spin chains and

then reinterpret them in the gl(n+N |N) context.

6.1.1 Vacuum energy

According to sec. 5.1, the vacuum energy of the gl(n + N |N) spin chain coincides exactly

with the vacuum energy of the gl(n) spin chain. The vacuum energy e∞ = limL→∞
Evac

2L of

the homogeneous gl(n) spin chain V ⊗L was computed in [Sut75]. This calculation is easily

generalized for the staggered gl(n) spin chains (V ⊗ V ∗)⊗L

e∞ = −
1

2n

[
ψ(1 + iΛ

n ) − ψ( 1
n + iΛ

n ) + ψ(1
2 + 1

n + iΛ
n ) − ψ(1

2 + iΛ
n ) + c.c

]

−
1

n

[
ψ(1) − ψ( 1

n ) + ψ(1
2 + 1

n ) − ψ(1
2 )
]
, (6.2)
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gl(2m− 1) (V ⊗ V ∗)⊗L

so(2m+ 1)V ⊗L

osp(1|2m− 2)V ⊗L

Figure 7: Dynkin diagrams represent BAE for the corresponding chains. Double arrows
indicate the equality of the corresponding set of roots.

where ψ is the digamma function. Inserting n = 1 and Λ = 0 we get the result e∞ = −4

of [EFS05]. For n = 2m − 1 the vacuum energy coincides exactly with the vacuum energy

of the staggered so(2m + 1) and osp(1|2m − 2) fundamental chains of length L. These

coincidences where probably first noticed in [SWK02,Mar95]. The correspondence between

the spectra of gl(2m|1), gl(2m−1), so(2m+1) and osp(1|2m−2) chains is easily understood

at the level of BAE from fig. 7. The non-trivial feature of the correspondence is that it relates

low lying with low lying excitations. It is exactly this type of correspondences that lie at the

heart of the dualities observed in [SP10].

6.1.2 Particle spectrum

Let us first recall some of the results on the continuous limit of gl(n) chains with real vac-

uum solution. Going on the lines of [AL80b], the gl(n) staggered spin chain (V ⊗ V ∗)⊗L

can be shown to posses n − 1 gapped excitations branches associated with the holes in the

distributions of n− 1 types of roots. For Λ big, the gap is of order e−πΛ/n. The continuous

limit is performed by introducing a physical lattice spacing a and then by taking the limit

a→ 0,Λ → ∞ such that

m = a−1e−πΛ/n (6.3)

remains fixed, defining the mass scale of the theory. If we correct for the Fermi velocity

c = 4π/n, then in the continuous limit each excitation branch yields a relativistic dispersion

relation with mass

mk = 2m sin
πk

n
, k = 1, . . . , n− 1 . (6.4)

Therefore, we interpret it as a particle in some relativistic quantum field theory. The lowest

lying excitation of the spin chain corresponding to a traceless tensor t0(λ, µ) of admissible

shape (5.1) is reproduced by a real solution of BAE with root and hole numbers fixed by the

highest weight of the tensor [DN98]. This excitation is associated to a scattering eigenstate

in the field theory of energy

Eλ,µ − Evac =

λ1∑

i=1

mλ′
i
cosh θi +

µ1∑

i=1

mµ′
i
cosh θ̄i , (6.5)
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where θ, θ̄ are the physical rapidities parametrizing the hole positions. Eq. (6.5) suggests that

the k-th particle (6.4) corresponds to either a covariant 1k or contravariant 1̄k antisymmetric

tensor. This is confirmed by an S-matrix calculation [AL79,DN98]. The end result is the

S-matrix of the gl(n) Gross-Neveu model [KKS79]. For instance, 1 and 1̄ particles scatter

with themselves with the S-matrix

S11(θ) = S1̄1̄(θ) = Z11(θ)
P + inθ/2π

1 + inθ/2π
, S11̄ = Z11̄(θ)

(
1 −

Q

n/2 + inθ/2π

)
, (6.6)

where P and Q are permutation and Temperley-Lieb operators defined in sec. 2 and

Z11(θ) =
Γ(1 − 1/n− iθ/2π)Γ(1 + iθ/2π)

Γ(1 − 1/n+ iθ/2π)Γ(1 − iθ/2π)
, Z11̄(θ) =

Γ(1/2 − iθ/2π)Γ(1/2 − 1/n+ iθ/2π)

Γ(1/2 + iθ/2π)Γ(1/2 − 1/n− iθ/2π)

are, so called, dressing factors. The GN model coupling is related to the staggering g = Λ−1

and eq. (6.3) yields its β-function.

There is one important remark. Multiparticle states have zero total u(1) = gl(n)/ sl(n)

charge, because the spin chain (V ⊗V ∗)⊗L has zero u(1) charge. Therefore, it is not possible

to fix the u(1) charge of the individual particles in the spin chain. The allowable multiparticle

configurations in the spin chain make the value of this charge irrelevant. However, the field

theories with u(1) charged and uncharged particles (6.4) are clearly different: the first one

has 2n − 2 irreducible multiplets of particles, while the latter, which is the GN model, has

n− 1 irreducible multiplets.

We now reinterpret the results of the above calculations in the framework of the bosonic

lift of the gl(n+N |N) spin chain. The continuous limit of the gl(n+N |N) spin chain is defined

by the same eq. (6.3). It already implies that the β-function of the continuous theory does

not depend on N . The n− 1 excitation branches of the bosonic lift are interpreted again as

relativistic particles of mass (6.4). Eq. (6.5) gives now the energy of a scattering eigenstate

corresponding to a gl(n + N |N) traceless tensor t0(λ, µ) of gl(n) admissible shape (5.1).

However now, it suggests that the bosonic lift contains 2n− 2 distinct multiplets of particles

corresponding to the gl(n+N |N) covariant antisymmetric tensors 1, 12, . . . , 1n−1 and their

antiparticles, that is the contravariant antisymmetric tensors 1̄, 1̄2, . . . , 1̄n−1. Notice that the

number of particles does not depend on whether they carry or not a u(1) charge, which again

cannot be fixed in the spin chain. This is because the sl(n+N |N) antisymmetric tensors 1k

and 1n−k are not isomorphic anymore.

The suggested gl(n+N |N) symmetry of the particles in the bosonic lift must be confirmed

by an S-matrix calculation. While we do not know the full S-matrix, one can compute its

restriction to the bosonic lift. The calculation is formally the same as for the gl(n) spin

chain, because the BAE are the same. Thus, the eigenvalues of the gl(n+N |N) spin chain

S-matrix restricted to the bosonic lift coincide with the eigenvalues of the gl(n) spin chain S-

matrix. More precisely, the eigenvalue of the gl(n+N |N) spin chain S-matrix on a scattering

eigenstate corresponding to a gl(n+N |N) traceless tensor t0(λ, µ) of gl(n)-admissible shape

does not depend on N . Due to the fact that the Q-cohomology of a tensor product of
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gl(n+N |N) representations is the tensor product of their Q-cohomologies [CCMS10] all these

eigenvalues are compatible with our earlier assumption that the particles of the bosonic lift

are co- and contravariant antisymmetric tensors of gl(n)-admissible shape.

Finally, the scattering of particles in the bosonic lift can be computed exactly when no

scattering eigenstates outside the bosonic lift are generated. Thus, particles 1 and 1̄ scatter

with the same S-matrix (6.6), where this time P and Q act on tensor products of gl(n+N |N)

representations. Notice that we did not assume any crossing or unitarity to derive S11̄ from

S11. The question now is what field theory can reproduce these S-matrices? Given its

formal similarity with the gl(n) GN S-matrix, the most obvious candidate is the gl(n +

N |N) GN model. There are deeper reasons to believe this. First of all, the Q-cohomology

of the gl(n + N |N) GN model is the gl(n) GN model. In particular, their β-functions

coincide [CCMS10]. Secondly, there is no doubt that the perturbative 1/n calculations of the

gl(n) GN S-matrix can be generalized. While we did not carry out an honest perturbative

S-matrix calculation as in [KKS79], the result should certainly be (6.6). This is because

the Feynman rules are gl(n+N |N) invariant tensors and their algebra, generated by tensor

multiplication and contraction, is a representation of the walled Brauer algebra BL,L(n) of

sec. 3.1 and 3.2. Thus, as long as one computes an invariant tensor, such as the S-matrix,

starting from other invariant tensors, such as the Feynman rules, the result cannot depend

on N . Thirdly, the detailed analysis of [EFS05, SS07] suggests that the continuum limit of

the homogeneous gl(2|1) spin chain is the ŝl(2|1)1 WZNW model, that is the gl(2|1) GN

model at zero coupling. Finally, we mention the similarity with the situation for osp(R|2S)

GN models [BL00,SWK02,SP10]. Therefore, we conjecture that the continuous limit of the

gl(n+N |N) spin chain (V ⊗ V ∗)⊗L is the gl(n+N |N) GN model.

6.2 Degree one excitation

In this section we investigate degree 1 excitations of the gl(2m|1) spin chain which are of

the type (5.8) and tend to the form (5.11) in the thermodynamic limit. As explained in

sec. 5.2, the lowest lying excitation of degree 1 is precisely of this type. It corresponds to the

antisymmetric tensor t0(1
m, 1m) and its root numbers are represented in fig. 6.

In the thermodynamic limit the roots

{x
(k)
j }ν(k)

j=1 = {x
(2m+1−k)
j }ν(2m+1−k)

j=1 , k = 1, . . . ,m− 1 (6.7)

and the centers {x
(±)
j }

N±

j=1, of the ±-strange strings become dense on the real line. We now

derive the Lieb equations satisfied by their densities. Collecting all BAE, in the grading
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[+m − +m], we get

−1 = e1(x− Λ/2)L/2e1(x+ Λ/2)L/2E
(1)
2 (x)E

(2)
−1 (x) , x ∈ {x

(1)
j }ν(1)

j=1 (6.8)

−1 = E
(k−1)
−1 (x)E

(k)
2 (x)E

(k+1)
−1 (x) , k = 2, . . . ,m− 2 , x ∈ {x

(k)
j }ν(k)

j=1

−1 = E
(m−2)
−1 (x)2E

(m−1)
2 (x)2E

(+)

− 3
2

(x)E
(+)

− 1
2

(x)E
(−)

− 3
2

(x)E
(−)

− 1
2

(x) , x ∈ {x
(m−1)
j }ν(m−1)

j=1

+1 = E
(m−1)

− 3
2

(x)E
(m−1)

− 1
2

(x)E
(±)
2 (x)E

(∓)
1 (x)2 , x ∈ {x

(±)
j }

N±

j=1

where E
(k)
t (x) =

∏ν(k)

i=1 et(x − x
(k)
j ), for k = 1, . . . ,m − 1,±. The first two sets of BAE

equations is just a rewriting of eqs. (2.10). To get the last three we have multiplied the

equations for same root appearing symmetrically in the Dynkin diagram 6 at positions m−1

and m+ 2 or m and m+ 1. Notice the + sign appearing in the last two sets of equations.

Define the densities of roots ρk(x
(k)
j ) := limL→∞ 1/L(x

(k)
j+1 − x

(k)
j ) and holes ρh

k(x) :=
∑n(k)

j=1 δ(x−ξ
(k)
j )/L for k = 1, . . . ,m−1,±. Taking the logarithm of eqs. (6.8) and derivating

w.r.t. the spectral parameters we get the Lieb equations

1
2a1 ∗ (δΛ

2
+ δ−Λ

2
) = ρh

1 + ρ1 + a2 ∗ ρ1 − a1 ∗ ρ2 (6.9)

0 = ρh
k + ρk + a2 ∗ ρk − a1 ∗ (ρk−1 + ρk+1) , k = 2, . . . ,m− 2

0 = ρh
m−1 + ρm−1 + a2 ∗ ρm−1 − a1 ∗ ρm−2 −

1
2 (a 3

2
+ a 1

2
) ∗ (ρ+ + ρ−)

0 = ρh
± + ρ± + a2 ∗ ρ± + 2a1 ∗ ρ∓ − (a 3

2
+ a 1

2
) ∗ ρm−1 ,

where δx is the Dirac distribution centered at x, at(x) = 1
2π

dθt(x)
dx = 1

π
t/2

x2+t2/4 and ∗ denotes

the convolution (f ∗g)(x) =
∫ +∞

−∞
dy f(x−y)g(y). From eq. (6.1), the energy and momentum

of a root configuration (6.9) is

E = −2πL

∫ ∞

−∞

dx ρ1(x)[a1(x + Λ/2) + a1(x− Λ/2)]

P = L

∫ ∞

−∞

dx ρ1(x)[θ1(x+ Λ/2) + θ1(x− Λ/2)]

To solve for the root densities in terms of the hole densities it is useful to define the

distributions

ρs =
ρ+ + ρ−

2
, ρa =

ρ+ − ρ−
2

ρh
s =

ρh
+ + ρh

−

2
, ρh

a =
ρh
+ − ρh

−

2
.

Notice that the distributions ρh
a , ρa split from the rest of eqs. (6.9)

0 = ρh
a + ρa + a2 ∗ ρa − 2a1 ∗ ρa , (6.10)

while the Lieb equations for the remaining densities ρ1, . . . , ρm−1, ρs look exactly like the

Lieb equations for the staggered so(2m+1) fundamental chain of length L, e.g. [Mar91]. The
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resolvent for the latter can be found in [ORW87]. Computing the solution of eqs. (6.8) with

no holes one gets

ρ0
k(x) =

2

n

sin πk
n coshπ 2x+Λ

n

cosh 2π(2x+Λ)
n − cos 2πk

n

+
2

n

sin πk
n coshπ 2x−Λ

n

cosh 2π(2x−Λ)
n − cos 2πk

n

, (6.11)

ρ0
s(x) =

1

2n

1

cosh π(2x+Λ)
n

+
1

2n

1

cosh π(2x−Λ)
n

, k = 1, . . . ,m− 1 ,

where n = 2m−1. We want to stress that this is a formal solution that does not correspond to

any state in the spin chain. This is because the degree 1 excitations we are considering always

contain holes. However, it is important to realize that the energy of the formal solution (6.11)

coincides with the actual vacuum energy (6.2). We have already explained in sec. 6.1.1 why

this happens. As usual, the energy and momenta of holes can be expressed in terms of hole

less densities

ǫk(ξ) = 4πρ0
k(ξ) ,

dpk(ξ)

dξ
= 2πρ0

k(ξ)

ǫ±(ξ) = 2πρ0
s(ξ) ,

dp±(ξ)

dξ
= πρ0

k(ξ)

Restricting to low lying states |ξ| ≪ Λ one gets the expected relativistic dispersion relations

ǫk(θ) = 2camk cosh θ , pk(θ) = 2amk sinh θ (6.12)

ǫ±(θ) = cam cosh θ , p±(θ) = am sinh θ (6.13)

with the gl(n) Fermi velocity c = 4π/n and physical rapidity θ = 2πξ/n. The masses are the

same as in eqs. (6.3, 6.4).

It is certainly reassuring that degree 1 excitations have the same mass scale m as degree

0 excitations. The doubling of masses (6.12) w.r.t. the masses of particles in the bosonic

lift can be understood as follows. We have observed in sec. 5.2.2 that the imaginary parts

of the odd roots tend to vanish for large L and, therefore, we have neglected them in the

thermodynamic limit. However, due to the conjugation symmetry (5.8) of the solutions, this

approximation leads to an identification (6.7) of distinct roots. Therefore, the positions of

holes in the distribution of even roots {x
(k)
j }ν(k)

j=1 and {x
(2m+1−k)
j }ν(2m+1−k)

j=1 have also been

identified. So, the excitation (6.12) is in fact a state of two particles 1k and 1̄k each of mass

mk and rapidity θ. These are the old particles from the bosonic lift. On the other hand, the

particles (6.13) are new.

The artificial binding of holes (6.12) induced by the thermodynamic limit does not allow

to derive meaningful S-matrices from eqs. (6.9) Most probably, to correct the approach and

recover the degrees of freedom lost in the thermodynamic limit one needs to distinguish

between the two types of roots Imx
(k)
j > 0 and Imx

(k)
j < 0, exactly as we did for the strange

±-strings (5.11). However, a finite volume treatment will be required, because the imaginary

parts of even roots vanish in the thermodynamic limit.
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The need for a finite volume approach can also be seen from eq. (6.10). Solving for the

Fourier transform of ρ̂a(p) =
∫
dp exp(−2πipx)ρa(x) one gets

ρ̂a(p | ξ(+), ξ(−)) =
i

2L
eπ|p|−πip(ξ(+)+ξ(−)) sinπp(ξ

(+) − ξ(−))

sinh2 πp
2

, (6.14)

where we have considered only a single pair of ±-holes. This is no loss of generality, because

from (6.9) the numbers of ±-holes is always equal

n± = 2(ν(m−1) −N+ −N−) = 2(ν(m−1) − ν(m)) .

and, therefore, they always come in pairs. The Fourier transform (6.14) is singular and clearly

must be regularized, because one has to satisfy the constraint

b := lim
L→∞

N+ −N−

2L
= L

∫ ∞

−∞

dx ρa(x) = ρ̂a(0) , (6.15)

where b is a fixed real number parametrizing the state. On a lattice of length L the the

momentum can take a minimal value of p∼1/L. Using this value as a regulator one gets for

a pair of ±-holes from eqs. (6.14 6.15)

ξ(+) − ξ(−) =
πb

2i
,

which clearly shows that for b 6= 0 the deviations of strange ±-strings from the form (5.11) of

the solution in the thermodynamic limit have to be taken into account. Notice that the energy

does not depend on the continuous parameter (6.15) parametrizing the state. Therefore, it

is tempting to conclude that there is a continuum of new particles (6.13).

7 Conclusions and Outlook

We have put on firm grounds the relationship between gl(n + N |N) integrable spin chains

with n fixed. This allowed us to prove that all gl(n + N |N) spin chains (V ⊗ V ∗)⊗L with

n,N > 0 possess in the continuum limit 2n− 2 multiplets of massive particles which scatter

with gl(n) Gross-Neveu like S-matrices, namely their eigenvalues do not depend on N . We

concluded that the continuum theory is the gl(M |N) Gross-Neveu model. Evidence that

the massive spectrum is much richer, possibly continuous, was established on the example

of gl(2m|1) chain. Finally, our analysis of the thermodynamic limit strongly suggests that

understanding the nature of new particles requires a finite volume treatment.

The question that begs the quickest answer is how to close the fusion of S-matrices (6.6) of

the gl(M |N) Gross-Neveu model starting with just the vector multiplet and its antiparticles.

The gl(N |N) spin chains require a separate treatment, which we hope to report on later.
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A Highest weight vectors

Let T be the indecomposable direct summand of t(λ, µ) with traceless submodule t0(λ, µ).

Without loss of generality, one can assume that (λ, µ) is of admissible shape in the sense of

eq. 3.4. The filtration (3.1) implies a similar filtration for T

t0(λ, µ) = T0 ⊂ T1 ⊂ · · · ⊂ Tf = T

where we have defined the submodules Tn = T ∩ tn(λ, µ). Again as for t(λ, µ) one has

Tn/Tn−1 ≃
⊕

(λ′,µ′)∈Dn

t0(λ
′, µ′) , (A.1)

where the elements (λ′, µ′) of Dn must be pairs of diagrams with f − n boxes such that

λ′ ⊂ λ and µ′ ⊂ µ. In particular, they are also admissible. According to assumption 3.2,

every direct summand t0(λ
′, µ′) in eq. (A.1) can be generated from a highest weight vector

v(λ′, µ′)/Tn−1 ∈ t0(λ
′, µ′) w.r.t. some Borel subalgebra bΣ, where v(λ′, µ′) ∈ Tn. Assume

that v(λ′, µ′) is a highest weight vector w.r.t. bΣ. Then v(λ′, µ′) cannot generate more then

a Kac module within Tn, which according to assumption 3.2 is precisely t0(λ
′, µ′). Thus,

t0(λ
′, µ′) is a submodule of Tn and therefore also of T . This completes the proof of claim 1.

Notice that if T (λ, µ) is of the usual “diamond” form, that is its socle and top are irre-

ducible, then the existence of two submodules t0(λ, µ), t0(λ
′, µ′) ⊂ T (λ, µ) contradicts the

simplicity of the socle and, therefore, all highest weight vectors of T (λ, µ) belong to t0(λ, µ).

B Cohomological reduction of Kac modules

In this section we prove the claim 2 of sec. 4 and adopt all the notations leading to it.

Assume that we have a solution for p < P and a corresponding Bethe vector ω1. It

comes together with a solution for p = P and a corresponding Bethe vector ω2. The transfer

matrices (2.4) yield the same eigenvalues on ω1 and ω2. Therefore, they must be part of a

reducible indecomposable module or, more precisely due to corollary 1 of sec. 3.2, part of a

Kac submodule of the latter. Moreover, because wt(ω2) < wt(ω1) the module generated by

ω2 must be a submodule of the module generated by ω1

U(gl(M |N)) · ω2 ⊂ U(gl(M |N)) · ω1 ⊆ Kb(Λ). (B.1)

Here Λ is the highest weight of the Kac module w.r.t. some Borel subalgebra b. Obviously,

the highest weight must be atypical 〈Λ, αk〉 = 0 in order for (B.1) to hold. Recall that
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the Borel subalgebras bΣ and b of gl(M |N) define each a Z–graded decomposition of the

latter [FSS96]

gl(M |N) ≃ g−1 ⊕ g0 ⊕ g1 , g1 ⊂ b

gl(M |N) ≃ g−1
Σ ⊕ g0

Σ ⊕ g1
Σ , g1

Σ ⊂ bΣ .

Recall the definition of Kac modules

Kb(Λ) ≃
∧(

g−1
)
⊗U(g0⊕g1) S0(Λ) , (B.2)

where S0(Λ) is an irreducible representation of g0 of highest weight Λ trivially extended to a

representation of g0 ⊕ g1. Then, due to the embeddings (B.1), one must have Q ∈ g−1 ∩ g−1
Σ .

Notice now that Kac modules have zero superdimension. This is a necessary condition for

vanishing Q–cohomology. Indeed, given Q ∈ g−1 it is straightforward to show that the Q–

cohomology of the Kac module defined as in (B.2) vanishes. For more details, see the proof

of [CCMS10] for the vanishing of the cohomology of projective modules.

Notice that while projective modules have zero cohomology w.r.t. any choice of Q, the

Kac module (B.2), on the other hand, has zero cohomology only w.r.t. Q ∈ g−1.
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