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1. Introduction

The third generation is thought to be intimately connected to the mechanism respon-

sible for electroweak symmetry breaking due to the comparatively large top, tau and

bottom Yukawa couplings. New, third generation resonances are further favoured in

comparison to those of the first and second generation by flavour constraints, coming

from experiments investigating flavour-changing processes [1].

Collider searches for new resonances decaying to third generation quarks or lep-

tons (or both in the case of leptoquarks) are particularly challenging. This is pri-

marily due to the fact that new physics signals have to compete against high QCD

cross sections, which can immitate their topologies. But the properties of the third

generation fermions, specifically their large masses and mixing angles, allow us to

extract useful information from their decay products. The heaviest, the top quark,

decays promptly before hadronization, and its decay products may consist of two

or three jets (if the decay is hadronic) or to a jet plus a lepton and missing energy,

requiring further reconstruction. Because of the promptness of the decay, its decay

products possess angular distributions that are highly correlated to the top spin.

The τ lepton can decay through several channels, again resulting in jets or leptons

and missing energy, and various methods exist for identifying the resulting jets as

having originated from a τ (i.e. τ -tagging). The b quark hadronizes before decay

and produces B mesons which have relatively long lifetimes and thus produce dis-

placed vertices. This allows for tagging those jets that originate from b quarks but

washes away the effect of its helicity from the angular distributions of the associated

daughter particles. Thus, the helicity of resonances containing a b quark has to be

inferred by first determing the spin of the parent and sister particles.

Once new resonances are discovered, to fully deterimine the underlying theory

and reconstruct the Lagrangian terms, both the spin and the structure of the cou-

plings of the new resonances to standard model particles have to be determined.

Determination of the helicity of top quarks has been investigated in detail in the

past [2–4]. Several variables for determining the spin of top quarks have been pro-

posed and QCD corrections to these variables have been calculated. Similar variables

have also been proposed for τ leptons. Here we first review these and reproduce the

relevant distributions, comparing them to results from a general-purpose Monte Carlo

event generator, HERWIG++ [5].1 In the case of hadronic top quark decays, the vari-

ables have thus far mostly been considered in the highly-boosted case. This allows

for construction of the relevant distributions without requiring explicit event recon-

struction. We relax this approximation and attempt to determine the usefulness of

these variables in more realistic reconstruction situations. For simplicity, we first ex-

amine the applicability of these methods to a model containing a new heavy vector

1In appendix A we also present a set of angular variables that complement the energy fraction

variables given in the literature thus far.
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boson, a Z ′, which possesses decays to the third generation: either to a top and a

light quark (specifically tū, t̄u) or a pair of τ leptons. We consider reconstruction of

these topologies using mass-shell constraints which lead to a polynomial equation.

In the latter case we also employ τ lepton vertex information. Subsequently we

consider the more challenging case of a third-generation leptoquark model, focusing

on pair production of these followed by decays to a top quark and a τ lepton. The

reconstruction technique we employ is related to those presented in Ref. [6].

2. Variable definitions

2.1 Daughter-to-parent energy ratios, xp,i

For the determination of the helicities of tops and taus, it is useful to define the

energy fraction xp,i = Ep,i/Ep, where Ep is the energy of the parent particle and Ep,i is
the energy of one of its daughter particles, i, both measured in the laboratory frame.

These are formed for both the tau leptons and top quarks as:

xτ,jet = Ejet/Eτ ,
xtop,b = Eb/Etop , (2.1)

respectively. For brevity, we will write xtop and xτ to denote the preceding variables.

Analytic predictions for the energy ratios in the highly-boosted cases, where

the boost factor, βk ≡ |~pk|/Ek, corresponding to particle k (= t, τ), is taken to

be unity, are shown in Fig. 1 for the τ lepton decay mode τ → πντ (left) and

hadronic top (right). The distribution of xtop is cut-off at a maximum value of

xtop,max = 1−m2
W /m2

top ∼ 0.79 and that of xτ at a minimum value of xτ,min = m2
π/m

2
τ ,

as a result of the kinematic restrictions imposed by the mass of the W and the pion

respectively. In the case of the τ , we show only the τ → πντ mode, for which

mπ ≃ 0.14 GeV, which results in a small xτ,min.

The analytic forms of the distributions are given by [4]:2

1
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where Pi = ±1 (for i = τ, t) represent right or left helicities of the τ or top and:

κb = −
m2

top − 2m2
W

m2
top + 2m2

W

≃ −0.4 , (2.4)

2Note that in [4], Eq. (2.3) is missing a factor of
m2

top

m2
top−m2

W

in the second term. The corresponding

distributions, however, appear to have been constructed with the correct formulae.
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is [4] the resolving power of the b-quark at leading order,3 mtop, mW and mτ are the

top quark, W boson and τ lepton masses respectively. The limit βk → 1 allows us to

investigate the distributions of reconstructed tops and taus without reference to the

rest of the event, i.e. without explicit event reconstruction. The approximation is

almost always good for τ leptons, and with the current beyond-the-standard model

third generation limits rising as the LHC experiments produce more exclusion regions,

it should ‘improve’ for most BSM models that include heavy particles that decay to

tops. It is obvious from Eqs. (2.2) and (2.3) that the effect of βt 6= 1 is to alter the

predictions for the left- and right-handed distributions, modifying the straight-line

form that appears in Fig. 1.

Figure 1: The predictions for the energy fractions xτ = Ejet/Eτ for the decay τ → πν

(left) and xtop = Eb/Etop (right) in the highly-boosted cases.

The τ lepton can decay via multiple channels and each of these channels con-

tributes to the total distribution. We do not attempt here to reproduce the analytic

form of the distribution as this would require calculating the distributions of Eq. (2.2)

corresponding to each decay mode and integrating over the distribution of the mass

of the τ jet, mjet, which would be varying when the τ decays to more than a single

visible particle. Instead we present distributions constructed from the Monte Carlo-

simulated decays of the τ lepton using the HERWIG++ event generator. We show the

resulting distributions for the left- and right-handed highly-boosted taus in Fig. 2.

2.2 Semi-leptonic top variable, u

In the case of semi-leptonic top decays, t → bℓνℓ, where a b-jet is tagged and an

electron or muon is identified, we can calculate the fraction of the visible energy

3The authors of Ref. [7] present a study of polarisation observables at next-to-leading order with

parton showers in H−t and Wt production. They find that in those cases these observables are

robust.
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Figure 2: The Monte Carlo predictions for the energy fractions xτ = Ejet/Eτ for all the

decay modes when the τ is highly boosted.

carried away by the lepton, u:

u =
Eℓ

Eℓ + Eb
(2.5)

The resuting distributions of the variable u for highly-boosted (βt → 1) [4] left- and

right-handed tops are shown in Fig. 3. Highly-boosted Monte Carlo-generated curves

are also shown for comparison, with and without final state radiation (FSR).4 The

kink at u = m2
w/m

2
t ∼ 0.215 is due to the fact that there exists a minimum possible

value of the lepton energy in the top rest frame, given by Eℓ,min = m2
w/(2mt), which

arises when the lepton is anti-aligned with the top boost direction. The maximum

value of the energy is Eℓ,max = mt/2 and arises when the lepton is aligned with the

boost direction. This is clarified in Fig. 4, where the schematic diagram demonstrates

the decay of a top in its rest frame.

The variable u has the advantage that there is no need to explicitly reconstruct

the top quarks in order to form it, even in the case of βt 6= 1. As a result, it is

expected to be less sensitive to the reconstruction systematics that may enter other

energy fraction variables.

3. Applications

We examine a model of a heavy vector boson (Z ′) decaying to tops or taus and a

scenario of pair-production of third generation scalar leptoquark states.

4Note that the curves of Fig. 2 in Ref. [4] seem to fit the FSR on case rather than the one

obtained by integrating the differential width directly, which should fit the FSR off case.
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Figure 3: The distribution 1/ΓdΓ/du of the fraction of visible lab frame energy carried

by the lepton in a highly-boosted semi-leptonic top, u = Eℓ/(Eℓ + Eb) is shown. The blue

curve and red curves represent left- and right-handed top quarks respectively.

3.1 Flavour-changing Z ′

We first examine the application of the variables xtop and u that have been defined

in the previous sections, on a model of a Z ′ boson that possesses flavour-changing

tb
W

νℓ

ℓν

min.

max.

Figure 4: A schematic diagram of the decay of the top in its rest frame into a W and a

b-quark, with subsequent decay of the W to a lepton and neutrino. The two configurations

shown correspond to the minimum and maximum energy configurations of the lepton,

corresponding to Eℓ,min = m2
w/(2mt) and Eℓ,max = mt/2 respectively. The minimum

energy of the lepton causes the kink in the u variable distribution.
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quark couplings, described by the Lagrangian density:

L = gtuRZ′ Z ′µūRγµtR + gtuLZ′ Z ′µūLγµtL

+ guuRZ′ Z ′µūRγµuR + guuLZ′ Z ′µūLγµuL + h.c. , (3.1)

where gtuLZ′ and gtuRZ′ are the flavour-changing left- and right-handed parameters that

we will be varying.

It is evident that the Z ′ bosons of this model would be produced at a hadron

collider via light uū initial states. They will decay to both light uū and tū (and ut̄).

After discovery of such a state, for example in dijet resonance searches, determing the

helicity structure of the uūZ vertex will be extremely challenging, if not impossible.

Hence one would concentrate on determining the helicity structure of the vertex

which involves the top quark.

3.1.1 Parton-level results

We consider a Z ′ described by the particular model given by the Lagrangian of

Eq. (3.1), of mass 1.5 TeV, choosing either a purely left-handed third generation

coupling: gtuRZ′ = 0, gtuLZ′ = 1 or a purely right-handed one: gtuRZ′ = 1, gtuLZ′ = 0,

keeping in both cases guuRZ′ = guuLZ′ = 1.5 We show Monte Carlo results of the

distributions of the variables xtop and u, for a 14 TeV LHC, in the dashed curves in

Figs. 5 and 6. These results were obtained using parton-level events, ignoring initial-

and final-state radiation, hadronization, and applying no rapidity or momentum cuts

on the particles. Figures 5 and 6 also contain semi-analytic predictions that take into

account the finite boost of the top quark in the lab frame (solid curves). The semi-

analytic xtop distribution was produced by assuming that the cosine of the angle of

the emitted b-quark in the top quark rest frame, cos θb, was distributed according to

P (cos θb) = (1 + Ptkb cos θb) , (3.2)

with κb ≃ −0.4, and then boosted to the lab frame according to the top quark boost

(βt) distribution. The βt distribution was extracted from the Monte Carlo event

generator directly, but can be fitted using a Gaussian distribution, yielding identical

results (see appendix F.3). Similarly, the u variable distribution was calculated first

by distributing via a Monte Carlo technique the energy and z-momentum of the

lepton in the top centre-of-mass frame (Eℓ and pzℓ respectively), according to the full

matrix element (see appendix E) and then boosting to the lab frame using the top

quark boost distribution. The variable u was then calculated by taking the ratio:

u =
Eℓ + βtp

z
ℓ

Eℓ + βtp
z
ℓ + Ebβtp

z
b

. (3.3)

5This mass/coupling combination is currently being marginally excluded by results presented by

the LHC experiments. Here we are only assessing the viability of the reconstruction variables and

we are not concerned with the viability of the model itself.
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In the case of the Z ′ the production and decay frames of the top quark are identical

and hence there is no rotation angle between them (see appendix F). Furthermore,

we ignore the mixing of helicities due to finite masses since the top quark is produced

in assocation with a light quark which can be taken to be massless.6

Figure 5: The xtop variable for left- or right-handed Z ′ bosons decaying to ut̄ or ūt, at a

14 TeV LHC, obtained from parton-level events compared to a semi-analytic prediction as

described in the main text.

3.1.2 Simulation and reconstruction

We will assume that the new resonances have been discovered, and that their mass

has been measured to a satisfactory accuracy. We will also assume that the spin of

the new resonance has been determined by measuring the angular distributions of

the jets originating from the u and ū partons in the uū decay mode. It is necessary,

however, to outline the details of the method for reconstructing events of a particular

topology, for which we can form the variables we have been examining thus far at

parton level.

We focus on LHC proton-proton collisions at 14 TeV, in which a Z ′ is exchanged,

producing a u (or ū)-quark and an anti-top (or top), with a subsequent semi-leptonic

(restricted to e or µ) decay of the top. The topology is shown in Fig. 7. The ut̄ and

ūt decay modes account for slightly less than ∼ 50% of the total decay widths, if

only one helicity (left- or right-handed) is present: ΓZ′,M=1.4 TeV(ut̄/ūt) = 236 GeV.

The leading order cross sections for the specific topology at a 14 TeV LHC are

6These effects are small in the case of the Z ′ model but have been calculated in the leptoquark

case in the following section, where the reconstruction is explained in further detail.
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Figure 6: The u variable for left- or right-handed Z ′ bosons decaying to ut̄ or ūt, at a

14 TeV LHC, obtained from parton-level events compared to a semi-analytic prediction as

described in the main text.

σ(Z ′ → tū/t̄u → bℓ±ν + jet) = 6.3 pb, again, if only one helicity is present, and

including the branching ratio of the top quark to electrons or muons.

t
b

W
+

ℓ
+

νℓ

ū

Z
′

Figure 7: Production of ūt from the exchange of a Z ′ and subsequent decay of the top

into a leptonic W and a b-jet. This mode can be fully reconstructed if one applies the W

mass shell condition, and chooses the solution which yields the ‘best’ top mass.

If a b-jet is tagged and a high-pT lepton is found, along with the high-pT jet

originating from the u, the information left missing to fully reconstruct the final

state are the three spatial momentum components of the neutrino (assuming massless

neutrino). We can obtain the transverse components of the neutrino momentum to
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a reasonable accuracy by assuming that they are equal to the components of the

missing transverse momentum. Then, the only remaining missing information is the

z-component of the neutrino momentum. In a hadron collider we do not posses any

information on the initial z-momentum of the system. However if we assume that

the neutrino and the lepton originated from the decay of an on-shell W boson, we

may apply the following mass-shell condition on their four-momenta:

(pℓ + pν)
2 = m2

W , (3.4)

where pℓ and pν are the lepton and neutrino four-momenta respectively, and mW is

the on-shell W boson mass. This approximation is good, since the width of the W

boson is small compared to its mass (ΓW ≃ 2.14 GeV versus MW ≃ 80.40 GeV), and

leaves us with a quadratic equation for the z-component of the neutrino momentum.

To pick one of the two solutions, we choose the one that also yields a top mass closest

to the on-shell top mass, via:

m2
t,A/B = (pℓ + pν,A/B + pb)

2 , (3.5)

where pb is the b-jet four-momentum and mt,A/B is the top quark mass obtained by

using the solutions for the neutrino momentum pν,A/B. Once the ‘best’ solution is

chosen, we possess all information required concerning the event, and we can thus

calculate all the variables we have been examining at parton level.

The Z ′ model has been implemented and has been simulated using the HERWIG++

event generator with initial- and final-state radiation turned on, as well as hadroniza-

tion. We simulated 10 fb−1 of data, a reasonable amount in a near- to mid-term LHC

run at 14 TeV. The events were then processed through the Delphes detector simula-

tion [8], where the following minimum cuts are applied to the reconstructed objects:

• pT,min for jets of 20.0 GeV.

• pT,min for electrons and muons of 10.0 GeV.

The default Delphes b-quark flat-pT tagging efficiency was replaced by a more realistic

function of jet transverse momentum, pT , which has the form

P (pT,j) = 0.08 + 0.006× pT,j × exp (−3× 10−5p2T,j) . (3.6)

See for example Ref. [9] for further details. The dependence on jet pseudorapidity

remained flat. An additional cut requiring the total missing transverse energy to be

greater than 20 GeV was applied. The rest represent the default settings present in

the Delphes ATLAS detector card, where the trigerring simulation has been turned

off. In this analysis, and the rest of this paper, we use the anti-kT clustering algorithm

with a radius parameter R = 0.4 to construct jets.7

7It is advantageous to use a smaller radius parameter for the anti-kT clustering algorithm than

the Delphes default one of R = 0.7, since underlying event and pile-up contaminations are expected

to be approximately proportional to R2. See Ref. [10] for further details on jet algorithms and the

underlying event.
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The ‘best’ reconstructed top mass, after detector effects, was found to possess a

peak at the correct on-shell top mass, ∼ 174 GeV, with an approximately Gaussian

distribution of width ∼ 20 GeV. To illustrate the effect of the Delphes detector

simulation, we show a comparison of results before and after Delphes processing

in Figs. 8 and 9 for xtop and u respectively. The comparisons between the left-

and right-handed variable distributions after detector effects are shown in Figs. 10

and 11 . It is clear that, at least with the minimum cuts, the u variable performs

well in discriminating between the pure left- or right-handed top quarks. The xtop

variable is less different between the two top helicities, but the difference is still

statistically significant. The advantage possessed by the variable u is clear: since

no explicit reconstruction is required, the approximations that are associated with

this process do not have a significant effect. As can be seen in the before/after plots

in Figs. 8 and 9, the u variable is less sensitive to the experimental effects, which

seem to ‘squeeze’ the distributions towards middle values of the energy fraction more

dramatically in the case of xtop.

Figure 8: Shown in the figures is a comparison between the results obtained for the xtop
variable for the 1.5 TeV flavour-changing Z ′ model before detector simulation (but applying

all cuts and using equivalent jet-finding) and after the Delphes simulation for the left- and

right- handed fermions (blue and red respectively).

To investigate the effect of higher transverse momentum cuts on the objects used

in calculating these variables, we constructed two further sets of plots with higher

cuts which we call ‘A’ and ‘B’ and are, respectively, pT > 30 GeV and pT > 50 GeV

for both jets and leptons. The resulting distributions are shown in Figs. 12 and 13,

where the set of cuts A is shown on the left, and set B on the right. Table 1 shows

the value of χ2/Nd.o.f. between the left- and right-handed distributions for the case

of minimal cuts, as well as cuts ‘A’ and ‘B’.8 The value of χ2/Nd.o.f. indicates how
8See appendix B for the definition of χ2 in this case.
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Figure 9: Shown in the figures is a comparison between the results obtained for the xτ
variable for the 1.5 TeV flavour-changing Z ′ model before detector simulation (but applying

all cuts and using equivalent jet-finding) and after the Delphes simulation for the left- and

right- handed fermions (blue and red respectively).

Figure 10: The xtop variable for a left- or right-handed Z ′ bosons decaying to ut̄ or ūt,

obtained from the reconstructed events for an LHC run at 14 TeV, with 10 fb−1.

distinguishable the two distributions are statistically. It is evident that even in the

case of higher cuts, discrimination in the specific scenario between the left- and

right-handed modes is still possible. The higher cuts would also be beneficial for the
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Figure 11: The u variable for a left- or right-handed Z ′ bosons decaying to ut̄ or ūt,

obtained from the reconstructed events for an LHC run at 14 TeV, with 10 fb−1.

rejection of proton-proton pile-up,9 which would be detrimental at high instantaneous

luminosity.

Figure 12: The xtop variable for a left- or right-handed Z ′ bosons decaying to ut̄ or ūt,

obtained from the reconstructed events for an LHC run at 14 TeV, with 10 fb−1, with the

set of cuts A (left) and B (right), as explained in the text.

9Pile-up is contamination originating from multiple secondary proton-proton collisions in the

same bunch-crossing.
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Figure 13: The u variable for a left- or right-handed Z ′ bosons decaying to ut̄ or ūt,

obtained from the reconstructed events for an LHC run at 14 TeV, with 10 fb−1, with the

set of cuts A (left) and B (right), as explained in the text.

Cut set xtop u

Min. 40.7 145.8

A 36.7 112.2

B 37.6 75.8

Table 1: The value of χ2/Nd.o.f. between the left- and right-handed distributions in the

Z ′ scenario for the three different sets of cuts. It is evident that the distributions are

distinguishable even for the higher cuts, with the u variable distribution performing better

in all cases.

3.2 Z ′ → τ+τ−

Another interesting example, which we can use to examine the effectiveness of the

energy ratio xτ , is a model of a heavy Z ′ possessing a τ+τ− decay mode. For this

model, we define a Lagrangian density similar to the one given in the previous section:

L = gττRZ′ Z ′µτ̄RγµτR + gττLZ′ Z ′µτ̄LγµτL

+ guuRZ′ Z ′µūRγµuR + guuLZ′ Z ′µūLγµuL + h.c. , (3.7)

We examine discrimination between two cases, Z ′ → τ+R τ−R (gττRZ′ = 1, gττLZ′ = 0) and

Z ′ → τ+L τ
−
L (gττRZ′ = 0, gττLZ′ = 1), using the xτ variable defined in Eq. (2.1).

To compute the xτ variable, one needs to reconstruct the neutrino energies from

the τ decays. For this purpose, the authors in Ref. [11] have used the collinear

approximation to reconstruct the neutrino momenta. In the collinear approximation,

the neutrinos are assumed to be collimated to the associated τ -jets. This assumption

is almost always good in cases of a heavy resonance decaying to τ leptons. Once

the neutrino momentum directions are determined, the neutrino energies can be
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calculated using the missing transverse momentum constraint:
(

pxmiss

pymiss

)

=

(

sin θjet1 cosφjet1 sin θjet2 cosφjet2

sin θjet1 sin φjet1 sin θjet2 sinφjet2

)(

Eν1

Eν2

)

, (3.8)

where θjeti, φjeti are the polar and azimuthal angles respectively, related to jet i, px,ymiss

are the missing transverse momentum components and Eνi is the energy of neutrino

i.

However, when the two jets are back-to-back, i.e. φjet1 = φjet2 + π, the inverse

of the matrix in Eq. (3.8) becomes singular and any small mismeasurement on the

missing transverse energy or jet momentum directions would cause a very large error

on the reconstructed neutrino energy [12]. The back-to-back configuration is strongly

preferable if a heavy resonance, such as the standard model Higgs boson or a Z ′, is

considered.

One can avoid the use of the collinearity assumption by instead using information

on the τ decay vertices [13]. The most useful and best-measured attribute of these

is their impact parameter. The impact parameter b is the displacement of a decay

vertex in a direction perpendicular to that of the visible decay momentum, in this

case the τ jet momentum pj . Then the invisible momentum pν must lie in the

(b,pj) plane, so we can write pν = xb + ypj. For hadronic τ decays, the invisible

momenta are carried by single neutrinos and so their four-momenta are fixed by x

and y for each decay. In this section we focus on hadronic τ decays, by including a

lepton veto in our event selection criteria. These four quantities are subject to two

linear missing-pT constraints and two quadratic τ mass-shell constraints, giving four

(complex) solutions for the neutrino momenta.

These four complex solutions for the neutrino momenta allow us to compute the

invariant mass of the τ pair. In Fig. 14, we plot the real part of the invariant mass,

where we use the truth jet and missing transverse momenta for 10000 events. A

distinct peak structure is seen at the input Z ′ mass of 1.5TeV.

Unfortunately, our reconstruction method is still sensitive to the momentum

mismeasurement. In Fig. 15, we show the hadronization and detector effects on the

Z ′ mass reconstruction. In the left plot, the parton-level jets are replaced with the

detector-level jets obtained from the Delphes simulation, in the middle plot only the

parton-level missing transverse momentum is replaced with the detector-level one

and in the right plot, we use all the detector-level objects. In all of the plots in

Fig. 15, the true impact parameter was used. As can be seen, the peak structure is

completely lost if one uses the detector objects. The event selection cuts here, and in

all the results that follow in this section, are the default Delphes cuts for the ATLAS

detector (pT,ℓ > 10 GeV, pT,jet > 20 GeV) along with the addition of the lepton veto

(in this case rejecting all events with an identified lepton).

However it is important to realise that, in the model we are considering, the

Z ′ mass can be measured independently from the decay modes containing the light
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Figure 14: The real part of the complex solutions that arise after applying the two

linear missing-pT constraints and the two quadratic τ mass-shell constraints. A clear peak

structure is seen at the input mass of 1.5 TeV.

Figure 15: The distributions of the real part of the four complex solutions resulting from

the reconstruction of the events after using detector-level jets instead of parton-level jets

(left plot), detector-level missing transverse momentum instead of the true one (middle

plot) and using completely detector-level objects (i.e. both for jets and MET, right plot).

In all plots non-smeared τ vertices have been used.

quarks. In this case, we can use the mass shell constraint, (pτ1 + pτ2)
2 = m2

Z′ , as

an extra condition to correct for the detector resolution. To accomplish this we

construct the following likelihood function:

Ltot = Ldetector × Lphys, (3.9)

where we have defined

Ldetector ≡ Π2
i=1(PEi

PθiPφi
)× Pmiss

E × Pmiss
φ ,

Lphy ≡ Pm
Z′
×Θ(Re[Eν1])×Θ(Re[Eν2 ]). (3.10)

The PEi
, Pθi , P

miss
E , Pmiss

φ are Gaussian probability functions centred at the origin,

with arguments (Eji−Eobs
ji

)/Eobs
ji

, (θji−θobsji
), (pTmiss−pobsTmiss)/p

obs
Tmiss, (φpTmiss

−φobs
pTmiss

),

respectively. We also use the flat probability distribution, Pφi
, for the (φi − φobs

i )
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with a range [-0.9:0.9] so that the probability function matches the actual probability

of mismeasurement, which is simulated by Delphes. The likelihood Lphys allows us

to correct the mismeasured observable by requiring physical conditions with some

probability. Pm
Z′
is a Gaussian probability function with an argument of (mττ−mZ′),

where mZ′ is the true Z ′ mass assumed to be measured through some other decay

mode. Θ(x) is 1 if x > 0, 0 otherwise. The probability functions we use and the ones

that appear in Delphes are shown in appendix C.

For each event, we generate 1000 pseudoevents, in which the observed momenta

are slightly shifted in a random ‘direction’ according to the same probability function.

We only keep the pseudo-event, imax (corresponding to Lmax
tot ), that provides the

maximum likelihood. We show the ττ invariant mass distribution obtained from

imax sample in Fig. 16.

In the left panel in Fig. 17, we show the relative difference between the true

neutrino energy and the reconstructed neutrino energy by the likelihood method.

As can be seen, the true neutrino energy is well reconstructed on an event-by-event

basis with about 50% error. The right panel in Fig. 17 shows the reconstructed

xτ variable in this method, using 1 fb−1 of integrated luminosity at a 14 TeV LHC

(corresponding to ∼ 7000 events before cuts). The red (blue) solid histogram is

obtained from Z ′ → τ+R τ−R (Z ′ → τ+L τ
−
L ) sample. The lepton veto in this realistic

case was applied by requiring no leptons with pT > 10 GeV in |η| < 2.4. The dashed

histogram is the corresponding parton-level distribution of xτ . It is obvious that

the reconstructed xτ has a very similar distribution to the parton-level one, and the

difference between the left and right-handed xτ distributions is visible even after

the effects of detector resolution. The value of χ2/Nd.o.f was found to be ∼ 13.8,

indicating the high difference between the left- and right-handed xτ histograms.

3.3 Third-generation leptoquark pair-production

Methods for reconstructing third-generation scalar leptoquark states in events where

they were pair-produced have been studied in Ref. [6]. There, different mass variables

were constructed and all the possible combinations of decay modes were studied, in-

cluding QCD, detector and background effects. Here we will focus on the leptoquark

types that can decay to a top quark and a tau lepton.

For a list of states that can decay to the tτ modes see Tables 1 and 2 in Ref. [6].

Instead of focusing on a specific leptoquark type, we consider a general scalar lep-

toquark which possesses a branching fraction of 1 to a top quark and a τ lepton.

We call the leptoquarks of this type, with electromagnetic charge ±5/3, SLL and

SRR, where the index indicates that the leptoquark will decay either to tLτL or tRτR
respectively. In appendix D we consider leptoquarks of electromagnetic charge ±1/3

decaying to the mixed combinations t̄RτL or t̄LτR (SRL and SLR respectively). To

obtain results for other scenarios of leptoquarks that decay into this mode, one has

to simply rescale the results to account for the appropriate cross sections.
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Figure 16: The ττ invariant mass of the maximum likelihood sample as described in the

text. The distribution is sharply peaked at the input Z ′ mass of 1.5 TeV.

Figure 17: The relative difference between the true neutrino energy and the reconstructed

neutrino energy using the likelihood method described in the text (left panel) and the

resulting energy fraction, xτ distributions for the purely left- and purely right-handed

cases (right panel) for 1 fb−1 of integrated luminosity at 14 TeV.
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3.3.1 Parton-level results

We produce Monte Carlo distributions of the variables outlined in section 2 for

leptoquark states to compare to the predicted distributions at parton level. We do

not present parton-level distributions for the τ , as the corresponding parton-level

results have been already extracted from the Monte Carlo event generator itself and

appear in Fig. 2.

The SXX (X ∈ {R,L}) leptoquark can decay to tτ modes, described by the

Lagrangian terms:

gRRt̄
c
RτRSRR + gLLt̄

c
LτLSLL + h.c. . (3.11)

In the present study we set either gRR = 0, gLL = 1 (which we call purely left-handed)

or vice versa: gRR = 1, gLL = 0 (which we call purely right-handed). The result

for the highly-boosted xtop distributions obtained for purely left- and right-handed

events in HERWIG++ is shown in Fig. 18 with the appropriate analytic prediction.

The proton-proton centre-of-mass energy was set to 140 TeV and the leptoquark

Figure 18: The Monte Carlo results for the energy fractions xtop = Eb/Etop for τLtL (left)

and τRtR (right) in the highly-boosted case. These are compared to analytical predictions

as described in the text.

mass was set to 20 TeV, so that the top quarks are well within the highly-boosted

region.

We also present the top quark results originating from the decay of scalar lep-

toquarks of mass 400 GeV at the LHC with pp COM energy of 14 TeV. Figures 19

and 20 show the left- and right-handed distributions of the variables xtop and u re-

spectively, produced using the HERWIG++ Monte Carlo event generator and including

semi-analytical predictions. These include the effects of the finite top and tau masses,
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which introduce a mixture of helicities even though the Lagrangian terms are purely

chiral, and the effect of the variation of the top boost in the lab frame, βt.

Figure 19: The results for the energy fractions xtop = Eb/Etop for τLtL (left) and τRtR
(right) for a 400 GeV mass at 14 TeV pp COM energy. These are compared to semi-

analytical predictions as described in the text.

Figure 20: The Monte Carlo results for the energy fractions u = Eℓ
Eℓ+Eb

for τLtL (left)

and τRtR (right) for a 400 GeV mass at 14 TeV pp COM energy. These are compared to

semi-analytical predictions as described in the text.

The semi-analytical predictions have been produced using Monte Carlo tech-

niques as described in section 3.1: the xtop distribution was produced by distributing

cos θb according to P (cos θb) = (1 + Ptkb cos θb), and the βt distribution for the top

quark boost was extracted from the Monte Carlo event generator (see appendix F.3).

Using either a fit or the extracted distribution yields indistinguishable results.
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Since the boost of the parent leptoquark in the lab frame and the daughter top

quark in the lab frame are correlated, we extracted the two-dimensional distribution

P (βp, βt) from the HERWIG++ event generator (appendix F.3). In principle, the

βp distribution can be calculated for any process using the hadron parton density

functions and an assumption for the hard process, in this case scalar SU(3)c triplet

pair-production. The variable βp in the case of pair-produced leptoquarks of mass

MLQ is then related to the centre-of-mass energy by βp =
√

1− 4M2
LQ/Q

2. The

method described in appendix F was then used to calculate the detected polarization

of the top for each event. The effect reduces the polarization on average by less than

10%. The mixing of helicities due to the mass of the top quark is low (less than

0.1%) due to the fact that it is produced along with a very light fermion (the τ) in

the case we are considering.

The u distribution was produced in a similar way, using the full polarized top

matrix element (see appendix E). The W decay to a lepton and a neutrino was

set up in the W rest frame using a polar angle θ̄ and an azimuthal angle φ̄ for the

lepton and neutrino momenta. These were then boosted to the top frame, where

the b quark and W boson momenta were distributed in the top frame using a single

polar angle θ̃.10 The W mass was distributed according to a Breit-Wigner, centred

about mW . The effect of the W width was found to be small. The distribution was

then calculated by taking the ratio:

u =
Eℓ + βtp

z
ℓ

Eℓ + βtp
z
ℓ + Ebβtp

z
b

, (3.12)

where Eℓ and Eb are the lepton and b-quark energies in the top rest frame and βt

is again the boost of the top, sampled from either from the fit (Eq. (F.17)) or the

Monte Carlo distribution directly. The calculations of the effect of the finite top and

τ masses in the decay of a scalar and the relation of the top axis of polarization and

direction of motion follow those which appear in Ref. [4] and are described briefly in

appendix F.

3.3.2 Simulation and reconstruction

A mass reconstruction strategy for the (tτ)(tτ) decay mode is described in Ref. [6].

The reconstruction there focuses on the modes S̄(S) → bjj1ν1, S(S̄) → bℓν3j2ν2. We

call this the hadronic/semi-leptonic mode, as opposed to the fully hadronic mode

which we will examine below. An important assumption, that we have already

discussed in section 3.2, which allowed for the full reconstruction of this decay mode,

is the collinearity of the decay products of the tau leptons, owing to the fact that they

10Initially there are 9 degrees of freedom coming from the momenta of the b, ℓ and ν. Four-

momentum conservation offers four constraints and the mass-shell conditions for the top and W

offer a further two.
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are highly-boosted in the lab frame. This has been tested for different leptoquark

masses in Ref. [6]. The assumption can be applied by the relation pτi = zipji, where

i = 1, 2 and the energy ratios imply that zi ≥ 1.11 In Ref. [6] a quartic equation

was obtained for the energy ratio z2 and each solution is a unique reconstruction of

the whole event. This method provides a clean way to discriminate the leptoquark

signal from the background. However, both the number of events, and the quality

of the individual four-momenta reconstruction is insufficient for a detailed study of

the helicities of the top and τ . Here we focus instead on the topology that contains

two fully hadronic tops, shown in Fig. 21.

The signal was generated using the HERWIG++ event generator, including initial-

and final-state radiation (ISR and FSR), hadronization effects and the underlying

event (multiple parton interactions) and the detector response was simulated using

using the Delphes package with the default ATLAS settings, modified by the b-

tagging function of Eq. (3.6), without the trigger simulation. Here, we also used the

anti-kT algorithm with radius parameter R = 0.4. The following cuts were applied

on data corresponding to an integrated luminosity of 100 fb−1 at 14 TeV:

• A minimum of 6 jets (since the jets originating from theW could be identifiedas

one jets).

• The missing transverse momentum in the event, /ET > 20 GeV.

• Two τ -tagged jets and two b-tagged jets, all with the extra requirement that

they have pT,τ > 20 GeV.

Note that these are the minimal cuts that one could impose in principle experimen-

tally, and are lower than those imposed in the reconstruction techniques propsed in

Ref. [6].

Full reconstruction of the decay topology shown in Fig. 21 is possible, since we

would only be missing the neutrino momenta originating from the decays of the

highly-boosted τ leptons, once the hadronic tops have been reconstructed. Using the

approximation for the tau collinearity, one is left with only two unknowns, the z1
and z2 energy fractions. By assuming that the x and y components of the missing

momentum are equal to those of the sum of the two neutrino components, we obtain

two linear equations:

pxmiss = pxj1(z1 − 1) + pxj2(z2 − 1) ,

pymiss = pyj1(z1 − 1) + pyj2(z2 − 1) , (3.13)

11Note that, in the events we are considering the leptoquarks are always boosted in the laboratory

frame, so there is no issue with back-to-back τ leptons as the one which previously appeared in

section 3.2.
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Figure 21: Pair-production of a leptoquark pair with decay to (tτ)(tτ), followed by two

fully hadronic top decays.

which can be solved to give:

z1 = 1 +
pyj2p

x
miss − pxj2p

y
miss

pxj1p
y
j2 − pyj2p

x
j2

,

z2 = 1−
pyj1p

x
miss − pxj1p

y
miss

pxj1p
y
j2 − pyj2p

x
j2

. (3.14)

The invariant mass of each of the two leptoquarks may be written as m2
S = (pt+pτ )

2,

resulting in the following expression:

m2
S = 2zipti · pji +m2

top , (3.15)

where we have neglected the τ mass term. Using Eqs. (3.14), we obtain two values of

mS per event. Since this analysis would be performed after potential discovery, we

would already have a measurement of the mass of the leptoquark. This would allow

for elimination of backgrounds that may contribute and alter the energy fraction

distributions.

To assess the possibility of measuring the helicity of the top quarks and tau

leptons, we generated 100 fb−1 of a fully hadronic sample for purely left-handed or

right-handed couplings and passed them through the Delphes simulation. We then

analysed events which contained 2 τ -tagged jets and 2 b-tagged jets. We looked for

1 or 2 jets which reconstructed the top mass in conjunction with the tops, within an
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80 GeV window.12 For completeness, we show in Fig. 22 the resulting reconstructed

masses using the above method, without any attempt to optimise the resulting val-

ues. Each event was given weight 1, since there are 4 entries per event due to the

combinatoric ambiguities arising from the pairing of the top quarks and the τ lep-

tons. To obtain the best value of the variables xtop and xτ , we choose the combination

Figure 22: Mass reconstruction in the fully hadronic mode for the purely left- and right-

handed cases for an integrated luminosity of 100 fb−1. There are 4 entries per event,

weighted by 0.25 each.

which yields the best leptoquark mass, that is, the one closest to the true mass. We

then obtain two values of the xτ variable: xτ,1/2 = 1/z1/2 and two values of the xtop

variable by using the energies of the two b-jets and the reconstructed top energy. A

comparison between the results obtained before detector simulation, but applying all

cuts and using equivalent jet-finding, and after the Delphes simulation, is shown in

Figs. 23 and 24 on the left- and right- handed fermions, for the variables xtop and

xτ . The results without detector simulation have been normalised to the number

of events resulting after Delphes simulation. The differences that arise at low and

high energy fractions and can be attributed primarily to the efficiency of the tagging

algorithms and the overall differences to the smearing of the four-momenta due to

the simulation of the response of the detector. Comparisons of the Delphes results

are shown in Figs. 25 and 26 respectively for the purely left- and right-handed cases.

12To further improve the ‘top-tagging’ capabilities of the analysis, one can employ a more ad-

vanced tagging algorithm such as the one presented in Ref. [14]. For our purposes, the simpler

reconstruction method of requring combinations of jets to satisfy the top mass is sufficient to pro-

vide good results.
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Figure 23: Shown in the figures is a comparison between the results obtained for the

xtop variable for 400 GeV leptoquarks before detector simulation (but applying all cuts

and using equivalent jet-finding) and after the Delphes simulation for the left- and right-

handed fermions (blue and red respectively).

Figure 24: Shown in the figures is a comparison between the results obtained for the

xτ variable for 400 GeV leptoquarks before detector simulation (but applying all cuts and

using equivalent jet-finding) and after the Delphes simulation for the left- and right- handed

fermions (blue and red respectively).

To assess the discrimination capabilities of the distributions, we calculated the

χ2/Nd.o.f. between the left- and right-handed distributions. To investigate the effect

of higher transverse momentum cuts, we re-ran the analysis with two higher pT
cuts on the jets and the missing transverse momentum: set ‘A-prime’ with pT and
/ET > 25 GeV and set ‘A’ with pT and /ET > 30 GeV. The results are shown in
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Figure 25: The xτ variable for left- or right-handed tτ for an integrated luminosity of 100

fb−1 modes originating from the reconstructed events in the fully hadronic case, using the

method described in the text.

Figure 26: The xtop variable for left- or right-handed tτ for an integrated luminosity of

100 fb−1 modes originating from the reconstructed events in the fully hadronic case, using

the method described in the text.

Table 2.
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Cut set xtop xτ

Min. 4.0 4.5

A-prime 2.9 3.8

A 1.9 2.8

Table 2: The value of χ2/Nd.o.f. between the left- and right-handed distributions in the

leptoquark tτ decay scneraio, for the three different sets of cuts. It is evident that the

distributions become more difficult to distinguish for the higher cuts at the given integrated

luminosity of 100 fb−1.

4. Conclusions

We have investigated variables that have been defined for the purpose of determing

the helicity of top quarks and tau leptons in a more realistic setting than what has

been done so far in the literature. We first examined these analytically in the highly-

boosted case, where no explicit reconstruction of the event would be necessary to

observe the given distributions. Subsequently we focused on two specific models:

one containing a new heavy vector boson, Z ′, with decays to either a light jet and a

top quark or two taus, and a specific scenario in scalar leptoquark pair-production, in

which the decay of both leptoquarks is into a top quark and a τ lepton. We examined

the flavour-changing Z ′ model at parton level, producing the relevant distributions

semi-analytically and comparing these directly to the Monte Carlo-generated distri-

butions. We considered experimental and reconstruction effects for the case of a LHC

at proton-proton centre-of-mass energy of 14 TeV and 10 fb−1 of integrated luminos-

ity, and we investigated the applicability of the helicity discrimination variables. We

found that in the case of a 1.5 TeV Z ′ that can decay into an up quark and a top

quark, the top quark helicity can be determined, even for higher momentum cuts.

For the Z ′ model with decays to τ+τ− we used the τ decay vertex information along

with a likelihood method to correct for detector resolution effects, resulting in good

discrimination between the left- and right-handed modes for 1 fb−1 of integrated

luminosity. For the leptoquark pair-production model, for 400 GeV leptoquarks de-

caying into a top quark and a τ lepton each, we examined reconstruction of the case

when both the decaying fully hadronically. Discrimination in this scenario is more

challenging, but values of χ2/Nd.o.f. ∼ 2 − 3 can be obtained even with higher than

minimal cuts for an integrated luminosity of 100 fb−1.

To summarize, we have assesed the magnitude of the effects of QCD, cuts on

the transverse momentum, detector effects and finally the reconstruction issues that

arise in this phenomenological study of helicity variables. This work is indicative of

the difficulties that arise in ‘measuring’ the helicities to determine the form of the

interactions of new particles to quarks and leptons of the third generation. To fully
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determine the potential performance of these variables, the next step would be for

the experimental collaborations to perform similar analyses once the Large Hadron

Collider detector perfomance is understood.
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A. Angular variables

A.1 Definitions

We define here two ‘angular’ variables, the first of which is the angle θb,ℓ, defined

between the b-quark and the lepton, ℓ, in semi-leptonic top decays as shown in Fig. 27.

The angle is defined in the lab frame, but is shown in the figure in the centre-of-mass

frame of the decaying top quark for illustration purposes. We consider a function of

this variable defined by:

f(cos θb,ℓ) = 0.25× (1 + cos θb,ℓ) . (A.1)

We will also be considering the distance between the lepton and neutrino for semi-

leptonic top decays, given by ∆R(ℓ, ν) =
√

δη2ℓ,ν + δφ2
ℓ,ν , where δηℓ,ν and δφℓ,ν are

the distances in the pseudo-rapidity, |ηℓ− ην |, and transverse plane angle, |φℓ−φν |.

A.2 Angular variables in the Z ′ flavour-changing model

Figures 28 and 29 show the angular variables at parton-level for the Z ′ model de-

scribed by the Lagrangian density of Eq. (3.1), for a mass of 1.5 TeV. In Figs. 30

and 31 we show the reconstructed distributions after Delphes simulation for the

minimal set of cuts, and Figs. 32 and 33 show the corresponding reconstructed dis-

tributions for the set of cuts A and B, defined in section 3.1.2. Table 3 shows the

corresponding χ2/Nd.o.f. between the left- and right-handed distributions correspond-

ing to the figures. It is evident that these angular variable can provide equivalent

magnitudes of discrimination between left- and right-handed top quarks as the en-

ergy function variables that have been used throughout the main part of the paper.
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Figure 27: The angle θb,ℓ, between the b quark and lepton in top decay, shown in the

centre-of-mass frame of the top for illustration purposes. The angle is calculated in the lab

frame throughout this paper.

Figure 28: The f(cos θb,ℓ) variable for left- or right-handed Z ′ bosons decaying to ut̄ or

ūt, obtained from parton-level events.

Variable ∆R(ℓ, ν) f(cos θ(b, ℓ))

Min. 45.7 29.1

A 35.4 19.1

B 34.0 12.6

Table 3: The value of χ2/Nd.o.f. between the left- and right-handed distributions in the

Z ′ scenario for the three different sets of cuts. It is evident that the distributions are

distinguishable even for the higher cuts, with the u variable distribution performing well

in all cases.
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Figure 29: The ∆R(ℓ, ν) variable for left- or right-handed Z ′ bosons decaying to ut̄ or ūt,

obtained from parton-level events.

Figure 30: The f(cos θb,ℓ) variable for a left- or right-handed Z ′ bosons decaying to ut̄ or

ūt, obtained from the reconstructed events for an LHC run at 14 TeV, with 10 fb−1.

B. The χ2 between two histograms

For the comparison of two binned data sets, χ2 can be defined as [15]:

χ2 =
∑

i

(Ri − Si)
2

Ri + Si
, (B.1)
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Figure 31: The ∆R(ℓ, ν) variable for a left- or right-handed Z ′ bosons decaying to ut̄ or

ūt, obtained from the reconstructed events for an LHC run at 14 TeV, with 10 fb−1.

Figure 32: The ∆R(ℓ, ν) variable for a left- or right-handed Z ′ bosons decaying to ut̄ or

ūt, obtained from the reconstructed events for an LHC run at 14 TeV, with 10 fb−1, with

the set of cuts A (left) and B (right), as explained in the text.

where Ri and Si are the number of events in ith bin of the first and second datasets

respectively.
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Figure 33: The f(cos θb,ℓ) variable for a left- or right-handed Z ′ bosons decaying to ut̄ or

ūt, obtained from the reconstructed events for an LHC run at 14 TeV, with 10 fb−1, with

the set of cuts A (left) and B (right), as explained in the text.

Figure 34: The probability density functions for smearing of jet energy, the angle on the

transverse plane φ of jets, and the azimuthal angle θ of jets. The solid histograms show

the actual Delphes simulation results whereas the dashed one show the functions that were

actually used for the likelihood method of section 3.2.

C. Detector-level smearing

The probability density functions used for the likelihood method that corrects for

likelihood methods are shown in Fig. 34 and Fig. 35 with dashed histograms. The

solid histograms show the actual discrepancy between parton-level and detector-

level objects as obtained by Delphes. In practice these distributions would be known

features of the detector performance.
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Figure 35: The probability density functions for smearing of missing transverse energy,

the angle on the transverse plane, φ, of the missing transverse momentum vector, and

the actual smearing on the Z ′ mass distribution (i.e. measured through some other decay

mode). The solid histograms show the actual Delphes simulation results whereas the dashed

one show the functions that were actually used for the likelihood method of section 3.2.

D. Alternative leptoquark decay: SXY → tRτ̄L, tLτ̄R

In section 3.3 we considered the decay of a leptoquark which we called SXX , where

X ∈ {L,R}, with electromagnetic charge ±5/3 to either t̄Rτ̄R or t̄Lτ̄L. Here we

consider the alternative combination of helicities, corresponding to a leptoquark with

charge ±1/3 which we call SXY , where X 6= Y and X, Y ∈ {L,R}. 13 The results

for xtop and xτ , for the fully-hadronic leptoquark analysis constructed in section 3.3

are shown in Figs. 36 and Figs. 37 respectively, for the minimal set of cuts. Note

that in this case one should understand that the left-handed τ should be paired up

with the right-handed top and vice versa (i.e. red in one plot with blue in the other).

The values of χ2/Nd.o.f. were found to differ compared to those of the +5/3

case, corresponding to ∼ 1.6 for the xτ variable and ∼ 8.2 for the xtop variable.

The differences between the SXY and SXX leptoquarks arise due to the difference in

acceptances of the left- and right-handed particles. These are a consequence the in-

terplay of the efficiencies associated with the b-tagging, τ -tagging and reconstruction

of the top quarks.

E. Matrix element for polarized top decay

It is useful to outline here the derivation of the polarized top decay differential width.

The coupling of the W boson to the fermions is given by:

L =
g

2
√
2
Vff ′ f̄γµ(1− γ5)f

′W µ + h.c. , (E.1)

13In the notation of Ref. [6], we are actually considering the decays of the upper component of

the S1/2 doublet, S
(+)
1/2 .
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Figure 36: The xτ variable for left- or right-handed tops from the SXY leptoquark, for

an integrated luminosity of 100 fb−1 for a 14 TeV LHC.

Figure 37: The xtop variable for left- or right-handed tops from the SXY leptoquark, for

an integrated luminosity of 100 fb−1 for a 14 TeV LHC.

where g is the weak charge and Vff ′ is the CKM matrix element corresponding to

the fermions f and f ′. The matrix element, corresponding to the diagram shown in

Fig. 38 is given by:

M =
g2

8
VtbVff ′ ūr

b(p2)γµ(1− γ5)W
µus

tp1ū
r1
f ′(q1)γν(1− γ5)v

r2
f (q2)W

νG(q2) , (E.2)
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where u and v are the positive and negative frequency spinors, W µ is the W polar-

ization vector and G(q2) is the W propagator,

G(q2) =
1

(q2 −M2
W ) + iΓWMW

. (E.3)

Squaring the matrix element and summing over the b quark and fermion spins, we

obtain:

∑

r1,r2,r

|M| = Ω Tr

[

1

2
(1 + 2sγ5/S)(/p1 +mt)γk(1− γ5)/p2γµ(1− γ5)

]

× Tr
[

/q1γν(1− γ5)/q2γλ(1− γ5)
]

× W µW νW ∗λW ∗k , (E.4)

where S = 1/mt(|~p1|, E1~p1/|~p1|) is the spin 4-vector for the top-quark and Ω is defined

as:

Ω ≡ g4

64
|Vtb|2 |Vff ′ |2 × 1

(q2 −M2
W )2 + Γ2

WM2
W

. (E.5)

The traces can be calculated using the FORM package [16]. The first trace in Eq. (E.4),

corresponding to a top quark with spin s = ±1/2 and the bottom quarks, is given

by:

4 (pµ1p
k
2 + pk1p

µ
2 − gµkp1 · p2 − ǫijµkpi1p

j
2)

+ 8 mts(−pµ2S
k − Sµpk2 + gµkp2 · S − ǫijµkpi2S

j) . (E.6)

Is obvious that the second term in the above result vanishes if we sum over s or set

mt → 0. The second trace in Eq. (E.4), corresponding to the fermions f and f ′ is

given by:

8(qν1q
λ
2 + qλ1 q

ν
2 − gνλq1 · q2 + 8ǫijµkqi1q

j
2) . (E.7)

Summing over the W polarizations introduces gkλ and gµν , and gives, for the polar-

ized top matrix element squared,

|M|2 (s) = 128Ω(p2 · q1) [(p1 −mt(2s)S) · q2] . (E.8)

F. Finite mass effects on top polarization

F.1 Production polarization

We adapt the description given in Ref. [4] for the case of stop decay to a top and a

neutralino, to the decay of a scalar leptoquark to a top and another fermion. The
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t(p1, s)

b(p2, r)

Wµ

ν

f(q2, r2)

f ′(q1, r1)

Figure 38: The Feynman diagram for polarized top decay. The parentheses indicate the

4-momentum and spin labels respectively, for each particle.

corresponding Lagrangian for the decay of scalar leptoquark S to tL,R and a fermion

f can be written as:

L = gLtLSf + gRtRSf + h.c. , (F.1)

where gL and gR are the left- and right-handed couplings respectively. The axis

of spin quantization is taken to lie along the top direction of motion in the parent

leptoquark rest frame. The production amplitutes for positive and negative helicity

top quarks depend on two functions F±:

F± =
(Et +mt ± |pt|)(Ef +mf ± |pf |)

4(Et +mt)(Ef +mf )
, (F.2)

where all quantities are given in the leptoquark rest frame. The functions result from

explicit evaluation of the matrix element for the leptoquark decay using the spinor

wavefunctions. These are given by:

u(~p, s) =

(√
p · σχs√
p · σ̄χs

)

, v(~p, s) =

(

2s
√
p · σχ−s

−2s
√
p · σ̄χ−s

)

, (F.3)

where the spinors χs are eigenstates of the operator 1/2~σ · ~̂s with eigenvalue s and

are given, for ~̂s along the z-direction, by:

χ1/2(~̂z) =

(

1

0

)

, χ−1/2(~̂z) =

(

0

1

)

. (F.4)

For the decay of a scalar to left-handed tops, for example, the matrix element is

proportional to v̄(~p, s)PLu(~k, r), where ~p and s are the top momentum and spin

respectively, and ~k and r are the fermion momentum and spin respectively. The PL

operator projects the upper component of u(~k, r) and hence the matrix element for

the left-handed coupling is given by:

ML
s ∝

(

−2s
√
p · σ̄†

χ−s 2s
√
p · σ†χ−s

)

(

−2s
√
p · σ̄†

χ−s

0

)

. (F.5)
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Using the relations [?]:

√
p · σ =

(Ep +m)I− ~σ · ~p
√

2(Ep +m)
,

√
p · σ̄ =

(Ep +m)I+ ~σ · ~p
√

2(Ep +m)
, (F.6)

we obtain the following:

ML
s ∝ −2sχ†

−s

[(Et +mt)I+ ~σ · ~p][(Ef +mf )I− ~σ · ~k]
√

4(Et +mt)(Ef +mf )
χr . (F.7)

Since we are interested only in the top polarization, s, we can sum over the fermion

polarization, r, replacing χr with a column vector with unit entries, (1, 1). If we

define, D ≡
√

4(Et +mt)(Ef +mf ), then

ML
s ∝ −2s

D
χ†
−s

(

Et +mt + pz px − ipy
px + ipy Et +mt − pz

)(

Ef +mf − kz −kx + iky
kx + iky Ef +mf + kz

)(

1

1

)

.

(F.8)

In the rest frame of the scalar leptoquark, we take the z-axis to lie along the top

direction of motion, and hence we have px = py = kz = ky = 0 and pz = −kz and

the matrix element finally becomes:

ML
s ∝ −2s

D
χ†
−s

(

Et +mt + pz 0

0 Et +mt − pz

)(

Ef +mf − kz
Ef +mf + kz

)

. (F.9)

Thus, setting s = +1/2 picks the upper element of the resulting column matrix,

whereas s = −1/2 picks the lower element of the matrix. It is easy to see that the

functions F± arise naturally then. The extension to MR
s is trivial, and the resulting

matrix elements are thus given by:

ML
± ∝ gLF∓, MR

± ∝ gRF± . (F.10)

For finite mt this gives a non-vanishing amplitude for top quarks of both helicities

even in the limit of a purely chiral vertex. The polarization along the production

axis is given by:

〈PP 〉 =
(|gR|2 − |gL|2)MLQ|pt|

(|gR|2 + |gL|2)(MLQEt −m2
t ) + 2gRgLmfmt

, (F.11)

where MLQ is the leptoquark mass. The effect is small if the top is produced in

association with a light fermion, e.g. in the case of leptoquark decay to tτ .14

14Note that it may be interesting to investigate whether the helicity distributions of the top can

provide independent information on the mass of the accompanying sister particle, especially if this

is weakly-interacting (and hence invisible).
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F.2 Polarization axis rotation effects

The natural polarization axis for reconstructed tops is their direction of motion.

This is referred to as the detection axis in Ref. [4]. The most natural observable for

hadronic tops is then the angular distribution of the b quark jets with respect to the

top quark direction of motion in the the top rest frame,

1

Γ

dΓ

d cos θ′
=

1

2
(1 + 〈PD〉κ cos θ′) , (F.12)

where 〈PD〉 is the observed polarization along the detection axis. In general, the

detection axis and the production axis are at an angle ω:

〈PD〉 = 〈PP 〉 cosω . (F.13)

This angle is the Wigner angle determined by the composition of boosts from the

top rest frame to the lab frame, followed by a boost from the lab frame to the top’s

parent rest frame and finally a boost from the parent rest frame to the top rest frame.

From this composition of boosts it is found that [4]:

cosω =
Etβp cos θ + |pt|

√

|pt|2(1 + β2
p cos

2 θ) +m2
tβ

2
p + 2Et|pt| cos θ

(F.14)

where Et, pt are the energy and momentum of the top in the parent rest frame, θ is

the angle of the top in the parent rest frame, and βp is the boost between the parent

rest frame and the lab frame. For a given model distributions of boosts P (βp) can

be calculated from the dynamics and the PDFs and the detection polarization can

be derived by:

〈PD〉 = 〈PP 〉
1

2

∫

d cos θdβpP (βp) cosω(θ, βp) . (F.15)

For sufficiently heavy parent particles, βp ∼ 0 and cosω ∼ 1, as there will be little

difference between the production and detection axes.

If both the boost of the daughter top quark βt 6= 1 and the boost of the parent

βp 6= 0, then the full two-dimensional distribution of the two boosts has to be used.

The detected polarization can then be calculated on an event-by-event basis by first

choosing βp from the integrated distribution over βt and then using:

〈PD〉 = 〈PP 〉
1

2

∫

d cos θ cosω(θ, βp) . (F.16)

The subsequent boost of the top quark can then be sampled from P (βp, βt), using

the fixed βp. Note that in the case of the flavour-changing Z ′ considered in this

paper, cosω = 1 since the production and detection frames of the top are identical.

This can be understood clearly if one considers in this case the composition of boosts

described below Eq. (F.14): the boosts would all be parallel, returning to the same

point without rotation.
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Figure 39: The fit to the top quark βt distribution for 400 GeV leptoquarks is shown

in solid black dashes. The HERWIG++ histogram extracted from parton-level Monte Carlo

events is shown in solid black.

F.3 β distributions from Monte Carlo

We also show the form of the two-dimensional βp − βt distribution for 400 GeV

leptoquarks, extracted from the HERWIG++ event generator in Fig. 40. For the βt
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Figure 40: The βp − βt distribution for 400 GeV leptoquarks, extracted from the

HERWIG++ event generator, is shown.

distribution (i.e. integrated over βp) in the decay of a 400 GeV leptoquark a fit can
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be made, shown in Fig. 39. The fit has the form of a Gaussian:

P (βt) = a exp(−(βt − b)2/c) , (F.17)

where the parameters a, b and c were given by the fit to be a ≃ 3.48, b ≃ 1.03,
c ≃ 0.13. The distribution integrates to ∼ 1 in βt ∈ (0, 1).
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