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Abstract
The C++ package PJFry 1.0.0 [1, 2] – a one loop tensor integral library – is
introduced. We use an algebraic approach to tensor reduction. As a result,
the tensor integrals are presented in terms of scalar one- to four-point func-
tions, which have to be provided by an external library, e.g. QCDLoop/FF
or OneLOop or LoopTools/FF. The reduction is implemented until five-point
functions of rank five. A numerical example is shown, including a special
treatment for small or vanishing inverse four-point Gram determinants. Future
modules of PJFry might cover the treatment of n-point functions with n ≥ 6;
the corresponding formulae are worked out. Further, an extremely efficient
approach to tensor reduction relies on evaluations of complete contractions of
the tensor integrals with external momenta. For this, we worked out an algo-
rithm for the analytical evaluation of sums over products of signed minors with
scalar products of chords, i.e. differences of external momenta. As a result,
the usual multiple sums over tensor coefficients are replaced for the numerical
evaluation by compact combinations of the basic scalar functions.

1. PJFry

The goal of the C++ package PJFry is a stable and fast open-source implementation of one-loop tensor
reduction of Feynman integrals

Iµ1···µRn = C(ε)

∫
ddk

iπd/2

∏R
r=1 k

µr∏n
j=1(k − qj)2 −m2

j + iε
, (1)

suitable for any physically relevant kinematics.1 The algorithm was invented in [2]. PJFry performs the
reduction of 5-point 1-loop tensor integrals up to rank 5. The 4- and 3-point tensor integrals are obtained
as a by-product. Main features are:
• Any combination of internal or external masses
• Automatic selection of optimal formula for each coefficient
• Leading ()5 are eliminated in the reduction
• Small ()4 are avoided using asymptotic expansions where appropriate
• Cache system for tensor coefficients and signed minors
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1An extended description of notations and of the formalism may be found in [2, 3, 4, 5]. The normalization of PJFry follows

that chosen in the scalar library. For QCDLoop, C(ε) = Γ(1 − 2ε)/[Γ(1 + ε)Γ2(1 − ε)].



• Interfaces for C, C++, FORTRAN and Mathematica
• Uses QCDLoop [6, 7] or OneLOop [8] for 4-dim scalar integrals
• Available from the project webpage https://github.com/Vayu/PJFry/ [1, 2]

The installation of PJFry may be performed following the instructions given at the project webpage.
The project subdirectories are
./src - the library source code
./mlink - the MathLink interface
./examples - the FORTRAN examples of library use, built with make check

A build on Unix/Linux and similar systems is done in a standard way by sequential performing
./configure, make, make install. See the INSTALL file for a detailed description of the ./configure op-
tions.

The functions for tensor coefficients for up to rank R = 5 pentagon integrals are declared in the
Mathematica interface:

In:= Names["PJFry‘*"]

Out= {A0v0, B0v0, B0v1, B0v2, C0v0, C0v1, C0v2, C0v3, \
D0v0, D0v1, D0v2, D0v3, D0v4, E0v0, E0v1, E0v2, \
E0v3, E0v4, E0v5, GetMu2, SetMu2}

The C++ and Fortran interface syntax is very close to that of e.g. LoopTools/FF:

E0v3[i,j,k,p1s,p2s,p3s,p4s,p5s,s12,s23,s34,s45,s15,m1s,m2s,m3s,m4s,m5s,ep=0]

where:2

i,j,k are indices of the tensor coefficient (0 < i ≤ j ≤ k < n),
p1s,p2s,... are squared external masses p2i ,
s12,s23,... are Mandelstam invariants (pi + pj)

2,
m1s,m2s,... are squared internal masses m2

i ,
ep=0,-1,-2 selects the coefficient of the ε-expansion.

The average evaluation time per phase-space point on a 2 GHz Core 2 laptop for the evaluation of
all 81 rank 5 tensor form-factors amounts to 2 ms.

A numerical example is shown, for a configuration as in figure 1, in figures 2 and 3 for a five-point
rank R = 4 tensor coefficient in a region, where one of the 4-point sub-Gram determinants vanishes [at
x = 0]:

E3333(0, 0,−6×104(x+ 1), 0, 0, 104,−3.5×104, 2×104,−4×104, 1.5×104, 0, 6550, 0, 0, 8315)

The red curve is produced with standard PJFry, and the blue one with Passarino-Veltman [PV] reduction
[9]; we mention that for the case treated here (x → 0), the PV reduction is no standard option. Our
expansion in terms of higher dimensional scalar 3-point functions in case of vanishing 4-point sub-Gram
determinants uses only functions Id+2l

3 [2]. These are tensor coefficients of the pure gµν type [10], and
so our method is different from others with a mixed numerical approach [11] or with use of additional
tensor coefficients [12].

Tensor reduction by PJFry is used as one option of the GoSam package [13]. An older version of
the algorithm, as described in [14], has been implemented independently in [15].

2One has to carefully control accuracies; e.g. the on-shell conditions for massless particles have to be fulfilled with a
numerical precision expected by the scalar functions library in use; for QCDLoop this means on default at least 10 digits.

https://github.com/Vayu/PJFry/
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Fig. 1: Momenta definitions for PJFry.

2. POTENTIAL UPGRADES

2.1 Tensor reduction for higher-point functions
So far, PJFry is foreseen for 5-point functions and simpler ones. The extension to 6-point functions is
known from e.g. [11, 12, 14]. In [4] we solve analytically generalized recursions for n ≥ 6, derived in
[11]:

Iµ1µ2...µRn = −
n∑
r=1

Cµ1r (n)Iµ2···µR,rn−1 , (2)

where in Iµ,···,rn−1 the line r is scratched. The coefficients for 6-point functions are:

Cs,µr (6) =
5∑
i=1

1(0
s

)
6

(
0r

si

)
6

qµ1i , s = 0 . . . 6, (3)

where the qi are chords, and
(0r
si

)
6

etc. are signed minors with arbitrary s. For the 7-point and 8-point
functions, we found several representations, among them

Cst,µr (7) =
6∑
i=1

1(st
st

)
7

(
sti

str

)
7

qµi (4)

and

Cstu,µr (8) =
7∑
i=1

1(stu
stu

)
8

(
stui

stur

)
8

qµi (5)

The upper indices s, t and u stand for the redundancy of the solutions and can be freely chosen.

2.2 Evaluation of contracted tensor integrals using sums over signed minors
The contraction of a tensor integral with chords may be written as a sum over basic scalar integrals (at a
stage where they are free of tensor coefficient indices), multiplied by (multiple) sums over chords times
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Fig. 2: Absolute accuracy of E3333 in the region of vanishing sub-Gram determinant. Blue curve: conventional Passarino-

Veltman reduction, red curve: PJFry.

signed minors. If one may perform these sums algebraically, the method becomes very efficient. And
this has been systematically worked out in [3], see also [5].

We reproduce here two 7-point examples.

The rank R = 2, 3 integrals become by contraction

qa,µqb,ν I
µν
7 =

7∑
r,t=1

Kab,rtIrt5 , (6)

qa,µqb,νqc,λ I
µνλ
7 =

7∑
r,t,u=1

Kabc,rtuIrtu4 , (7)

where Irt5 and Irtu4 are scalar 5- and 4-point functions, arising from the 7-point function by scratching
lines r, t, . . . In the general case, we have at this stage higher-dimensional integrals Id+2l

n , n = 2, . . . , 5,
to be further reduced following the known scheme, if needed. Here, the Irt5 have to be expressed by
4-point functions.

The expansion coefficients are factorizing here,

Kab,rt = Ka,rKb,rt, (8)

Kabc,rtu = −Ka,rKb,rtKc,rtu, (9)

and the sums over signed minors have been performed analytically:

Ka,r =
1

2
(δar − δ7r) , (10)

Kb,rt =
6∑
j=1

(qbqj)

(rst
rsj

)
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)
7
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b(rs
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7

=
1

2
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1

2

(rs
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)
7(rs

rs

)
7
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Ka,stu =
6∑
i=1

(qaqi)

(
0stu

0sti

)
7

≡ Σ2,stu
a (12)
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Fig. 3: Relative accuracy of E3333 in the region of vanishing sub-Gram determinant. At x ∼ 0.0015, PJFry switched to the

asymptotic expansion.
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(
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}
,

with

Yjk = −(qj − qk)2 +m2
j +m2

k. (13)

Conventionally, q7 = 0.

The sums may be found in eqns. (A.15) and (A.16) of [3]. The s is redundant and fulfils s 6= r, b, 7
in Kb,rt. In Ka,stu

0 it is s, t, u = 1, . . . 7 with s 6= u, t 6= u.
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