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Abstract

For the large-angles hard photon emission by initial leptons in process of high energy
annihilation of e+e− → to hadrons the Dirac tensor is obtained, taking into account
the lowest order radiative corrections. The case of large-angles emission of two
hard photons by initial leptons is considered. This result is being completed by
the kinematics case of collinear hard photons emission as well as soft virtual and
real photons and can be used for construction of Monte-Carlo generators.
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1 Introduction

The problem of precise knowledge of the cross section of annihilation e+e− to
hadrons caused by the long staying problem of theoretical estimation of muon
anomalous magnetic moment g − 2 [1]:

ahadrµ =
(

g − 2

2

)

µ
=

1

3

(

α

π

)2
∞
∫

4m2
π

ds

s
R(s)K(1)(s), (1)

R(s) =
σeē→hadr

σeē→µµ̄
, K(1)(s) =

∫

dx
x2(1− x)

x2 + ρ(1− x)
, ρ =

s

m2
µ

.

Extraction of cross-section e+e− → γ∗ → hadrons from experimental data is
one of the main problem of modern experimental physics. The Monte-Carlo
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programs creation which takes into account the emission of real photons by
the initial leptons is the motivation of this paper.

Dirac tensor (cross-symmetry partner of Compton tensor) i.e. the bilinear
combination of the currents of hard photon emission averaged on leptons spin
states and summed on photon polarization states takes the contribution on
Born level and the ones arising from 1-loop correction. Infrared divergences
are parametrized by the introduction ”photon mass” λ. In the final answer
it is removed in a usual way by adding the contribution from additional soft
photon emission.

We don’t consider photon emission by the final charged particles as well as
the effects of charge-add interference of emission of virtual or real photon
emission from leptons and hadrons. So the Dirac tensor obtained in such way
is universal.

The paper is organized as follow. In the part 2 we wrote down the contribution
of Dirac tensor in terms only corrections associated with the positron legs. In
part 3 we obtain the contribution arising from mass operator of positron and
vertex function for the case when positron and photon are on mass shell. In
the part 4 we consider the contribution from vertex function for the case of
electron on mass shell and the box-type Feynman amplitude with electron,
positron and one of photons on mass shell.

In section 5 we analyze the total result for Dirac tensor, adding the emission of
additional soft photon contributions, which provide the infrared divergences
free final result.

We put the form of hadronic tensor for several final states: γ∗ → π+π−, µ+µ−, ρ+ρ−.
In Appendixes A and B the details of calculation are presented. In Appendix
C the contribution to Dirac tensor for the case of two hard photon emission
is given.

2 General analysis

The Born level matrix element of hard photon emission by initial leptons in
process of annihilation e+, e− to hadrons through the single virtual photon
intermediate state

e+(p+) + e−(p−) → γ∗(q) + γ(k1) → γ(k1) + h(q) (2)

have a form (see Fig. (1))
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(a)
−p+

p−

x
q

k1

(b)
−p+

p−

x
q

k1

Fig. 1. Diagrams contributing in Born level.

M =
(4πα)3/2

q2
v̄(p+)O

(B)
ρ u(p−)Hρ(q), (3)

O(B)
ρ = γρ

p̂− − k̂1
−χ−

ê+ ê
−p̂+ + k̂1
−χ+

γρ,

where ê(k1) is polarization vector of the real photon. The Hρ(q) is the current
describing the conversation of virtual photon whith momentum q to hadronic
state. We will restrict ourselves by kinematics conditions of large-angles scat-
tering.

s=2p+p−, χ± = 2k1p±, k2
1 = 0, p2± = m2, (4)

s−χ+ − χ− = q2, q2 > 0, ∼ q2 ∼ χ+ ∼ χ− ≫ m2.

In expressions below we put m = 0 everywhere except the denominators of
loops integrals.

Cross section can be expressed in terms of the summed on spin states of the
module of matrix element square:

∑

spin

|M |2 =(4πα)3
4Bρρ1Hρρ1

(q2)2
,

Bρρ1 =
1

4
Tr p̂+Oρp̂−Ōρ1 ,

Hρρ1 =
∑

spin

Hρ(q)H
∗
ρ1
(q). (5)

The differential cross-section can be written as:

dσ=
1

8s

∑

|M |2 d3k

2ω(2π)3
dΓf ,

dΓf = (2π)4δ4
(

p+ + p− − k1 −
∑

f

qi

)

∏

f

d3qi
2εi(2π)3

. (6)

For differential hard photon cross section we obtain
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ω dσe+e−→γX

d3k1dΓf
=

2α3

(q2)2
Hρρ1Bρρ1 , (7)

where for the case of Born level

Bρρ1 =B(0)
ρρ1 =Bgg̃ρρ1+B++p̃+ρp̃−ρ1+B−−p̃−ρp̃−ρ1+B±(p̃+ρp̃−ρ1+p̃+ρ1 p̃−ρ).(8)

The quantities with the ”tilde” are defined as

g̃ρρ1 = gρρ1 −
1

q2
qρqρ1 , (9)

p̃±ρ= p±ρ − qρ
p±q

q2
.

In the Born approximation (see Fig. (1)) we have

Bg =
1

χ+χ−

(2sq2 + χ2
+ + χ2

−), (10)

B++ =B−− =
4q2

χ+χ−

, B± = 0.

For q2 = 0 we reproduce the Dirac cross-section of e−e+ → γγ:

dΓ

dO1
=

2α2

s

χ2
+ + χ2

−

χ+χ−

. (11)

Below we concentrate on calculation of one-loop radiative correction to Dirac
tensor is

Bρρ1 → B(0)
ρρ1

+ (α/π)T (1)
ρρ1

. (12)

Let us now show that in considering of the corrections one can restrict only
by half of full set of Feynman diagrams for considering process (2). So we put
Oρ = O−

ρ + O+
ρ separating the contribution of emission from electron leg O−

ρ

and positron one O+
ρ (see Fig.(1) for the Born case and Fig.(2) for the 1-loop

corrections).

One can show that using the cyclic property of the trace as well as the mirror
property

Tr â1â2 · · · â2n = Tr â2n · · · â2â1,

that the total contribution to the Dirac leptonic tensor can be written as:
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Tr p̂+O
(1)
ρ p̂−Ō

B
ρ1
+Tr p̂+O

B
ρ p̂−Ō

(1)
ρ1

=(1 + ∆ρρ1)(1 + P)Tr p̂+O
+
ρ p̂−Ō

B
ρ1
. (13)

Here the exchange operations acting as

∆ρρ1Fρρ1 =Fρ1ρ, (14)

PF (p+, p−, k1)=F (−p−,−p+,−k1), (15)

PF (s, q2, χ+, χ−)=F (s, q2, χ−, χ+) ≡ F̃ .

Here and below we imply the real part of leptonic tensor.

3 One-loop corrections

The virtual correction of lowest order is described by 8 Feynman diagrams
shown on the Fig.(3).

(a)

x

(b)

x

(c)

x

(d)

x

(e)

x

(f)

x

(g)

x

(h)

x

Fig. 2. Diagrams contributing in 1-loop level.

Let us distinguish contribution of FD Fig. (3(e-h)) to 3 classes

Tr p̂+O
+
ρ p−Ōρ =T box

ρρ1
+ T verx

ρρ1
+ TΣ

ρρ1
(16)

with T box and T verx correspond to Fig. (3 (h,g)) and TΣ to Fig. (3 e,f).

Consider first the contribution to matrix element arising from Feynman dia-
gram Fig. 3 e,f.

Matrix element of FD Fig. (3 (e)) contain the mass operator of electron Σ(p̂).
In kinematics conditions of our problem (χ+ ≫ m2) we obtain [BLP]:
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Me =
α

2π
(
3

2
+

1

2
l+ − lλ)v̄(p+)ê

( p̂+ + k̂1
−χ+

)

γρu(p−), (17)

l+ = ln
χ+

m2
, lλ = ln

m2

λ2
,

where λ is the so-called ”photon mass”.

Matrix elements of FD Fig. (3 (f)) contain the vertex function with real pho-
ton [3].

Mf =
α

4π
v̄(p+)

∫

dkγλ(−p̂+−k̂)ê(−p̂+ + k̂1 − k̂)γλ

(0)(2̄)(q)
(18)





−p̂++k̂1
−χ+



γρu(p−).

We use here the notations

dk=
d4k

iπ2
, (0) = k2, (2̄) = (p+ + k)2 −m2, (q) = (−p+ + k1 − k)2 −m2.(19)

Using the relevant loop integrals, obtained in [2] (see Appendix) we have a
matrix elements of FD Fig. (3(f)) which contain the vertex function with real
photon [3].

Mf =
α

2π
v̄(p+)[−

1

χ+
(l+ − 1

2
)k̂1êp̂+ (20)

+ê(lλ −
1

2
l+ − 3

2
)]
−p̂+ + k̂1
−χ+

γρu(p−) (21)

As a result we obtain the infra-red free and gauge-invariant expression:

Me +Mf =
α

π
Φ+v̄(p+)k̂1êγρu(p−), Φ+ =

1

2χ+
(l+ − 1

2
). (22)

Inserting this expression to the relevant part of O+
ρ we obtain for TΣ

ρρ1

TΣ
ρρ1 =Φ+Tr p̂+k̂1γλγρp̂−

[ 1

χ−

γλ(p̂− − k̂1)γρ1 +
1

χ+
γρ1(−p̂+ + k̂1)γλ

]

, (23)
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where we used relation k1ρ = (p+ + p−)ρ keeping mind the gauge invariance
of hadronic tensor qµHµν = 0. Expression (23) leads to the follow form for
contributions of diagramms Fig. (3(e,f)):

TΣ
ρρ1

=4Φ+[2p−ρp−ρ1(
q2

χ−

− 1) + 2p−ρp+ρ1(
s

χ−

− 1)− (s− χ−)gρρ1]. (24)

Applying the operation ∆ρρ1 and P we obtain the full result:

(1 + ∆ρρ1)(1 + P)TΣ
ρρ1

= [2QΣ
−p−p− + 2Q̃Σ

−p+p+ + (QΣ
± + Q̃Σ

±)(p+p− + p−p+)(25)

+(2QΣ
g + 2Q̃Σ

g )g]ρρ1 ,

where

QΣ
− =8Φ+

q2 − κ−

κ−

;

QΣ
± =8Φ+

s− κ−

κ−

;

QΣ
g =8Φ+(s− κ−). (26)

4 Vertex and box type diagram contributions

Contribution of Fig. (3(g,h)) can be written as

T box
ρρ1 + T vert

ρρ1 =
α

π

[

S1

χ−

+
S2

χ+
− C1

χ−χ+
− C2

χ2
+

]

, (27)

with

S1=
∫

dk

(0)(2)(2̄)(q)

1

4
Tr B̂p̂−γη(p̂− − k̂1)γρ1, (28)

S2=
∫

dk

(0)(2)(2̄)(q)

1

4
Tr B̂p̂−γρ1(−p̂+ + k̂1)γη,

C1=
∫

dk

(0)(2)(q)

1

4
Tr V̂ p̂−γη(p̂− − k̂1)γρ1 ,

C2=
∫

dk

(0)(2)(q)

1

4
Tr V̂ p̂−γρ1(−p̂+ + k̂1)γη

B̂= p̂+γλ(−p̂+ − k̂)γη(−p̂+ + k̂1 − k̂)γρ(p̂− − k̂)γλ,

V̂ = p̂+γη(−p̂+ + k̂1)γλ, (−p̂+ + k̂1 − k̂)γρ(p̂− − k̂1)γλ.
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Using the loop integrals listed in Appendix A we obtain:

(T box + T vert)ρρ1 =A+p+ρp+ρ1+B−p−ρp−ρ1+C±p+ρp−ρ1

+D∓pρ−p+ρ1+Eggρρ1 , (29)

with explicit expression for A-E given in Appendix B. Applying exchange
operator 1 + ∆ρρ1 we obtain

(1 + ∆ρρ1)(T
box +TΣ + T vert)ρρ1 = 2A+p+ρp+ρ1 + (2B− + 2QΣ

−)p−ρp−ρ1 (30)

+ (C± +D∓ +QΣ
±)(p+ρp−ρ1 + p−ρp+ρ1) + (2Eg + 2QΣ

g )g
ρρ1 .

Applying at least the operation (1+P) (Eq. 16) we obtain the final expression
for Dirac tensor with heavy photon for annihilation channel Bρρ1 = B0

ρρ1
+

α
π
Tρρ1 with

Tρρ1 =T−−p̃−ρp̃−ρ1 + T̃−−p̃+ρp̃+ρ1 + (p̃+ρp̃−ρ1 + p̃−ρp̃+ρ1)T+− + Tgg̃ρρ1 ,(31)

with

T++ = 2A+ + 2B̃− + 2Q̃Σ
−, (32)

T+− = C± +D∓ + C̃± + D̃∓QΣ
± + Q̃Σ

±,

Tg = 2Eg + 2QΣ
g + 2Ẽg + 2Q̃Σ

g .

These quantities contain the ultra-violet cut off logarithm L = ln Λ2

m2 which is
eliminated by standard regularization procedure [3] L → 2lλ − 9/2.

Besides it contain the large logarithm ls = ln s
m2 , infrared logarithm lλ = lnm2

λ2 .

Another kinds of logarithms:

lq = ln
q2

m2
, l± = ln

χ2
±

m2
, (33)

enter into the final result as a following combinations:

lqs= ln
q2

s
, lps = ln

χ+

s
, lms = ln

χ−

s
, (34)

which are of order of unity.

Here we restore the gauge-invariance by replacing gρρ1 → g̃ρρ1 , p±ρ → p̃±ρ.
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5 Discussion, ex-plicite form of tensor structures.

The infrared divergences constrained in contribution of virtual photon emis-
sion canceled when takes into account the emission of additional soft photon
(center-of mass of e+e− initial is implied)

dσγ
soft = δsoftdσB (35)

δsoft=− 4πα

16π3

∫

d3k

w
(− p−

p−k
+

p+
p+k

)2, w < ∆ε ≪
√
s/2, (36)

where w =
√
k2 + λ2. Using the standard integrals we obtain

δsoft =−α

π
[(ls − 1)(lλ + 2ln

∆E

E
) +

1

2
l2s −

π2

3
]. (37)

Dirac tensor have a form

Bρρ1 =B0
ρρ1

(1 +
α

π
(ls − 1)(

3

2
+ 2ln

∆E

E
)) +

α

π
T (1)
ρρ1

. (38)

, Components of T (1) are free from infrared singularities and do not contain
large logarithms. Explicit for of it is given below as a function of the center of
mass scattering angle.

Similar properties have a cross-channel-Compton tensor with one real and
another virtual (space-like) photon [4].

Hadronic tensor is the summed on spin states of bilinear combination of matrix
elements MρM

∗
ρ1 , where the current Mρ describes the conversion of heavy time-

like photon to some set of hadrons. For the case of creation of a pair of charged
pseudoscalar mesons (π+π−, K+K−, ...) we have

Hp+p
−

ρρ1 = (p+ − p−)ρ(p+ − p−)ρ1 , q = p+ + p−.

For conversion to pair of charged spin 1/2 fermions γ → µ+(p+) + µ−(p−) we
have

Hµ+µ
−

ρρ1
= 4[p+ρp−ρ1 + p+ρ1p−ρ −

q2

2
gρρ1 ]. (39)

For creation of a pair of charged vectors mesons ρ+ρ−, K∗+K∗− one obtaines

9



Hp+p
−

ρρ1
(q+, q−)≈ q2(8− 2η)(gρρ1 −

qρqρ1
q2

) (40)

+ (q+ − q−)ρ(q+ − q−)ρ1(3− 5η +
9

4
η2),

η =
q2

m2
ρ

, q = qρ+ + qρ−. (41)

The gauge invariance requirement Hh
ρρ1(q)qρ = HH

ρρ1(q)qρ = 0 is fulfilled.
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Appendix A.One-loop Feynman integrals

In this section we perform the result of calculation one-loop Feynman dia-
gramm which was calculated in [2] for the case of the absorption of virtual
photon by electron from the pair created by the photon.

Here we consider the expressions for part of scalar,vector and tensor integrals,
corresponding to the annihilation of electrons to virtual photon with emission
additional real photon in subprocess
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e−(p−) + e+(p+) → γ(p1) + γ∗(q),

p2± = m2, p21 = 0, s = 2p+p−, χ± = 2p1p±

s ∼ q2 ∼ χ± ≫ m2, s− ~q 2 = χ+ + χ−. (42)

The denominators of integrals defined as

(0)= k2 − λ2,

(2)= (p− − k)2 −m2 + i0 = k2 − 2p−k + i0,

(2̄)= (−p+ − k)2 −m2 + i0,

(q)= (p1 − p+ − k)2 −m2 + i0. (43)

The four denominator scalar integral

I022̄q =
∫

d4k

iπ2

1

(0)(2)(2̄)(q)
(44)

has the form

I022̄q =
1

sχ+

[

l2q − 2l+ls − lsll + 2Li2

(

1− q2

s

)

− 5π2

6

]

, (45)

where the logarithms was denoted in (33).

For the tree denominator scalar integrals

Iijk =
∫

d4k

iπ2

1

(i)(j)(k)
(46)

we have following expressions

I02̄q = − 1

2χ+

[

l2+ +
2π2

3

]

, ReI022̄ =
1

2s

[

l2s + 2lsll −
4π2

3

]

,

ReI22̄q = − 1

2(s− q2)

[

l2q − l2s

]

,

I02q =
1

χ+ + q2

[

lq(lq − l+) +
1

2
(lq − l+)

2 + 2Li2

(

1 +
χ+

q2

)

− 3π2

2

]

. (47)

Two denominator scalar integrals are defined as Iij =
∫

d4k/iπ2(i)(j). The
explicit expressions for them are

I02 = L+ 1, I2q = L− lq + 1, I0q = L− l+ + 1,

I02̄ = L+ 1, I22̄ = L− Ls + 1, I2̄q = L− 1.

11



The vector integrals can be defined as

Iµr =
∫

d4kkµ

r
= a+r q

µ
+ + a−r q

µ
− + a1rp

µ
1 (48)

with r = (ij), (ijk), (ijkl) where i, j, k, l = (0), (2), (2̄), (q).

For the vector integrals with two denominators we have (we put only nonzero
coefficients)

Re a−2q = Re a12q = −Re a+2q =
1

2

(

L− lq +
1

2

)

, a10q = −a+0q =
1

2

(

L− l+ +
1

2

)

,

Re a−22̄ = −Re a+22̄ =
1

2

(

L− ls +
1

2

)

, a12̄q = −1

2
a+2̄q =

1

2

(

L− 3

2

)

,

a−02 =
1

2
L− 1

4
, a+02̄ = −1

2
L+

1

4
(49)

and the coefficients for the vector integrals with three denominators are

a−02q =
1

a

(

χ+I02q +
2χ+

a
l+ +

q2 − χ+

a
lq

)

, a+02q = −a102q =
1

a

(

l+ − lq

)

,

a102̄q =
1

χ+

(

− l+ + 2
)

, a = χ+ + q2,

a+02̄q = −I02̄q −
1

χ+
l+, a−022̄ = −a+022̄ =

1

s
ls,

a−22̄q =
1

c

(

ls − lq

)

, a+22̄q = −I22̄q +
1

c

(

ls − lq

)

,

a122̄q =
s

c
I22̄q +

1

c

(

− lq + 2
)

− 2s

c2

(

ls − lq

)

, c = s− q2 = χ+ + χ−. (50)

Finally, the coefficient of the vector integral with 4 denominators has the form

a1 =
s

d

(

χ+A + χ−B − sC
)

, a+ =
χ−

d

(

χ+A− χ−B + sC
)

a− =
χ+

d

(

− χ+A+ χ−B + sC
)

, d = 2sχ+χ−,

A = I22̄q − I02̄q, B = I02q − I22̄q,

C = I02q − I022̄ − χ+I022̄q. (51)

The second rank tensor integrals can be parameterized in the form

Iµνr =
∫ d4k

iπ2

kµkν
r

=
[

agrg+a11r p1p1+a++
r q+q++a−−

r q−q−+a1+r (p1q++q+p1)

+ a1−r (p1q− + q−p1) + a+−
r (q+q− + q−q+)

]

µν
. (52)

The coefficients for tensor integral with four denominators are (we suppressed
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the index 022̄q)

a1+ =
1

χ+

(

A6 + A7 − A10

)

, a+− =
1

s

(

A2 + A6 − A10

)

,

a1− =
1

χ−

(

A2 + A7 − A10

)

, a11 =
1

χ−

(

A1 − sa1+
)

,

a−− =
1

s

(

A5 − χ+a
1−
)

, a++ =
1

s

(

A3 − χ−a
1+
)

,

ag =
1

2

(

A10 − A2 − χ+a
1+
)

, (53)

with

A1 = a122̄q − a102̄q, A6 = a+02q − a+22̄q,

A2 = a−22̄q, A7 = a102q − χ+a
1,

A3 = a+22̄q − a+02̄q, A8 = a−02q − a−022̄ − χ+a
−,

A4 = a102q − a122̄q, A9 = a+02q − a+022̄ − χ+a
+,

A5 = a−02q − a−22̄q, A10 = I22̄q. (54)

For the tensor integrals with three denominators Iµν02q we have coefficients

ag02q =
1

4
L+

3

8
− q2

4a
lq −

χ+

a
l+,

a+−
02q = −a1−02q =

1

2a

[

χ+

a
(l+ − lq)− 1

]

,

a++
02q = a1102q = −a1+02q =

1

2a
(lq − l+),

a−−
02q =

1

a2

[

χ2
+I02q +

3χ2
+

a
l+ − (q2)2 + 4q2χ+ − 3χ2

+

2a
lq −

q2 + 3χ+

2

]

. (55)

The coefficients entering into the tensor integral Iµν022̄ are

ag022̄ =
1

4
(L− ls) +

3

8
, a++

022̄ = a−−
022̄ =

1

2s
(ls − 1), a+−

022̄ = − 1

2s
, (56)

and the coefficients for the tensor integral Iµν02̄q are

ag02̄q =
1

4
(L− l+) +

3

8
, a1+02̄q =

1

χ+

(

l+ − 5

2

)

,

a1102̄q =
1

2χ+
(−l+ + 2), a++

02̄q = I02̄q +
1

2χ+
(3l+ − 1). (57)
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In the case of the tensor integral Iµν22̄q they have the form

ag22̄q =
1

2

[

1

2
L+

3

4
− s

2c
ls +

q2

2c
lq

]

, a−−
22̄q = − 1

2c
(lq − ls), (58)

a++
22̄q = I22̄q +

3

2c
(lq − ls), a+−

22̄q =
1

2c
(lq − ls),

a1−22̄q =
1

c

[

− 1

2
+

s

2c
ls −

s

2c
lq

]

, (59)

a1+22̄q =
1

c

[

− 5

2
− sI22̄q +

5s

2c
ls −

2q2 + 3s

2c
lq

]

,

a1122̄q =
1

c2

[

4s− q2 + s2I22̄q −
3s2

c
ls +

3s2 − (q2)2 + 4sq2

2c
lq

]

. (60)

Appendix B.

Appendix C. Large-angles emission by the initial leptons masses

Cross section of 2 photon emission by the initial leptons masses

e+(p+) + e−(p−) → γ(k1) + γ(k2) + hadr(q) (61)

have a form

dσ2γ

dΓh

=
1

2!

α4

2π2s

Hρρ1O
(2)
ρρ1

(q2)2
d2k1
ω1

d2k2
ω2

, ω1, ω2 < ∆ε, (62)

where the factor 1/2! takes into account the identity of final-state hard pho-
tons. The relevant contribution to lepton tensor is

Q(2)
ρρ1

=
1

4
Tr p+O

ση
12ρp−Ō

ση
12ρ; (63)

Oση
12ρ = γρ

p̂− − k̂1 − k̂2
d−12

(

γη p̂− − k̂1
d−1

γσ + γσ p̂− − k̂2
d−2

γη
)

(64)

+
(

γη−p̂+ + k̂2
d+2

γσ + γσ−p̂+ + k̂1
d+1

γη
)−p̂+ + k̂1 + k̂2

d+12
γρ

+
1

d−1d+2
γσ(−p̂+ + k̂2)γρ(p̂− − k̂1)γ

η

+
1

d−2d+1
γη(−p̂+ + k̂1)γρ(p̂− − k̂2)γ

σ,

and
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d−12= (p− − k1 − k2)
2 −m2; (65)

d−1= (p− − k1)
2 −m2; d−2 = (p− − k2)

2 −m2;

d+12= (−p+ + k1 + k2)
2 −m2;

d+1= (−p+ + k1)
2 −m2; d+2 = (p+ + k2)

2 −m2.

Tensor Q(2)
ρρ1 obey the gauge invariance Q(2)

ρρ1qρ = Q(2)
ρρ1qρ1 = 0 and can be put

on the form

Q(2)
ρρ1 =Agg̃ρρ1 + [A−p̃−p̃− + A+p̃+p̃+ + A11k̃1k̃1 + A+−(p̃+p̃− + p̃−p̃+)(66)

+A+1(p̃+k̃1 + k̃1p̃+) + A−1(p̃−k̃1 + k̃1p̃−)]ρρ1 ,

coefficients Ai can be obtained in the standard way: constructing the values

Bg, B11, B++, B−−, ...=Qρρ1 [gρρ1 , k1ρk1ρ1, p+ρp+ρ1 , ...]

and solving the set of 7 linear equations.
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