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Abstract

Self-seeding is a promising approach to significantly narrow the SASE bandwidth
of XFELs to produce nearly transform-limited pulses. The development of such
schemes in the soft X-ray wavelength range necessarily involves gratings as dis-
persive elements. These introduce, in general, a pulse-front tilt, which is directly
proportional to the angular dispersion. Pulse-front tilt may easily lead to a seed
signal decrease by a factor two or more. Suggestions on how to minimize the
pulse-front tilt effect in the self-seeding setup are given.

1 Introduction

As a consequence of the start-up from shot noise, the longitudinal coherence
of X-ray SASE FELs is rather poor compared to conventional optical lasers.
Self-seeding schemes have been studied to reduce the bandwidth of SASE X-
ray FELs [1]-[19]. In general, a self-seeding setup consists of two undulators
separated by a photon monochromator and an electron bypass, normally a
four-dipole chicane. For soft X-ray self-seeding , a monochromator usually
consists of a grating [1]. Recently, a very compact soft X-ray self-seeding
scheme has appeared, based on grating monochromator [17, 18].

In [19] we studied the performance of this compact scheme for the European
XFEL upgrade. Limitations on the performance of the self-seeding scheme
related with aberrations and spatial quality of the seed beam have been
extensively discussed in [17, 18] and go beyond the scope of this paper. Here
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Fig. 1. Schematic representation of the electric field profile of an undistorted pulse
beam (left) and of a beam with pulse front tilt (right). The z axis is along the beam
propagation direction (adapted from [22]).

we will focus our attention on the spatiotemporal distortions of the X-ray
seed pulse. Numerical results provided by ray-tracing algorithms applied to
grating design programs give accurate information on the spatial properties
of the imaging optical system of grating monochromator. However, in the
case of self-seeding, the spatiotemporal deformation of the seeded X-ray
optical pulses is not negligible: aside from the conventional aberrations,
distortions as pulse-front tilt should also be considered [20, 21, 22]. The
propagation and distortion of X-ray pulses in grating monochromators can
be described using a wave optical theory. Most of our calculations are,
in principle, straightforward applications of conventional ultrafast pulse
optics [20]. Our paper provides physical understanding of the self-seeding
setup with a grating monochromator, and we expect that this study can be
useful in the design stage of self-seeding setups.

2 Theoretical background for the analysis of pulse-front tilt phenomena

2.1 Pulse-front tilt from gratings

Ultrashort X-ray FEL pulses are usually represented as products of electric
field factors separately dependent on space and time. The assumption of
separability of the spatial (or spatial frequency) dependence of the pulse
from the temporal (or temporal frequency) dependence is usually made for
the sake of simplicity. However, when the manipulation of ultrashort X-ray
pulses requires the introduction of coupling between spatial and temporal
frequency coordinates, such assumption fails. The direction of energy flow
-usually identified as rays directions- is always orthogonal to the surface of
constant phase, that is to the wavefronts of the corresponding propagating
wave. If one deals with ultrashort X-ray pulses, one has to consider, in
addition, planes of constant intensity, that is pulse fronts. Fig. 1 shows a
schematic representation of the electric field profile of an undistorted pulse
and one with a pulse-front tilt. A distortion of the pulse front does not
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Fig. 2. Geometry of diffraction grating scattering.

affect propagation, because the phase fronts remain unaffected. However,
for most applications, including self-seeding applications, it is desirable that
these fronts be parallel to the phase fronts, and therefore orthogonal to the
propagating direction.

A pulse-front tilt can be present in the beam due to the propagation through
a grating monochromator. As shown in Fig. 2, the input beam is incident on
the grating at an angle θi. The diffracted angle θD is a function of frequency,
according to the well-known plane grating equation. Assuming diffraction
into the first order, one has

λ = d(cosθi − cosθD) , (1)

where λ = 2πc/ω, and d is the groove spacing. Eq. (1) describes the basic
working of a grating monochromator. By differentiating this equation one
obtains

dθD

dλ
=

1
θDd

, (2)

where we assume grazing incidence geometry, θi ≪ 1 and θD ≪ 1. The
physical meaning of Eq. (2) is that different spectral components of the
outcoming pulse travel in different directions. The electric field of a pulse
including angular dispersion can be expressed in the Fourier domain {kx, ω}
as E(kx−pω,ω), while the inverse Fourier transform from the {kx, ω} domain
to the space-time domain {x, t} can be expressed as E(x, t + px), which is the
electric field of a pulse with a pulse-front tilt. The tilt angle γ is given by
tanγ = cp. More specifically
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Fig. 3. Reflection of the primary beam from the lattice planes in the crystal according
to Bragg law.

p =
dkx

dω
= k

dθD

dω
=
λ
c

dθD

dλ
=
λ

cθDd
. (3)

Therefore one concludes that the pulse-front tilt is invariably accompanied
by angular dispersion. It follows that any device like a grating monochro-
mator, that introduces an angular dispersion, also introduces significant
pulse-front tile, which is problematic for seeding.

2.2 Spatiotemporal transformation of X-ray FEL pulses by crystals

The development of self-seeding schemes in the hard X-ray wavelength
range necessarily involves crystal monochromators. Recently, the spatiotem-
poral coupling in the electric field relevant to self-seeding schemes with
crystal monochromators has been analyzed in the frame of classical dynam-
ical theory of X-ray diffraction [23]. This analysis shows that a crystal in
Bragg reflection geometry transforms the incident electric field E(x, t) in the
{x, t}domain into E(x−at, t), that is the field of a pulse with a less well-known
distortion, first studied in [24]. The physical meaning of this distortion is
that the beam spot size is independent of time, but the beam central position
changes as the pulse evolves in time. One of the aims of this subsection is to
disentangle what is specific to the transformation by a crystal and what is
intrinsic to the grating case. Our purpose here is not that of presenting novel
results but, rather, to attempt a more intuitive explanation of spatiotemporal
coupling phenomena in the dynamical theory of X-ray diffraction, and to
convey the importance and simplicity of the results presented in [23].

We begin our analysis by specifying the scattering geometry under study.
The angle between the physical surface of the crystal and the reflecting
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atomic planes is an important factor. The reflection is said to be symmetric
if the surface normal is perpendicular to the reflecting planes in the case of
Bragg geometry. We shell examine only the symmetric Bragg case, Fig. 3.

Let us consider an electromagnetic plane wave in the X-ray frequency range
incident on an infinite, perfect crystal. Within the kinematical approxima-
tion, according to the Bragg law, constructive interference of waves scattered
from the crystal occurs if the angle of incidence, θi and the wavelength, λ,
are related by the well-known relation

λ = 2d sinθi . (4)

assuming reflection into the first order. This equation shows that for a given
wavelength of the X-ray beam, diffraction is possible only at certain angles
determined by the interplanar spacings d. It is important to remember the
following geometrical relationships:

1. The angle between the incident X-ray beam and normal to the reflection
plane is equal to that between the normal and the diffracted X-ray beam. In
other words, Bragg reflection is a mirror reflection, and the incident angle
is equal to the diffracted angle (θi = θD).

2. The angle between the diffracted X-ray beam and the transmitted one
is always 2θi. In other words, incident beam and forward diffracted (i.e.
transmitted) beam have the same direction.

We now turn our attention beyond the kinematical approximation to the
dynamical theory of X-ray diffraction by a crystal. An optical element in-
serted into the X-ray beam is supposed to modify some properties of the
beam as its width, its divergence, or its spectral bandwidth. It is useful to
describe the modification of the beam by means of a transfer function. The
reflectivity curve - the reflectance - in Bragg geometry can be expressed in
the frame of dynamical theory as

R(θi, ω) = R(∆ω + ωB∆θ cotθB) , (5)

where ∆ω = (ω−ωB) and ∆θ = (θi−θB) are the deviations of frequency and
incident angle of the incoming beam from the Bragg frequency and Bragg
angle, respectively. The frequency ωB and the angle θB are given by the
Bragg law: ωB sinθB = πc/d. We follow the usual procedure of expanding ω
in a Taylor series about ωB, so that

ω = ωB + (dω/dθ)B(θ − θB) + ... . (6)
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Consider a perfectly collimated, white beam incident on the crystal. In kine-
matical approximation R is a Dirac δ-function, which is simply represented
by the differential form of Bragg law:

dλ/dθi = λ cotθi . (7)

In contrast to this, in dynamical theory the reflectivity width is finite. This
means that there is a reflected beam even when incident angle and wave-
length of the incoming beam are not related exactly by Bragg equation. It is
interesting to note that the geometrical relationships 1. and 2. are still valid
in the framework of dynamical theory. In particular, reflection in dynamical
theory is always a mirror reflection. We underline here that if we have a per-
fectly collimated, white incident beam, we also have a perfectly collimated
reflected beam. Its bandwidth is related with the width of the reflectivity
curve. We will regard the beam as perfectly collimated when the angular
spread of the beam is much smaller than the angular width of the transfer
function R. It should be realized that the crystal does not introduce an an-
gular dispersion similar to a grating or a prism. However, a more detailed
analysis based on the expression for the reflectivity, Eq. (5), shows that a less
well-known spatiotemporal coupling exists. The fact that the reflectivity is
invariant under angle and frequency transformations obeying

∆ω + ωB∆θ cotθB = const (8)

is evident, and corresponds to the coupling in the Fourier domain {kx, ω}.
The origin of this relation is kinematical, it is due to Bragg diffraction. One
might be surprised that the field transformation derived in [23] for an XFEL
pulse after a crystal in the {x, t} domain is given by

Eout(x, t) = FT[R(∆ω, kx)Ein(∆ω, kx)] = E(x − ct cotθB, t) , (9)

where FT indicates a Fourier transform from the {kx, ω} to the {x, t} domain,
and kx = ωB∆θ/c. In general, one would indeed expect the transformation to
be symmetric in both the {kx, ω} and in the {x, t} domain due to the symmetry
of the transfer function 2 . However, it is reasonable to expect the influence
of a nonsymmetric input beam distribution. In the self-seeding case, the
incoming XFEL beam is well collimated, meaning that its angular spread

2 There is a breaking of the symmetry in the diffracted beam in the {kx, ω} domain.
While the symmetry is present at the level of the transfer function, it is not present
anymore when one considers the incident beam. We point out that symmetry
breaking in [23] is a result of the approximation of temporal profile of the incident
wave to a Dirac δ-function.
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is a few times smaller than angular width of the transfer function 3 . Only
the bandwidth of the incoming beam is much wider than the bandwidth of
the transfer function. In this limit, we can approximate the transfer function
in the expression for the inverse temporal Fourier transform as a Dirac
δ-function. This gives

Eout(x, t) = FT[R(∆ω, kx)Ein(∆ω, kx)]

= ξ(t) · 1
2π

∫
dkx exp(−ikxct cotθB) exp(ikxx)Ein(0, kx)

= ξ(t)b(x − ct cotθB) , (10)

where we applied the Shift Theorem twice, and where

ξ(W) =
1

2π

∫
dY exp(iYW)R(Y) (11)

is the inverse Fourier transform of the reflectivity curve.

In the opposite limit when the incoming beam has a wide angular width
and a narrow bandwidth we take the transfer function in the inverse spatial
Fourier transform as a Dirac δ-function. This gives

Eout(x, t) = ξ(x tanθB/c)a(t − (x/c) tanθB) , (12)

where ξ(x) is given in Eq. (11). These two limits represent the two sides of
the symmetry of the transfer function.

The last expression, Eq. (12) is the field of a pulse with a pulse front tilt.
Typically one would think that a pulse front tilt can be introduced only by
dispersive elements like gratings or prisms. Here we presented an example
in which no dispersive elements exists, and we stress that angular dispersion
can be introduced by non dispersive element like crystals too.

3 In [10] we pointed out that: ”In our case of interest (hard X-ray self-seeding
with wake monochromator) we have an angular divergence of the incident photon
beam of about a microradian, which is much smaller than the Darvin’s width of
the rocking curve (10 microradians). As a result, we assume that all frequencies
impinge on the crystal at the same angle in the vicinity of the Bragg diffraction
condition. Note that mirror reflection takes place for all frequencies and, therefore,
the reflected beam has exactly the same divergence as the incoming beam”. In other
words, the description of our problem includes a small parameter, the small ratio
between the beam angular width and the width of the crystal transfer function. This
justifies the application in [10] (with an accuracy of about 10%) of the plane wave
approximation for the first transmission maximum. We thus avoided difficulties
related with spatiotemporal coupling.
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Fig. 4. Optics for the compact grating monochromator originally proposed at SLAC
[17, 18] for the soft X-ray self-seeding setup.

Although we began by considering a case of reflection transfer function
in Bragg reflection geometry, none of our arguments depends on that fact.
Eq. (5) still holds if the transfer function R is referred to the transmittance
in Bragg reflection geometry. For the transmitted beam, all derivations are
worked out in the same way we have done here and gives asymptotic
expression like Eq(10) , Eq. (12) for field of forward scattered pulses.

3 Modeling of self-seeding setup with grating monochromator

A self-seeding setup should be compact enough to fit one undulator seg-
ment. In this case its installation does not perturb the undulator focusing
system and allows for the safe return to the baseline mode of operation. The
design adopted for the LCLS is the novel one by Y. Feng et al. [17, 18], and
is based on a planar VLS grating. It is equipped only with an exit slit. Such
design includes four optical elements, a cylindrical and spherical focusing
mirrors, a VLS grating and a plane mirror in front of the grating. The optical
layout of the monochromator is schematically shown in Fig. 4.

A simplified diagram for analyzing the grating monochromator is shown
in Fig. 5. We will assume that the optical system used for imaging purposes
is the well-known two-lens image formation system. With reference to Fig.
4, the VLS grating is represented by a combination of a planar grating with
fixed line spacing and a lens, with the focal length of the lens equal to the
focal length of the VLS grating. The analysis of the grating monochromator
is simplified by recognizing that the grating can be shifted from a position
immediately before the lens to a position immediately after the object plane.
The monochromator is treated assuming no aberrations. This approximation

8



Fig. 5. Diagram of the self-seeding grating monochromator used in theoretical
analysis. For simplicity the grating is depicted in transmission mode, and tilt is not
shown. The dashed lines refer to different planes at which the field is calculated
(adapted from [20]).

is useful, since for the design shown on Fig. 4 the aberration effects are
negligible [17, 18]. This simplifies calculations and allows analytical results
to be derived.

The angular dispersion of the grating causes a separation of different optical
frequencies at the Fourier plane of the first focusing element (lens). There-
fore, this system becomes a tunable frequency filter if a slit is placed at the
Fourier plane. We assume that the two lenses in Fig. 5 are not identical, so
that this scheme allows for magnification by changing the focal distance of
the second lens.

It is important to analyze the output field from the grating monochromator
quantitatively. In our analysis we calculate the propagation of the input
signal to different planes of interest within the self-seeding monochroma-
tor, as indicated in Fig. 5. We start by writing the input field in plane 1,
immediately before the grating, as

E1(x, t) = Re[a(t)b(x) exp(iω0t)] , (13)

where ω0 is the pulse carrier frequency, which is linked to k by k = ω0/c. We
assume that the input signal is Gaussian in the transverse direction, that is
b(x) = 1/

(√
2πσ

)
exp(−x2/2σ2). The field in plane 2, immediately after the

grating (assuming diffraction into the first order) may be written as

E2(x, t) =

√
β

2π
Re

∫
d∆ωA(∆ω)b(βx) exp(ip∆ωx) exp[iωt], (14)
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where the astigmatism factor β = θi/θD, results due to the difference in
input and output angles, and p = λ/(cθDd).

Our analysis exploits the Fourier transform properties of a lens. In particular
we consider the propagation of a monochromatic one-dimensional field in
paraxial approximation. The field distribution in the focal plane of the first
lens, which we call plane 3, is given by

E3(x, t) =
1

2π
√
λ fβ

Re
∫

d∆ω
√

iA(∆ω)b̂
(

k
β f

(x + η∆ω)
)

exp(iωt) , (15)

where b̂(kx) refers to the spatial Fourier transform of the input spatial profile,
η = fλ2/(2πcdθD) is a spatial dispersion parameter, which describes the
proportionality between spatial displacement and optical frequency. In the
case of a Gaussian input beam we have b̂(kx) = exp(−σ2k2

x/2). Therefore, the
field in the Fourier plane is written as

E3(x, t) =
1

2π
√
λ fβ

Re
∫

d∆ω
√

iA(∆ω) exp

− (x + η∆ω)2

2σ2
f

 exp(iωt) ,

(16)

where σ f = β f/(kσ) is the rms of the focused beam at the Fourier plane for
any single frequency component.

We now add a slit at the Fourier plane, that we regard as a particular spatial
mask with a real transmission function S(x). The field in plane 4, that is
directly after the slit is simply given by

E4(x, t) = S(x)E3(x, t) . (17)

Let us first consider the limiting case of a δ-function slit that is, physically,
a slit with much narrower opening than the spot size of a fixed individual
frequency, centered at transverse position x′. For a Gaussian input beam,
the square modulus of the transmittance of the monochromator, that is the
frequency response, is given by

|T(∆ω)|2 = A0 exp
[
−

(
λσ

cdθi

)2

(∆ω − ∆ω′)2

]
. (18)

The center frequency of the passband , ∆ω′ = x′/η, is determined by the
transverse position of the slit. The spectral resolution of the monochromator
depends on the spot size at the Fourier plane related with the individual

10



frequencies, σ f , and on the rate of spatial dispersion with respect to the
frequency (determined by η). The FWHM of the monochromator spectral
line is

∆ω
ω
= 1.18

dθi

2πσ
∼ 1
πN
, (19)

where N ∼ 2σ/(dθi) is the number of grooves illuminated by the input beam.
For any single frequency the spot size at the Fourier plane, and hence the
bandwidth transmitted through a narrow slit, is inversely proportional to
the input spot size. Since the temporal spread in the output pulse is inversely
proportional to the transmitted bandwidth, the output pulse duration is
proportional to the input spot size.

To get to the plane prior to the second undulator entrance, that will be
called plane 5, we simply perform a second spatial Fourier transform. The
resulting field is located at an output plane at distance f ′ behind the second
lens with focal distance f ′, and is given by

E5(x, t) =
1

2πλ
√

f ′ fβ
Re

∫
d∆ω iA(∆ω) exp(iωt)

×
∫ ∫

dx′dx′′S(x′′)b(x′) exp
[
ikx′(x′′ + η∆ω)

β f

]
exp

(
ikxx′′

f ′

)
(20)

Performing the integral over x′′ first we obtain

E5(x, t) =
1

4π2

√
fβ
f ′

Re
∫

d∆ω iA(∆ω) exp(iωt)

×
∫

dX exp(iη∆ωX)b(β f X/k)Ŝ(X + kx/ f ′) , (21)

where we define

Ŝ(k) =
∫

dxS(x) exp[ikx] . (22)

We now turn to consider the limiting case when the spot size of any given
individual frequency at the Fourier plane is small compared to the spatial
scale over which the transmission of the slits varies. This limiting situation is
the opposite of the previously analyzed case of δ-function slits; here the slits
do not modify the spatial profiles of the individual frequency components.
Mathematically this corresponds to the substitution of the function Ŝ in the
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Fig. 6. Intensity profile in the space-time domain for α = 100

expression for E5(x, t) with a Dirac δ-function. In other words we assume
that slits are absent. One obtains

E5(x, t) = Re
[

i
2π

√
fβ
f ′

b
(
−
β f x

f ′

)
×

∫
d∆ωA(∆ω) exp

(−ip∆ω f x
f ′

)
exp(iωt)

]
.

(23)

In the grating monochromator, a low spectral resolution is equivalent to a
large slit size compared to the spot size of a given individual frequency at
the Fourier plane, and to a small slit size compared to the spot size of whole
spectrum. In this limit, the slit size does not modify the spatial profile of the
output beam, but modifies spectrum. The output field in this case can be
expressed as

E5(x, t) = Re
[

i
2π

√
fβ
f ′

b
(
−
β f x

f ′

)
×

∫
d∆ωS(η∆ω)A(∆ω) exp

(−ip∆ω f x
f ′

)
exp(iωt)

]
. (24)

The optimal choice for the two-lens system magnification is when β f/ f ′ = 1.
This is the case when the field after the grating monochromator is perfectly
matched to the FEL mode in the second undulator.
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Fig. 7. Intensity profile in the space-time domain for α = 0.1

Fig. 8. Intensity profile in the space-time domain for α = 2

We fix the slit function S as

S(x) = 1 for |x| < ds
S(x) = 0 for |x| > ds (25)

Given a slit with half size ds, we introduce a normalized notion of slit size

α =
ds

σ f
= ds

kσ
β f

(26)
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Fig. 9. Resolving power normalized to the asymptotic case for α ≪ 1 as a function
of α.

We can now plot the intensity profile in the space-time domain for different
values of the normalized slit size α. Fig. 6 and Fig. 7 qualitatively show the
two limiting situations respectively for α = 100 and α = 0.1. The spatiotem-
poral coupling is evident in Fig. 6. Fig. 8 shows the analogous plot in an
intermediate situation, for α = 2.

It is possible to show the output characteristics of the radiation as a function
of the slit size by means of universal plots. We first consider the resolving
power R = (∆ω/ω)−1

FWHM. We introduce the resolving power Rn normalized
to the inverse of the maximal bandwidth in Eq. (19), that is the bandwidth
in the limiting case for α≪ 1, as

Rn = R
(

1.18θid
2πσ

)
. (27)

The behavior of Rn as a function of α is shown in Fig. 9. The resolution of
monochromator increases as the slit size decreases. The 90% of the maximal
resolution level is met for normalized slit width less than α < 1. However,
the energy of the seed pulse decreases proportionally to the decrease of the
slit width. Moreover, decreasing the slit width will also cause an increase of
the output beam size. This will lead to spatial mismatch between the seed
beam and the FEL mode in the second undulator. The relationship between
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Fig. 10. Transverse spot size of the photon beam normalized to the asymptotic case
for α ≫ 1 as a function of α. We assume that the magnification of the two-lens
optical system of the monochromator compensates the astigmatism introduced by
the grating, that is fθi/ f ′θD = 1.

the beam transverse size (in terms of FWHM) and slit width is shown in Fig.
10, where we plot the transverse spot size of the photon beam normalized
to the asymptotic case for α ≫ 1 as a function of α. To summarize, it is not
recommended that the normalized slit width be narrower than unity if a
reasonable seed field amplitude is required.

Finally, a useful figure of merit measuring the spatiotemporal coupling can
be found in [24]. Considering the angular dispersion this parameter can be
written as

ρ =

∫
dkxd∆ωI(kx,∆ω)

kx∆ω

< (δkx)2 >1/2< (δω)2 >1/2 , (28)

where

< (δkx)2 >=

∫
dkxd∆ωI(kx,∆ω)k2

x ,

< (δω)2 >=

∫
dkxd∆ωI(kx,∆ω)∆ω2 ,

I(kx,∆ω) = |E(kx,∆ω)|2 (29)
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Fig. 11. Dependence of the spatiotemporal coupling as a function of α as from Eq.
(28).

The range of ρ is in [−1, 1] and readily indicate the severity of these distor-
tions.

To estimate the pulse front tilt distortion calculate the pulse front tilt param-
eter ρ as a function of the slit width α. The results are shown in Fig. 11. It is
found to be larger than 50% for a slit widthα > 1. Therefore, standard tuning
of the seed monochromator will lead to significant spatiotemporal coupling
in the seed pulses. The effect of pulse front tilt distortion can be reduced if
the slit width will be narrower than α < 1. However, the reduction of the
pulse front tilt influence is accompanied by significant loss in seed signal
amplitude.

4 Conclusions

To the best of our knowledge, there are no articles reporting on the impact
of pulse front tilt distortions of the seed pulse in the performance on self-
seeding soft X-ray setups. Spatiotemporal coupling is natural in grating
monochromator optics, because the monochromatization process involves
the introduction of angular dispersion, which is equivalent to pulse front
tilt distortion. In general, it is desirable that the resulting seed pulse be
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free of such distortion. This can be achieved only by decreasing the width
of the monochromator slits. On the one hand, decreasing the slit width
increases the resolving power and suppresses the pulse front tilt distortion.
On the other hand, it decreases the seed power and increases the transverse
mismatch with the FEL mode in the second undulator. As a result, a tradeoff
must be reached between achievable resolution and effective level of the
input signal.

Transverse coherence of XFEL radiation is settled without seeding. This is
due to the transverse eigenmode selection mechanism: roughly speaking,
only the ground eigenmode survives at the end of amplification process. It
follows that the spatiotemporal distortions of the seed pulse do not affect
the quality of the output radiation. They only affect the input signal value.
Therefore, the relevant value for self-seeded operation is the input coupling
factor between the seed pulsed beam and the ground eigenmode of the FEL
amplifier.

In order model the performance of a soft X-ray self-seeded FEL with a grat-
ing monochromator, one naturally starts with the grating monochromator
optical system. One aspect of optimizing the output characteristics of the
self-seeded FEL involves the specification of spectral width, peak power,
pulse-front tilt parameter and transverse size of the seed pulse as a function
of the slit width. This can be achieved by purely analytical methods. Another
aspect of the problem is the modeling of the FEL process including a seed
pulse with spatio-temporal distortions and transverse mismatching with
the ground FEL eigenmode. This study can be made only with numerical
simulation code.

In this article we restrict our attention to the first part of the self-seeding pro-
cess, discussing spatiotemporal coupling of the electric field in seed pulses.
The field amplitude at the exit of the self-seeding grating monochromator
can be obtained using physical optics rather than a geometrical approach.
An analysis of the behavior of an X-ray optical pulse passing through a
grating monochromator is given in terms of analytical results. In order to
make results useful for practical applications, we have included numerous
universal graphs which can be useful to find a balance between resolving
power, seed power and pulse quality during the design phase.
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