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Abstract

We consider Mellin-Barnes transform of triangle ladder-like scalar diagram in d = 4 dimen-
sions. It is shown how multi-fold MB transform of the momentum integral corresponding to
any number of rungs is reduced to two-fold MB transform. For this purpose we use Belokurov-
Usyukina reduction method for four-dimensional scalar integrals in the position space. The
result is represented in terms of Euler ψ-function and its derivatives. We derive new formulas
for MB two-fold integration in the complex planes of two complex variables. We demonstrate
that these formulas solve Bethe-Salpeter equation. We comment on further applications of
solution to Bethe-Salpeter equation for vertices in N = 4 supersymmetric Yang-Mills theory.
We show that the recursive property of MB transforms observed in the present work for that
kind of diagrams has nothing to do with quantum field theory, theory of integral transforms,
or with theory of polylogarithms in general, but has an origin in a simple recursive property
for smooth functions which can be shown by using basic methods of mathematical analysis.
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1 Introduction

In this paper we study Mellin-Barnes (MB) transform of three-point scalar ladder-like integrals in
d = 4 space-time dimensions. These integrals contribute to Green’s functions of four-dimensional
massless scalar theories and can be represented in terms of UD functions [1, 2]. As has been proven
in Refs. [4, 3, 5] at the level of graphs, the UD functions transform to themselves under Fourier
transform. Also, this property can be proven by making use of MB transform [6].

As has been shown in Ref. [5], any other scalar three-point Green function even in non-integer
d = 4 − 2ǫ dimensions possesses such a property of invariance with respect to Fourier transform.
This happens due to the fact that any three-point function can diagrammatically be considered
as a net of consequent three-point or four-point integrations in the position space since any of
those integrations in the position space can be represented in terms of MB integral transforms
with powers of spacetime intervals in denominators depending on the MB transform parameters.
Doing consequently momentum integration via MB transform, we come to an expression in which
there is no momentum integral but there are integrations in the complex planes of MB transform
parameters. We can apply the arguments of Ref. [5] to the expressions of such a type in order to
demonstrate their invariance with respect to Fourier transformation.

In general, the technique of MB transform is a powerful method to perform complicate multiloop
calculations in the quantum field theory [7, 8, 9, 10]. For example, the three-point function in the
position space in massless scalar theory is a combination of Appell’s hypergeometric functions [11],
which have appeared as a result of the residue calculation via MB transform. In Ref. [6] it has
been shown that three-point integrations in the position space the powers of space-time intervals in
the denominators equal to integer numbers shifted by some multipliers of ǫ, where ǫ is a parameter
of dimensional regularization, d = 4 − 2ǫ, the Appell’s hypergeometric function is reduced to a
combination of the UD functions. On the other side, four-point function in the position space in
the scalar theory in d = 4 dimensions can be represented in terms of UD functions too [12]. The
invariance of those four-point ladder integrals under Fourier transform can be proved by means
of MB transform too [12]. All these properties make UD functions very attractive for further
investigation by making use of MB technique. The main advantage of this method that we use
in the present paper is that the three-point d-dimensional integration is transformed to power-like
form, which can be integrated in further loops as a three-point integration with powers of space-time
intervals in denominators depending on the MB transform complex variables.

The first aim of this paper is to investigate further the properties of UD functions via MB
transform. As a by-product, we derive new formulas for MB two-fold integration in complex planes
of two variables. The third aim is to demonstrate the compatibility of the formulas for the MB
transform and Bethe-Salpeter equation for the infinite sum of triangle-like and box-like scalar
ladders.

The fourth motivation for the investigation developed in this paper is to apply the experience
obtained with studying the Bethe-Salpeter equation for the scalar ladders to the calculation of an
auxiliary vertex or Green function, which in N = 4 supersymmetric Yang-Mills theory does not
depend on any scale, ultraviolet or infrared, in the limit of removing dimensional regularization,
ǫ = 0, d = 4. That vertex should satisfy to the Bethe-Salpeter equation, particular for this Green
function. This is Lcc vertex in which the auxiliary field L couples to two (self-adjoint) Faddeev-
Popov ghost fields c. To investigate that vertex by Bethe-Salpeter equation has a sense since the
ghost fields are only fields of this vertex which stand in the measure of the path integral, and
therefore this equation restricts the vertex strongly.
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As has been shown in Refs. [13, 14, 15], in N = 4 supersymmetric Yang-Mills theory starting
with this vertex all other correlators can be found in four-dimensional limit (when d = 4) by using
Slavnov-Taylor identity [16, 17, 18, 19, 20, 21, 22, 23]. The explicit two-loop result for that vertex
has been found in Refs. [24, 25, 26]. All the poles in ǫ disappear in all number of loops for this
vertex, however it cannot be analysed by the methods of conformal field theory since the auxiliary
field L does not propagate. Nevertheless, the three-point function of dressed mean gluon of Refs.
[13, 14, 15] can be fixed by conformal symmetry in analogy to [27, 28, 29, 30, 31], however, we
cannot find higher-point correlators of dressed mean field from this Green function by using ST
identity.

As it can be seen from Refs. [13, 14, 15], the explicit structure of Lcc correlator includes
logarithms and UD functions of ratios of spacetime distances between arguments of Green functions.
As it follows from Ref.[4], the ladder-like diagrams with horizontal gluon lines, that are important
subclass of all the diagrams contributing to that vertex can be represented in terms of UD functions
too for any number of horizontal gluon lines. In the next paper we will demonstrate that any of
the contributions to the correlator can be represented in terms of UD functions [32].

In this paper we consider a particular solution to Bethe-Salpeter equation, that represents the
infinite sum of triangle scalar ladder diagrams in four space-time dimensions in MB representation.
This particular solution has already been studied in the case of box-ladder diagrams by Broadhurst
and Davydychev in Ref. [34]. The authors of [34] calculated a sum of those box-ladder diagrams by
making use integral representation for UD functions of Ref. [2]. As has been shown in Refs.[1, 2],
triangle-like and box-like ladders in four space-time dimensions are related by conformal transfor-
mation in dual space and their MB transforms coincide. The difference of the present paper with
the approach of Ref. [34] is that we do the calculation via MB transformation. We derive recur-
sive relations for MB transforms of momentum integrals corresponding to UD triangle diagrams by
using Belokurov-Usyukina trick [33] for ladder diagrams in the position space, reducing multi-fold
MB integrals to two-fold MB integrals.

2 Loop reduction in d = 4 dimensions

In this section we describe a trick with a help of which a triangle ladder diagram of n loop is reduced
to a diagram with n − 1 loop. This trick has been published for the first time in paper [33]. The
effect of the loop reduction has earlier been discovered in Ref. [35] for propagator-type diagram of a
particular topology in a special limit for indices of diagrams. Note, that in Ref. [33] the derivation
has been performed without that special limit. Later, the key intermediate point of the trick has
been published in Ref. [36]. Since all of that together has never been published in one article in
detail, we collect all the results and intermediate steps we need for deriving our formulas for MB
transform of triangle-ladder diagram.

In the first line of fig. (1) we present the formula which we want to derive. This formula is
present in paper [36], however with a bit different indices of the diagrams. Later we will see how the
l.h.s. of the first line of (1) can be put in equivalence to fig. (4) of [36]. The second and third lines
of fig. (1) are consequences of the first line. How exactly the second and third lines can be derived
from the first line we explain further. Usually, it can be done by inserting points of integration into
the lines of graphs. The third line is published in Ref. [33]. Second line has never been published.
The condition for the ε-terms in the indices is

ε1 + ε2 + ε3 = 0.
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Figure 1: Basic relations

In Fig.(2) and in Fig.(3), the latter is a continuation of Fig.(2), we have shown how the first line
of Fig.(1) can be derived. Actually, the only mathematics that has been used here is the uniqueness
star-triangle relation and integration by part, both relations are well-known in the scalar field
theories [37, 38, 39] (for a short review, Ref. [40]). In all the figures from (1) till (8) we use for
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Figure 2: Derivation of the basic relation. Part I. Lines without any index are the lines with index 1

factor J taken from Ref. [33] the definition

J =
Γ(1− ε1)Γ(1− ε2)Γ(1 − ε3)

Γ(1 + ε1)Γ(1 + ε2)Γ(1 + ε3)
.

In fig. (4) we show how the first diagram on the r.h.s. of the first line of fig. (1) transforms
to the first diagram on the r.h.s. of the second line of figure (1). Again, we converted non-unique
vertices to unique vertices by inserting the point of integration in one of the propagators attached
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Figure 3: Derivation of the basic relation. Part II. Lines without any index are the lines with index 1
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Figure 4: Transformation of the first diagram in Fig. (1). Lines without any index are the lines with index 1

to the vertex. Then, the star-triangle relation has been applied in direct way or in a triangle-star
way, until the diagram is converted to the desirable values of indices. The line without any index
means that the index of the line is 1. We put the exact value of this index on the corresponding
propagators of fig. (1) only. In the rest of figures we omit the index 1 just not to overload the
diagram with indices.

In fig. (5) the second diagram of the first line of fig. (1) is transformed to the second diagram
of the second line of fig. (1). Again, nothing else but the creating unique vertices and triangles by
putting new points of integration in the propagators has been used to create the desired indices.
Thus, we have proven the first line and the second line of fig. (1).

The third line of fig. (1) can be obtained from the second line of fig. (1) by simple integration.
Indeed, we eliminate the leftmost propagator on the l.h.s. of the second line by convoluting its
leftmost point with the line whose index is 2− ε3,

∫

d4x
1

[(x1 − x)2]
2−ε3 [(x2 − x)2]

2+ε3
∼

Γ(ε3)

Γ(2− ε3)

Γ(−ε3)

Γ(2 + ε3)
δ(4)(x1 − x2). (1)
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Figure 5: Transformation of the second diagram in Fig. (1)

7



F[ 2 + ε3
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1
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1
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1
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1
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1− ε1
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]
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1
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Γ(1 + ε2)
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Figure 6: Fourier transform of the diagrams in Fig. (1)

This formula follows the chain integration

∫

Dx
1

[(x1 − x)2]
α1 [(x2 − x)2]

α2
=
A(α1, α2, d− α1 − α2)

[(x1 − x2)2]
α1+α2−d/2

,

A(α1, α2, α3) = a(α1)a(α2)a(α3), (2)

a new d-dimensional measure Dx ≡ π−
d

2 ddx was introduced in ref. [24]. To derive formula (1) we
need to replace in Eq. (2) each factor in the integrand with its integral Fourier transform. The
formulas for the Fourier transform of the factor like those can be found in Ref. [40].

2.1 Description of Fourier Transform for the diagrams

In fig. (6) the Fourier transform is made for all the diagrams that appear in the first line of fig.
(1). The procedure of Fourier transform is done as follows. We replace each factor in the integrand
of the position space representation with the integral Fourier transform of the corresponding factor
in momentum space representation. Space-time coordinates appear in the exponentials of Fourier
transforms. Integrating over the coordinates of internal vertices we crate Dirac δ-functions, corre-
sponding to the momentum conservation in each vertex of integration in the position space (internal
vertex). The corresponding momentum integrals over loop momenta will be the Fourier transforms
of the integrals in the position space. For example, the described procedure in a particular case of
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F[ 2− ε3
1− ε1

1− ε2
1− ε1

1− ε2
1− ε1

1− ε2

1− ε3 1− ε3]= 1

ε3(1− ε3)

1

(p23)
ε3

1

(p21)
1+ε1

1

(p22)
1+ε2

J−3[ p3 →

1 + ε1
1 + ε2

1 + ε2
1 + ε1

1 + ε3 1 + ε3

← p1

← p2
]

F[
1− ε1

1 + ε1 ] =
1

p22

1

p23

1

(p21)
1+ε1

Γ(1 + ε1)

Γ(1− ε1)

Γ(1− ε1)

Γ(1 + ε1) [ p3 → 1− ε1

← p1

← p2
]

F[
1− ε2

1 + ε2 ] =
1

p21

1

p23

1

(p22)
1+ε2

Γ(1 + ε2)

Γ(1− ε2)

Γ(1− ε2)

Γ(1 + ε2) [ p3 → 1− ε2

← p1

← p2
]

F[
1− ε1

1− ε2

1− ε3 ] =
1

p23

1

(p21)
1+ε1

1

(p22)
1+ε2

J−1[ p3 → 1 + ε3

← p1

← p2
]

Figure 7: Fourier transform of the diagrams in Fig. (1)

p3 →

1 + ε1
1 + ε2

1 + ε2
1 + ε1

1 + ε3 1 + ε3

← p1

← p2

= J
1

(p23)
1−ε3 [ 1

ε1ε2
1 + ε3 +

+ (p22)
ε2

1

ε2ε3
1− ε1 + (p21)

ε1
1

ε1ε3
1− ε2]

Figure 8: Formula (25) of Ref. [1]

one-rung integral in the position space would result in

1

[31]

∫

d4y d4z
1

[2y][1y][3z][yz][2z]
=

1

(2π)4

∫

d4p1d
4p2d

4p3 δ(p1 + p2 + p3)×

×eip2x2eip1x1eip3x3C(2)(p21, p
2
2, p

2
3)

9



We assume the notation of Ref. [24], where [Ny] = (xN−y)2 and analogously for [Nz] and [yz], that
is, N = 1, 2, 3 stands for xN = x1, x2, x3, respectively, which are external points of the triangle-like
ladder diagram. In Refs. [1, 2] C(n)(p21, p

2
2, p

2
3) is the definition for the result of momentum integrals

for n-rung triangle ladder diagram in the momentum space representation. Just to make clear the
definition for Fourier transform operation used in fig. (6), we provide an example of the relation

F

[

1

[31]

∫

d4y d4z
1

[2y][1y][3z][yz][2z]

]

= C(2)(p21, p
2
2, p

2
3).

The transformation from position space to momentum space is necessary to normalize on the results
for MB transform of UD functions done in [1, 2] for the momentum space integrals.

Fig. (7) is fig. (6) with signs changed for all ε-terms. After this change of signs, the Fourier
transform of the first line of fig. (1) takes the form depicted in fig. (8). In that diagrammatic
relation we recognize Eq. (25) of Ref. [1].

3 Recursive formula for MB transform of UD functions

We start this section with writing the definition of the momentum integral for the diagram in the
r.h.s. of Fig. (8). We take a formula from paper [1] for the representation of the three-point
momentum integral

J(ν1, ν2, ν3) =

∫

Dk
1

[(k + q1)2]
ν1 [(k + q2)2]

ν2 [(k + q3)2]
ν3 .

in terms of MB transform

J(ν1, ν2, ν3) =
1

ΠiΓ(νi)Γ(d− Σiνi)

1

(p23)
Σνi−d/2

∮

C

dz2 dz3x
z2yz3 {Γ (−z2) Γ (−z3)

Γ (−z2 − ν2 − ν3 + d/2) Γ (−z3 − ν1 − ν3 + d/2)Γ (z2 + z3 + ν3) Γ (Σνi − d/2 + z3 + z2)} ≡ (3)

≡
1

(p23)
Σνi−d/2

∮

C

dz2 dz3x
z2yz3D(z2,z3)[ν1, ν2, ν3],

where we have introduced definition of function D,

D(z2,z3)[ν1, ν2, ν3] =
Γ (−z2) Γ (−z3) Γ (−z2 − ν2 − ν3 + d/2) Γ (−z3 − ν1 − ν3 + d/2)

ΠiΓ(νi)

×
Γ (z2 + z3 + ν3) Γ (Σνi − d/2 + z3 + z2)

Γ(d− Σiνi)
(4)

3.1 Description of notation in MB representation

We absorb into the definition of the MB transform D(z2,z3)[ν1, ν2, ν3] of this three-point integral
all the factors except for a power of the square of the external momentum p23. For d = 4 in the
denominator we have a sum of the indices minus two for the power of p23.

We do not write the powers of i, supposing that we work in Euclidean space and the corre-
sponding power of i can be recovered back after Wick rotation.
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We follow the notation of Refs.[24, 6] and absorb a power of π in the measure of integration. In
the rest of the paper we use the notation

x ≡
p21
p23
, y ≡

p22
p23
,

where the d-dimensional momentums p1, p2, p3 satisfy the conservation law p1 + p2 + p3 = 0 and
are related to d-dimensional momenta q1, q2, q3 by a parametrization

p1 = q3 − q2,

p2 = q1 − q3,

p3 = q2 − q1.

As a consequence of this definition, p1 appears to be a momentum that enters the one-loop triangle
diagram in the vertex of the triangle which is opposite to the line with index ν1.

The contour of integration C passes a bit on the left of the imaginary axis, separates left and
right poles and should be closed to the left infinity or to the right infinity. We choose to close
the contour of integration in the complex plane to the right infinity. It could be closed to the left
infinity too but it makes more complicate to take the residues into account since the residues in
variables z2 and z3 are mixed in that case. Whether we have to close the contour to the right
infinity or to the left infinity, the result should be the same function. We omit the factor 1/2πi
that accompanies each integration over MB transform parameter. The inverse factor is generated
in front of the residues.

It is known that this representation of the three-point integral can be derived by applying two-
fold MB transform to the integral over Feynman parameters, producing the Euler beta functions
[7] after integrating these parameters. There is a difference with the representation used in Ref.[6].
The form of Ref.[6] can be recovered from (3) by a cyclic redefinition. In the rest of the paper, we
use representation (3).

3.2 Multi-fold MB transforms of UD functions

To develop the recursive equations for the MB transforms of the UD functions, we recover the
definition of MB transforms for the UD functions and for the ladder triangle diagrams in d = 4
spacetime dimensions

C(n)(p21, p
2
2, p

2
3) =

1

(p23)
n
Φ(n) (x, y) =

1

(p23)
n

∮

C

dz2 dz3x
z2yz3M(n)(z2, z3),

where we used the notation M(n)(z2, z3) for the MB transform of UD function Φ(n) (x, y) of two
variables. The definition of the incoming momenta for the triangle ladder diagrams is like in
Ref.[1, 2, 5]. We include in the definition ofM(n)(z2, z3) all the factors that can appear in front of
MB transformation except for the power of the momentum p23.

The two-fold MB transform is known for the first UD function only. For the higher number of
UD function, the result is given in terms of multi-fold MB transform [1, 2]. In the next section
we reduce the multi-fold MB transform to a two-fold MB transform by making use of the loop
reduction trick described in the previous section.
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The iterative integral relation for the triangle ladder diagram given in Refs. [1, 2, 5],

C(n)(p21, p
2
2, p

2
3) =

∫

d4rn
C(n−1)((p1 + rn)

2, (p2 − rn)2, p23)

(p1 + rn)2(p2 − rn)2r2n
,

results in an integral recursive relation for the MB transforms of UD functions

Φ(n+1)

(

p21
p23
,
p22
p23

)

= p23

∫

d4r Φ(n)

(

(p1 + r)2

p23
,
(p2 − r)2

p23

)

1

(p1 + r)2(p2 − r)2r2
=

p23

∫

d4r

∮

C

dz2 dz3M
(n)(z2, z3)

(

(p1 + r)2

p23

)z2 ( (p2 − r)2

p23

)z3 1

(p1 + r)2(p2 − r)2r2
=

∫

d4r

∮

C

dz2 dz3M
(n)(z2, z3)

1

((p1 + r)2)1−z2((p2 − r)2)1−z3r2
1

(p23)
z2+z3−1

=

π2

∮

C

dz2 dz3M
(n)(z2, z3)J(1 − z3, 1− z2, 1)

1

(p23)
z2+z3−1

=

π2

∮

C

dz2 dz3 du dv x
uyvM(n)(z2, z3)D

(u,v)[1− z3, 1− z2, 1],

where D(u,v)[1 − z3, 1 − z2, 1] is defined above as MB transform of the corresponding three-point
integral, according to the description done in the previous subsection.

Thus, one can derive the first recursive formula for MB transform, which relates the transforms
of two neighbour UD functions

M(n+1)(u, v) = π2

∮

C

dz2 dz3M
(n)(z2, z3) D

(u,v)[1− z3, 1− z2, 1].

The function D(u,v)[1 − z3, 1− z2, 1] is a nontrivial combination of the Euler gamma functions
in numerator and denominator,

D(u,v)[1− z3, 1− z2, 1] =
Γ (z2 − u) Γ (z3 − v) Γ (1− z2 − z3 + u+ v)

Γ (1 + z2 + z3) Γ (1− z2) Γ (1− z3)
Γ (−u) Γ (−v) Γ (1 + u+ v) .

This formula is written from definition (3).

4 Reduction of multi-fold MB transforms

Formulas of the previous subsection are in some sense consequence of the ladder-like topology of
the diagram. We did not make any integration in the complex planes of MB parameters.

Consider the diagram on the l.h.s. of Fig. (8). We can repeat the trick of the previous section
and obtain the following MB representation for it
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1

p23

∫

Dr

∮

dz2dz3

(

(p1 + r)2

p23

)z2 ( (p2 − r)2

p23

)z3 D(z2,z3)[1 + ε2, 1 + ε1, 1 + ε3]

[(p1 + r)2]1+ε2 [(p2 − r)2]1+ε1 [r2]1+ε3
=

1

p23

∮

C

Dr dz2dz3
1

[p32]
z2+z3

D(z2,z3)[1 + ε2, 1 + ε1, 1 + ε3]

[(p1 + r)2]1+ε2−z2 [(p2 − r)2]1+ε1−z3 [r2]1+ε3
=

1

p23

∮

C

dz2dz3
1

[p23]
z2+z3

J(1 + ε1 − z3, 1 + ε2 − z2, 1 + ε3)D
(z2,z3)[1 + ε2, 1 + ε1, 1 + ε3] =

1

(p23)
2

∮

C

dz2dz3 du dv x
u yvD(u,v)[1 + ε1 − z3, 1 + ε2 − z2, 1 + ε3]×

D(z2,z3)[1 + ε2, 1 + ε1, 1 + ε3] (5)

This formula is derived in analogy with MB transforms of UD functions in the previous section.
In detail, the procedure looks like follows. First, we calculate the MB transform of the leftmost tri-
angle integral, this yields another triangle integral with indices depending on the complex variables
of the previous MB transform. This procedure will be used in all the constructions below.

General strategy of the present investigation consists in the decomposition of the r.h.s. in terms
of εi will produce ψ functions and its derivatives. In the r.h.s. on Fig. (8) we cannot put all the
value of εi immediately without decomposing it terms of εi and observing that poles in εi disappear.
Thus, instead of Laurent series we obtain a Taylor series. Comparing the coefficients in front of the
different terms of decomposition in terms of εi we can derive an infinite number of new relations
for two-fold MB integrals over complex parameters z2 and z3.

4.1 Description of the momentum integral

Notation to be used
∫

n

(ε1, ε2, ε3)

corresponds to the momentum integral with incoming momenta p1, p2, p3 as they are depicted on
the l.h.s. of Fig.(8) but with n loops and with amputated external legs. The ε-terms ε1, ε2, ε3
appear in the indices of lines for the first eight propagators on the left side of the diagram, namely,
in the indices 1 + ε1, 1 + ε2, 1 + ε1 on the upper side of the diagram, 1 + ε2, 1 + ε1, 1 + ε2 on the
lower side of the diagram, and 1 + ε3 on the first two rungs. The rest of lines have indices equal to
1. These positions of the indices are indicated in the third line of Fig.(1).

4.2 Two-fold MB transform for two-rung ladder

As a first step to our formulas, we reproduce Eq.(25) of Ref.[1]. This is already done in the previous
section, however we make it again just to introduce the notation that will be used for higher rung
diagram.

We consider a diagrammatic relation that can be obtained by integral convolution of the leftmost
external point of the diagrams in the first line of fig. (1) with the line that has index 2− ε3. In such
a way Dirac δ-function is produced which eliminates one of the integrations and the leftmost point
on the l.h.s. is converted to the external vertex, that is, it is not a vertex of integration longer. The
formula which can be used for this purpose is identity (1).
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Then, we take a Fourier transform of each one of the diagrams in the diagrammatic relation
obtained in that way. By keeping all the factors that appear after making the Fourier transform on
both the parts of this new diagrammatic equation, we come to

J3Γ(1 + ε3)

Γ(1− ε3)

1

(p21)
1−ε1(p22)

1−ε2

∫

2

(−ε1,−ε2,−ε3) =

J

[

J

ε2ε3

Γ(1 + ε3)

Γ(1− ε3)

1

(p21)
1−ε1p22(p

2
3)

1+ε3
J(1, 1, 1 + ε1)+

J

ε1ε2

Γ(1 + ε3)

Γ(1− ε3)

1

(p21)
1−ε1(p22)

1−ε2(p23)
1+ε3

J(1, 1, 1− ε3)+

J

ε1ε3

Γ(1 + ε3)

Γ(1− ε3)

1

p21(p
2
2)

1−ε2 (p23)
1+ε3

J(1, 1, 1 + ε2)

]

.

After a simple algebra we derive an equation

∫

2

(−ε1,−ε2,−ε3) =
J−1

(p23)
1+ε3

[

1

ε2ε3

1

(p22)
ε2
J(1, 1, 1 + ε1)+

1

ε1ε2
J(1, 1, 1− ε3) +

1

ε1ε3

1

(p21)
ε1
J(1, 1, 1 + ε2)

]

,

from which by changing the signs of all the values εi we obtain

∫

2

(ε1, ε2, ε3) =
J

(p23)
1−ε3

[

1

ε2ε3

1

(p22)
−ε2

J(1, 1, 1− ε1)+

1

ε1ε2
J(1, 1, 1 + ε3) +

1

ε1ε3

1

(p21)
−ε1

J(1, 1, 1− ε2)

]

. (6)

This is exactly Eq.(25) of Ref.[1]. This equation has been derived diagrammatically in the previous
section. In that case the Fourier transform of the first line of fig. (1) has been done. This approach
to reproduce Eq.(25) of Ref.[1] can be considered as a cross-check of the procedure used in the
previous section to produce fig. (8).

At this moment we start to use the matter developed in the previous section. First of all, we
rewrite the r.h.s. of Eq.(6) in the MB transformed representation

∫

2

(ε1, ε2, ε3) =
J

(p23)
1−ε3

[

1

ε2ε3

(p22)
ε2

(p23)
1−ε1

∮

C

du dv xu yvD(u,v)[1− ε1]+

1

ε1ε2

1

(p23)
1+ε3

∮

C

du dv xu yvD(u,v)[1 + ε3] +
1

ε1ε3

(p21)
ε1

(p23)
1−ε2

∮

C

du dv xu yvD(u,v)[1− ε2]

]

, (7)

where we have introduced a notation

D(u,v)[1 + ν] ≡ D(u,v)[1, 1, 1 + ν].
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Eq.(7) can be written as
∫

2

(ε1, ε2, ε3) =
J

(p23)
2

[

1

ε2ε3

(

p22
p23

)ε2 ∮

C

du dv xu yvD(u,v)[1− ε1]+

1

ε1ε2

∮

C

du dv xu yvD(u,v)[1 + ε3] +
1

ε1ε3

(

p21
p23

)ε1 ∮

C

du dv xu yvD(u,v)[1− ε2]

]

=

J

(p23)
2

[

1

ε2ε3

∮

C

du dv xu yv+ε2D(u,v)[1− ε1]+

1

ε1ε2

∮

C

du dv xu yvD(u,v)[1 + ε3] +
1

ε1ε3

∮

C

du dv xu+ε1 yvD(u,v)[1− ε2]

]

=

J

(p23)
2

∮

C

du dv xu yv
[

D(u,v−ε2)[1− ε1]

ε2ε3
+
D(u,v)[1 + ε3]

ε1ε2
+
D(u−ε1,v)[1− ε2]

ε1ε3

]

≡

1

(p23)
2

∮

C

du dv xu yvM
(u,v)
2 [ε1, ε2, ε3]. (8)

Here we shift the variable of integration in the complex plane. That means, the contour of inte-
gration C still passes between the left and right poles. Positions of the poles in the plane of two
complex variables will be changed with that trick but their nature (left or right) cannot be changed
with such a trick.

On the other hand, we have formula (5), from which we obtain
∮

C

dz2dz3 D
(u,v)[1 + ε1 − z3, 1 + ε2 − z2, 1 + ε3]D

(z2,z3)[1 + ε2, 1 + ε1, 1 + ε3] =

J

[

D(u,v−ε2)[1− ε1]

ε2ε3
+
D(u,v)[1 + ε3]

ε1ε2
+
D(u−ε1,v)[1− ε2]

ε1ε3

]

=M
(u,v)
2 [ε1, ε2, ε3]. (9)

This formula is valid for any u, v and presents by itself a nontrivial result which can be used in
practical application of MB integration. This is the two-fold MB transform of two-loop integral,
and it is valid not only in the limit of all εi → 0, but for any εi. Decomposing this formula in terms

of εi we obtain infinite number of new relations. The explicit form of M
(u,v)
2 [ε1, ε2, ε3] is calculated

in the next section in the limit of vanishing εi, the result is Eq. (17),
∮

C

dz2dz3 D
(u,v)[1− z3, 1− z2, 1]D

(z2,z3)[1, 1, 1] =

Γ2(1 + u+ v)Γ2(−u)Γ2(−v)×
[

1

2
(ψ′(−v) + ψ′(−u))−

1

2
(ψ(−v)− ψ(−u))2 −

3

2
(Γ(1− ε)Γ(1 + ε))(2)ε

]

.

4.3 Two-fold MB transform for three-rung ladder

We can derive a new formula for two-fold MB transformation going to higher loops in the ladder
diagrams. We start to work with integral

∫

3
(ε1, ε2, ε3) which appears on the l.h.s. in the third

line of Fig.(1) and take a Fourier transform of each one of the diagrams of that line. The Fourier
transform of the l.h.s. can be written as

(

Γ(1− ε1)

Γ(1 + ε1)

)3 (
Γ(1− ε2)

Γ(1 + ε2)

)3 (
Γ(1− ε3)

Γ(1 + ε3)

)2
1

p21

1

p22

∫

3

(−ε1,−ε2,−ε3)
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and the whole diagrammatic relation becomes as

J3Γ(1 + ε3)

Γ(1− ε3)

1

p21p
2
2

∫

3

(−ε1,−ε2,−ε3) = J2 1

ε2ε3

Γ(1 + ε3)

Γ(1− ε3)

1

(p21)
1−ε1p22(p

2
3)

1−ε2

∫

2

(−ε1) +

J3

ε1ε2

Γ(1 + ε3)

Γ(1− ε3)

1

(p21)
1−ε1 (p22)

1−ε2p23

∫

2

(−ε1,−ε2,−ε3) +
J2

ε1ε3

Γ(1 + ε3)

Γ(1− ε3)

1

p21(p
2
2)

1−ε2(p23)
1−ε1

∫

2

(−ε2).

We kept all the factors that appear after making the Fourier transform on both the parts of the
diagrammatic equation. Here we use a brief notation

∫

n

(−ε1) ≡

∫

n

(−ε1, 0, ε1),

∫

n

(−ε2) ≡

∫

n

(0,−ε2, ε2).

After a little algebra we obtain the decomposition of three-loop integral in terms of two-loop inte-
grals,

∫

3

(−ε1,−ε2,−ε3) = J−1

[

1

(p21)
−ε1(p23)

1−ε2

1

ε2ε3

∫

2

(−ε1)+

J

(p21)
−ε1(p22)

−ε2p23

1

ε1ε2

∫

2

(−ε1,−ε2,−ε3) +
1

(p22)
−ε2(p23)

1−ε1

1

ε1ε3

∫

2

(−ε2)

]

.

By changing the signs of all the values εi we obtain an equation

∫

3

(ε1, ε2, ε3) = J

[

1

(p21)
ε1(p23)

1+ε2

1

ε2ε3

∫

2

(ε1)+

J−1

(p21)
ε1(p22)

ε2p23

1

ε1ε2

∫

2

(ε1, ε2, ε3) +
1

(p22)
ε2(p23)

1+ε1

1

ε1ε3

∫

2

(ε2)

]

.
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The previous equation can be re-written in terms of MB transform, and we obtain the result

∫

3

(ε1, ε2, ε3) = J

[

1

ε2ε3

1

(p21)
ε1(p23)

3+ε2

∮

C

du dv xu yvM
(u,v)
2 (ε1)+

J−1 1

ε1ε2

1

(p21)
ε1(p22)

ε2(p23)
3

∮

C

du dv xu yvM
(u,v)
2 (ε1, ε2, ε3)+

1

ε1ε3

1

(p22)
ε2(p23)

3+ε1

∮

C

du dv xu yvM
(u,v)
2 (ε2)

]

=

J

[

1

ε2ε3

(

p23
p21

)ε1 1

(p23)
3−ε3

∮

C

du dv xu yvM
(u,v)
2 (ε1)+

J−1 1

ε1ε2

(

p23
p21

)ε1 (p23
p22

)ε2 1

(p23)
3−ε3

∮

C

du dv xu yvM
(u,v)
2 (ε1, ε2, ε3)

+
1

ε1ε3

(

p23
p22

)ε2 1

(p23)
3−ε3

∮

C

du dv xu yvM
(u,v)
2 (ε2)

]

=

J

(p23)
3−ε3

[

1

ε2ε3

∮

C

du dv xu−ε1 yvM
(u,v)
2 (ε1) + J−1 1

ε1ε2

∮

C

du dv xu−ε1 yv−ε2M
(u,v)
2 (ε1, ε2, ε3)

+
1

ε1ε3

∮

C

du dv xu yv−ε2M
(u,v)
2 (ε2)

]

=

J

(p23)
3−ε3

∮

C

du dv xu yv
[

1

ε2ε3
M

(u+ε1,v)
2 (ε1) +

J−1

ε1ε2
M

(u+ε1,v+ε2)
2 (ε1, ε2, ε3)+

+
1

ε1ε3
M

(u,v+ε2)
2 (ε2)

]

.

Here we shift the variable of integration in the complex plane. That means, the contour of inte-
gration C still passes between the left and right poles. Positions of the poles in the plane of two
complex variables will be changed but their nature (to belong to the set of left poles or to the set
of the right poles) cannot be changed with such a trick.

On the other side, in complete analogy with Eq.(5) we obtain

∫

3

(ε1, ε2, ε3) =

1

(p23)
2

∫

Dr

∮

dz2dz3

(

(p1 + r)2

p23

)z2 ( (p2 − r)2

p23

)z3 M
(z2,z3)
2 (ε1, ε2, ε3)

[(p1 + r)2]1+ε1 [(p2 − r)2]1+ε2r2
=

1

(p23)
2

∫

Dr

∮

C

dz2dz3
1

[p23]
z2+z3

M
(z2,z3)
2 (ε1, ε2, ε3)

[(p1 + r)2]1+ε1−z2 [(p2 − r)2]1+ε2−z3r2
=

∮

C

dz2dz3
1

[p23]
2+z2+z3

J(1 + ε2 − z3, 1 + ε1 − z2, 1)M
(z2,z3)
2 (ε1, ε2, ε3) =

1

(p23)
3−ε3

∮

C

dz2dz3 dudv x
uyvD(u,v)[1 + ε2 − z3, 1 + ε1 − z2, 1]M

(z2,z3)
2 (ε1, ε2, ε3). (10)
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We derive
∮

C

dz2dz3D
(u,v)[1 + ε2 − z3, 1 + ε1 − z2, 1]M

(z2,z3)
2 (ε1, ε2, ε3) = (11)

J

[

1

ε2ε3
M

(u+ε1,v)
2 (ε1) +

J−1

ε1ε2
M

(u+ε1,v+ε2)
2 (ε1, ε2, ε3) +

1

ε1ε3
M

(u,v+ε2)
2 (ε2)

]

=M
(u,v)
3 [ε1, ε2, ε3]

This formula is valid for any u, v and presents by itself a nontrivial result which can be used in
practical application of MB integration. This is the two-fold MB transform of three-loop integral,
and it is valid not only in the limit of all εi → 0, but for any εi. Decomposing this formula in terms

of εi we obtain infinite number of new relations. The limit εi → 0 of M
(u,v)
3 [ε1, ε2, ε3] is calculated

in the next section.

4.4 Two-fold MB transform for four-rung ladder

In the next paragraphs of this section we consider the case of four-loop momentum triangle ladder
diagram. It looks like the diagram on the l.h.s. of the third line of Fig.(1) but with one more rung.
To get that graphical representation, the diagrams in the third line of fig. (1) are integrated with
three more propagators, index of each propagator is equal to 1. The Fourier transform of the l.h.s.
of the diagrammatic relation obtained in such a way contains the integral

∫

4
(ε1, ε2, ε3),

(

Γ(1− ε1)

Γ(1 + ε1)

)3 (
Γ(1− ε2)

Γ(1 + ε2)

)3 (
Γ(1− ε3)

Γ(1 + ε3)

)2
1

p21

1

p22

∫

4

(−ε1,−ε2,−ε3),

and we derive the identity

J3Γ(1 + ε3)

Γ(1− ε3)

1

p21p
2
2

∫

4

(−ε1,−ε2,−ε3) = J2 1

ε2ε3

Γ(1 + ε3)

Γ(1− ε3)

1

p21p
2
2(p

2
3)

1−ε2

∫

3

(−ε1) +

J3

ε1ε2

Γ(1 + ε3)

Γ(1− ε3)

1

p21p
2
2p

2
3

∫

3

(−ε1,−ε2,−ε3) +
J2

ε1ε3

Γ(1 + ε3)

Γ(1− ε3)

1

p21p
2
2(p

2
3)

1−ε1

∫

3

(−ε2).

After a little algebra we obtain the decomposition of four-loop integral in terms of three-loop
integrals,

∫

4

(−ε1,−ε2,−ε3) = J−1

[

1

(p23)
1−ε2

1

ε2ε3

∫

3

(−ε1) +
J

p23

1

ε1ε3

∫

3

(−ε1,−ε2,−ε3)+

1

(p23)
1−ε1

1

ε1ε3

∫

3

(−ε2)

]

,

from which by changing the signs of all the values εi we obtain an equation

∫

4

(ε1, ε2, ε3) = J

[

1

(p23)
1+ε2

1

ε2ε3

∫

3

(ε1) +
J−1

p23

1

ε1ε3

∫

3

(ε1, ε2, ε3)+

1

(p23)
1+ε1

1

ε1ε3

∫

3

(ε2)

]

.
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This equation can be re-written in terms of MB transform

∫

4

(ε1, ε2, ε3) = J

[

1

ε2ε3

1

(p23)
1+ε2(p23)

3+ε1

∮

C

du dv xu yvM
(u,v)
3 (ε1)+

J−1 1

ε1ε2

1

(p23)
4−ε3

∮

C

du dv xu yvM
(u,v)
3 (ε1, ε2, ε3)+

1

ε1ε3

1

(p23)
1+ε1 (p23)

3+ε2

∮

C

du dv xu yvM
(u,v)
3 (ε2)

]

=

J

(p23)
4−ε3

∮

C

du dv xu yv
[

1

ε2ε3
M

(u,v)
3 (ε1) +

J−1

ε1ε2
M

(u,v)
3 (ε1, ε2, ε3) +

1

ε1ε3
M

(u,v)
3 (ε2)

]

≡

1

(p23)
4−ε3

∮

C

du dv xu yvM
(u,v)
4 [ε1, ε2, ε3]

On the other hand, in analogy to Eq.(5),

∫

4

(ε1, ε2, ε3) =

1

(p23)
3−ε3

∫

Dr

∮

dz2dz3

(

(p1 + r)2

p23

)z2 ( (p2 − r)
2

p23

)z3 M
(z2,z3)
3 (ε1, ε2, ε3)

(p1 + r)2(p2 − r)2r2
=

1

(p23)
3−ε3

∫

Dr

∮

C

dz2dz3
1

[p23]
z2+z3

M
(z2,z3)
3 (ε1, ε2, ε3)

[(p1 + r)2]1−z2 [(p2 − r)2]1−z3r2
=

1

(p23)
3−ε3

∮

C

dz2dz3
1

[p23]
z2+z3

J(1− z3, 1− z2, 1)M
(z2,z3)
3 (ε1, ε2, ε3) =

1

(p23)
4−ε3

∮

C

dz2dz3 dudv x
uyvD(u,v)[1− z3, 1− z2, 1]M

(z2,z3)
3 (ε1, ε2, ε3). (12)

We obtain
∮

C

dz2dz3D
(u,v)[1− z3, 1− z2, 1]M

(z2,z3)
3 (ε1, ε2, ε3) =

J

[

1

ε2ε3
M

(u,v)
3 (ε1) +

J−1

ε1ε2
M

(u,v)
2 (ε1, ε2, ε3) +

1

ε1ε3
M

(u,v)
2 (ε2)

]

=M
(u,v)
4 [ε1, ε2, ε3]. (13)

This formula is valid for any u, v and presents by itself a nontrivial result which can be used in
practical application of MB integration. This is the two-fold MB transform of four-loop momentum
integral, and it is valid not only in the limit of all εi → 0, but for any εi. Decomposing this formula
in terms of εi we obtain infinite number of new relations.

5 One-fold MB transforms

In this section we collect useful formulas for one-fold MB transforms.
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∮

C

dz xzΓ2(−z)Γ2(1 + z) = −
lnx

1− x
∮

C

dz xz
{

Γ2 (−z) Γ (z + 1)Γ∗ (z)
}

= −

(

1

2
ln2 x+ 2ζ(2)

)

+ ln(1− x) lnx+ Li2(x)

∮

C

dz xzΓ2(−z)Γ2(1 + z)ψ(1 + z) =

1

(1− x)
[−ψ(1) lnx+ ln(1 − x) lnx− ζ(2) + Li2(x)]

It is possible to work with MB transforms making use of such tricks like derivation with respect
to parameter and integration by parts in the complex plane. Here we demonstrate several examples.
First of all, after the derivation with respect to x of

1

1 + x
=

∮

C

dz xzΓ(−z)Γ(1 + z)

we obtain

x

(1 + x)2
=

∮

C

dz xzΓ(1− z)Γ(1 + z).

The result can be checked directly by counting of residues. Now, let us check that the integral of
the total derivative is equal to zero. Indeed, we have

0 =

∮

C

dz
d

dz
{xzΓ(−z)Γ(1 + z)} = lnx

∮

C

dz xzΓ(−z)Γ(1 + z) +

∮

C

dz xzΓ(−z)Γ(1 + z)(−ψ(−z) + ψ(1 + z)) =

lnx

1 + x
−

∮

C

dz xz
Γ(−z)Γ(1 + z)

z
+

∮

C

dz xzΓ(−z)Γ(1 + z)(ψ(1 + z)− ψ(1− z)). (14)

We calculate all the integrals on the r.h.s. explicitly and show that their sum is zero. The direct
calculation of residues leads to

∮

C

dz xzΓ(−z)Γ(1 + z)ψ(1 + z) = ψ(1)− xψ(2) + x2ψ(3) + . . .

∮

C

dz xzΓ(−z)Γ(1 + z)ψ(1− z) = ψ(1)− xψ(1) + x2ψ(2)− x3ψ(3) + · · · − lnx+
lnx

1 + x
∮

C

dz xz
Γ(−z)Γ(1 + z)

z
= lnx− ln(1 + x)

Substituting these results in (14) we reproduce zero in the l.h.s. of it.

6 Explicit results of two-fold MB transform

In order to use formulas obtained for the two-fold integration explicitly, we need to calculate the
r.h.s. of the equations in the limit of vanishing εi. First, we consider the result for

∫

2
(ε1, ε2, ε3).

There are two ways to derive the result in this limit for the r.h.s.
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6.1 Belokurov-Usyukina decomposition for higher rung ladder

The first way to calculate that limit is to use the representation after shifting complex variables of
integration in the complex plane, that is we have to calculate the limit of Eq.(8),

D(u,v−ε2)[1− ε1]

ε2ε3
+
D(u,v)[1 + ε3]

ε1ε2
+
D(u−ε1,v)[1− ε2]

ε1ε3
,

when all the ε-terms are vanishing. By making use of Eq.(8) and the explicit form of the MB
transform D defined in (4), we write this expression as

1

ε1ε2

Γ(−u)Γ(−v)Γ(ε1 + ε2 − u)Γ(ε1 + ε2 − v)Γ2(1 − ε1 − ε2 + u+ v)

Γ(1 − ε3)Γ(1 + ε3)

−
1

ε2(ε1 + ε2)

Γ(−u)Γ(ε2 − v)Γ(ε1 − u)Γ(ε1 + ε2 − v)Γ2(1 − ε1 − ε2 + u+ v)

Γ(1− ε1)Γ(1 + ε1)

−
1

ε1(ε1 + ε2)

Γ(ε1 − u)Γ(−v)Γ(ε1 + ε2 − u)Γ(ε2 − v)Γ2(1 − ε1 − ε2 + u+ v)

Γ(1− ε2)Γ(1 + ε2)
(15)

We do not write factors

1

Γ(1− εi)Γ(1 + εi)
(16)

in the next formulas. However, we recover contributions of them at the end of the derivation. To
calculate the limit of vanishing εi, we need to decompose (15) in terms of ε1 and ε2. The last factor
is common, and we omit it,

1

ε1ε2
Γ(−u)Γ(−v)Γ(ε1 + ε2 − u)Γ(ε1 + ε2 − v)

−
1

ε2(ε1 + ε2)
Γ(−u)Γ(ε2 − v)Γ(ε1 − u)Γ(ε1 + ε2 − v)

−
1

ε1(ε1 + ε2)
Γ(ε1 − u)Γ(−v)Γ(ε1 + ε2 − u)Γ(ε2 − v) =

1

ε1ε2
Γ(−u)Γ(−v)Γ(ε1 + ε2 − u)Γ(ε1 + ε2 − v)

−
1

ε2ε1

(

1−
ε2
ε1

)

Γ(−u)Γ(ε2 − v)Γ(ε1 − u)Γ(ε1 + ε2 − v)−
1

ε21
Γ2(ε1 − u)Γ

2(−v) =

1

ε1ε2
Γ(−u)Γ(ε1 + ε2 − v) [Γ(−v)Γ(ε1 + ε2 − u)− Γ(ε2 − v)Γ(ε1 − u)]

+
1

ε21
Γ(−u)Γ(−v)Γ(ε1 − u)Γ(ε1 − v)−

1

ε21
Γ2(ε1 − u)Γ

2(−v) =

Γ2(−u)Γ2(−v)

[

1

2
(ψ′(−v) + ψ′(−u))−

1

2
(ψ(−v)− ψ(−u))2

]

.
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Recovering the contribution of factors (16), we obtain

lim
ε1→0,ε2→0

M
(u,v)
2 (ε1, ε2, ε3) = Γ2(1 + u+ v)Γ2(−u)Γ2(−v)×

[

1

2
(ψ′(−v) + ψ′(−u))−

1

2
(ψ(−v)− ψ(−u))2 −

3

2
(Γ(1− ε)Γ(1 + ε))(2)ε

]

. (17)

The last term is a value of Riemann zeta function multiplied by the first UD function. This result
can be represented in other forms. For example, by integrating by parts in the complex u and v
planes we reproduce result (21) of the next subsection. However, this form is important since it
stands in the right hand side of Eq. (11) in the limit of vanishing εi.

6.2 Integration by parts in the complex plane

In the second way we used integration by parts in the complex plane like that described in the
previous section. Indeed, as we have derived in Eq. (8)

1

ε1ε2

∮

C

du dv xu yvD(u,v)[1 + ε3] +
1

ε2ε3
yε2

∮

C

du dv xu yvD(u,v)[1− ε1] +

1

ε1ε3
xε1

∮

C

du dv xu yvD(u,v)[1− ε2] =

∮

C

du dv xu yv
[

1

ε1ε2
D(u,v)[1 + ε3] +

1

ε2ε3
yε2D(u,v)[1− ε1] +

1

ε1ε3
xε1D(u,v)[1− ε1]

]

. (18)

Our purpose is to take a limit ε1 → 0, ε2 → 0 for this expression. By using Eq. (8) and definition
(4), we write the integrand explicitly

1

ε1ε2
D(u,v)[1 + ε3] +

1

ε2ε3
yε2D(u,v)[1− ε1] +

1

ε1ε3
xε1D(u,v)[1− ε1] =

Γ(−u)Γ(−v)

[

1

ε1ε2

Γ(ε1 + ε2 − u)Γ(ε1 + ε2 − v)Γ
2(1− ε1 − ε2 + u+ v)

Γ(1 + ε1 + ε2)Γ(1− ε1 − ε2)
+

−
1

ε2(ε1 + ε2)
yε2

Γ(ε1 − u)Γ(ε1 − v)Γ2(1− ε1 + u+ v)

Γ(1 + ε1)Γ(1 − ε1)

−
1

ε1(ε1 + ε2)
xε1

Γ(ε2 − u)Γ(ε2 − v)Γ2(1− ε2 + u+ v)

Γ(1 + ε2)Γ(1 − ε2)

]
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The brackets in this formula can be re-written in the following form

1

ε1ε2

[

Γ(ε1 + ε2 − u)Γ(ε1 + ε2 − v)Γ2(1− ε1 − ε2 + u+ v)

Γ(1 + ε1 + ε2)Γ(1− ε1 − ε2)

−yε2
Γ(ε1 − u)Γ(ε1 − v)Γ2(1− ε1 + u+ v)

Γ(1 + ε1)Γ(1 − ε1)

]

−
1

ε21

[

Γ(ε1 − u)Γ(ε1 − v)Γ2(1− ε1 + u+ v)

Γ(1 + ε1)Γ(1− ε1)
− xε1Γ(−u)Γ(−v)Γ2(1 + u+ v)

]

+ o(ε2) =

1

ε1
Γ(−u)Γ(−v)Γ2(1 + u+ v) [ψ(−u) + ψ(−v)− 2ψ(1 + u+ v)− ln y] +

(

Γ(ε1 − u)Γ(ε1 − v)Γ2(1− ε1 + u+ v)

Γ(1 + ε1)Γ(1 − ε1)

)(2)

ε1

− ln y
(

Γ(ε1 − u)Γ(ε1 − v)Γ
2(1− ε1 + u+ v)

)′

ε1
+

1

ε1
Γ(−u)Γ(−v)Γ2(1 + u+ v) [ψ(−u) + ψ(−v)− 2ψ(1 + u+ v)− lnx] +

+
1

2

(

Γ(ε1 − u)Γ(ε1 − v)Γ2(1− ε1 + u+ v)

Γ(1 + ε1)Γ(1− ε1)

)(2)

ε1

−
1

2
ln2 xΓ(−u)Γ(−v)Γ2(1 + u+ v) =

3

2

(

Γ(ε1 − u)Γ(ε1 − v)Γ2(1 − ε1 + u+ v)

Γ(1 + ε1)Γ(1− ε1)

)(2)

ε1

− ln y
(

Γ(ε1 − u)Γ(ε1 − v)Γ
2(1− ε1 + u+ v)

)′

ε1
−

1

2
ln2 xΓ(−u)Γ(−v)Γ2(1 + u+ v).

First of all, we demonstrate that all the poles in εi disappear. The corresponding contribution
taking into account the factor Γ(−u)Γ(−v) has the form

1

ε1

∮

C

du dvxuyvΓ2(−u)Γ2(−v)Γ2(1 + u+ v) [(ψ(−u) + ψ(−v)− 2ψ(1 + u+ v)− ln y)

+ (ψ(−u) + ψ(−v)− 2ψ(1 + u+ v)− lnx)] =

1

ε1

∮

C

du dvxuyvΓ2(−u)Γ2(−v)Γ2(1 + u+ v) [(2ψ(−u)− 2ψ(1 + u+ v)− lnx)

+ (2ψ(−v)− 2ψ(1 + u+ v)− ln y)] =

−
1

ε1

∮

C

du dv(∂u + ∂v){x
uyvΓ2(−u)Γ2(−v)Γ2(1 + u+ v)} = 0.

Here we applied integration by part technique, developed in the previous section, for the plane of
the complex variables. Thus, we have derived the following result for the initial integral (18)

∮

C

du dv xu yvΓ(−u)Γ(−v)

[

3

2

(

Γ(ε1 − u)Γ(ε1 − v)Γ2(1− ε1 + u+ v)

Γ(1 + ε1)Γ(1− ε1)

)(2)

ε1

− ln y
(

Γ(ε1 − u)Γ(ε1 − v)Γ
2(1 − ε1 + u+ v)

)′

ε1
−

1

2
ln2 xΓ(−u)Γ(−v)Γ2(1 + u+ v)

]

.
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As to the last two terms we can consider the transformations
∮

C

du dv xu yvΓ(−u)Γ(−v)
[

− ln y
(

Γ(ε1 − u)Γ(ε1 − v)Γ
2(1− ε1 + u+ v)

)′

ε1

−
1

2
ln2 xΓ(−u)Γ(−v)Γ2(1 + u+ v)

]

=

− ln y

∮

C

du dv xu yv (ψ(−u) + ψ(−v)− 2ψ(1 + u+ v)) Γ2(−u)Γ2(−v)Γ2(1 + u+ v)

−
1

2
ln2 x

∮

C

du dv xu yvΓ2(−u)Γ2(−v)Γ2(1 + u+ v) =

1

2
ln y

∮

C

du dv xu yv (∂u + ∂v) Γ
2(−u)Γ2(−v)Γ2(1 + u+ v)

−
1

2
ln2 x

∮

C

du dv xu yvΓ2(−u)Γ2(−v)Γ2(1 + u+ v) =

−
1

2
ln y(lnx+ ln y)

∮

C

du dv xu yvΓ2(−u)Γ2(−v)Γ2(1 + u+ v)

−
1

2
ln2 x

∮

C

du dv xu yvΓ2(−u)Γ2(−v)Γ2(1 + u+ v).

Thus, the result for integral (18) is

3

2

∮

C

du dv xu yvΓ(−u)Γ(−v)

(

Γ(ε1 − u)Γ(ε1 − v)Γ2(1− ε1 + u+ v)

Γ(1 + ε1)Γ(1 − ε1)

)(2)

ε1

−
1

2

(

ln2 x+ lnx ln y + ln2 y
)

∮

C

du dv xu yvΓ2(−u)Γ2(−v)Γ2(1 + u+ v). (19)

This formula can be developed further and transformed to the form without derivatives of Euler ψ
function in the integrand,

∮

C

du dv xu yvΓ(−u)Γ(−v)
(

Γ(ε1 − u)Γ(ε1 − v)Γ
2(1− ε1 + u+ v)

)(2)

ε1
=

∮

C

du dv xu yv [−∂uψ(−u)− ∂vψ(−v) + ∂uψ(1 + u+ v)

+∂vψ(1 + u+ v) + (ψ(−u) + ψ(−v)− 2ψ(1 + u+ v))2
]

Γ2(−u)Γ2(−v)Γ2(1 + u+ v) =
∮

C

du dv xu yv [(lnx− 2ψ(−u) + 2ψ(1 + u+ v)) (ψ(−u)− ψ(1 + u+ v)) +

+ (ln y − 2ψ(−v) + 2ψ(1 + u+ v)) (ψ(−v)− ψ(1 + u+ v))

+(ψ(−u) + ψ(−v)− 2ψ(1 + u+ v))2
]

Γ2(−u)Γ2(−v)Γ2(1 + u+ v) =
∮

C

du dv xu yv [lnx (ψ(−u)− ψ(1 + u+ v)) + ln y (ψ(−v)− ψ(1 + u+ v))

−(ψ(−u)− ψ(−v))2
]

Γ2(−u)Γ2(−v)Γ2(1 + u+ v),

where we applied the integration by parts technique in the complex planes which is developed in
the previous section. Thus, together with second term of (19), the result can be written in terms

24



of powers of logarithms and MB transforms with ψ function but not with its derivatives, that is

3

2
ln x

∮

C

du dv xu yv (ψ(−u)− ψ(1 + u+ v)) Γ2(−u)Γ2(−v)Γ2(1 + u+ v) +

3

2
ln y

∮

C

du dv xu yv (ψ(−v)− ψ(1 + u+ v)) Γ2(−u)Γ2(−v)Γ2(1 + u+ v)−

−
3

2

∮

C

du dv xu yv(ψ(−u)− ψ(−v))2Γ2(−u)Γ2(−v)Γ2(1 + u+ v)

−
1

2

(

ln2 x+ lnx ln y + ln2 y
)

∮

C

du dv xu yvΓ2(−u)Γ2(−v)Γ2(1 + u+ v). (20)

The first two terms are proportional to the first UD function. This can be checked by integration
by parts procedure in the complex u and v planes. After integrating by parts and recovering the
contribution of factors (16), the previous expression is transformed to

(

1

4
ln2

x

y
−

3

2
(Γ(1− ε)Γ(1 + ε))(2)ε

)
∮

C

du dv xu yvΓ2(−u)Γ2(−v)Γ2(1 + u+ v)−

−
3

2

∮

C

du dv xu yv (ψ(−u)− ψ(−v))2 Γ2(−u)Γ2(−v)Γ2(1 + u+ v). (21)

This result is related to formula (17) via integration by parts in the complex planes of u and v.

6.3 Explicit two-fold MB transform for three-rung ladder

We need to derive the same limit for M
(u,v)
3 (ε1, ε2, ε3). We show that the result is reduced to Euler

ψ function and its derivatives. According to Eq. (11)

1

ε1ε2
M

(u+ε1,v+ε2)
2 (ε1, ε2, ε3) +

J

ε2ε3
M

(u+ε1,v)
2 (ε1) +

J

ε1ε3
M

(u,v+ε2)
2 (ε2) =

1

ε1ε2
M

(u+ε1,v+ε2)
2 (ε1, ε2, ε3)−

J

ε2(ε1 + ε2)
M

(u+ε1,v)
2 (ε1)−

J

ε1(ε1 + ε2)
M

(u,v+ε2)
2 (ε2) =

1

ε1ε2
M

(u+ε1,v+ε2)
2 (ε1, ε2, ε3)−

J

ε2ε2

(

1−
ε2
ε1

)

M
(u+ε1,v)
2 (ε1)−

1

ε21
M

(u,v)
2 =

1

ε1ε2
M

(u+ε1,v+ε2)
2 (ε1, ε2, ε3)−

J

ε2ε1
M

(u+ε1,v)
2 (ε1) +

1

ε21
M

(u+ε1,v)
2 (ε1)−

1

ε21
M

(u,v)
2 =

1

ε1ε2

[

M
(u+ε1,v+ε2)
2 (ε1, ε2, ε3)− JM

(u+ε1,v)
2 (ε1)

]

+
1

ε21

[

M
(u+ε1,v)
2 (ε1)−M

(u,v)
2

]

(22)
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We expand in terms of ε1 the second term in which we need first and second degrees of ε1 in Eq.
(22). From Eq. (15) we obtain

M
(u+ε1,v)
2 (ε1) ≈

Γ2(1 + u+ v)Γ2(−u)Γ2(−v)

[

1

2
(ψ′(−v) + ψ′(−u))−

1

2
(ψ(−v)− ψ(−u))2

]

+

Γ2(1 + u+ v)Γ(−u)Γ(−v)

[

1

2
ε1 (Γ(−ε1 − u)Γ(ε1 − v))

(2)
ε1

(ψ(−u)− ψ(−v)) +

1

6
ε21 (Γ(−ε1 − u)Γ(ε1 − v))

(3)
ε1

(ψ(−u)− ψ(−v)) +
1

6
ε1 (Γ(−ε1 − u)Γ(ε1 − v))

(3)
ε1

+

1

24
ε21 (Γ(−ε1 − u)Γ(ε1 − v))

(4)
ε1

]

.

We do not write here the contributions from factors (16). They can be taken into account by
replacing the terms

(Γ(−εi − u)Γ(εi − v))
(2)
εi
, (Γ(−εi − u)Γ(εi − v))

(3)
εi
, (Γ(−εi − u)Γ(εi − v))

(4)
εi

with

(

Γ(−εi − u)Γ(εi − v)

Γ(1 − εi)Γ(1 + εi)

)(2)

εi

,

(

Γ(−εi − u)Γ(εi − v)

Γ(1− εi)Γ(1 + εi)

)(3)

εi

,

(

Γ(−εi − u)Γ(εi − v)

Γ(1− εi)Γ(1 + εi)

)(4)

εi

,

which are the corresponding derivatives with respect to εi at the point εi = 0. Also we do not write
the terms which contain an irrational number of the type ζ(n), which have the same origin in the
denominators (16). The first term can be recognized as Eq. (17). We obtain for the second term
of (22) the decomposition in terms of ε1

1

ε21

[

M
(u+ε1,v)
2 (ε1)−M

(u,v)
2

]

≈

Γ2(1 + u+ v)Γ(−u)Γ(−v)

[

1

2ε1
(Γ(−ε1 − u)Γ(ε1 − v))

(2)
ε1

(ψ(−u)− ψ(−v)) +

1

6ε1
(Γ(−ε1 − u)Γ(ε1 − v))

(3)
ε1

+
1

6
(Γ(−ε1 − u)Γ(ε1 − v))

(3)
ε1

(ψ(−u)− ψ(−v)) +

1

24
(Γ(−ε1 − u)Γ(ε1 − v))

(4)
ε1

]

.

The derivatives are

(Γ(−ε1 − u)Γ(ε1 − v))
′

ε1
= (ψ(ε1 − v)− ψ(−ε1 − u)) Γ(−ε1 − u)Γ(ε1 − v)

(Γ(−ε1 − u)Γ(ε1 − v))
(2)
ε1

=
[

(ψ′(−v) + ψ′(−u)) + (ψ(−v)− ψ(−u))2
]

Γ(−u)Γ(−v).

26



Going back to the first term of Eq. (22) we derive, by using Eq. (15), that

M
(u+ε1,v+ε2)
2 (ε1, ε2, ε3) =

1

ε1ε2

Γ(−ε1 − u)Γ(−ε2 − v)Γ(ε2 − u)Γ(ε1 − v)Γ2(1 + u+ v)

Γ(1− ε3)Γ(1 + ε3)

−
1

ε2(ε1 + ε2)

Γ(−ε1 − u)Γ(−v)Γ(−u)Γ(ε1 − v)Γ2(1 + u+ v)

Γ(1− ε1)Γ(1 + ε1)

−
1

ε1(ε1 + ε2)

Γ(−u)Γ(−ε2 − v)Γ(ε2 − u)Γ(−v)Γ2(1 + u+ v)

Γ(1− ε2)Γ(1 + ε2)
. (23)

The factor Γ2(1 + u + v) is common and we omit it for brevity in the next equations. At the end
of these equalities we recover it in analogy with calculations just after Eq. (15) in the previous
section. It will be recovered after taking the limit of vanishing ε-terms. We need to decompose (23)
in terms of ε2 up to its first power. The result of this decomposition up to the mentioned factor
Γ2(1 + u+ v) is

M
(u+ε1,v+ε2)
2 (ε1, ε2, ε3) ≈

1

ε1
Γ(−ε1 − u)Γ(ε1 − v)Γ(−u)Γ(−v) (ψ(−u)− ψ(−v)− ψ(1 + ε1) + ψ(1− ε1)) +

1

ε21
Γ(−ε1 − u)Γ(ε1 − v)Γ(−u)Γ(−v)−

1

ε21
Γ2(−u)Γ2(−v) +

ε2

[

1

2ε1
Γ(−ε1 − u)Γ(ε1 − v) (Γ(ε2 − u)Γ(−ε2 − v))

(2)
ε2
−

1

ε21
Γ2(−u)Γ2(−v) (ψ(−u)− ψ(−v))

−
1

ε31
Γ(−ε1 − u)Γ(ε1 − v)Γ(−u)Γ(−v) +

1

ε31
Γ2(−u)Γ2(−v)

]

+ o(ε2)

Here we do not write the terms which are proportional to irrational numbers like ζ(n). They come

from denominators (16). The first terms in this expression without powers of ε2 is M
(u+ε1,v)
2 (ε1)

and it should be subtracted in Eq. (22), thus we have, up to terms proportional to irrational
numbers,

M
(u+ε1,v+ε2)
2 (ε1, ε2, ε3)−M

(u+ε1,v)
2 (ε1) ≈ ε2

[

1

ε21
(ψ(−u)− ψ(−v)) Γ2(−u)Γ2(−v)

−
1

2ε1
(Γ(−ε1 − u)Γ(ε1 − v))

(2)
ε1

Γ(−u)Γ(−v)−
1

6
(Γ(−ε1 − u)Γ(ε1 − v))

(3)
ε1

Γ(−u)Γ(−v)

−
ε1
24

(Γ(−ε1 − u)Γ(ε1 − v))
(4)
ε1

Γ(−u)Γ(−v) +
1

2ε1
Γ(−u)Γ(−v) (Γ(ε2 − u)Γ(−ε2 − v))

(2)
ε2

+
1

2
(Γ(−ε1 − u)Γ(ε1 − v))

′

ε1
(Γ(ε2 − u)Γ(−ε2 − v))

(2)
ε2

+
ε1
4
(Γ(−ε1 − u)Γ(ε1 − v))

(2)
ε1

(Γ(ε2 − u)Γ(−ε2 − v))
(2)
ε2
−

1

ε21
Γ2(−u)Γ2(−v) (ψ(−u)− ψ(−v))

]

.
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Thus, it does not contain poles in ε1, as it has to be,

M
(u+ε1,v+ε2)
2 (ε1, ε2, ε3)−M

(u+ε1,v)
2 (ε1) ≈

ε2

[

−
1

6
(Γ(−ε1 − u)Γ(ε1 − v))

(3)
ε1

Γ(−u)Γ(−v)−
ε1
24

(Γ(−ε1 − u)Γ(ε1 − v))
(4)
ε1

Γ(−u)Γ(−v)

+
1

2
(Γ(−ε1 − u)Γ(ε1 − v))

′

ε1
(Γ(ε2 − u)Γ(−ε2 − v))

(2)
ε2

+
ε1
4
(Γ(−ε1 − u)Γ(ε1 − v))

(2)
ε1

(Γ(ε2 − u)Γ(−ε2 − v))
(2)
ε2

]

.

The first term in Eq. (22) is

lim
ε2→0

1

ε1ε2

[

M
(u+ε1,v+ε2)
2 (ε1, ε2, ε3)−M

(u+ε1,v)
2 (ε1)

]

≈

Γ2(1 + u+ v)

[

−
1

6ε1
(Γ(−ε1 − u)Γ(ε1 − v))

(3)
ε1

Γ(−u)Γ(−v)

+
1

2ε1
(Γ(−ε1 − u)Γ(ε1 − v))

′

ε1
(Γ(ε2 − u)Γ(−ε2 − v))

(2)
ε2

−
1

24
(Γ(−ε1 − u)Γ(ε1 − v))

(4)
ε1

Γ(−u)Γ(−v)

+
1

4
(Γ(−ε1 − u)Γ(ε1 − v))

(2)
ε1

(Γ(ε2 − u)Γ(−ε2 − v))
(2)
ε2

]

.

Thus, we obtain limit for M
(u,v)
3 (ε1, ε2, ε3) when ε terms are vanishing

lim
ε2→0,ε1→0

M
(u,v)
3 (ε1, ε2, ε3) ≈

lim
ε2→0,ε1→0

(

1

ε1ε2

[

M
(u+ε1,v+ε2)
2 (ε1, ε2, ε3)−M

(u+ε1,v)
2 (ε1)

]

+
1

ε21

[

M
(u+ε1,v)
2 (ε1)−M

(u,v)
2

]

)

=

lim
ε2→0,ε1→0

Γ2(1 + u+ v)

[

−
1

6ε1
(Γ(−ε1 − u)Γ(ε1 − v))

(3)
ε1

Γ(−u)Γ(−v)

+
1

2ε1
(Γ(−ε1 − u)Γ(ε1 − v))

′

ε1
(Γ(ε2 − u)Γ(−ε2 − v))

(2)
ε2

−
1

24
(Γ(−ε1 − u)Γ(ε1 − v))

(4)
ε1

Γ(−u)Γ(−v)

+
1

4
(Γ(−ε1 − u)Γ(ε1 − v))

(2)
ε1

(Γ(ε2 − u)Γ(−ε2 − v))
(2)
ε2

]

+Γ2(1 + u+ v)Γ(−u)Γ(−v)

[

1

2ε1
(Γ(−ε1 − u)Γ(ε1 − v))

(2)
ε1

(ψ(−u)− ψ(−v)) +

1

6ε1
(Γ(−ε1 − u)Γ(ε1 − v))

(3)
ε1

+
1

6
(Γ(−ε1 − u)Γ(ε1 − v))

(3)
ε1

(ψ(−u)− ψ(−v)) +

1

24
(Γ(−ε1 − u)Γ(ε1 − v))

(4)
ε1

]

=
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Γ2(1 + u+ v)

[

1

4
(Γ(−ε1 − u)Γ(ε1 − v))

(2)
ε1

(Γ(ε2 − u)Γ(−ε2 − v))
(2)
ε2

]

+

Γ2(1 + u+ v)Γ(−u)Γ(−v)

[

1

6
(Γ(−ε1 − u)Γ(ε1 − v))

(3)
ε1

(ψ(−u)− ψ(−v))

]

(24)

This result is written up to terms proportional to irrational numbers, for example, of the type
ζ(n)Γ2(−u)Γ2(−v)Γ2(1+u+v), which is proportional to the MB transform of the first UD function.

7 Conclusions

In this paper we have explicitly calculated a new type of two-fold MB integrals. This type of
integrals has been obtained due to recursive relations for the momentum loop integrals which are
derived from Belokurov-Usyukina loop reduction method. All the integrals have been reduced to
the Appell hypergeometric function corresponding to one loop momentum integral. The recursion
creates an infinite system of reduction relations, which allowed us to represent the MB transform of
L+ 1 momentum loop integral in terms of MB transform of L momentum loop integrals. In order
to derive those relations, we needed to shift complex variables of the MB transforms on the right
hand sides of the reduction relation in order to organize the same dependence on the parameters x
and y as they stand on the left hand sides. For this purpose we need the representation (17) and
not the representation (21).

At the first site, the results (21) and (24) are difficult to analyse, since on the right hand sides
appear certain combinations of the higher order derivatives of the product of Euler gamma functions

dn

dεn
Γ(−ε− u)Γ(ε− v)|ε=0. (25)

These derivatives can be re-written as

dn

dεn
Γ(−ε− u)Γ(ε− v)|ε=0 = (∂u − ∂v)

nΓ(−u)Γ(−v),

what makes them transparent for use in various integral transformations, first of all in integrations
by parts.

However, the integration by parts in the plane of complex variables u and v can serve to us
just to prove the coincidence of two, at first view, different representations. The reason why the
representation for MB transforms of UD functions should be simple decomposition in terms of
derivatives of (25) or (26) is in the recursive construction of the MB images, which has nothing
to do with quantum field theory or with theory of polylogarithms. We will prove this observation
further. For this purpose for us the representation (21) is more useful than the representation
(17) used for derivation of the MB integrals which correspond to the Belokurov-Usyukina loop
reduction method. Actually, after four rung the difference between two representation disappears.
Nevertheless, we consider the integral relation that can be found in Ref. [1],

J(1, 1, 1− ε) ∼
1

2
[xεJ(1 − ε, 1 + ε, 1) + yεJ(1 − ε, 1 + ε, 1)]

and it follows that under the symbol of MB integral the identity is valid

D[1, 1, 1− ε] ≃
1

2
[xεD[1− ε, 1 + ε, 1] + yεD[1− ε, 1 + ε, 1]] (26)
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We recall this identity is valid under the integration over double complex measure and cannot be
consider as exact equality, this is why we write the symbol ≃ . In the right hand side we have
dependence on x and y while on the left hand side apparently we have not.

The benefits of the representation (26) are in very simple dependence on the variable ε, namely
it presents in two factors only,

D[1− ε, 1 + ε, 1] ∼ Γ(−u− ε)Γ(−v + ε)

The rest of factors in that MB transform does not depend on the parameters ε, so that they are not
important for the derivation with respect to ε. For example, the equation for M2 can be re-written
as

M2(ε1, ε2, ε3) ∼
1

ε2ε3
yε2D[1− ε1] +

1

ε1ε2
D[1 + ε3] +

1

ε1ε3
xε1D[1− ε2]

∼
1

ε2ε3
yε2 [xε1Γ(−u− ε1)Γ(−v + ε1) + yε1Γ(−u+ ε1)Γ(−v − ε1)]

+
1

ε1ε2

[

x−ε3Γ(−u− ε3)Γ(−v + ε3) + y−ε3Γ(−u+ ε3)Γ(−v − ε3)
]

+
1

ε1ε3
xε1 [xε2Γ(−u− ε2)Γ(−v + ε2) + yε2Γ(−u+ ε2)Γ(−v − ε2)] (27)

Obviously, in the limit of vanishing εi the value of the previous expression will contain the derivatives
(25) only, that is,

lim
ε2→0,ε1→0

M2(ε1, ε2, ε3) ∼
3

2
(Γ(−u− ε)Γ(−v + ε))

(2)
ε +

3

2
ln
x

y
(Γ(−u− ε)Γ(−v + ε))′ε +

1

4
ln2

x

y
Γ(−u)Γ(−v)

This expression does not have a form of (17) or (21), however it can be transformed to that form
by using integration by parts in the complex planes of u and v.

In the expression for M3, that is,

M3(ε1, ε2, ε3) ∼
1

ε2ε3
x−ε1M2(ε1) +

J−1

ε1ε2
x−ε1y−ε2M2(ε1, ε2, ε3) +

1

ε1ε3
y−ε2M2(ε2)

we substitute a structure found in (27), and again in the limit of vanishing εi we obtain the
decomposition in terms of the derivatives (25), that is,

lim
ε2→0,ε1→0

M3(ε1, ε2, ε3) ∼
5

12
(Γ(−u− ε)Γ(−v + ε))

(4)
ε +

5

6
ln
x

y
(Γ(−u− ε)Γ(−v + ε))

(3)
ε +

1

2
ln2 x

y
(Γ(−u− ε)Γ(−v + ε))

(2)
ε

+
1

12
ln3

x

y
(Γ(−u− ε)Γ(−v + ε))

′

ε (28)

By using the integration by part in the complex plane of u and v, we obtain the coincidence
with Eq. (24). Following the recursive procedure for higher numbers of n, we can obtain the
higher derivatives of the construction (25) multiplied by powers of ln x

y . At present, it is difficult to
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calculate the coefficients in front of the decomposition terms. However, it is clear that the finiteness
of the limit of vanishing εi has nothing to do with the polylogarithms, since instead of function Γ
of Euler we can write any other smooth function in the construction (27). Thus, the infinite sum
in the limit of vanishing εi of the quantities Mn(ε1, ε2, ε3) constructed from (26) has underlying
integrable structure which can be uncovered by identifying coefficients in front of the terms in the
expansion (28) for higher n. That integrable structure has nothing common with MB transform or
polylogarithms and is based on properties that can be studied by basic methods of mathematical
analysis.
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