On Multiple Zeta Values of Even Arguments

Michael E. Hoffman ${ }^{11}$
Dept. of Mathematics, U. S. Naval Academy
Annapolis, MD 21402 USA
and
Deutsches Elektronen-Synchrotron DESY
Platanenalle 6, D-15738 Zeuthen, Germany
meh@usna.edu

June 8, 2012
Keywords: multiple zeta values, symmetric functions, Bernoulli numbers
MR Classifications: Primary 11M32; Secondary 05E05, 11B68

Abstract

For $k \leq n$, let $E(2 n, k)$ be the sum of all multiple zeta values with even arguments whose weight is $2 n$ and whose depth is k. Of course $E(2 n, 1)$ is the value $\zeta(2 n)$ of the Riemann zeta function at $2 n$, and it is well known that $E(2 n, 2)=\frac{3}{4} \zeta(2 n)$. Recently Z. Shen and T. Cai gave formulas for $E(2 n, 3)$ and $E(2 n, 4)$ in terms $\zeta(2 n)$ and $\zeta(2) \zeta(2 n-2)$. We give two formulas for $E(2 n, k)$, both valid for arbitrary $k \leq n$, one of which generalizes the Shen-Cai results; by comparing the two we obtain a Bernoulli-number identity. We also give an explicit generating function for the numbers $E(2 n, k)$.

[^0]
1 Introduction and Statement of Results

For positive integers i_{1}, \ldots, i_{k} with $i_{1}>1$, we define the multiple zeta value $\zeta\left(i_{1}, \ldots, i_{k}\right)$ by

$$
\begin{equation*}
\zeta\left(i_{1}, \ldots, i_{k}\right)=\sum_{n_{1}>\cdots>n_{k} \geq 1} \frac{1}{n_{1}^{i_{1}} \cdots n_{k}^{i_{k}}} . \tag{1}
\end{equation*}
$$

The multiple zeta value (11) is said to have weight $i_{1}+\cdots+i_{k}$ and depth k. Many remarkable identities have been proved about these numbers, but in this note we will concentrate on the case where the i_{j} are even integers. Let $E(2 n, k)$ be the sum of all the multiple zeta values of even-integer arguments having weight $2 n$ and depth k, i.e.,

$$
E(2 n, k)=\sum_{\substack{i_{1}, \ldots, i_{k} \text { even } \\ i_{1}+\cdots+i_{k}=2 n}} \zeta\left(i_{1}, \ldots, i_{k}\right) .
$$

Of course

$$
\begin{equation*}
E(2 n, 1)=\zeta(2 n)=\frac{(-1)^{n-1} B_{2 n}(2 \pi)^{2 n}}{2(2 n)!} \tag{2}
\end{equation*}
$$

where $B_{2 n}$ is the $2 n$th Bernoulli number, by the classical formula of Euler. Euler also studied double zeta values (i.e., multiple zeta values of depth 2) and in his paper [2] gave two identities which read

$$
\begin{aligned}
\sum_{i=2}^{2 n-1}(-1)^{i} \zeta(i, 2 n-i) & =\frac{1}{2} \zeta(2 n) \\
\sum_{i=2}^{2 n-1} \zeta(i, 2 n-i) & =\zeta(2 n)
\end{aligned}
$$

in modern notation. From these it follows that

$$
E(2 n, 2)=\frac{3}{4} \zeta(2 n),
$$

though Gangl, Kaneko and Zagier [3] seem to be the first to have pointed it out in print. Recently Shen and Cai [10] proved the formulas

$$
\begin{align*}
& E(2 n, 3)=\frac{5}{8} \zeta(2 n)-\frac{1}{4} \zeta(2) \zeta(2 n-2), n \geq 3 \tag{3}\\
& E(2 n, 4)=\frac{35}{64} \zeta(2 n)-\frac{5}{16} \zeta(2) \zeta(2 n-2), n \geq 4 \tag{4}
\end{align*}
$$

Identity (3) was also proved by Machide [9] using a different method.
This begs the question whether there is a general formula of this type for $E(2 n, k)$. The pattern

$$
\frac{3}{4}, \quad \frac{3}{4} \cdot \frac{5}{6}=\frac{5}{8}, \quad \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8}=\frac{35}{64}
$$

of the leading coefficients makes one curious. In fact, the general result is as follows.

Theorem 1. For $k \leq n$,

$$
\begin{aligned}
E(2 n, k)=\frac{1}{2^{2(k-1)}} & \binom{2 k-1}{k} \zeta(2 n) \\
& -\sum_{j=1}^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{1}{2^{2 k-3}(2 j+1) B_{2 j}}\binom{2 k-2 j-1}{k} \zeta(2 j) \zeta(2 n-2 j) .
\end{aligned}
$$

The next two cases after (4) are

$$
\begin{aligned}
& E(2 n, 5)=\frac{63}{128} \zeta(2 n)-\frac{21}{64} \zeta(2) \zeta(2 n-2)+\frac{3}{64} \zeta(4) \zeta(2 n-4) \\
& E(2 n, 6)=\frac{231}{512} \zeta(2 n)-\frac{21}{64} \zeta(2) \zeta(2 n-2)+\frac{21}{256} \zeta(4) \zeta(2 n-4)
\end{aligned}
$$

We prove Theorem 1 in $\S 3$ below, using the generating function

$$
F(t, s)=1+\sum_{n \geq k \geq 1} E(2 n, k) t^{n} s^{k}
$$

In $\S 2$ we establish the following explicit formula.

Theorem 2.

$$
F(t, s)=\frac{\sin (\pi \sqrt{1-s} \sqrt{t})}{\sqrt{1-s} \sin (\pi \sqrt{t})}
$$

Our proof uses symmetric functions. We define a homomorphism \mathfrak{Z} : Sym $\rightarrow \mathbf{R}$, where Sym is the algebra of symmetric functions, and a family $N_{n, k} \in \operatorname{Sym}$ such that \mathfrak{Z} sends $N_{n, k}$ to $E(2 n, k)$. We then obtain a formula for the generating functions

$$
\mathcal{F}(t, s)=1+\sum_{n \geq k \geq 1} N_{n, k} t^{n} s^{k} \in \operatorname{Sym}[[t, s]]
$$

and apply \mathfrak{Z} to get Theorem 2.
From the form of $\mathcal{F}(t, s)$ we show that it satisfies a partial differential equation (Proposition 1 below), which is equivalent to a recurrence for the $N_{n, k}$. From the latter we obtain a formula for the $N_{n, k}$ in terms of complete and elementary symmetric functions, to which \mathfrak{Z} can be applied to give the following alternative formula for $E(2 n, k)$.

Theorem 3. For $k \leq n$,

$$
E(2 n, k)=\frac{(-1)^{n-k-1} \pi^{2 n}}{(2 n+1)!} \sum_{i=0}^{n-k}\binom{n-i}{k}\binom{2 n+1}{2 i} 2\left(2^{2 i-1}-1\right) B_{2 i} .
$$

Note that the sum given by Theorem 3has $n-k+1$ terms, while that given by Theorem 1 has $\left\lfloor\frac{k-1}{2}\right\rfloor+1$ terms. Yet another explicit formula for $E(2 n, k)$ can be obtained by setting $d=1$ in Theorem 7.1 of Komori, Matsumoto and Tsumura [7]. That formula expresses $E(2 n, k)$ as a sum over partitions of k, and it is not immediately clear how it relates to our two formulas.

Comparison of Theorems 1 and 3 establishes the following Bernoullinumber identity.

Theorem 4. For $k \leq n$,

$$
\begin{aligned}
& \sum_{i=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor}\binom{2 k-2 i-1}{k}\binom{2 n+1}{2 i+1} B_{2 n-2 i}= \\
& \quad(-1)^{k} 2^{2 k-2 n} \sum_{i=0}^{n-k}\binom{n-i}{k}\binom{2 n+1}{2 i}\left(2^{2 i-1}-1\right) B_{2 i}
\end{aligned}
$$

It is interesting to contrast this result with the Gessel-Viennot identity (see [1, Theorem 4.2]) valid on the complementary range:

$$
\begin{equation*}
\sum_{i=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor}\binom{2 k-2 i-1}{k}\binom{2 n+1}{2 i+1} B_{2 n-2 i}=\frac{2 n+1}{2}\binom{2 k-2 n}{k}, \quad k>n . \tag{5}
\end{equation*}
$$

Note that the right-hand side of equation (5) is zero unless $k \geq 2 n$.

2 Symmetric Functions

We think of Sym as the subring of $\mathbf{Q}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ consisting of those formal power series of bounded degree that are invariant under permutations of the x_{i}. A useful reference is the first chapter of Macdonald [8]. We denote the elementary, complete, and power-sum symmetric functions of degree i by e_{i}, h_{i}, and p_{i} respectively. They have associated generating functions

$$
\begin{aligned}
& E(t)=\sum_{j=0}^{\infty} e_{j} t^{j}=\prod_{i=1}^{\infty}\left(1+t x_{i}\right) \\
& H(t)=\sum_{j=0}^{\infty} h_{j} t^{j}=\prod_{i=1}^{\infty} \frac{1}{1-t x_{i}}=E(-t)^{-1} \\
& P(t)=\sum_{j=1}^{\infty} p_{j} t^{j-1}=\sum_{i=1}^{\infty} \frac{x_{i}}{1-t x_{i}}=\frac{H^{\prime}(t)}{H(t)} .
\end{aligned}
$$

As explained in [5] and in greater detail in [6], there is a homomorphism ζ : $\mathrm{Sym}^{0} \rightarrow \mathbf{R}$, where Sym^{0} is the subalgebra of Sym generated by $p_{2}, p_{3}, p_{4}, \ldots$, such that $\zeta\left(p_{i}\right)$ is the value $\zeta(i)$ of the Riemann zeta function at i, for $i \geq 2$ (in [5, 6] this homomorphism is extended to all of Sym, but we do not need the extension here). Let $\mathcal{D}: \mathrm{Sym} \rightarrow$ Sym be the degree-doubling map that sends x_{i} to x_{i}^{2}. Then $\mathcal{D}(\operatorname{Sym}) \subset \operatorname{Sym}^{0}$, so the composition $\mathfrak{Z}=\zeta \mathcal{D}$ is defined on all of Sym. (Alternatively, we can simply think of \mathfrak{Z} as sending x_{i} to $1 / i^{2}$: see [8, Ch. I, §2, ex. 21].) Note that $\mathfrak{Z}\left(p_{i}\right)=\zeta(2 i) \in \mathbf{R}$. Further, \mathfrak{Z} sends the monomial symmetric function $m_{i_{1}, \ldots, i_{k}}$ to the symmetrized sum of multiple zeta values

$$
\frac{1}{\left|\operatorname{Iso}\left(i_{1}, \ldots, i_{k}\right)\right|} \sum_{\sigma \in S_{k}} \zeta\left(2 i_{\sigma(1)}, 2 i_{\sigma(2)}, \ldots, 2 i_{\sigma(k)}\right)
$$

where S_{k} is the symmetric group on k letters and $\operatorname{Iso}\left(i_{1}, \ldots, i_{k}\right)$ is the subgroup of S_{k} that fixes $\left(i_{1}, \ldots, i_{k}\right)$ under the obvious action.

Now let $N_{n, k}$ be the sum of all the monomial symmetric functions corresponding to partitions of n having length k. Of course $N_{n, k}=0$ unless $k \leq n$, and $N_{k, k}=e_{k}$. Then \mathfrak{Z} sends $N_{n, k}$ to $E(2 n, k)$. Also, if we define (as in the introduction)

$$
\mathcal{F}(t, s)=1+\sum_{n \geq k \geq 1} N_{n, k} t^{n} s^{k}
$$

then \mathfrak{Z} sends $\mathcal{F}(t, s)$ to the generating function $F(t, s)$. We have the following simple description of $\mathcal{F}(t, s)$.

Lemma 1. $\mathcal{F}(t, s)=E((s-1) t) H(t)$.
Proof. Evidently $\mathcal{F}(t, s)$ has the formal factorization

$$
\prod_{i=1}^{\infty}\left(1+s t x_{i}+s t^{2} x_{i}^{2}+\cdots\right)=\prod_{i=1}^{\infty} \frac{1+(s-1) t x_{i}}{1-t x_{i}}=E((s-1) t) H(t)
$$

Proof of Theorem [2. Using the well-known formula for $\zeta(2,2, \ldots, 2)$ 4, Cor. 2.3],

$$
\begin{equation*}
\mathfrak{Z}\left(e_{n}\right)=\zeta(\underbrace{2,2, \ldots, 2}_{n})=\frac{\pi^{2 n}}{(2 n+1)!} . \tag{6}
\end{equation*}
$$

Hence

$$
\mathfrak{Z}(E(t))=\frac{\sinh (\pi \sqrt{t})}{\pi \sqrt{t}}
$$

and the image of $H(t)=E(-t)^{-1}$ is

$$
\mathfrak{Z}(H(t))=\frac{\pi \sqrt{-t}}{\sinh (\pi \sqrt{-t})}=\frac{\pi \sqrt{t}}{\sin (\pi \sqrt{t})} .
$$

Thus from Lemma $1 \underset{1}{ }(t, s)=\mathfrak{Z}(\mathcal{F}(t, s))$ is

$$
\mathfrak{Z}(E((s-1) t) H(t))=\frac{\sinh (\pi \sqrt{(s-1) t})}{\pi \sqrt{(s-1) t}} \frac{\pi \sqrt{t}}{\sin (\pi \sqrt{t})}=\frac{\sin (\pi \sqrt{(1-s) t})}{\sqrt{1-s} \sin (\pi \sqrt{t})}
$$

Taking limits as $s \rightarrow 1$ in Theorem 2, we obtain

$$
F(t, 1)=\frac{\pi \sqrt{t}}{\sin \pi \sqrt{t}}
$$

and so, taking the coefficient of t^{n}, the following result.

Corollary 1. For all $n \geq 1$,

$$
\sum_{k=1}^{n} E(2 n, k)=\frac{2\left(2^{2 n-1}-1\right)(-1)^{n-1} B_{2 n} \pi^{2 n}}{(2 n)!}
$$

Another consequence of Lemma is the following partial differential equation.

Proposition 1.

$$
t \frac{\partial \mathcal{F}}{\partial t}(t, s)+(1-s) \frac{\partial \mathcal{F}}{\partial s}(t, s)=t P(t) \mathcal{F}(t, s) .
$$

Proof. From Lemma 1 we have

$$
\begin{aligned}
& \frac{\partial \mathcal{F}}{\partial t}(t, s)=(s-1) E^{\prime}((s-1) t) H(t)+E((s-1) t) H^{\prime}(t) \\
& \frac{\partial \mathcal{F}}{\partial s}(t, s)=t E^{\prime}((s-1) t) H(t)
\end{aligned}
$$

from which the conclusion follows.
Now examine the coefficient of $t^{n} s^{k}$ in Proposition 1 to get the following.
Proposition 2. For $n \geq k+1$,

$$
p_{1} N_{n-1, k}+p_{2} N_{n-2, k}+\cdots+p_{n-k} N_{k, k}=(n-k) N_{n, k}+(k+1) N_{n, k+1} .
$$

It is also possible to prove this result directly via a counting argument like that used to prove the lemma of [6, p. 16].

The preceding result allows us to write $N_{n, k}$ explicitly in terms of complete and elementary symmetric functions as follows.

Lemma 2. For $r \geq 0$,

$$
N_{k+r, k}=\sum_{i=0}^{r}(-1)^{i}\binom{k+i}{i} h_{r-i} e_{k+i} .
$$

Proof. We use induction on r, the result being evident for $r=0$. Proposition 2 gives

$$
\sum_{i=1}^{r+1} p_{i} N_{k+r+1-i, k}=(r+1) N_{k+r+1, k}+(k+1) N_{k+r+1, k+1},
$$

which after application of the induction hypothesis becomes

$$
\begin{aligned}
& \sum_{i=1}^{r+1} \sum_{j=0}^{r+1-j}(-1)^{j} p_{i}\binom{k+j}{j} h_{r+1-i-j} N_{k+j, k+j}= \\
& \quad(r+1) N_{k+r+1, k}+(k+1) \sum_{j=0}^{r}\binom{k+1+j}{j} h_{r-j} N_{k+1+j, k+1+j} .
\end{aligned}
$$

The latter equation can be rewritten

$$
\begin{aligned}
& \sum_{j=0}^{r}(-1)^{j}\binom{k+j}{j} N_{k+j, k+j} \sum_{i=1}^{r+1-j} p_{i} h_{r+1-i-j}= \\
& \quad(r+1) N_{k+r+1, k}-(k+1) \sum_{j=1}^{r+1}(-1)^{j}\binom{k+j}{j-1} h_{r+1-j} N_{k+j, k+j} .
\end{aligned}
$$

Now the inner sum on the left-hand side is $(r+1-j) h_{r+1-j}$ by the recurrence relating the complete and power-sum symmetric functions, so we have

$$
\begin{aligned}
& (r+1) N_{k+r+1, k}-(r+1) N_{k, k} h_{r+1}= \\
& \quad \sum_{j=1}^{r+1}(-1)^{j} h_{r+1-j} N_{k+j, k+j}\left((r+1-j)\binom{k+j}{j}+(k+1)\binom{k+j}{j-1}\right),
\end{aligned}
$$

and the conclusion follows after the observation that $(k+1)\binom{k+j}{j-1}=j\binom{k+j}{j}$.

Proof of Theorem 3. Rewrite Lemma 2 in the form

$$
N_{n, k}=\sum_{i=0}^{n-k}\binom{n-i}{k}(-1)^{n-k-i} h_{i} e_{n-i}
$$

and apply the homomorphism \mathfrak{Z}, using equation (6) and

$$
\mathfrak{Z}\left(h_{i}\right)=\frac{2\left(2^{2 i-1}-1\right)(-1)^{i-1} B_{2 i} \pi^{2 i}}{(2 i)!}
$$

3 Proof of Theorems 1 and 4

From the introduction we recall the statement of Theorem 1:

$$
\begin{aligned}
E(2 n, k)=\frac{1}{2^{2(k-1)}} & \binom{2 k-1}{k} \zeta(2 n) \\
& -\sum_{j=1}^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{1}{2^{2 k-3}(2 j+1) B_{2 j}}\binom{2 k-2 j-1}{k} \zeta(2 j) \zeta(2 n-2 j) .
\end{aligned}
$$

We note that Euler's formula (2) can be used to write the result in the alternative form

$$
\begin{equation*}
E(2 n, k)=\sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{(-1)^{j} \pi^{2 j} \zeta(2 n-2 j)}{2^{2 k-2 j-2}(2 j+1)!}\binom{2 k-2 j-1}{k} \tag{7}
\end{equation*}
$$

which avoids mention of Bernoulli numbers.
We now expand out the generating function $F(t, s)$. We have

$$
\begin{aligned}
F(t, s)=\frac{1}{\sqrt{1-s} \sin \pi \sqrt{t}} & \sin (\pi \sqrt{t} \sqrt{1-s}) \\
& =\frac{\pi \sqrt{t}}{\sin \pi \sqrt{t}} \sum_{j=0}^{\infty} \frac{(-1)^{j} \pi^{2 j} t^{j}(1-s)^{j}}{(2 j+1)!}=\sum_{k=0}^{\infty} s^{k} G_{k}(t)
\end{aligned}
$$

where

$$
\begin{equation*}
G_{k}(t)=(-1)^{k} \frac{\pi \sqrt{t}}{\sin \pi \sqrt{t}} \sum_{j \geq k} \frac{(-1)^{j} \pi^{2 j} t^{j}}{(2 j+1)!}\binom{j}{k} . \tag{8}
\end{equation*}
$$

Then Theorem 1 is equivalent to the statement that

$$
G_{k}(t)=\sum_{n \geq k} t^{n} \sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{(-1)^{j} \pi^{2 j} \zeta(2 n-2 j)}{2^{2 k-2 j-2}(2 j+1)!}\binom{2 k-2 j-1}{k}
$$

for all k. We can write the latter sum as

$$
\begin{align*}
& \sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{\left(-4 \pi^{2} t\right)^{j}}{2^{2 k-2}(2 j+1)!}\binom{2 k-2 j-1}{k} \sum_{n \geq j+1} \zeta(2 n-2 j) t^{n-j}- \\
& \sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{\left(-4 \pi^{2} t\right)^{j}}{2^{2 k-2}(2 j+1)!}\binom{2 k-2 j-1}{k} \sum_{n=j+1}^{k-1} \zeta(2 n-2 j) t^{n-j}= \\
& \frac{1}{2}(1-\pi \sqrt{t} \cot \pi \sqrt{t}) \sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{\left(-4 \pi^{2} t\right)^{j}}{2^{2 k-2}(2 j+1)!}\binom{2 k-2 j-1}{k}- \\
& \sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{\left(-4 \pi^{2} t\right)^{j}}{2^{2 k-2}(2 j+1)!}\binom{2 k-2 j-1}{k} \sum_{n=j+1}^{k-1} \zeta(2 n-2 j) t^{n-j} \tag{9}
\end{align*}
$$

where we have used the generating function

$$
\frac{1}{2}(1-\pi \sqrt{t} \cot \pi \sqrt{t})=\sum_{i=1}^{\infty} \zeta(2 i) t^{i}
$$

Note that the last sum in (9) is a polynomial that cancels exactly those terms in

$$
\begin{equation*}
\frac{1}{2}(1-\pi \sqrt{t} \cot \pi \sqrt{t}) \sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{\left(-4 \pi^{2} t\right)^{j}}{2^{2 k-2}(2 j+1)!}\binom{2 k-2 j-1}{k} \tag{10}
\end{equation*}
$$

of degree less than k. Thus, to prove Theorem 1 it suffices to show that

$$
G_{k}(t)=\text { terms of degree } \geq k \text { in expression (10). }
$$

From equation (8) it is evident that

$$
\begin{equation*}
G_{k}(t)=\frac{\pi \sqrt{t}}{\sin \pi \sqrt{t}} \cdot \frac{(-t)^{k}}{k!} \cdot \frac{d^{k}}{d t^{k}}\left(\frac{\sin \pi \sqrt{t}}{\pi \sqrt{t}}\right) . \tag{11}
\end{equation*}
$$

We use this to obtain an explicit formula for $G_{k}(t)$.
Lemma 3. For $k \geq 0$,

$$
G_{k}(t)=P_{k}\left(\pi^{2} t\right) \pi \sqrt{t} \cot \pi \sqrt{t}+Q_{k}\left(\pi^{2} t\right)
$$

where P_{k}, Q_{k} are polynomials defined by

$$
\begin{aligned}
P_{k}(x) & =-\sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{(-4 x)^{j}}{2^{2 k-1}(2 j+1)!}\binom{2 k-2 j-1}{k} \\
Q_{k}(x) & =\sum_{j=0}^{\left\lfloor\frac{k}{2}\right\rfloor} \frac{(-4 x)^{j}}{2^{2 k}(2 j)!}\binom{2 k-2 j}{k}
\end{aligned}
$$

Proof. In view of equation (11), the conclusion is equivalent to

$$
f^{(k)}(t)=(-1)^{k} k!t^{-k} P_{k}\left(\pi^{2} t\right) \cos \pi \sqrt{t}+(-1)^{k} k!t^{-k} Q_{k}\left(\pi^{2} t\right) f(t)
$$

where $f(t)=\sin \pi \sqrt{t} / \pi \sqrt{t}$. Differentiating, one sees that the polynomials P_{k} and Q_{k} are determined by the recurrence

$$
\begin{aligned}
& (k+1) P_{k+1}(x)=k P_{k}(x)-x P_{k}^{\prime}(x)-\frac{1}{2} Q_{k}(x) \\
& (k+1) Q_{k+1}(x)=\frac{2 k+1}{2} Q_{k}(x)-x Q_{k}^{\prime}(x)+\frac{x}{2} P_{k}(x)
\end{aligned}
$$

together with the initial conditions $P_{0}(x)=0, Q_{0}(x)=1$. The recurrence and initial conditions are satisfied by the explicit formulas above.

Proof of Theorem 1. Using Lemma 3, we have

$$
\begin{aligned}
& G_{k}(t)=-\sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{\left(-4 \pi^{2} t\right)^{j}}{2^{2 k-1}(2 j+1)!}\binom{2 k-2 j-1}{k} \pi \sqrt{t} \cot \pi \sqrt{t} \\
&+\sum_{j=0}^{\left\lfloor\frac{k}{2}\right\rfloor} \frac{\left(-4 \pi^{2} t\right)^{j}}{2^{2 k}(2 j)!}\binom{2 k-2 j}{k}= \\
& \frac{1}{2}(1-\pi \sqrt{t} \cot \pi \sqrt{t}) \sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{\left(-4 \pi^{2} t\right)^{j}}{2^{2 k-2}(2 j+1)!}\binom{2 k-2 j-1}{k} \\
& \quad+\text { terms of degree }<k
\end{aligned}
$$

and this completes the proof.

Proof of Theorem 4. Using Theorem 1 in the form of equation (7), eliminate $\zeta(2 n-2 j)$ using Euler's formula (2) and then compare with Theorem 3 to get

$$
\begin{aligned}
\sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor} \frac{(-1)^{n-1} \pi^{2 n} B_{2 n-2 j}}{2^{2 k-2 n-1}(2 n-2 j)!(2 j+1)!}\binom{2 k-2 j-1}{k}= \\
\frac{(-1)^{n-k-1} \pi^{2 n}}{(2 n+1)!} \sum_{i=0}^{n-k}\binom{n-i}{k}\binom{2 n+1}{2 i} 2\left(2^{2 i-1}-1\right) B_{2 i}
\end{aligned}
$$

Now multiply both sides by $(-1)^{n-1} 2^{2 k-2 n-1} \pi^{-2 n}(2 n+1)$! and rewrite the factorials on the left-hand side as a binomial coefficient.

References

[1] W. Y. C. Chen and L. H. Sun, Extended Zeilberger's algorithm for identities on Bernoulli and Euler polynomials, J. Number Theory 129 (2009), 2111-2132.
[2] L. Euler, Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol. 20 (1775), 140-186; reprinted in Opera Omnia, ser. I, vol. 15, B. G. Teubner, Berlin, 1927, pp. 217-267.
[3] H. Gangl, M. Kaneko, and D. Zagier, Double zeta values and modular forms, in Automorphic Forms and Zeta Functions, S. Böcherer et. al. (eds.), World Scientific, Singapore, 2006, pp. 71-106.
[4] M. E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), 275-290.
[5] M. E. Hoffman, The algebra of multiple harmonic series, J. Algebra 194 (1997), 477-495.
[6] M. E. Hoffman, A character on the quasi-symmetric functions coming from multiple zeta values, Electron. J. Combin. 15 (2008), res. art. 97.
[7] Y. Komori, K. Matsumoto and H. Tsumura, A study on multiple zeta values from the viewpoint of zeta-functions of root systems, preprint arXiv:1205.0182.
[8] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Univ. Press, New York, 1995.
[9] T. Machide, Extended double shuffle relations and the generating function of triple zeta values of any fixed weight, preprint arXiv:1204.4085.
[10] Z. Shen and T. Cai, Some formulas for multiple zeta values, J. Number Theory 132 (2012), 314-323.

[^0]: ${ }^{1}$ Supported by a grant from the German Academic Exchange Service (DAAD) during the preparation of this paper. The author also thanks DESY for providing facilities and financial support for travel.

