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Abstract

The use of chirally rotated boundary conditions provides a formulation of the
Schrödinger functional that is compatible with automatic O(a) improvement of
Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a)
effects requires the non-perturbative tuning of the critical mass and one additional
boundary counterterm. We present the results of such a tuning in a quenched setup
for several values of the renormalized gauge coupling, from perturbative to non-
perturbative regimes, and for a range of lattice spacings. We also check that the
correct boundary conditions and symmetries are restored in the continuum limit.
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1 Introduction

The Schrödinger functional of QCD [1,2,3] is the gauge invariant functional integral for
QCD on a hyper-cylinder where the fields satisfy periodic boundary conditions in the
spatial directions and Dirichlet boundary conditions at the Euclidean times 0 and T . The
SF is non-perturbatively defined and it has been shown to be very successful when used
as a renormalization scheme for lattice QCD. An incomplete set of results obtained using
the SF is given by refs. [4,5,6,7,8,9,10,11,12].

Because of the Dirichlet boundary conditions in the time direction, the SF has a spectral
gap even at zero quark mass [2,13], thus allowing to use the SF as a massless renormaliza-
tion scheme. Moreover, due to the possibility of applying finite-size techniques, the SF is
an ideal framework to evaluate scale-dependent quantities over a wide range of energies,
covering the perturbative up to the non-perturbative regimes. Such a framework is needed
when studying non-perturbative renormalization on the lattice. Another good property
of the SF is the ability to define gauge invariant quark sources, making it possible to
construct gauge invariant correlation functions to determine renormalization factors.

The implementation of the SF on the lattice beyond the pure gauge theory is not a
straightforward issue. Depending on the bulk lattice Dirac operator adopted, boundary
terms in the lattice action may need to be added in order to recover the correct boundary
conditions in the continuum limit. For the implementation with Wilson fermions [2,3], the
boundary conditions arise naturally [13] and no fine-tuning is needed near the boundary.
For Ginsparg-Wilson fermions, specific boundary terms have to be added to the lattice
action in order to recover the correct continuum limit [13]. A related issue is the defini-
tion of boundary conditions in order to achieve automatic O(a) improvement [14] with
massless Wilson quarks. In this case one would like to have boundary conditions in the
continuum limit that allow Wilson fermions to maintain automatic O(a) improvement,
similarly to what happens with twisted mass fermions. A solution to this problem has
been proposed recently by Sint [15], called the chirally rotated Schrödinger functional
(χSF). Being compatible with automatic O(a) improvement, makes the χSF an ideal
setup for renormalizing bare operators computed with Wilson twisted mass fermions at
maximal twist [16] and it may have several advantages compared with the standard SF.
Here we just mention the possibility of computing renormalization factors of four-fermion
operators (like for BK) or of twist-2 operators (like for 〈x〉) free of O(a) corrections.

The main content of this paper is the numerical investigation of the non-perturbative
tuning of the χSF in a quenched setup. In sect. 2 we start with Wilson twisted mass
fermions as an example of automatic O(a) improvement. Then in sect. 3 we discuss the
χSF in the continuum and its relationship with automatic O(a) improvement. In sect. 4
we introduce the appropriate lattice action for Wilson fermions and the boundary coun-
terterms and in sect. 5 we discuss the non-perturbative tuning of the critical mass and
of the relevant boundary counterterm needed to obtain the correct continuum limit. In
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sect. 6 we check that the proper symmetries and boundary conditions are recovered in
the continuum limit. In a forthcoming paper [17] we will study the application of the
χSF renormalization scheme to the determination of several physically relevant quanti-
ties. The computation of such quantities will moreover allow us to perform a continuum
limit scaling test for cutoff effects both for small and large volume calculations.

2 Wilson twisted mass fermions and automatic O(a) improvement

The Wilson twisted mass (Wtm) formulation [18,19] is a lattice action that provides a
solid framework to perform large scale simulations with Nf = 0, 2 [20,21,16,22] and more
recently Nf = 2 + 1 + 1 [23] flavors of dynamical fermions. One of its advantages is the
automatic O(a) improvement of physical correlation functions [14], which requires the
non-perturbative tuning of just a single parameter: the critical mass mcr. The resulting
lattice action is referred to as Wtm at maximal twist. Clearly it would be desirable to
retain automatic O(a) improvement thorugh the process of renormalizing local operators.

We now briefly summarize how automatic O(a) improvement works for Wilson twisted
mass fermions in a finite volume without boundaries. The very same mechanism will be
used in the next section to show how the χSF retains this property. The action for twisted
mass QCD (tmQCD) in the continuum for a flavor doublet χ of fermions is

S =
∫
d4x χ(x)

[
γµDµ +mq + iµqγ5τ

3
]
χ(x), (2.1)

where mq is the so-called untwisted mass, µq the twisted mass and τ 3 the third Pauli
matrix. Performing the following non-anomalous change of basis

ψ(x) = eiωγ5τ
3/2χ(x), ψ(x) = χ(x)eiωγ5τ

3/2, ω = arctan

(
µq

mq

)
, (2.2)

it is easy to see that the tmQCD action (2.8) is equivalent to the standard QCD action

for degenerate Nf = 2 fermions ψ with mass M =
√
m2

q + µ2
q. This trivial change of basis

becomes non-trivial once we decide to discretize the QCD action with Wilson fermions
obtaining

S = a4
∑
x

χ(x)
[
DW +m0 + iµqγ5τ

3
]
χ(x) , (2.3)

where DW is the standard Wilson operator

DW =
1

2

[(
∇µ +∇∗µ

)
γµ − a∇∗µ∇µ

]
. (2.4)

The Wtm action (2.3) has the proper continuum limit [18] and, after tuning the bare un-
twisted mass m0 to its critical value mcr, physical correlation functions are automatically
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O(a) improved [14] 2 . The property of automatic O(a) improvement of physical correla-
tion functions is a consequence of the different transformation properties of the mass term
and the Wilson term under vector and axial symmetries.

We start by noting that the Wtm lattice action (2.3) is invariant under the transformation
R1,2

5 × D̃1,2 where

R1,2
5 :

χ(x)→ iγ5τ
1,2χ(x)

χ(x)→ χ(x)iγ5τ
1,2

(2.5)

is a discrete chiral transformation and

D̃1,2 :


U(x;µ)→ U †(−x− aµ̂;µ)

χ(x)→ iτ 1,2e3iπ/2χ(−x)

χ(x)→ χ(−x) (−iτ 1,2) e3iπ/2 ,

(2.6)

is a discrete vector transformation combined with a transformation that essentially counts
the dimensions of the fields [14]. We consider a general multiplicatively renormalizable
multilocal lattice field Φ that is even under the transformationR1,2

5 ×D̃1,2. In the following
we will refer to even (odd) operators and correlation functions under a transformation if
they are invariant (change sign) under that transformation. The discretization errors of
the lattice correlation function 〈Φ〉 are described by the Symanzik effective theory [30].
The Symanzik effective action corresponding to (2.3) (with m0 = mcr) reads

Seff = S0 + aS1 + . . . , (2.7)

where the target continuum theory is

S0 =
∫
d4x χ(x)

[
γµDµ + iµqγ5τ

3
]
χ(x) . (2.8)

We recall that the effective theory is constructed taking into account the symmetries of
the lattice action [31]. This implies that the higher-dimensional correction terms in the
effective action

S1 =
∫
d4y L1(y) L1(y) =

∑
i

ciOi(y) (2.9)

are R1,2
5 × D̃1,2 even. After applying the equations of motion, the only operators Oi con-

tributing to on-shell correlation functions for vanishing untwisted quark mass are [31,32]

iχσµνFµνχ, µ2
qχχ , (2.10)

where σµν = i
2

[γµ, γν ] and Fµν is the gluon field strength tensor. We observe that, even

if both S0 and S1 are invariant under R1,2
5 × D̃1,2, the continuum theory is separately

2 For other proofs of automatic O(a) improvement see refs. [24,25,26,27,28,29].
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invariant under R1,2
5 and D̃1,2, while L1 is odd under both R1,2

5 and D̃1,2. In the effective
theory Φ is represented by an effective field

Φeff = Φ0 + aΦ1 + . . . , (2.11)

where Φ1 represents a linear combination of O(a) counterterms specific to the field Φ. A
renormalized lattice correlation function of the field Φ to order a in the effective theory
is then given by

〈Φ〉 → 〈Φ0〉0 − a
∫
d4y 〈Φ0L1(y)〉0 + a〈Φ1〉0 + . . . (2.12)

where the expectation values 〈· · · 〉0 are to be taken in the continuum theory with action
S0.

If we are interested in a non-vanishing correlator in the continuum limit, 〈Φ0〉0 6= 0, Φ0

must be even under both R1,2
5 and D̃1,2. Because of its higher dimensionality, this implies

that Φ1 is odd under D̃1,2 and thus odd under R1,2
5 as well. We have already noticed that

L1 is odd under both R1,2
5 and D̃1,2. We can conclude that both 〈Φ1〉0 and

∫
d4y 〈Φ0L1(y)〉0

vanish because the continuum theory is invariant 3 under R1,2
5 .

The key point for the absence of O(a) terms in the Symanzik expansion of R1,2
5 even

correlation functions is that the continuum action (2.8) is invariant under the discrete
chiral transformation R1,2

5 , while all the operators in eq. (2.10) of the Symanzik expansion
of the lattice action are odd under the same discrete chiral symmetry transformation.
Furthermore, the form of the continuum theory (2.8) that guarantees automatic O(a)
improvement is a direct consequence of the non-perturbative tuning of m0 = mcr. Possible
uncertainties of O(a) in the determination of the critical mass mcr are proportional to χχ,
hence their insertions in the effective theory vanish as the insertions of L1 do.

Another way of seeing automatic O(a) improvement is by saying that the lattice ac-
tion (2.3) has two distinct sources of chiral symmetry breaking: the Wilson term (together
with the critical mass mcr) and the twisted mass term. Automatic O(a) improvement is
a consequence of the fact that one of the two terms (the twisted mass term in our basis)
retains the discrete chiral symmetry R1,2

5 . In the next section we show that the same idea
applies to the χSF where now the two source of chiral symmetry breaking are the Wilson
term and the boundary conditions satisfied by the fermion fields.

It might come as a surprise that automatic O(a) improvement works only for correlation
functions that are even under R1,2

5 . To understand this we need to do a step back to our
target continuum theory (2.8). We have shown in this section that tmQCD and QCD
are the same continuum theories written in a different fermion basis. Therefore QCD and

3 As usual possible contact terms in
∫
d4y 〈Φ0L1(y)〉0 can be traded for terms with the same

symmetry properties of 〈Φ1〉0 without invalidating the proof.
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tmQCD share the same symmetry properties even if the symmetry transformations take
different forms in the different basis. In app. A we collect few symmetry transformations
in the twisted basis for a generic twist angle ω. TheR1,2

5 transformation applied to fermion
fields whose target continuum theory is eq. (2.8), i.e. ω = π/2, corresponds to a vector
(flavor) transformation in the basis where the QCD action takes its standard form, i.e.
the mass term takes its standard form. It is easy to see it considering eq. (A.6) with
αaV = (π, 0, 0) and ω = 0 or ω = π/2. To summarize the R1,2

5 transformation takes the
form of a discrete chiral transformation, but it has the physical meaning of a vector (flavor)
transformation. For this reason in the following we will refer to R1,2

5 -even correlation
functions as “physical” to distinguish them from the correlation functions that vanish in
the continuum limit.

3 Chirally rotated Schrödinger functional

A well-known and successful non-perturbative renormalization scheme is the so-called
Schrödinger functional (SF) scheme. The SF for QCD is the standard QCD partition func-
tion where the fermion and gauge degrees of freedom satisfy Dirichlet boundary conditions
at x0 = 0 and T . Periodic boundary conditions in the spatial directions are employed for
the gauge fields, while fermion fields can be defined to be periodic up to a phase

ψ(x+ Lk̂) = eiθkψ(x) − π < θk ≤ π. (3.1)

The boundary conditions for the gauge fields are described in detail in ref. [1,31]. In the
following we will concentrate only on the fermionic fields and assume throughout that the
boundary conditions for the gauge fields in the continuum and later on the lattice are the
standard ones. A natural choice for Dirichlet boundary conditions (b.c.) for the fermion
fields are the so-called standard SF b.c. [2,13]

P+ ψ(x)|x0=0 = 0 P− ψ(x)|x0=T = 0 via T (3.2)

ψ(x)P−|x0=0 = 0 via C ψ(x)P+|x0=T = 0 via T and C (3.3)

with the projectors,

P± =
1

2
(1± γ0) , (3.4)

and where we have specified the discrete symmetries (charge conjugation C and time
reversal T ) that relate the different boundary conditions (see app. A for their definitions).
The boundary fermion fields are defined as

P− ψ(x)|x0=0 = ζ(~x) P+ ψ(x)|x0=T = ζ ′(~x) (3.5)

ψ(x)P+|x0=0 = ζ(~x) ψ(x)P−|x0=T = ζ
′
(~x) . (3.6)
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Even in the massless limit standard SF b.c. break chiral symmetry. Studying the transfor-
mation of the SF propagator under a chiral symmetry transformation one observes that
the SF b.c. induce a unit mass-like term at the boundaries [13]. The breaking of chiral
symmetry by the boundary conditions implies, contrary to what happens in a finite vol-
ume without boundaries, that Wtm at maximal twist is affected by O(a) discretization
errors.

From the proof of automatic O(a) improvement presented in sect. 2, we understand that
the relevant property to preserve automatic O(a) improvement is the way chiral symmetry
is broken in the continuum theory (by a mass term or by boundary conditions) with respect
to the way the Wilson term does in the lattice theory. We recall that in the case of Wtm
without boundaries the twisted mass term is invariant underR1,2

5 , while the Wilson term is
not. One might thus think to have in the continuum theory Dirichlet boundary conditions
invariant under R1,2

5 . The presence of the Wilson term at non-zero lattice spacing should
not harm the property of automatic O(a) improvement.

One possible solution to this problem is to mimic exactly what is done with tmQCD.
In the continuum, the boundary conditions preserving R1,2

5 can be obtained from the
homogeneous standard SF boundary conditions via the non-singlet axial transformation
defined in eq. (2.2). If we consider a flavor doublet of fermions and we apply such a
rotation to the quark and anti-quark fields, the boundary conditions take the form,

Q̃+ χ(x)|x0=0 = 0 Q̃− χ(x)|x0=T = 0 via Tπ/2 (3.7)

χ(x) Q̃+|x0=0 = 0 via C χ(x) Q̃−|x0=T = 0 via Tπ/2 and C (3.8)

with projectors

Q̃± =
1

2

(
1± iγ0γ5τ

3
)
. (3.9)

These are the chirally rotated b.c., which we will refer to as the χSF b.c. (see app. A for
the definition of Tπ/2). The boundary fields can be defined as

Q̃− χ(x)|x0=0 = ζ(~x) Q̃+ χ(x)|x0=T = ζ ′(~x) (3.10)

χ(x) Q̃−|x0=0 = ζ(~x) χ(x) Q̃+|x0=T = ζ
′
(~x) . (3.11)

It is important to notice that the correspondence between the SF and the χSF is analogous
to that between QCD and tmQCD. The symmetries of the SF are the same as those of
QCD while the symmetries of the χSF correspond to those of tmQCD at maximal twist.
In fact, these symmetries are not different in the two formulations, they are just expressed
in a different basis. In the continuum, the SF and the χSF have all the same symmetries.

The transformations of eqs. (2.2) are a trivial change of basis in the continuum theory, so
one might hope that on the lattice massless Wilson fermions with χSF b.c. will provide
a framework for a finite volume scheme compatible with automatic O(a) improvement.
We have noted before though that standard SF b.c. arise naturally when performing the
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continuum limit with massless Wilson fermions. This implies that in order to recover
the χSF b.c. in the continuum limit additional terms have to be added to the Wilson
action near the boundaries. This problem has been solved by Sint in [15] using orbifolding
techiques. Orbifolding assures that the proper b.c. are satisfied at tree-level of the lattice
theory. This is sufficient to identify the proper terms to add to the lattice action near
the boundaries. The study of the renormalization of the theory will teach us if additional
terms are needed to obtain the correct continuum limit in the interacting case. In the
next section we discuss in more details the lattice action proposed in [15].

We conclude this section by emphasizing that the χSF in the continuum limit is the
same renormalization scheme as the standard SF, if the same kinematical conditions are
chosen. It is only at non-zero lattice spacing where the two schemes differ. This property
is important for many reasons. Here we just mention that previous results obtained with
the standard SF can be used to check the validity of the continuum limit of the χSF.
We will use this property in our continuum limit scaling studies in ref. [17]. Moreover,
if one is interested in renormalizing certain operators for which the evolution with the
renormalization scale has already been computed with the standard SF, then it is sufficient
to compute the proper renormalization factors at the lattice spacings where the infinite
volume operators are used. For the scale evolution the results from the standard SF can
then be used.

4 χSF with Wilson fermions

The construction of a lattice action that in the continuum limit goes into QCD with
χSF b.c. is a non-trivial task. In ref. [15] three lattice actions have been proposed which
satisfy this property. These actions are the standard Wilson action in the bulk of the
hyper-cylinder with three different local modifications close to the time boundaries. These
modifications are necessary to obtain the χSF b.c. in the continuum limit.

In this section we briefly discuss the lattice action, that from now on we call Wilson χSF
(WχSF), we have used in our numerical investigation. For additional details about the
other two formulations see ref. [15]. We consider a doublet of fermions χ = (χu, χd)

T and
a lattice L3 × [0, T ] with spacing a. The WχSF action reads

SF = a4
T∑

x0=0

∑
x

χ(x) (DW +m0)χ(x) . (4.1)
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where

aDW χ(x) =


−U0(x)P−χ(x+ a0̂) + (K + iγ5τ

3P−)χ(x) if x0 = 0 ,

aDW χ(x) if 0 < x0 < T ,

(K + iγ5τ
3P+)χ(x)− U0(x− a0̂)†P+χ(x− a0̂) if x0 = T ,

(4.2)

satisfying, as the twisted mass operator, the hermiticity property,

τ 1,2γ5DW γ5 τ
1,2 = D†W . (4.3)

DW is the massless Wilson operator defined in eq. (2.4) and it may be written as

aDW χ(x) = −U0(x)P−χ(x+ a0̂) +Kχ(x)− U0(x− a0̂)†P+χ(x− a0̂) , (4.4)

with K, the dimensionless time-diagonal kernel of the Wilson operator,

K = 1 +
3∑

k=1

a

2
{γk [∇∗k(x) +∇k(x)]− a∇∗k(x)∇k(x)} . (4.5)

The spectrum of the Hermitean lattice operator, γ5τ
1,2DW, is bounded from below [15],

as in the continuum, with a non-vanishing minimum eigenvalue which coincides with the
one in the continuum theory in the limit a→ 0.

We note immediately that the main difference between the WχSF and the standard SF
is the presence of an additional term

χ(x)iγ5τ
3P−χ(x)δx0,0 + χ(x)iγ5τ

3P+χ(x)δx0,T , (4.6)

localized at the boundaries. This term is necessary but not sufficient to recover the proper
b.c. in the continuum limit.

To ensure the correct continuum limit, one must account for all relevant operators allowed
by the symmetries of the action above. This means to consider operators of dimension
four or less for the bulk action. There is one such operator, χχ, and the corresponding
counterterm is the term proportional to the critical quark mass, mcr. This is the standard
operator that is present for all Wilson actions due to the breaking of chiral symmetry by
the Wilson term.

Similarly, we must include all permitted boundary operators of dimension three or less.
Again, the one allowed operator is χχ [15], which gives rise to the following counterterm
to the lattice action,

δS3 = (zf − 1)a3
∑
x

(χχ|x0=0 + χχ|x0=T ) .

Such an operator would be forbidden in the continuum action, but the reduced symmetries
of the Wilson action do not allow us to exclude this operator at non-zero lattice spacing.
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The presence of δS3 can then be understood as necessary to restore in the continuum
limit the symmetries broken by the Wilson term. More specifically the Wilson term, as
the δS3 term, break the discrete symmetry R1,2

5 . We have noticed in sect. 2 that to ensure
automatic O(a) improvement we want to have a target continuum action and b.c. invariant
under an R1,2

5 transformation. The parameter zf has to be tuned in order to recover the
proper symmetries in the continuum limit that ensures automatic O(a) improvement.
Since R1,2

5 is a symmetry of the massless continuum theory, which is only broken in the
regularization procedure, zf accounts for a finite renormalization, that is, it obeys the
form,

zf (g0) = z
(0)
f + z

(1)
f g2

0 +O(g4
0) , (4.7)

with all coefficients in the expansion being finite. However the fact that δS3 is not an ir-
relevant operator implies that an only perturbative computation of zf is not sufficient and
that we then must compute the bare coupling dependence of zf (g0) non-perturbatively.

In perturbation theory, only the tree-level value of zf is known at present where it assumes

a value z
(0)
f = 1. We have determined this value by a direct comparison of the free quark

propagator in the continuum and the continuum limit of the analytical expression for
the free lattice quark propagator [33]. The analytical expression of the lattice tree-level
propagator for the action (4.1) is given in app. B.

Furthermore, we must also examine those irrelevant operators that in principle can lead
to O(a) contributions. In the bulk, there is the dimension five Sheikholeslami-Wohlert
term, but automatic O(a) improvement eliminates the need for this operator. Yet, there
does remain an O(a) contribution from the boundary due to the irrelevant dimension four
operator [15],

δS4 = (ds − 1)a4
∑
x

(χγkDkχ|x0=0 + χγkDkχ|x0=T ) ,

where Dk = 1
2
(∇∗k + ∇k). Such a contribution is present in all the SF formulations [13]

and it is not due to the particular lattice action or b.c. we have chosen 4 . Given that δS4

is an irrelevant operator, a perturbative calculation of ds is presumably sufficient and the
expansion in powers of g2

0 reads

ds(g0) = d(0)
s + d(1)

s g2
0 +O(g4

0) . (4.8)

For the lattice action (4.1) ds is already needed at tree-level of perturbation theory in
order to remove O(a) boundary cutoff effects. The value is in this case d(0)

s = 1/2. We
have determined this value from a numerical inspection of the free quark propagator on
the lattice, obtained from the numerical inversion of the following lattice Wilson operator

SF + δS3 + δS4 . (4.9)

This is in complete agreement with the one obtained in [15].

4 In fact, ds plays a role that is analogous to the c̃t counterterm in the standard SF [31].
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The knowledge of d(0)
s guarantees boundary cutoff effects of at most O(ag2

0) and like in
the standard SF, we expect that a perturbative determination of ds is enough to cancel
the dominant O(a) boundary effects. It goes without saying that a determination beyond
tree-level would be very desirable.

The important conclusion of the above discussion is that, with respect to the standard
formulation of the SF, there is an additional boundary coefficient, zf , which has to be
non-perturbatively determined. However, this is enough to guarantee a correct continuum
limit of the theory and bulk automatic O(a)-improvement up to boundary effects of at
most O(ag2

0) 5 . Therefore, besides the boundary improvement counterterms to the action,
no further improvement counterterms need to be added to any R1,2

5 -even quantity. Thus
with the action given in this chapter the advantage of automatic O(a) improvement is
guaranteed.

5 Non-perturbative tuning

From purely theoretical considerations we have concluded in the previous section, that
WχSF provides a suitable discretization for the χSF non-perturbative renormalization
scheme. This is achieved in principle with the non-perturbative tuning of only two pa-
rameters which are functions of the bare gauge coupling g0: the bare quark mass, m0,
and the boundary coefficient, zf . The bare quark mass needs to be tuned to its critical
value, mcr, in order to have a massless scheme, while the tuning of the coefficient zf to its
critical value, zcr

f , is required in order to recover the desired boundary conditions in the
continuum and thus to obtain bulk automatic O(a) improvement.

If zcr
f is not determined correctly, the continuum limit might be compromised and in

addition, since R1,2
5 -symmetry would not be properly restored in this case, no bulk au-

tomatic O(a)-improvement would take place. A non-perturbative determination of zcr
f is

then mandatory.

The non-perturbative determination of zcr
f can be carried out by imposing suitable R1,2

5 -
odd correlation functions to vanish. Since these conditions are not unique, different deter-
minations of zcr

f are expected to differ by O(a) effects, which should only affect R1,2
5 -even

correlation functions up to O(a2). This is similar to what happens in large volume simula-
tions with Wilson twisted mass fermions at maximal twist. The intrinsicO(a) uncertainties
in the determination of the critical mass mcr only affect physical quantities at O(a2).

In fact both m0 and zf have to be tuned non-perturbatively and simultaneously if a mass-
less renormalization scheme with χSF boundary conditions is to be defined. In particular,

5 We recall that additionally to the boundary ds term also the dimension four boundary term
proportional to the improvement coefficient ct [31] is only known in perturbation theory.
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it is very important to understand whether this ‘combined’ tuning is feasible at all, as
otherwise a practical application of the χSF scheme would be rather cumbersome.

After the proper determination of mcr, z
cr
f and the two boundary improvement coefficients

to the action, ct and ds, automatic O(a)-improvement is expected to hold. This means
that without any improvement counterterm to the action in the bulk and to the fields, all
physical quantities have leading O(a2) discretization effects. In practice, only a perturba-
tive determination of the boundary improvement coefficients, ct and ds, is available. At
present, only the tree-level value of ds is known in perturbation theory. For ct, we employ
the 2-loop value [34,35], ct(g0) = 1− 0.089 g2

0 − 0.030 g4
0.

Here we are concerned with the non-perturbative tuning of the other two coefficients, m0

and zf . From now on, as it is usually done, all discussions will take place in terms of the
hopping parameter κ = 1

8+2am0
. Due to the potential complications which may arise in the

tuning procedure we first performed some studies at tree-level of perturbation theory. We
have tested several tuning strategies, and the preferred one, as it emerged from our tree-
level investigation, was applied in the interacting theory at the non-perturbative level [36]
as will be explained in sect. 5.3. Besides the particular selection of the tuning strategy also
a tuning condition has to be chosen. In sec. 5.2 we will describe all the tuning conditions
we have investigated.

5.1 Some definitions

The non-perturbative determination of κcr and zcr
f requires imposing conditions at non-

zero lattice spacing that ensure the restoration of the expected symmetries in the contin-
uum limit which, at non-zero lattice spacing are broken by the Wilson term. Moreover,
these conditions should be imposed at each lattice spacing while fixing a suitable renor-
malized quantity. In this work, we keep the renormalized SF coupling, g, fixed. This is
equivalent to fixing the physical size of the box, L (we choose T = L). Also the other ex-
ternal parameters are held fixed; these are ds, which is set to its tree-level value, d(0)

s , and
the spatial momenta, p, which are set to zero. In the spatial directions, periodic boundary
conditions up to a phase are assumed, whose phase dependence is parametrized by the
angles θ = (θ1, θ2, θ3). During the tuning procedure, these angles are used in order to de-
fine alternative tuning conditions. To be concrete, we choose the symmetric case, θk = θ
(k = 1, 2, 3) and two values of θ are used, θ = θA = 0 and θ = θB = 0.5. The reason
for using θ in this way is that a different choice for θ allows to define tuning conditions
differing by O(a). The choices for the external parameters are summarized in tab. 1.

Before specifying the tuning conditions, we define the correlation functions which are
needed within our tuning procedure. In particular, we will employ boundary to bulk
correlation functions which involve the boundary at x0 = 0. For this purpose, we first
define the boundary operators. A definition of the fermion fields at the boundary (x0 = 0)
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T/L ds p1 p2 p3 θA θB x0 y0

1 0.5 0.0 0.0 0.0 0.0 0.5 T/2 3T/4

Table 1
Fixed parameters during the tuning. See the text for a discussion of these parameters.

consistent with gauge invariance is given by

ζ(x) = U0(0,x)χ(a,x) ζ(x) = χ(a,x)U0(0,x)† . (5.1)

The boundary interpolating fields at x0 = 0 are given by

Õa± = a6
∑
y,z

ζ(y)Γ
Õ
Q̃±ζ(z) . (5.2)

In this expression, Q̃± are the χSF projectors defined in sect. 3. Γ
Õ

contains the flavor

and Dirac structure of an operator of type Õ. E.g. for a pseudo-scalar density and an
axial-vector current we have

P̃a± = a6
∑
y,z

ζ(y)γ5
τa

2
Q̃±ζ(z) , (5.3a)

Ãaµ± = a6
∑
y,z

ζ(y)γµγ5
τa

2
Q̃±ζ(z) . (5.3b)

We note that there is a little difference with respect to the SF formulation, where the
projectors are included in the definition of the boundary fields, ζ, ζ. Here we decided to
insert the projectors directly in the correlations functions to have the freedom to consider
correlation functions with the “wrong” projectors. These correlation functions ought to
vanish in the continuum limit if the correct χSF b.c. are recovered, and this is confirmed
numerically (see sect. 6.3).

Considering the previous definitions of the boundary interpolating fields, we may introduce
now our notation for the boundary to bulk correlation functions. Given a bulk operator,
Xa(x), the type of correlation functions that we consider here are the following,

gabX±(x0, θ) = − a
3

L3

∑
x

〈Xa(x)P̃b±〉 , (5.4a)

gabX±(x0, θ) = − a
3

L3

∑
x

〈Xa(x)Ãbµ±〉 . (5.4b)
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For the tuning we used only the particular cases,

gabP±(x0, θ) = − a
3

L3

∑
x

〈P a(x)P̃b±〉 , (5.5a)

gabAµ±(x0, θ) = − a
3

L3

∑
x

〈Aaµ(x)P̃b±〉 , (5.5b)

gabVµ±(x0, θ) = − a
3

L3

∑
x

〈V a
µ (x)Ãbµ±〉 . (5.5c)

We denote the correlation functions in this work with gX, in order to distinguish them to
the corresponding correlation functions in the standard SF usually denoted with fX. One
may interprete the gX as correlators in the χ-basis, while the fX refer to the standard
basis. The superscripts, a, b, denote the flavor index; the subscripts X, in gX, indicate
the corresponding operator inserted in the bulk of the lattice. Three bulk operators are
considered here; the pseudo-scalar density, P a(x), and the axial-vector and vector currents,
Aaµ(x), V a

µ (x). Depending on what χSF projector, Q̃±, is chosen in the correlation functions
we have the corresponding subscript ±. Due to the particular χSF boundary conditions,
cf. Eq. (3.7)-(3.8), all correlation functions defined through Q̃+ at x0 = 0 should vanish in
the continuum limit. The same holds for Q̃− at x0 = T . However, we do not consider here
such correlation functions. Therefore, such kind of correlation functions will be used only
later on to perform checks on the recovery of the correct b. c. in the continuum limit. For
the tuning conditions we consider only correlation functions defined through Q̃−.

As a last consideration before going into the details of the particular tuning conditions,
we also need to define the correlation function,

Gab
Aµ±(x0, y0; θ, θ′) ≡ (gI)

ab
Aµ±(x0, θ)− s(x0, θ)

(gI)
ab
Aµ±(y0, θ)− (gI)

ab
Aµ±(y0, θ

′)

s(y0, θ)− s(y0, θ′)
. (5.6)

The notation is the following. Let us consider the improved axial current,

(AI)
a
µ(x) = Aaµ(x) + a cA ∂̃µ P

a(x) , (5.7)

where the derivative on the lattice, ∂̃µ, is defined to be the symmetric derivative,

∂̃µ ≡
1

2
(∂∗µ + ∂µ) , (5.8)

with the standard definition of the partial derivatives on the lattice. The correlation
function (gI)

ab
Aµ±(x0, θ) is defined as

(gI)
ab
Aµ±(x0, θ) = − a

3

L3

∑
x

〈(AI)
a
µ(x)P̃b±〉 . (5.9)

This is just the equivalent of Eq. (5.5b), where the expression of the improved axial current
is used instead of the unimproved one. Eq. (5.9) may be rewritten in terms of Eq. (5.5a)
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and Eq. (5.5b) as follows,

(gI)
ab
Aµ±(x0, θ) = gabAµ±(x0, θ) + cA s(x0, θ) , s(x0, θ) ≡ a ∂̃µ g

ab
P±(x0, θ) . (5.10)

By substitution of Eq. (5.10) into Eq. (5.6), the last can be cast in a more explicit manner,

Gab
Aµ±(x0, y0; θ, θ′) = gabAµ±(x0, θ)

− [gabAµ±(y0, θ)− gabAµ±(y0, θ
′)]

∂̃µg
ab
P±(x0, θ)

∂̃µgabP±(y0, θ)− ∂̃µgabP±(y0, θ′)
.

(5.11)

This expression is independent on the improvement coefficient of the axial current, cA,
and it indicates that, Gab

Aµ±(x0, y0; θ, θ′) equals gabAµ±(x0, θ) up to cutoff effects of leading
O(a).

The correlation function Gab
Aµ±(x0, y0; θ, θ′) is useful because it allows us to define yet an-

other tuning condition differing by O(a) effects. In particular, in the way it is constructed,
this correlation function would not depend on the cutoff effects that in the standard setup
are removed by employing a non-perturbatively tuned cA improvement coefficient.

5.2 Tuning conditions

As already anticipated, imposing distinct symmetry restoration conditions would give rise
to different values of κcr and zcr

f due to cutoff effects. Therefore, it is important to study
the sensitivity of κ and zf to the particular definitions in order to better understand
the intrinsic uncertainty in the determination of these counterterms. Our exploratory
studies [36] have shown that the tuning of κ does not pose any special problem in the
χSF setup with respect to standard formulation with Wilson fermions, thus we have
decided to investigate only one tuning condition for κ. On the contrary, as it will be
shown later, there is a rather big sensitivity on the choice of the tuning condition used to
determine zcr

f . Therefore, we have concentrated our efforts in the investigation of different
tuning conditions for zf , where we have studied seven different possibilities, which we
number from (1) to (7). Note that even if different tuning conditions have been used to
define zcr

f , the tuning strategy we have employed is the same for all the tuning conditions
(cf. Sec. 5.3).

To tune κ to its critical value we adopt the standard procedure of imposing a vanishing
PCAC mass. To be concrete, it is defined here as,

mPCAC ≡
∂̃0g

11
A0−(x0, θA)

2g11
P−(x0, θA)

. (5.12)

To tune zf we require a R1,2
5 -odd correlation function to vanish. The correlation functions

15



(from (1) to (7)) that we have used to tune zf are the following,

(1) ≡ gA0− ≡ g11
A0−(x0, θA) , (5.13a)

(2) ≡ g′A0− ≡ g11
A0−(x0, θB) , (5.13b)

(3) ≡ gdiff
A0− ≡ gA0− − g′A0− , (5.13c)

(4) ≡ gVk−
≡ 1

3

3∑
k=1

g12
Vk−

(x0, θA) , (5.13d)

(5) ≡ g′Vk− ≡
1

3

3∑
k=1

g12
Vk−

(x0, θB) , (5.13e)

(6) ≡ gdiff
Vk−
≡ gVk−

− g′Vk− , (5.13f)

(7) ≡ GA ≡ G11
A0−(x0, y0; θA, θB) . (5.13g)

The values of the parameters used in the definitions eq. (5.12) and eq. (5.13) are given
in tab. 1. In all these conditions, the particular combinations of interpolating fields with
their corresponding Dirac and flavor indices are chosen such that the resulting correlation
function is R1,2

5 -odd and non-vanishing by definition at non-zero lattice spacing. That is,
the correlation functions should not violate any symmetry of the lattice theory. Eq. (5.12)
and the conditions (1)-(6) are obtained directly from the definitions in Eq. (5.5) with the
corresponding substitutions. The condition (7) is obtained from Eq. (5.6), also with the
corresponding substitutions.

All the different tuning conditions introduced in this section allow us to study the de-
pendence of the ’physical’ correlation functions on the different values of zcr

f obtained.
In addition, having a number of tuning conditions at our disposal, enables us to test the
universality of the continuum limit.

In this work, as it is the usual choice in SF schemes, we have defined the correlation
functions in the middle of the time-extent of the lattice, x̄0 = T/2. The only exception
here is the condition (7), which involves two time slices. There the choice is x̄0 = T/2
and ȳ0 = 3T/4. The reason for these choices is to stay as far away as possible from the
boundaries, thus avoiding boundary effects. In case of (7), the condition was to maximize
the distance between the two time-slices, while still staying away from the boundaries. A
last remark concerning our particular choices of tuning conditions is to be made here. In
order to restore the symmetries of the theory, we impose the different symmetry-violating
correlation functions to vanish at non-zero lattice spacing. To remove cutoff effects at tree-
level of perturbation theory, a better choice would be to consider that the corresponding
correlation function takes its tree-level value at non-zero lattice spacing. However from
our studies at tree-level of perturbation theory [33] we have seen that such effects are very
small, well below our statistical accuracy and they do not change our final results.
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5.3 Tuning strategy

To check the practicality of the non-perturbative tuning strategy for κ and zf non-
perturbatively, we have performed a tuning at three values of the renormalization scale
µ = 1/L using only method (1) (see tab. C.1, tab. C.2 and tab. C.3). This situation cor-
responds to the results presented in [36], where we first explained our tuning strategy at
the non-perturbative level. This separate analysis has been useful to check the tuning pro-
cedure. Results obtained by this analysis are labelled here as obtained with method (1*).
The three scales correspond to a hadronic (g2 fixed with L = 1.436 r0), an intermediate
(g2 = 2.4484) and a perturbative (g2 = 0.9944) scale.

In sec. 5.4 we will present results obtained following the strategy presented in this section
for all the other tuning conditions defined in sec. 5.2.

The same tuning strategy has been used for each value of β and the corresponding value
of L/a. The values of β used are given in tabs. C.1-C.3 and are taken from [5]. The tuning
is performed in several steps.

• We calculate amPCAC and gA0− at four values of zf , and for each value of zf , we use
four values of κ, thus giving 16 pairs of κ and zf . This allows us to determine gA0− as
a function of amPCAC for each value of zf , as illustrated in fig. 1.
• For each value of zf , we perform a linear interpolation of gA0− in terms of amPCAC to

the point amPCAC = 0. This determines the values of gA0− at amPCAC = 0, denoted
g∗A0− , for each of the four values of zf , as shown in fig. 1 as the filled symbols.
• We now interpolate these values of g∗A0− as a function of zf to the point of vanishing
g∗A0− , thus, giving us the critical value zcr

f , as shown in fig. 2.

All the numerical data for these intermediate steps can be found in ref. [33]. Next we
determine κcr.

• Using the same 16 pairs of κ and zf , we calculate amPCAC as a function of κ for each
zf . This is shown in fig. 3. Note that amPCAC has a very mild dependence on zf , so the
four curves at fixed zf are nearly indistinguishable. Interpolating amPCAC in κ to the
point of vanishing PCAC mass, κ∗, we obtain the values of κ∗ at each zf . The resulting
values of κ∗ as a function of zf are shown in fig. 4.
• We now interpolate these results in zf to the previously determined value of zcr

f , thus
determining the value of κcr.

All the tuning results can be read off tab. C.6 and tab. C.7.

A key observation of this work is the mild dependence of amPCAC on zf , at least in the
region near κcr and zcr

f . This can be easily seen in fig. 3. The consequence of this is clear
in fig. 4: the determination of κcr also has a weak dependence on zcr

f and the errors of
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both are relatively independent.
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5.4 Tuning results

With the strategy discussed in Sec. 5.3, we have performed the tuning of κ and zf using
mPCAC in Eq. (5.12) and the conditions (1)-(7) defined in Eq. (5.13). The tuning has been
performed for five fixed values of the renormalized gauge coupling, g(L), which correspond
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Scale L/a β Name

L = 1.436 r0 8 6.0219 NP

10 6.1628

12 6.2885

16 6.4956

20 6.6790

24 6.8187

g2 = 2.4484 8 7.0197 I

12 7.3551

16 7.6101

g2 = 0.9944 8 10.3000 P

12 10.6086

16 10.8910

16 12.0000 2P

16 24.0000 PP

Table 2
Summary of all the points where the tuning was performed.

to five values of the physical energy scale, 1/L. In particular, the physical scale ranges
from the purely non-perturbative to the perturbative regime and 14 values of β have
been considered within that range. For better clarity, the tuning points are summarized
in tab. 2. The notation in this table is the following. ‘Scale’ refers to the physical scale,
namely, the fixed value of the renormalized gauge coupling. We have denoted the five
scales as ‘NP’, ‘I’, ‘P’, ‘2P’ and ‘PP’, from the hadronic to the most perturbative scale.
NP corresponds to L = 1.436 r0, I to g2 = 2.4484 and P to g2 = 0.9944. For 2P and
PP we have not determined the gauge coupling explicitly. These two scales have been
considered in order to study the dependence of zf on g0, for small values of g0, thinking
of a future perturbative determination of zf , for which the knowledge of the renormalized
coupling is not necessary. The results obtained for κcr and zcr

f using the strategy outlined
in sec. 5.3 for all the tuning methods are summarized in tab. C.6 and tab. C.7 for κcr

and zcr
f , respectively. We also present tables showing the values used for zf and κ, at each

of the points where the tuning was performed. In these same tables, the column labelled
‘Nconf’ represents the number of configurations used in the computation of all observables
at the corresponding point. These are tab. C.1 to tab. C.5.

During the tuning, we have used several combinations of of κ and zf . As indicated in
sec. 5.3, the usual choice is to use 4 values of κ and 4 values of zf . However, there are
cases where we have used, instead, 5 values of zf and/or 2 values of κ. In particular,
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we have used 2 values of κ at all the β values where we also performed the separate
tuning using (1*). The reason is that, relying on the very weak dependence of κ and
zf on each other, as it was shown above in fig. 3-fig. 4, we expected the value of κcr

not to change appreciably even if zcr
f would vary visibly from one method to another.

Therefore, we considered that the value of κcr obtained using (1*) was already a very
accurate guess on where the critical value of κ should be using all the other conditions.
In fact, these expectations were later confirmed from our results of κcr, which, from one
method to another, are the same within statistical errors. Actually, in most cases κcr did
not change in any digit between any of the methods employed in the determination of zcr

f

(cf. tab. C.6).

On the contrary, changes in zcr
f between the different methods are particularly manifest.

This may be seen better in tab. C.7. Here we can see how, in most cases, zcr
f does not

agree within errors from one method to another. This behavior becomes stronger at lower
energies, i.e. for decreasing values of β. Even if zcr

f does not agree from one method to
another, the differences are expected to be only O(a) discretization effects and, as such,
should vanish in the continuum limit linearly in the lattice spacing.

In order to see this behavior, we have performed the continuum limit of differences in zcr
f ,

as determined from different methods, at the lowest value of the renormalization scale. In
particular, the data correspond to the differences

∆zcr
f (m) = zcr

f (1)− zcr
f (m) , m = 2, 3, 4, 5, 6, 7 . (5.14)

That is, differences between method 1 and all other methods. The data for ∆zcr
f (m) are

presented in tab. C.8 for all the methods and the corresponding fits linear in a/L to
the continuum limit are shown in tab. C.9 where the point L/a = 8 has been excluded
from all the fits. The data for ∆zcr

f (m), together with the extrapolation to the continuum
limit are plotted in fig. 5. From this analysis we can conclude that the differences in zcr

f

from different methods are only cutoff effects of O(a), as expected, which vanish in the
continuum limit. This result may be considered as an additional test of the universality
of the continuum limit. Moreover, discrepancies of O(a) between different values of zcr

f ,
should affect physical observables, at most, at O(a2). This expectation will be confirmed
in the following section, where we analyze the dependence of several quantities on the
particular tuning condition.

5.5 Conclusions on the tuning

We have presented the results of the non-perturbative tuning of κ and zf for the χSF, at
several physical scales and for a range of lattice spacings, using 7 different definitions of
zcr
f . Our results demonstrate that the tuning of these two coefficients is indeed feasible,

at least in the quenched approximation. Moreover, we observe that the tuning of zf
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The points have been plotted slightly displaced from each other amongst the different methods.

and κ are nearly independent. This observation is important, keeping in mind dynamical
fermion simulations; if this behaviour persists with dynamical calculations, it may ease the
numerical effort necessary to perform the tuning, thus reducing the number of required
simulations. We have also shown that even if zcr

f differs from one method to another at
finite values of the cutoff, such differences are only O(a) discretization effects, as expected
theoretically. These discrepancies vanish in the continuum limit, giving rise to another
numerical evidence of the universality of the continuum limit.

6 Scaling studies and universality of the continuum limit

In the present section, we show our results of the scaling analysis of several correlation
functions, which have been computed using the values of the critical parameters, κcr and
zcr
f , as determined from all the 7 tuning conditions defined in sec. 5.2. We have carried

out these studies at all the β values at which the tuning has been performed. In sec. 5.4
we have shown that different definitions of zcr

f lead to critical values of zf which differ
from each other by cutoff effects of O(a). With the scaling study here presented, we
demonstrate that these discrepancies in zcr

f do not influence the continuum limit value of
physical observables. This is a very important result since the continuum limit should be
independent on the particular definition of the critical parameters. Furthermore, we will
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show that all physically relevant quantities, when determined from the different values of
zcr
f , agree within statistical errors already at non-zero lattice spacing, even at the coarsest

lattices. This agreement holds even at the matching scale with the hadronic scheme, where
cutoff effects are expected to be larger. Indeed, the agreement at non-zero lattice spacing
indicates that the discretization effects induced by the O(a) uncertainties in zcr

f are very
small.

In order to analyze the different correlation functions we have classified them in three
types. The first, sec. 6.1, are those R1,2

5 -even correlation functions which have a non-
vanishing continuum limit, that we named ’physical’. These are the only quantities which
are expected to be automatic O(a)-improved (up to boundary effects), provided κ and zf
are correctly tuned to their critical values. The second kind, sec. 6.2, are those R1,2

5 -even
correlation functions which vanish in the continuum limit, if the correct χSF b.c. (3.7) are
recovered in the continuum limit. The last type, sec. 6.3, are R1,2

5 -odd quantities. They
should vanish in the continuum limit up to O(a) cutoff effects if R1,2

5 -symmetry is restored
in the continuum limit.

These 3 kinds of correlation functions have been obtained from the definitions of the
boundary to bulk correlation functions given in eq. (5.5). For unexplained notations in
this section, the reader is referred to sec. 5.1. With suitable combinations of the Dirac
and flavor indices in eq. (5.5), we can define correlation functions which are either even or
odd under R1,2

5 transformations. All correlation functions labelled with + should vanish
in the continuum limit if the correct boundary conditions are recovered, independently on
symmetry considerations. On the contrary, all those labelled with − are a priori different
from zero, unless any symmetry requires them to vanish.

Boundary to bulk correlation functions are normalized in a standard fashion with certain
boundary to boundary correlation functions in order to cancel the renormalization of the
boundary quark fields. In particular in this work, only one such boundary to boundary
correlation function is considered. It is the equivalent of f1 [37] in the standard SF and it
is defined as,

gab1 (θ) = − 1

L6
〈P̃ ′

a

+P̃b−〉 . (6.1)

Note that the combination of signs in Eq. (6.1) is the only possibility for gab1 not to vanish
in the continuum limit, according to the boundary conditions satisfied in the continuum.

6.1 R1,2
5 -even correlation functions

For 14 values of β and several kinematic conditions we have analyzed the R1,2
5 -even corre-

lation functions g11
P− , g12

V0− and g11
1 as defined in eq. (5.5) and in eq. (6.1). The correlation

functions determined at the values of κcr and zcr
f obtained from the tuning conditions (1)

to (7) for all the β values and all the renormalization scales considered are collected in
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tabs. C.10-C.19. In tabs. C.10-C.14 we show results at θ = (0, 0, 0), while in tabs. C.15-
C.19 we collect results for θ = (0.5, 0.5, 0.5).

The determination of all these quantities from the methods (1) to (7) has been performed
via interpolations to κcr and zcr

f . To check that the interpolation does not introduce
additional systematic errors we have computed observables directly at κcr and zcr

f , without
performing any interpolation from the first tuning method (cf. method (1*) in tabs. C.6
and C.7). These data, computed at θ = (0.5, 0.5, 0.5), are presented in tabs. C.15-
C.17. We have checked for this particular tuning method that the quantities obtained via
an interpolation of the data, denoted as method (1), do agree within errors with those
obtained by means of new computations performed directly at the critical values of κ and
zf , denoted as method (1*). We therfore believe that the interpolation that we perform
here does not induce additional errors.

From this analysis we have found that for all the 14 values of β, all R1,2
5 -even quantities

with a non-vanishing continuum limit do not depend on the definition of zcr
f within statis-

tical errors. This holds for any of the values of the kinematical parameters that we have
investigated. In fig. 6 we show, as an example, the dependence on the tuning conditions for
g11

P− at the matching scale, L = 1.436 r0, and for θ = (0, 0, 0). Similar results are obtained
for the other correlation functions.

The independence at each value of the lattice spacing on the tuning conditions, i.e. on
the particular definition of zcr

f adopted is reassuring: no large cutoff effects are introduced
depending on the choice of the tuning condition. The continuum limit of renormalized
quantities and their dependence on the tuning conditions will be discussed in the com-
panion paper [17].

6.2 Recovery of the χSF boundary conditions

We present here results for the R1,2
5 -even correlation functions which should vanish in the

continuum limit, due to the particular form of the χSF boundary conditions in eqs. (3.7,
3.8) satisfied by the fermion fields in the continuum limit. We collect our results for
the g11

P+
and g12

V0+
correlation functions at all the β values and all the renormalization

conditions in tabs. C.10-C.19. We show results for θ = (0, 0, 0) in tabs. C.10-C.14 and for
θ = (0.5, 0.5, 0.5) in tabs. C.15-C.19.

We found that for all the tuning conditions g11
P+

and g12
V0+

vanish in the continuum limit,
signalling the recovery of the proper χSF b.c. We have observed that the values of g11

P+

and g12
V0+

would change substantially if we vary the values of zcr
f within their statistical

error. If we want to perform the continuum limit at fixed “physical” scale we have to
take this variation into account. We do this by propagating the statistical error of zcr

f

when interpolating g11
P+

and g12
V0+

in zf . We note that g11
P+

and g12
V0+

do not show the same
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Fig. 6. Comparison between different tuning conditions using the R1,2
5 -even quantity g11

P−
. The

scale is NP and θ = (0, 0, 0). Data for all methods (1) to (7) are presented (cf. tab. C.10). No
continuum limit is performed, since this quantity takes a finite value in the continuum limit
only after renormalization. The purpose of the plot is to compare the results from the different
tuning conditions at non-zero lattice spacing and a full agreement can be seen. The data from
the different methods have been plotted slightly displaced from each other.

behaviour for variations of κcr.

We show in fig. 7 the behaviour of g11
P+

(θ = 0) towards the continuum limit. This is
an example of a quantity that should vanish in the continuum limit if the proper b.c.
conditions are recovered. Similar plots can be obtained for other quantities looking at
the data in tabs. C.10-C.19 where the first error is statistical while the second, where
available, contains the propagation of the error of zcr

f . As discussed in the previous and
in the next section we stress that this is the only case where we have observed that the
statistical error of zcr

f shows significant effects in the correlation functions.
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Fig. 7. Approach to the continuum limit of the R1,2
5 -even quantity g11

P+
. The scale is NP and

~θ = (0, 0, 0). Data for methods (1) to (6) are presented (cf. tab. C.10). g11
P+

is plotted here as a
function of a/L. The error bars contain the statistical errors of the correlation functions together
with the propagation of the statistical error on zcr

f .

6.3 R1,2
5 -odd correlation functions

Amongst all theR1,2
5 -odd correlation functions, we consider correlation functions that van-

ish only because of symmetry considerations, i.e. we do not consider correlation functions
vanishing in the continuum limit because of the recovery of the χSF boundary conditions.
Examples of such correlation functions are g11

A0− and g12
Vk−

. It is important to note that the
same correlation functions have been used in the determination of zcr

f . When studying the
dependence on the tuning condition towards the continuum limit of a given correlation
function we have obviously excluded the value of zcr

f obtained imposing that the same
correlation function vanishes at each value of the lattice spacing. We have though studied
the dependence of all the other tuning conditions towards the continuum limit.

The numerical results obtained at θ = (0, 0, 0) are presented in tabs. C.20-C.24, and the
results for θ = (0.5, 0.5, 0.5) in tabs. C.25-C.29.

Although results from different definitions of zcr
f do not coincide at non-zero lattice spac-

ing, all the R1,2
5 -odd correlation functions vanish in the continuum limit independently on
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the tuning condition adopted. This is a strong evidence that R1,2
5 -symmetry is restored

in the continuum limit.

As an example we show in the plot of fig. 8 the continuum limit approach for g11
A0− with

θ = (0, 0, 0) and in the plot of fig. 9 the continuum limit of g12
Vk−

for θ = (0.5, 0.5, 0.5).

These plots correspond to our most non-perturbative point, L = 1.436 r0, which is the
case where the cutoff effects are expected to be stronger. The data show a linear behaviour
in a/L and they have been fitted with a linear fit in a/L,

f = b0 + b1

(
a

L

)
. (6.2)

We have not considered the point L/a = 8 in the fits. The results from the fits are
summarized in tab. C.30 for g11

A0− and in tab. C.31 for g12
Vk−

.

As anticipated all theR1,2
5 -odd correlation functions vanish within errors in the continuum

limit and not being automatic O(a) improved scale linearly in a/L independently on the
tuning condition adopted.

6.4 Conclusions on the scaling analysis

From the analysis performed at several β values at fixed renormalization scale, we learned
that all quantities which should vanish in the continuum limit, either by boundary con-
ditions or symmetry restoration, have a visible dependence on the tuning condition and
the corresponding values of zcr

f .

The R1,2
5 -even correlation functions that should vanish in the continuum limit, if the

correct boundary conditions are recovered, show the strongest dependence on the way zcr
f

has been determined. In particular we have observed that to properly study the continuum
limit we cannot simply take the central vale of zcr

f , but we need to propagate the statistical
error of zcr

f in the error for the correlation functions, i.e. the statistical fluctuations in zcr
f

are visible in the final values for the correlation functions. If one takes the statistical
error of zcr

f into account in the determination of the error of the correlation functions, we
observe, for all the tuning conditions, that the proper boundary conditions are recovered
in the continuum limit within errors. Additionally this result is confirmed for all the tuning
conditions adopted.

This observation is in stark contrast with the R1,2
5 -even correlation functions containing

the non-vanishing component of the boundary fermion fields. In this case not only the
statistical error on zcr

f is irrelevant, but even the choice of the tuning condition for all
practical purposes does not change the final values for the correlation functions even
at non-zero lattice spacings. Although we can not make a general statement about all
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Fig. 8. Extrapolation to the continuum limit of the R1,2
5 -odd quantity g11

A0−
. The scale is NP and

θ = (0, 0, 0). Data for methods (2) to (7) are presented (cf. tab. C.20). The fits are all linear
in a/L (cf. tab. C.30). The point L/a = 8 has been excluded from all the fits. We show the
data for all tuning conditions except condition (1) because it corresponds to imposing g11

A0−
= 0.

The (vanishing) continuum limit values obtained from the different tuning conditions have been
plotted slightly displaced from each other.

possible physical observables, our expectation is that other physical quantities, different
from the ones studied in this work, will behave in the same manner. This is reassuring for
further uses of the χSF for physical applications with dynamical fermions.

In the case of the R1,2
5 -odd orrelation functions we have shown that they vanish in the

continuum limit with leading O(a) discretization effects for all the tuning conditions, as
expected. This is a strong numerical evidence of the restoration of R1,2

5 -symmetry in the
continuum limit and the independence of the continuum limit values on the particular
tuning condition. This result is another independent indication that the correct boundary
conditions are recovered in the continuum limit.
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Fig. 9. Extrapolation to the continuum limit of the R1,2
5 -odd quantity g12

Vk−
. The scale is NP

and θ = (0.5, 0.5, 0.5). Data for methods (1) to (4) and (6) to (7) are presented (cf. tab. C.25).
The fits are all linear in a/L (cf. tab. C.31). The point L/a = 8 has been excluded from all the
fits. We show the data for all tuning conditions except condition (5) because it corresponds to
imposing g12

Vk−
= 0.

7 Conclusions

Large scale simulations with Wilson twisted mass fermions at maximal twist need a renor-
malization scheme preserving the property of automatic O(a) improvement. The RI-MOM
scheme is consistent with this requirement and results for Nf = 2 dynamical fermions have
been obtained in ref. [38] and preliminary Nf = 4 results have been presented in ref. [39].
Recently the X-space scheme has been tested on the Nf = 2 twsited mass ensembles [40].
One of the problems with these schemes is that it is difficult to cover a large range of
scales, bridging the perturbative to the non-perturbative regimes.

Finite volume schemes have been proven to tackle this problem giving the possibility
to perform the continuum limit of step-scaling functions and to carry out the non-
perturbative renormalization in particular for scale-dependent quantities. Thus it is very
desirable to have the possibility to use finite volume renormalization schemes together
with Wilson twisted mass fermions. In this work we have made a detailed study of the
χSF scheme proposed in ref. [15] with quenched Wilson fermions. Automatic O(a) im-
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provement is achieved with a single non-perturbative tuning of the parameter zf to its
critical value zcr

f , together with the usual tuning of κcr. We have proposed a tuning strat-
egy for the simultaneous dtermination of zcr

f and κcr and we have perfomed a feasibility
study of several tuning conditions, showing that the tuning is affordable with the current
computer resources and it does not pose any specific problem.

The study presented in this work has shown that, as expected, unphysical correlation func-
tions vanish in the continuum limit with O(a) corrections independently on the tuning
condition adopted and that the proper boundary conditions are recovered in the contin-
uum limit. In addition physical correlation functions are rather insensitive to the method
employed to determine κcr and zcr

f . This is a very promising result for going beyond the
quenched approximation since it will ease significantly the simulations efforts.

In a companion paper [17] we will investigate further the continuum limit scaling behaviour
of physical quantities which are renormalized through the χSF scheme employing the
results of κcr and zcr

f determined in this work.
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A Symmetries in the twisted basis

We list in this appendix the form of few symmetry tranfosrmations in the twisted basis.
The twisted basis {χ , χ}, and the standard basis {ψ , ψ} are related by the axial non-
anomalous transformation

ψ(x) = exp
(
i
ω

2
γ5 τ

3
)
χ(x) , ψ(x) = χ(x) exp

(
i
ω

2
γ5 τ

3
)
. (A.1)

Charge conjugation C is invariant under this bases transformation

C :


U(x;µ)→ U(x;µ)∗,

χ(x)→ C−1χ(x)T ,

χ(x)→ −χ(x)TC,

(A.2)

where C satisfies
− γTµ = CγµC

−1, γ5 = Cγ5C
−1. (A.3)

Parity and time reversal are affected by the rotation and take a different form in the
twisted basis. In this basis they are denoted Pω and Tω, respectively, and have the expres-
sions

Pω :


U0(x0, ~x) → U0(x0,−~x) , Uk(x0, ~x) → U †k(x0,−~x− ~k)

χ(x0, ~x) → γ0 exp (i ω γ5 τ
3) χ(x0,−~x)

χ(x0, ~x) → χ(x0,−~x) exp (i ω γ5 τ
3) γ0

(A.4)

Tω :


U0(x0, ~x) → U †0(−x0 − a, ~x) , Uk(x0, ~x) → Uk(−x0, ~x)

χ(x0, ~x) → i γ0 γ5 exp (i ω γ5 τ
3) χ(−x0, ~x)

χ(x0, ~x) → χ(−x0, ~x) exp (i ω γ5 τ
3) i γ0 γ5 .

(A.5)

To obtain the form of a parity or a time-reversal transformation in the standard basis, P
or T , it is sufficient to set ω = 0 in eqs (A.4) and (A.5).

In the twisted basis the SU(2) vector transformation takes the form

SU(2)ω :

χ(x)→ exp
(
−i ω

2
γ5 τ

3
)

exp
(
i
αaV
2
τa
)

exp
(
i ω

2
γ5 τ

3
)
χ(x),

χ(x)→ χ(x) exp
(
i ω

2
γ5 τ

3
)

exp
(
−i α

a
V

2
τa
)

exp
(
−i ω

2
γ5 τ

3
)
.

(A.6)
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B The free lattice quark propagator for the χSF with Wilson fermions

In this appendix we obtain the analytical expression of the quark propagator S (x, y) on
the lattice at tree-level of perturbation theory for the action in eq. (4.1). The derivation
of the propagator is rather standard (see for example ref. [41]) once we have the exact
b.c. satisfied by the fermion fields at finite lattice spacing a. They can be obtained as a
spinoff of the orbifold construnctions [15] and read

Q̃+

(
1− a

2
∂∗0

)
S(x, y)|x0=0 = 0 Q̃−

(
1 +

a

2
∂0

)
S(x, y)|x0=T = 0 . (B.1)

The problem we want to solve is then

(DW +m0) S (x, y) = a−4 (B.2)

with b.c. (B.1) where δx,y is the dimensionless Kronecker delta and DW denotes the
massless Wilson operator (4.4).

The result of the calculation can be cast in the form

S (x, y) =
(
D†W +m0

)
G (x, y) , (B.3)

with

G (x, y) =
1

L3

∑
~p

ei~p(~x−~y) G (x0, y0; ~p) , (B.4)

where

G (x0, y0; ~p) =
1

2ω̊(~p+)A(~p+)D(p+)

{
e−ω(~p+)|x0−y0| − e−ω(~p+)(2(T+a)−|x0−y0|)

− iγ0γ5τ
3e−ω(~p+)(x0+y0+a)

+ iγ0γ5τ
3e−ω(~p+)(2(T+a)−(x0+y0+a))

}
.

(B.5)

Here we list all the definitions of the functions useful for the determination of the propa-
gator.

p±µ = pµ ± θµ/L , θ0 = 0 , (B.6)

p̊±µ =
1

a
sin

(
ap±µ

)
, M(p±) = m0 +

1

2
ap̂± 2

µ , p̂±µ =
2

a
sin

(
ap±µ

2

)
. (B.7)

The function ω(~p+), such that p0 = iω(~p+), is given by

sinh
[
a

2
ω
(
~p±
)]

=

{
a2 p̊± 2

k + (A(~p±)− 1)
2

4A(~p±)

}1/2

, (B.8)
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and

ω̊(p±) ≡ −ip̊±0 =
1

a
sinh

[
aω(~p±)

]
, (B.9)

A
(
~p±
)
≡ 1 + a

(
m0 +

a

2
p̂± 2
k

)
. (B.10)

D(p±) ≡ 1 + e−2ω(~p±)(T+a) . (B.11)

The analytical expression of the lattice quark propagator (B.3) has been numerically
cross-checked with the propagator obtained from a numerical inversion of the free lattice
Dirac operator given in Eq. (4.2) and also with the corresponding propagator in [15].
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C Tables of numerical results

C.1 Tuning data

Guess values for the tuning

Hadronic scale: L = 1.436 r0

L/a β Nconf zf κ Nconf zf κ

8 6.0219 1000 1.74 0.1534 1000 1.79 0.1530

1.77 0.1537 1.80 0.1534

1.80 1.81 0.1537

1.83 1.82 0.1540

1.86

10 6.1628 1000 1.73 0.1521 1000 1.78 0.1520

1.76 0.1522 1.79 0.1521

1.79 1.80 0.1522

1.82 1.81 0.1523

12 6.2885 500 1.71 0.15050 300 1.70 0.15025

1.74 0.15100 1.73 0.15050

1.77 1.77 0.15100

1.80 1.80 0.15125

16 6.4956 300 1.64 0.1489 100 1.70 0.1488

1.67 0.1490 1.71 0.1489

1.70 1.73 0.1490

1.73 1.74 0.1491

1.76

20 6.6790 112 1.66 0.1473

1.68 0.1474

1.70 0.1475

1.72 0.1476

24 6.8187 100 1.60 0.1463

1.63 0.1464

1.66 0.1465

1.69 0.1466

Table C.1: Values of κ and zf used for the tuning and number of configurations, Nconf, used in all calculations at the
corresponding value of β. Scale NP (see text). The data of the last three columns have been used only for a separate analysis
with method (1), which we denote here as method (1*).
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Guess values for the tuning

Intermediate scale: g2 = 2.4484

L/a β Nconf zf κ Nconf zf κ

8 7.0197 1000 1.51 0.14445 1000 1.35 0.14440

1.54 0.14450 1.45 0.14445

1.57 1.55 0.14450

1.60 1.65 0.14455

12 7.3551 500 1.46 0.1431 300 1.50 0.1430

1.49 0.1432 1.51 0.1431

1.52 1.52 0.1432

1.55 1.53 0.1433

16 7.6101 300 1.44 0.1421 100 1.48 0.1420

1.47 0.1422 1.49 0.1421

1.50 1.50 0.1422

1.53 1.51 0.1423

Table C.2: Same caption as in tab. C.1 but at scale I (see text).

Guess values for the tuning

Perturbative scale: g2 = 0.9944

L/a β Nconf zf κ Nconf zf κ

8 10.3000 1000 1.2955 0.13541

1.2965 0.13544

1.2975 0.13547

1.2985 0.13550

12 10.6086 300 1.292 0.13514

1.294 0.13517

1.297 0.13520

1.299 0.13523

16 10.8910 300 1.23 0.13484 100 1.285 0.13482

1.26 0.13487 1.286 0.13484

1.29 1.287 0.13487

1.32 1.288 0.13489

Table C.3: Same caption as in tab. C.1 but at scale P (see text).
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Guess values for the tuning

2P scale

L/a β Nconf zf κ

16 12.0000 100 1.23 0.1335

1.24 0.1336

1.25 0.1337

1.26 0.1338

Table C.4: Same caption as in tab. C.1 but at scale 2P (see text). Here no separate tuning was performed for method (1).

Guess values for the tuning

PP scale

L/a β Nconf zf κ

16 24.0000 80 1.11 0.1287

1.12 0.1288

1.13 0.1289

1.14 0.1290

Table C.5: Same caption as in tab. C.1 but at scale PP (see text). Here no separate tuning was performed for method (1).
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C.2 Tuning results

β κcr(1
∗) κcr(1) κcr(2) κcr(3) κcr(4) κcr(5) κcr(6) κcr(7) κcr(SF )

Hadronic scale: L = 1.436 r0 (µ ∼ 300MeV)

6.0219 0.153530 (24) 0.15353 (66) 0.15354 (66) 0.15352 (67) 0.15354 (66) 0.15354 (66) 0.15354 (66) 0.15353 (66) 0.153371 (10)

6.1628 0.152134 (17) 0.15213 (66) 0.15214 (66) 0.15213 (67) 0.15214 (66) 0.15214 (66) 0.15214 (66) 0.152012 (7)

6.2885 0.150815 (22) 0.15082 (66) 0.15082 (66) 0.15082 (66) 0.15082 (65) 0.15082 (65) 0.15082 (65) 0.15082 (66) 0.150752 (10)

6.4956 0.148945 (25) 0.14894 (34) 0.14894 (33) 0.14893 (34) 0.14894 (33) 0.14894 (33) 0.14894 (33) 0.14894 (33) 0.148876 (13)

6.6790 0.14748 (74) 0.14748 (74) 0.14748 (74) 0.14748 (73) 0.14748 (73) 0.14748 (73)

6.8187 0.14645 (41) 0.14645 (41) 0.14645 (42) 0.14645 (41) 0.14645 (41) 0.14645 (41) 0.14645 (41)

Intermediate scale: g2 = 2.4484 (µ ∼ 1GeV)

7.0197 0.144501 (13) 0.14450 (41) 0.14450 (41) 0.14450 (41) 0.14450 (41) 0.14450 (41) 0.14450 (41) 0.14450 (41) 0.144454 (7)

7.3551 0.143113 (12) 0.14311 (29) 0.14311 (29) 0.14311 (29) 0.14311 (29) 0.14311 (29) 0.14311 (29) 0.14311 (29) 0.143113 (6)

7.6101 0.142112 (13) 0.14212 (23) 0.14212 (23) 0.14212 (23) 0.14212 (23) 0.14212 (23) 0.14212 (23) 0.14212 (23) 0.142107 (6)

Perturbative scale: g2 = 0.9944 (µ ∼ 30GeV)

10.3000 0.1354609 (54) 0.135457 (5)

10.6086 0.1351758 (56) 0.135160 (4)

10.8910 0.1348440 (61) 0.134844 (93) 0.134844 (93) 0.134844 (93) 0.134844 (93) 0.134844 (93) 0.134844 (93) 0.134844 (93) 0.134849 (6)

2P scale

12.0000 0.13363 (41) 0.13363 (41) 0.13363 (41) 0.13363 (41) 0.13363 (41) 0.13363 (41) 0.13363 (41)

PP scale

24.0000 0.12877 (15) 0.12877 (15) 0.12877 (15) 0.12877 (15) 0.12877 (15) 0.12877 (15) 0.12877 (15)

Table C.6
Summary table of κcr for all beta values and tuning conditions, (1) to (7) (see sec. 5.2 for a description of all the methods).
The data of column (1*) correspond to a separate analysis with method (1), using slightly different simulation parameters
(cf. tab. C.1, tab. C.2 and tab. C.3). For reference, we also give κcr for the SF [42,6,43].

β zcr
f

(1∗) zcr
f

(1) zcr
f

(2) zcr
f

(3) zcr
f

(4) zcr
f

(5) zcr
f

(6) zcr
f

(7)

Hadronic scale: L = 1.436 r0

6.0219 1.8090 (32) 1.8091 (32) 1.7946 (34) 1.8434 (37) 1.7656 (27) 1.7597 (27) 1.7835 (40) 1.7980 (17)

6.1628 1.7920 (30) 1.7923 (29) 1.7820 (31) 1.8175 (33) 1.7541 (25) 1.7497 (25) 1.7687 (38)

6.2885 1.7664 (51) 1.7658 (38) 1.7573 (40) 1.7869 (46) 1.7312 (34) 1.7283 (32) 1.7408 (56) 1.7509 (22)

6.4956 1.7212 (83) 1.7201 (41) 1.7132 (44) 1.7377 (46) 1.6929 (35) 1.6894 (34) 1.7053 (63) 1.7076 (21)

6.6790 1.6841 (56) 1.6789 (59) 1.6973 (65) 1.6582 (52) 1.6577 (52) 1.6600 (90)

6.8187 1.6427 (56) 1.6381 (60) 1.6529 (60) 1.6253 (51) 1.6201 (50) 1.6421 (88) 1.6366 (27)

Intermediate scale: g2 = 2.4484

7.0197 1.5467 (15) 1.5404 (16) 1.5296 (17) 1.5597 (18) 1.5156 (14) 1.5126 (14) 1.5229 (21) 1.5392 (12)

7.3551 1.5126 (23) 1.5139 (18) 1.5088 (19) 1.5233 (19) 1.4955 (16) 1.4945 (15) 1.4981 (23) 1.5120 (12)

7.6101 1.4942 (37) 1.4943 (20) 1.4908 (21) 1.5007 (23) 1.4800 (18) 1.4789 (17) 1.4827 (28) 1.4916 (13)

Perturbative scale: g2 = 0.9944

10.3000 1.29730 (67)

10.6086 1.2954 (11)

10.8910 1.2858 (15) 1.28692 (88) 1.28487 (91) 1.28984 (99) 1.27999 (83) 1.27976 (75) 1.2805 (13) 1.28619 (67)

2P scale

12.0000 1.2493 (14) 1.2481 (14) 1.2510 (15) 1.2438 (13) 1.2443 (12) 1.2428 (20) 1.2494 (10)

PP scale

24.0000 1.11268 (57) 1.11162 (58) 1.11391 (65) 1.11013 (54) 1.11003 (48) 1.11030 (87) 1.11269 (50)

Table C.7: Summary table of zcrf for all beta values and tuning conditions, (1) to (7) (see sec. 5.2 for a description of all the

methods). The data of column (1*) correspond to a separate analysis with method (1), using slightly different simulation
parameters (cf. tab. C.1, tab. C.2 and tab. C.3).
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∆zcrf (m) for different methods

Hadronic scale: L = 1.436 r0

L/a 2 3 4 5 6 7

8 0.0145 (47) -0.0343 (49) 0.0435 (42) 0.0494 (42) 0.0256 (51) 0.0111 (36)

10 0.0103 (42) -0.0252 (44) 0.0382 (38) 0.0426 (38) 0.0236 (48)

12 0.0085 (55) -0.0211 (60) 0.0346 (51) 0.0375 (50) 0.0250 (68) 0.0149 (44)

16 0.0069 (60) -0.0176 (62) 0.0272 (54) 0.0307 (53) 0.0148 (75) 0.0125 (46)

20 0.0052 (81) -0.0132 (86) 0.0259 (76) 0.0264 (76) 0.024 (11)

24 0.0046 (82) -0.0102 (82) 0.0174 (76) 0.0226 (75) 0.001 (10) 0.0061 (62)

Table C.8: Differences of zcrf , ∆zcrf (m), determined from different methods. The differences are always zcrf (1) minus zcrf (m),

obtained from any other method m = 2 . . . 7. Scale NP.

Continuum limit of ∆zcrf (m).

Hadronic scale: L = 1.436 r0

Fit: ∆zcrf = b0 + b1
a
L

m b0 b1

2 0.0006 (99) 0.10 (12)

3 -0.001 (10) -0.24 (13)

4 0.0076 (91) 0.31 (11)

5 0.0096 (91) 0.33 (11)

6 -0.000 (12) 0.25 (15)

7 -0.001 (12) 0.20 (18)

Table C.9: Continuum limit of the data presented in tab. C.8. We have performed a linear fit in a/L. The point L/a = 8
is not included in the fit.

38



C.3 Scaling studies

R1,2
5 -even correlation functions

NP scale: L = 1.436 r0 and θ = (0, 0, 0)

L/a β m g11P−
g11P+

g12V0−
g12V0+

g111

8 6.0219 1 3.637 (14) 0.02609 (25)[82] 1.9779 (85) 0.01279 (16)[42] 1.1857 (53)

2 3.643 (14) 0.02249 (19)[63] 1.9839 (85) 0.01090 (12)[32] 1.1883 (52)

3 3.619 (14) 0.03956 (38)[164] 1.9568 (87) 0.01990 (24)[86] 1.1767 (54)

4 3.652 (13) 0.01903 (13)[17] 1.9907 (83) 0.009143 (79)[89] 1.1915 (51)

5 3.653 (13) 0.01893 (14)[14] 1.9912 (83) 0.009112 (80)[80] 1.1918 (51)

6 3.647 (13) 0.02057 (15)[53] 1.9873 (84) 0.00991 (10)[27] 1.1899 (52)

7 3.642 (14) 0.02322 (20) 1.9827 (85) 0.01128 (13) 1.1878 (52)

10 6.1628 1 3.605 (13) 0.02081 (22)[93] 1.8788 (84) 0.01028 (13)[47] 1.1136 (51)

2 3.607 (13) 0.01738 (18)[85] 1.8815 (84) 0.00852 (11)[43] 1.1143 (51)

3 3.598 (14) 0.03178 (29)[153] 1.8685 (85) 0.01592 (17)[78] 1.1104 (52)

4 3.610 (13) 0.011182 (99)[312] 1.8843 (83) 0.005342 (60)[156] 1.1144 (50)

5 3.610 (13) 0.010616 (88)[260] 1.8842 (82) 0.005053 (53)[130] 1.1142 (50)

6 3.609 (13) 0.01386 (14)[80] 1.8836 (83) 0.006714 (85)[407] 1.1147 (50)

12 6.2885 1 3.528 (19) 0.01809 (24)[129] 1.808 (12) 0.00900 (14)[64] 1.0660 (70)

2 3.530 (19) 0.01510 (22)[118] 1.810 (11) 0.00748 (13)[59] 1.0663 (69)

3 3.524 (19) 0.02724 (30)[210] 1.801 (12) 0.01363 (18)[105] 1.0644 (71)

4 3.531 (18) 0.00836 (13)[54] 1.811 (11) 0.004065 (76)[274] 1.0657 (68)

5 3.531 (18) 0.00784 (12)[48] 1.811 (11) 0.003801 (71)[241] 1.0655 (68)

6 3.531 (19) 0.01041 (16)[126] 1.811 (11) 0.005104 (94)[638] 1.0662 (69)

7 3.530 (19) 0.01310 (20) 1.810 (11) 0.00647 (11) 1.0663 (69)

16 6.4956 1 3.458 (22) 0.01423 (18)[140] 1.702 (13) 0.00691 (10)[68] 0.9921 (77)

2 3.458 (22) 0.01179 (16)[135] 1.702 (13) 0.005714 (90)[658] 0.9919 (77)

3 3.456 (22) 0.02169 (22)[209] 1.698 (13) 0.01057 (13)[101] 0.9918 (78)

4 3.456 (21) 0.00620 (11)[68] 1.702 (13) 0.002974 (59)[331] 0.9905 (76)

5 3.456 (21) 0.005474 (99)[596] 1.702 (13) 0.002620 (54)[290] 0.9902 (76)

6 3.457 (21) 0.00933 (14)[174] 1.703 (13) 0.004510 (78)[849] 0.9915 (77)

7 3.457 (21) 0.01001 (15) 1.703 (13) 0.004842 (82) 0.9917 (77)

20 6.6790 1 3.377 (35) 0.01356 (22)[194] 1.628 (22) 0.00650 (13)[93] 0.948 (13)

2 3.377 (35) 0.01172 (20)[189] 1.628 (22) 0.00561 (12)[91] 0.948 (13)

3 3.377 (35) 0.01886 (27)[269] 1.626 (22) 0.00903 (16)[127] 0.948 (14)

4 3.375 (34) 0.00571 (13)[115] 1.627 (22) 0.002713 (72)[554] 0.946 (13)

5 3.375 (34) 0.00559 (13)[115] 1.627 (22) 0.002656 (71)[555] 0.946 (13)

6 3.375 (34) 0.00614 (14)[215] 1.628 (22) 0.002925 (76)[1037] 0.946 (13)

24 6.8187 1 3.346 (38) 0.00805 (14)[150] 1.643 (21) 0.003932 (81)[728] 0.950 (13)

2 3.346 (37) 0.00679 (13)[147] 1.643 (21) 0.003318 (73)[715] 0.950 (13)

3 3.345 (38) 0.01125 (18)[196] 1.642 (21) 0.00549 (10)[95] 0.951 (13)

4 3.345 (37) 0.003896 (90)[915] 1.643 (21) 0.001900 (50)[445] 0.950 (13)

Table C.10: (continuing on the next page, caption below)
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R1,2
5 -even correlation functions

NP scale: L = 1.436 r0 and θ = (0, 0, 0)

L/a β m g11P−
g11P+

g12V0−
g12V0+

g111

5 3.344 (37) 0.002970 (75)[765] 1.643 (21) 0.001447 (42)[372] 0.949 (13)

6 3.346 (38) 0.00788 (14)[243] 1.643 (21) 0.003849 (80)[1188] 0.950 (13)

7 3.345 (37) 0.00641 (12) 1.643 (21) 0.003129 (70) 0.950 (13)

Table C.10: Results for the R1,2
5 -even correlation functions, g11P±

, g12V0±
and g111 , at scale L = 1.436 r0 and for θ = (0, 0, 0).

The data have been obtained via linear interpolations to the critical values of κ and quadratic interpolations to the critical
values of zf for all the tuning methods (1) to (7). See sec. 6.1 and sec. 6.2 for explanations. For the correlation functions
g11P+

and g12V0+
the first error is statistical while the second, where available, contains the propagation of the error in zcrf

(see text).

R1,2
5 -even correlation functions

I scale: g2 = 2.4484 and θ = (0, 0, 0)

L/a β m g11P−
g11P+

g12V0−
g12V0+

g111

8 7.0197 1 3.2342 (83) 0.010013 (72)[84] 2.2115 (68) 0.006152 (52)[57] 1.5371 (48)

2 3.2391 (82) 0.010043 (76)[82] 2.2170 (68) 0.006203 (54)[62] 1.5412 (48)

3 3.2240 (85) 0.011667 (97)[237] 2.1987 (69) 0.007214 (71)[153] 1.5286 (49)

4 3.2446 (81) 0.01110 (10)[13] 2.2222 (67) 0.006959 (69)[97] 1.5456 (47)

5 3.2456 (81) 0.01148 (11)[14] 2.2231 (67) 0.007222 (74)[102] 1.5464 (47)

6 3.2418 (82) 0.010407 (86)[142] 2.2197 (67) 0.006468 (59)[104] 1.5434 (47)

7 3.2348 (83) 0.009982 (72) 2.2121 (68) 0.006135 (52) 1.5376 (48)

12 7.3551 1 3.219 (11) 0.003185 (35)[99] 2.1342 (89) 0.001976 (25)[64] 1.4657 (61)

2 3.220 (11) 0.002968 (32)[58] 2.1358 (89) 0.001835 (22)[37] 1.4668 (61)

3 3.216 (11) 0.004005 (48)[201] 2.1305 (89) 0.002514 (35)[131] 1.4633 (61)

4 3.223 (10) 0.003154 (40)[71] 2.1386 (88) 0.001966 (26)[49] 1.4691 (61)

5 3.224 (10) 0.003212 (42)[77] 2.1387 (88) 0.002005 (27)[53] 1.4693 (61)

6 3.223 (10) 0.003032 (37)[80] 2.1382 (88) 0.001884 (24)[55] 1.4688 (61)

7 3.220 (11) 0.003085 (34) 2.1348 (89) 0.001911 (24) 1.4662 (61)

16 7.6101 1 3.203 (13) 0.001786 (30)[155] 2.094 (11) 0.001123 (21)[100] 1.4314 (76)

2 3.204 (13) 0.001526 (25)[123] 2.095 (11) 0.000954 (18)[80] 1.4319 (75)

3 3.202 (13) 0.002454 (40)[256] 2.092 (11) 0.001559 (28)[166] 1.4303 (76)

4 3.206 (13) 0.001195 (17)[17] 2.096 (11) 0.000741 (12)[12] 1.4331 (75)

5 3.206 (13) 0.001201 (18)[20] 2.096 (11) 0.000745 (12)[14] 1.4332 (75)

6 3.205 (13) 0.001211 (18)[41] 2.096 (11) 0.000750 (12)[26] 1.4329 (75)

7 3.204 (13) 0.001579 (26) 2.095 (11) 0.000988 (18) 1.4318 (75)

Table C.11: Same caption as in tab. C.10 but at scale g2 = 2.4484.
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R1,2
5 -even correlation functions

P scale: g2 = 0.9944 and θ = (0, 0, 0)

L/a β m g11P−
g11P+

g12V0−
g12V0+

g111

16 10.8910 1 3.0565 (76) 0.0006071 (87)[89] 2.4403 (81) 0.0004638 (70)[72] 1.9652 (65)

2 3.0568 (76) 0.0006251 (90)[148] 2.4407 (81) 0.0004782 (72)[121] 1.9656 (65)

3 3.0560 (76) 0.0006260 (90)[164] 2.4396 (81) 0.0004787 (73)[129] 1.9646 (65)

4 3.0574 (75) 0.000772 (11)[32] 2.4414 (81) 0.0005952 (88)[263] 1.9663 (65)

5 3.0574 (75) 0.000782 (11)[30] 2.4414 (81) 0.0006035 (89)[245] 1.9663 (65)

6 3.0573 (75) 0.000750 (11)[49] 2.4414 (81) 0.0005775 (86)[395] 1.9662 (65)

7 3.0566 (76) 0.0006105 (88) 2.4405 (81) 0.0004665 (70) 1.9653 (65)

Table C.12: Same caption as in tab. C.10 but at scale g2 = 0.9944.

R1,2
5 -even correlation functions

2P scale and θ = (0, 0, 0)

L/a β m g11P−
g11P+

g12V0−
g12V0+

g111

16 12.0000 1 3.049 (11) 0.000537 (16)[28] 2.527 (13) 0.000429 (13)[23] 2.089 (11)

2 3.049 (11) 0.000569 (17)[37] 2.527 (13) 0.000455 (14)[31] 2.089 (11)

3 3.048 (11) 0.000508 (15)[20] 2.526 (13) 0.000404 (12)[17] 2.088 (11)

4 3.049 (11) 0.000754 (21)[62] 2.527 (13) 0.000609 (18)[52] 2.090 (11)

5 3.049 (11) 0.000726 (21)[50] 2.527 (13) 0.000586 (17)[42] 2.090 (11)

6 3.049 (11) 0.000813 (23)[112] 2.527 (13) 0.000658 (19)[94] 2.090 (11)

7 3.049 (11) 0.000535 (16) 2.526 (13) 0.000427 (13) 2.089 (11)

Table C.13: Same caption as in tab. C.10 but at scale 2P.

R1,2
5 -even correlation functions

PP scale and θ = (0, 0, 0)

L/a β m g11P−
g11P+

g12V0−
g12V0+

g111

16 24.0000 1 3.0201 (56) 0.0002171 (50)[61] 2.7853 (73) 0.0001936 (46)[57] 2.5652 (67)

2 3.0201 (56) 0.0002289 (52)[81] 2.7854 (73) 0.0002045 (48)[76] 2.5653 (67)

3 3.0200 (56) 0.0002117 (50)[50] 2.7852 (73) 0.0001885 (46)[46] 2.5651 (67)

4 3.0202 (56) 0.0002566 (56)[114] 2.7855 (73) 0.0002301 (51)[106] 2.5655 (67)

5 3.0202 (56) 0.0002589 (56)[99] 2.7855 (73) 0.0002322 (51)[92] 2.5655 (67)

6 3.0202 (56) 0.0002528 (55)[185] 2.7855 (73) 0.0002266 (50)[172] 2.5654 (67)

7 3.0201 (56) 0.0002171 (50) 2.7853 (73) 0.0001935 (46) 2.5652 (67)

Table C.14: Same caption as in tab. C.10 but at scale PP.
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R1,2
5 -even correlation functions

NP scale: L = 1.436 r0 and θ = (0.5, 0.5, 0.5)

L/a β m g11P−
g11P+

g12V0−
g12V0+

g111

8 6.0219 1* 2.9412 (86) 0.04976 (16) 1.4129 (64) 0.02207 (12) 0.8461 (39)

1 2.937 (10) 0.04978 (21)[76] 1.4098 (64) 0.02206 (14)[34] 0.8443 (39)

2 2.9421 (98) 0.04653 (17)[61] 1.4150 (63) 0.02060 (12)[27] 0.8466 (39)

3 2.920 (10) 0.06126 (30)[143] 1.3929 (65) 0.02729 (19)[66] 0.8371 (40)

4 2.9510 (95) 0.04291 (15)[24] 1.4218 (62) 0.01900 (10)[12] 0.8498 (38)

5 2.9524 (95) 0.04264 (16)[20] 1.4226 (62) 0.01889 (10)[11] 0.8502 (38)

6 2.9459 (97) 0.04469 (15)[56] 1.4182 (62) 0.01978 (11)[25] 0.8480 (39)

7 2.9409 (99) 0.04721 (18) 1.4139 (63) 0.02090 (13) 0.8461 (39)

10 6.1628 1* 2.9218 (85) 0.03592 (12) 1.3452 (61) 0.015758 (78) 0.7946 (36)

1 2.9199 (94) 0.03600 (18)[81] 1.3442 (60) 0.01579 (11)[36] 0.7940 (36)

2 2.9223 (93) 0.03308 (16)[75] 1.3467 (60) 0.014474 (99)[329] 0.7948 (36)

3 2.9122 (96) 0.04519 (23)[131] 1.3354 (61) 0.01991 (14)[59] 0.7910 (37)

4 2.9267 (91) 0.02758 (10)[32] 1.3506 (59) 0.012006 (71)[141] 0.7958 (35)

5 2.9271 (90) 0.027036 (96)[275] 1.3508 (59) 0.011761 (68)[125] 0.7958 (35)

6 2.9248 (92) 0.03002 (13)[73] 1.3491 (59) 0.013099 (85)[323] 0.7955 (36)

12 6.2885 1* 2.867 (13) 0.02844 (13) 1.3043 (80) 0.012551 (83) 0.7656 (48)

1 2.857 (14) 0.02820 (20)[110] 1.2953 (80) 0.01239 (12)[48] 0.7602 (47)

2 2.859 (13) 0.02569 (18)[101] 1.2969 (79) 0.01127 (11)[45] 0.7606 (47)

3 2.852 (14) 0.03579 (25)[177] 1.2894 (81) 0.01577 (14)[79] 0.7585 (48)

4 2.861 (13) 0.01992 (12)[51] 1.2997 (78) 0.008694 (75)[227] 0.7610 (46)

5 2.862 (13) 0.01946 (12)[45] 1.2998 (78) 0.008488 (72)[201] 0.7609 (46)

6 2.861 (13) 0.02170 (14)[111] 1.2991 (79) 0.009491 (86)[496] 0.7610 (47)

7 2.860 (13) 0.02400 (17) 1.2979 (79) 0.010519 (98) 0.7609 (47)

16 6.4956 1* 2.817 (15) 0.01967 (11) 1.2317 (93) 0.008430 (65) 0.7138 (55)

1 2.814 (15) 0.01926 (16)[116] 1.2301 (92) 0.008238 (89)[497] 0.7129 (55)

2 2.815 (15) 0.01723 (14)[112] 1.2310 (92) 0.007364 (81)[480] 0.7129 (55)

3 2.812 (15) 0.02540 (19)[174] 1.2268 (93) 0.01090 (11)[75] 0.7122 (55)

4 2.815 (15) 0.012555 (99)[590] 1.2320 (92) 0.005338 (59)[252] 0.7125 (55)

5 2.815 (15) 0.011940 (93)[518] 1.2319 (92) 0.005071 (56)[222] 0.7124 (55)

6 2.815 (15) 0.01519 (12)[146] 1.2316 (92) 0.006478 (72)[631] 0.7129 (55)

7 2.815 (15) 0.01575 (13) 1.2315 (92) 0.006723 (75) 0.7129 (55)

20 6.6790 1 2.709 (24) 0.01578 (18)[160] 1.166 (15) 0.00672 (11)[67] 0.6748 (92)

2 2.709 (24) 0.01427 (16)[156] 1.166 (15) 0.00608 (10)[65] 0.6747 (92)

3 2.708 (24) 0.02009 (21)[222] 1.164 (15) 0.00856 (14)[94] 0.6746 (92)

4 2.709 (23) 0.00934 (11)[97] 1.167 (15) 0.003954 (70)[413] 0.6741 (92)

5 2.709 (23) 0.00924 (11)[97] 1.167 (15) 0.003911 (69)[413] 0.6741 (92)

6 2.709 (23) 0.00970 (12)[180] 1.167 (15) 0.004110 (73)[770] 0.6742 (92)

Table C.15: (continuing on the next page, caption below)
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R1,2
5 -even correlation functions

NP scale: L = 1.436 r0 and θ = (0.5, 0.5, 0.5)

L/a β m g11P−
g11P+

g12V0−
g12V0+

g111

24 6.8187 1 2.675 (27) 0.00976 (13)[122] 1.136 (16) 0.004107 (75)[512] 0.6529 (93)

2 2.675 (27) 0.00875 (12)[120] 1.136 (16) 0.003678 (68)[500] 0.6529 (93)

3 2.675 (27) 0.01234 (16)[159] 1.135 (16) 0.005194 (92)[678] 0.6528 (94)

4 2.675 (27) 0.006389 (88)[756] 1.136 (16) 0.002683 (50)[317] 0.6526 (93)

5 2.675 (27) 0.005632 (76)[632] 1.136 (16) 0.002363 (44)[264] 0.6524 (93)

6 2.675 (27) 0.00963 (13)[198] 1.136 (16) 0.004049 (74)[839] 0.6529 (93)

7 2.675 (27) 0.00843 (12) 1.136 (16) 0.003546 (66) 0.6529 (93)

Table C.15: Same caption as in tab. C.10 but at θ = (0.5, 0.5, 0.5). The values denoted with (1*) have been obtained by
direct simulations at the critical values of κ and zf . See sec. 5.3 for explanation of (1*). For the correlation functions g11P+

and g12V0+
the first error is statistical while the second, where available, contains the propagation of the error in zcrf (see

text).

R1,2
5 -even correlation functions

I scale: g2 = 2.4484 and θ = (0.5, 0.5, 0.5)

L/a β m g11P−
g11P+

g12V0−
g12V0+

g111

8 7.0197 1* 2.5142 (48) 0.003341 (79) 1.4348 (43) 0.017953 (66) 1.0006 (30)

1 2.5143 (55) 0.003306 (79)[119] 1.4358 (44) 0.017784 (65)[76] 1.0013 (31)

2 2.5186 (54) 0.003279 (86)[86] 1.4399 (44) 0.017680 (66)[66] 1.0042 (31)

3 2.5056 (56) 0.003480 (85)[247] 1.4265 (45) 0.018668 (71)[139] 0.9953 (31)

4 2.5235 (53) 0.00332 (10)[90] 1.4442 (43) 0.017964 (72)[72] 1.0075 (31)

5 2.5245 (53) 0.00334 (11)[93] 1.4450 (43) 0.018086 (74)[74] 1.0081 (30)

6 2.5210 (54) 0.003288 (93)[93] 1.4421 (44) 0.017757 (68)[71] 1.0058 (31)

7 2.5148 (55) 0.003300 (79) 1.4363 (44) 0.017759 (65) 1.0016 (31)

12 7.3551 1* 2.5015 (62) 0.014097 (43) 1.3856 (53) 0.007547 (35) 0.9509 (37)

1 2.5003 (65) 0.014158 (43)[109] 1.3847 (52) 0.007568 (36)[60] 0.9504 (36)

2 2.5016 (65) 0.013931 (42)[79] 1.3859 (52) 0.007449 (35)[45] 0.9512 (36)

3 2.4976 (66) 0.014895 (47)[190] 1.3819 (53) 0.007964 (40)[103] 0.9486 (36)

4 2.5044 (65) 0.013914 (50)[50] 1.3883 (52) 0.007454 (36)[40] 0.9530 (36)

5 2.5046 (65) 0.013947 (51)[51] 1.3884 (52) 0.007473 (36)[40] 0.9531 (36)

6 2.5039 (65) 0.013852 (48)[51] 1.3879 (52) 0.007417 (35)[41] 0.9527 (36)

7 2.5008 (65) 0.014059 (42) 1.3852 (52) 0.007516 (36) 0.9507 (36)

16 7.6101 1* 2.4864 (82) 0.008178 (31) 1.3483 (67) 0.004364 (25) 0.9199 (46)

1 2.4868 (84) 0.008141 (33)[140] 1.3484 (67) 0.004335 (27)[75] 0.9200 (46)

2 2.4875 (84) 0.007918 (31)[115] 1.3490 (67) 0.004217 (26)[61] 0.9204 (46)

3 2.4855 (85) 0.008695 (38)[222] 1.3469 (67) 0.004631 (30)[120] 0.9191 (46)

4 2.4893 (84) 0.007593 (29)[32] 1.3505 (67) 0.004047 (23)[23] 0.9214 (46)

5 2.4895 (84) 0.007591 (29)[29] 1.3506 (67) 0.004047 (23)[23] 0.9215 (46)

6 2.4889 (84) 0.007623 (29)[59] 1.3502 (67) 0.004062 (23)[34] 0.9212 (46)

7 2.4874 (84) 0.007964 (31) 1.3489 (67) 0.004241 (26) 0.9203 (46)

Table C.16: Same caption as in tab. C.15 but at scale g2 = 2.4484.
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R1,2
5 -even correlation functions

P scale: g2 = 0.9944 and θ = (0.5, 0.5, 0.5)

L/a β m g11P−
g11P+

g12V0−
g12V0+

g111

16 10.8910 1* 2.2924 (43) 0.006800 (15) 1.4342 (44) 0.004191 (14) 1.1555 (35)

1 2.2921 (44) 0.006796 (15)[16] 1.4340 (44) 0.004181 (14)[14] 1.1553 (35)

2 2.2924 (44) 0.006796 (16)[16] 1.4343 (44) 0.004182 (14)[14] 1.1556 (35)

3 2.2916 (45) 0.006830 (15)[25] 1.4334 (44) 0.004202 (14)[18] 1.1549 (35)

4 2.2931 (44) 0.006872 (17)[21] 1.4350 (44) 0.004230 (15)[18] 1.1562 (35)

5 2.2931 (44) 0.006878 (17)[21] 1.4350 (44) 0.004234 (15)[18] 1.1563 (35)

6 2.2930 (44) 0.006859 (17)[29] 1.4349 (44) 0.004222 (15)[22] 1.1562 (35)

7 2.2922 (44) 0.006794 (15) 1.4341 (44) 0.004180 (14) 1.1554 (35)

Table C.17: Same caption as in tab. C.15 but at scale g2 = 0.9944.

R1,2
5 -even correlation functions

2P scale and θ = (0.5, 0.5, 0.5)

L/a β m g11P−
g11P+

g12V0−
g12V0+

g111

16 12.0000 1 2.2686 (65) 0.006722 (22)[22] 1.4486 (62) 0.004247 (19)[20] 1.1988 (52)

2 2.2688 (65) 0.006737 (22)[25] 1.4488 (62) 0.004257 (19)[23] 1.1990 (52)

3 2.2683 (66) 0.006712 (21)[21] 1.4483 (62) 0.004240 (19)[19] 1.1985 (52)

4 2.2694 (65) 0.006845 (25)[40] 1.4494 (62) 0.004327 (21)[31] 1.1996 (51)

5 2.2693 (65) 0.006828 (25)[33] 1.4493 (62) 0.004316 (20)[27] 1.1995 (51)

6 2.2695 (65) 0.006882 (26)[71] 1.4495 (62) 0.004351 (21)[50] 1.1997 (51)

7 2.2686 (65) 0.006721 (22) 1.4486 (62) 0.004246 (19) 1.1988 (52)

Table C.18: Same caption as in tab. C.10 but at scale 2P and θ = (0.5, 0.5, 0.5).

R1,2
5 -even correlation functions

PP scale and θ = (0.5, 0.5, 0.5)

L/a β m g11P−
g11P+

g12V0−
g12V0+

g111

16 24.0000 1 2.1966 (29) 0.006459 (11)[11] 1.5009 (31) 0.004391 (10)[10] 1.3851 (28)

2 2.1967 (29) 0.006459 (11)[11] 1.5011 (31) 0.004392 (10)[11] 1.3853 (28)

3 2.1964 (29) 0.006464 (10)[11] 1.5007 (31) 0.004395 (11)[11] 1.3850 (28)

4 2.1968 (29) 0.006468 (11)[11] 1.5013 (31) 0.004398 (10)[11] 1.3855 (28)

5 2.1969 (29) 0.006469 (11)[11] 1.5013 (31) 0.004399 (10)[11] 1.3855 (28)

6 2.1968 (29) 0.006467 (11)[13] 1.5012 (31) 0.004397 (10)[12] 1.3854 (28)

7 2.1966 (29) 0.006459 (11) 1.5009 (31) 0.004391 (10) 1.3851 (28)

Table C.19: Same caption as in tab. C.10 but at scale PP and θ = (0.5, 0.5, 0.5).
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R1,2
5 -odd correlation functions

NP scale: L = 1.436 r0 and θ = (0, 0, 0)

L/a β m g11A0−
g12Vk−

8 6.0219 1 ——– -0.171 (10)

2 0.0434 (97) -0.114 (10)

3 -0.1031 (95) -0.306 (10)

4 0.1305 (98) ——–

5 0.1482 (98) 0.023 (11)

6 0.0767 (97) -0.070 (11)

7 0.0332 (97) -0.127 (10)

10 6.1628 1 ——– -0.1449 (93)

2 0.0296 (84) -0.1058 (93)

3 -0.0724 (84) -0.2405 (92)

4 0.1098 (85) ——–

5 0.1224 (85) 0.0167 (95)

6 0.0678 (85) -0.0554 (94)

12 6.2885 1 ——– -0.124 (12)

2 0.023 (11) -0.093 (12)

3 -0.058 (10) -0.199 (12)

4 0.094 (11) ——–

5 0.102 (11) 0.010 (12)

6 0.068 (11) -0.034 (12)

7 0.041 (11) -0.071 (12)

16 6.4956 1 ——– -0.095 (12)

2 0.018 (11) -0.071 (12)

3 -0.047 (11) -0.156 (12)

4 0.072 (11) ——–

5 0.082 (11) 0.012 (12)

6 0.039 (11) -0.043 (12)

7 0.033 (11) -0.051 (12)

20 6.6790 1 ——– -0.084 (17)

2 0.013 (14) -0.067 (17)

3 -0.033 (14) -0.128 (16)

4 0.065 (14) ——–

5 0.066 (14) 0.002 (17)

6 0.061 (14) -0.006 (17)

24 6.8187 1 ——– -0.058 (17)

2 0.012 (15) -0.043 (17)

3 -0.027 (15) -0.092 (17)

4 0.045 (15) ——–

5 0.059 (15) 0.017 (17)

6 0.001 (15) -0.056 (17)

Table C.20: (continuing on the next page, caption below)
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R1,2
5 -odd correlation functions

NP scale: L = 1.436 r0 and θ = (0, 0, 0)

L/a β m g11A0−
g12Vk−

7 0.016 (15) -0.038 (17)

Table C.20: Results for the R1,2
5 -odd correlation functions, g11A0−

and g12Vk−
, at scale L = 1.436 r0 and for θ = (0, 0, 0).

The data have been obtained via linear interpolations to the critical values of κ and zf for all the tuning methods (1)
to (7). The lines represent the cases where the corresponding quantity has been used as tuning condition. See sec. 6.3 for
explanations.
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R1,2
5 -odd correlation functions

I scale: g2 = 2.4484 and θ = (0, 0, 0)

L/a β m g11A0−
g12Vk−

8 7.0197 1 ——– -0.1134 (64)

2 0.0406 (61) -0.0640 (65)

3 -0.0730 (60) -0.2015 (62)

4 0.0935 (62) ——–

5 0.1048 (63) 0.0137 (66)

6 0.0659 (62) -0.0334 (65)

7 0.0044 (61) -0.1079 (64)

12 7.3551 1 ——– -0.0845 (72)

2 0.0192 (67) -0.0610 (72)

3 -0.0355 (67) -0.1277 (71)

4 0.0695 (68) ——–

5 0.0732 (68) 0.0048 (73)

6 0.0597 (68) -0.0118 (72)

7 0.0072 (67) -0.0757 (72)

16 7.6101 1 ——– -0.0645 (80)

2 0.0131 (75) -0.0487 (80)

3 -0.0236 (74) -0.0933 (80)

4 0.0531 (75) ——–

5 0.0572 (75) 0.0048 (81)

6 0.0431 (75) -0.0123 (80)

7 0.0101 (75) -0.0523 (80)

Table C.21: Same caption as in tab. C.20 but at scale g2 = 2.4484.

R1,2
5 -odd correlation functions

P scale: g2 = 0.9944 and θ = (0, 0, 0)

L/a β m g11A0−
g12Vk−

16 10.8910 1 ——– -0.0363 (43)

2 0.0096 (41) -0.0255 (43)

3 -0.0136 (41) -0.0516 (43)

4 0.0323 (41) ——–

5 0.0334 (41) 0.0012 (44)

6 0.0299 (41) -0.0027 (44)

7 0.0034 (41) -0.0325 (43)

Table C.22: Same caption as in tab. C.20 but at scale g2 = 0.9944.
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R1,2
5 -odd correlation functions

2P scale and θ = (0, 0, 0)

L/a β m g11A0−
g12Vk−

16 12.0000 1 ——– -0.0292 (70)

2 0.0059 (67) -0.0228 (70)

3 -0.0081 (67) -0.0382 (70)

4 0.0266 (67) ——–

5 0.0242 (67) -0.0026 (70)

6 0.0315 (67) 0.0054 (70)

7 -0.0004 (67) -0.0297 (70)

Table C.23: Same caption as in tab. C.20 but at scale 2P.

R1,2
5 -odd correlation functions

PP scale and θ = (0, 0, 0)

L/a β m g11A0−
g12Vk−

16 24.0000 1 ——– -0.0144 (31)

2 0.0057 (31) -0.0084 (31)

3 -0.0066 (31) -0.0213 (31)

4 0.0137 (31) ——–

5 0.0143 (31) 0.0005 (31)

6 0.0128 (31) -0.0010 (31)

7 -0.0001 (31) -0.0144 (31)

Table C.24: Same caption as in tab. C.20 but at scale PP.

R1,2
5 -odd correlation functions

NP scale: L = 1.436 r0 and θ = (0.5, 0.5, 0.5)

L/a β m g11A0−
g12Vk−

8 6.0219 1* -0.0270 (59)

1 -0.0307 (71) -0.1465 (75)

2 ——– -0.1034 (76)

3 -0.1031 (70) -0.2482 (73)

4 0.0612 (73) -0.0174 (78)

5 0.0736 (73) ——–

6 0.0234 (72) -0.0705 (77)

7 -0.0072 (71) -0.1135 (76)

10 6.1628 1* -0.0173 (50)

1 -0.0210 (64) -0.1239 (70)

2 ——– -0.0939 (70)

3 -0.0724 (64) -0.1971 (69)

4 0.0570 (65) -0.0129 (71)

Table C.25: (continuing on the next page, caption below)
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R1,2
5 -odd correlation functions

NP scale: L = 1.436 r0 and θ = (0.5, 0.5, 0.5)

L/a β m g11A0−
g12Vk−

5 0.0659 (65) ——–

6 0.0272 (64) -0.0553 (70)

12 6.2885 1* -0.0215 (58)

1 -0.0165 (77) -0.1035 (87)

2 ——– -0.0800 (87)

3 -0.0576 (77) -0.1617 (85)

4 0.0508 (78) -0.0079 (89)

5 0.0564 (78) ——–

6 0.0321 (78) -0.0344 (88)

7 0.0125 (78) -0.0623 (88)

16 6.4956 1* -0.0072 (50)

1 -0.0132 (84) -0.0837 (91)

2 ——– -0.0648 (91)

3 -0.0471 (84) -0.1316 (91)

4 0.0391 (84) -0.0095 (92)

5 0.0458 (84) ——–

6 0.0152 (84) -0.0433 (92)

7 0.0108 (84) -0.0496 (92)

20 6.6790 1 -0.009 (10) -0.067 (13)

2 ——– -0.054 (13)

3 -0.033 (10) -0.100 (13)

4 0.037 (11) -0.001 (13)

5 0.038 (11) ——–

6 0.034 (11) -0.006 (13)

24 6.8187 1 -0.008 (11) -0.057 (13)

2 ——– -0.046 (13)

3 -0.027 (11) -0.083 (13)

4 0.023 (11) -0.013 (13)

5 0.032 (11) ——–

6 -0.007 (11) -0.056 (13)

7 0.003 (11) -0.042 (13)

Table C.25: Same caption as in tab. C.20 but at θ = (0.5, 0.5, 0.5). The values denoted with (1*) have been obtained by
direct simulations at the critical values of κ and zf . See sec. 5.3 for explanation of (1*).
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R1,2
5 -odd correlation functions

I scale: g2 = 2.4484 and θ = (0.5, 0.5, 0.5)

L/a β m g11A0−
g12Vk−

8 7.0197 1* -0.0378 (31)

1 -0.0263 (41) -0.0898 (43)

2 ——– -0.0550 (43)

3 -0.0730 (40) -0.1521 (41)

4 0.0338 (42) -0.0098 (44)

5 0.0411 (42) ——–

6 0.0161 (41) -0.0334 (44)

7 -0.0234 (41) -0.0860 (43)

12 7.3551 1* -0.0083 (31)

1 -0.0125 (47) -0.0640 (50)

2 ——– -0.0472 (50)

3 -0.0355 (47) -0.0951 (49)

4 0.0324 (47) -0.0032 (50)

5 0.0348 (47) ——–

6 0.0260 (47) -0.0118 (50)

7 -0.0079 (47) -0.0577 (50)

16 7.6101 1* -0.0137 (30)

1 -0.0084 (50) -0.0500 (54)

2 ——– -0.0386 (54)

3 -0.0236 (50) -0.0708 (54)

4 0.0257 (50) -0.0035 (54)

5 0.0283 (50) ——–

6 0.0193 (50) -0.0123 (54)

7 -0.0019 (50) -0.0412 (54)

Table C.26: Same caption as in tab. C.25 but at scale g2 = 2.4484.
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R1,2
5 -odd correlation functions

P scale: g2 = 0.9944 and θ = (0.5, 0.5, 0.5)

L/a β m g11A0−
g12Vk−

8 10.3000 1* -0.0146 (14)

12 10.6086 1* -0.0063 (14)

16 10.8910 1* -0.0034 (15)

1 -0.0056 (25) -0.0256 (27)

2 ——– -0.0183 (27)

3 -0.0136 (25) -0.0360 (27)

4 0.0134 (25) -0.0008 (27)

5 0.0140 (25) ——–

6 0.0120 (25) -0.0027 (27)

7 -0.0036 (25) -0.0230 (27)

Table C.27: Same caption as in tab. C.25 but at scale g2 = 0.9944.

R1,2
5 -odd correlation functions

2P scale and θ = (0.5, 0.5, 0.5)

L/a β m g11A0−
g12Vk−

16 12.0000 1 -0.0034 (40) -0.0178 (42)

2 ——– -0.0135 (42)

3 -0.0081 (40) -0.0239 (42)

4 0.0118 (40) 0.0019 (42)

5 0.0104 (40) ——–

6 0.0146 (40) 0.0055 (42)

7 -0.0037 (40) -0.0181 (42)

Table C.28: Same caption as in tab. C.20 but at scale 2P and θ = (0.5, 0.5, 0.5).

R1,2
5 -odd correlation functions

PP scale and θ = (0.5, 0.5, 0.5)

L/a β m g11A0−
g12Vk−

16 24.0000 1 -0.0031 (17) -0.0097 (17)

2 ——– -0.0058 (17)

3 -0.0066 (17) -0.0141 (17)

4 0.0043 (17) -0.0004 (17)

5 0.0046 (17) ——–

6 0.0038 (17) -0.0010 (17)

7 -0.0031 (17) -0.0097 (17)

Table C.29: Same caption as in tab. C.20 but at scale PP and θ = (0.5, 0.5, 0.5).
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Continuum limit of g11A0−
. NP scale

θ = (0, 0, 0) θ = (0.5, 0.5, 0.5)

m b0 b1 b0 b1

1 ——– ——– 0.001 (14) -0.22 (17)

2 -0.001 (18) 0.31 (23) ——– ——–

3 0.003 (18) -0.75 (23) 0.004 (14) -0.76 (17)

4 0.008 (18) 1.02 (23) 0.007 (14) 0.51 (17)

5 0.013 (18) 1.09 (23) 0.010 (14) 0.56 (17)

6 -0.006 (18) 0.79 (23) -0.003 (14) 0.34 (17)

7 -0.005 (29) 0.57 (42) -0.005 (21) 0.22 (31)

Table C.30: Continuum limit of g11A0−
for all definitions of zcrf from (1) to (7). Scale NP. Results are shown for θ = (0, 0, 0)

and θ = (0.5, 0.5, 0.5), as obtained from linear fits of the data in tab. C.20 and tab. C.25, respectively. The fits are linear
in a/L and the point L/a = 8 is excluded in all cases. The lines represent the cases where the corresponding quantity has
been used as tuning condition. See sec. 6.3 for more explanations.

Continuum limit of g12Vk−
. NP scale

θ = (0, 0, 0) θ = (0.5, 0.5, 0.5)

m b0 b1 b0 b1

1 -0.008 (21) -1.37 (26) -0.012 (16) -1.12 (20)

2 -0.011 (21) -0.96 (26) -0.013 (16) -0.81 (20)

3 -0.002 (20) -2.39 (26) -0.008 (16) -1.89 (19)

4 ——– ——– -0.004 (16) -0.07 (20)

5 0.005 (21) 0.10 (26) ——– ——–

6 -0.018 (21) -0.32 (26) -0.020 (16) -0.31 (20)

7 -0.002 (33) -0.81 (48) -0.019 (25) -0.51 (36)

Table C.31: Same caption as in tab. C.30 but for g12Vk−
.
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