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On non-trivial spectra of trivial gauge theories
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In this Letter we point out that the analytic solution of the two dimensional U(1) gauge theory, on a finite

lattice, reveals in the continuum limit the renowned Manton’s spectrum of topological electric fluxes together

with their effective hamiltonian and wave functions. We extend this result for the system with strings and

external charges providing also a novel interpretation of the Θ parameter. Some further generalizations are

also outlined.
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INTRODUCTION

It is usually said that two-dimensional (1+1) gauge
theories are trivial. In the continuum there are no trans-
verse degrees of freedom to sustain any dynamics. Like-
wise, in the lattice formulation, the system factorizes (af-
ter gauge fixing) and a partition function reduces to a
simple one-plaquette integral [1–3].
This picture neglects boundary conditions. It is well

known [4] that, e.g., QuantumMaxwell DynamicsQMD2

on a circle with a circumference L is not entirely trivial.
There remains one degree of freedom which cannot be
gauged away. In the Coulomb gauge this is the famous,
constant in space, mode Ax(t) ≡ A(t). Its dynamics is
given by the simple, one degree of freedom, hamiltonian

H = − e2

2L

d2

dA2
. (1)

Remaining gauge freedom allows to bring A to the inter-
val [0, 2π/L), and to identify points A = 0 andA = 2π/L,
hence the field space is also a circle with circumference
LA = 2π/L 1. The spectrum and periodic wave functions
of the above system are simply

En =
1

2
e2n2L, n = 0,±1,±2, ..., (2)

ψn(A) =
1√
L
einLA

and describe the quantized states of electric flux which
wraps around the circle. These are the straightfor-
ward quantum strings, with energies proportional to their

length and the string tension σn = e2n2

2 . These solutions
exist without any external charges, the Gauss’s law be-
ing satisfied due to the non-trivial topology of a circle.
Therefore they are again the simplest examples of topo-
logical strings.
In this note we shall show that this spectrum, and

the hamiltonian can be obtained also from the contin-
uum limit of the standard lattice formulation of QMD2.

1 Our L differs by a factor of 2π from that of [4].

Moreover, we will derive the generalization of eq. (1) de-
scribing the system of topological strings together with
external charges. This will also provide a straightfor-
ward, not surprising, but hopefully novel interpretation
of the Manton’s parameter Θ (see also [5]).
Generalizations for arbitrary number of charges as well

as for the non-abelian case will be also outlined.

QMD2 ON A LATTICE

Consider an Nt × Nx lattice with unitary variables:
Ul = eiθl associated with spatial link l and Ul = eiϑl

associated with temporal link l. The partition function
of this, pure gauge, theory reads

Z =

∫

d(links)
∏

plaquettes

B(plaquette),

B(P ) = eβ cosφP , (3)

with plaquette angles φP = θi + ϑj − θk − ϑl, where
{i, j, k, l} are appropriate indices of links belonging to
plaquette P . This integral is known exactly. Using the
character expansion for U(1), changing variables to pla-
quette angles, gives2

Z =

∞
∑

n=−∞

In(β)
NtNx . (4)

To recover the continuum limit, one tunes lattice coupling
β for each value of lattice constant a according to

β =
1

e2a2
(5)

and expresses all lattice distances in physical units, i.e.
T = aNt, L = aNx. The natural physical unit which
emerges is the dimensionful charge e.

2 On two-dimensional, periodic lattices there is one linear con-
straint between all NtNx plaquettes which has to be taken into
account.
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Using asymptotic form of modified Bessel functions
gives, up to a constant factor,

Z ∼
∑

n

(

e−
n2

2β

)NxNt

=
∑

n

e−
e2n2L

2
T (6)

which proves that indeed the partition function ofQMD2

is saturated by topological fluxes eq. (2).

Lattice transfer matrix and Feynman kernel

It is even more instructive to derive the above equiva-
lence from the transfer matrix formulation. To this end
we employ the Coulomb gauge on the lattice. In fact
the Coulomb condition on the 2-dimensional lattice can
be satisfied exactly. Consider a row of horizontal (space-
like) link angles θ1, θ2, ..., θNx

. By local gauge rotation
αi they transform to

gθi → θi + βi, βi = αi − αi+1, Σiβi = 0. (7)

Choosing

βi =
1

Nx

Nx
∑

j=1

θj − θi, (8)

brings all angles to the same value θ = Σjθj/Nx, thereby
satisfying the Coulomb condition. This procedure fixes
all links in one row to the same value, however that value
is not fixed since the conditions eq. (8) leave one rotation
angle αi free.
The transfer matrix in this gauge, in the angular rep-

resentation, is given by the Nx-fold integral over vertical
(time-like) links

〈θ|T |θ′〉 =
∫ Nx

∏

j=1

dϑj
∏

P

B(P ), (9)

of the product of Nx Boltzmann factors corresponding to
all Nx plaquettes between two nearest neighbor rows of
horizontal links. Due to our gauge choice all plaquettes
depend on the same angles θ and θ′, similarly the states
depend only on one angle. Notice also, that since we are
not using the temporal gauge, the integrations over the
vertical links have to be explicitly included.
Now we use again the character expansion for Boltz-

mann factor and integrate over vertical links to obtain

〈θ|T |θ′〉 =
∑

n

In(β)
NxeinNx(θ−θ′) (10)

which in the continuum limit becomes

〈θ|T |θ′〉 =
∑

n

e−
e2

2
n2LaeinL(A−A′) = K(A,A′, ǫ). (11)

This is nothing but a propagator of a 1 DOF quantum
mechanical system eq. (1,2) over a time ǫ = a.

TOPOLOGICAL FLUXES WITH EXTERNAL

CHARGES

Eigenenergies

To place on a circle two external, static charges sepa-
rated by a distance R consider the correlation function of
two Polyakov loops, 〈P (0)†P (nx)〉, separated by nx lat-
tice units. Standard, lattice textbook calculation gives
then

Z〈P (0)†P (nx)〉 =
∑

n

In(β)
Nt(Nx−nx)In+1(β)

Ntnx , (12)

which in the continuum limit reads R = anx

Z〈P (0)†P (nx)〉 =
∑

n

e−EPP
n T , (13)

with

EPP
n =

e2

2

(

n2(L−R) + (n+ 1)2R
)

=

=
e2(n+ ρ)2

2
L+

e2

2
Lρ(1− ρ) (14)

with

ρ =
R

L

This result has a simple and appealing interpretation.
Time-like Polyakov loops modify Gauss’s law at spatial
points x = 0, and x = R – they introduce unit charges
at these positions. Such charges cause additional unit of
flux extending over a distance R. Hence the two contribu-
tions to the eigenenergies: an ”old” flux over a distance
L−R and the ”new” one, bigger by one unit (fluxes are
additive), over a distance R.
Interesting special cases:

1. at large T lowest state n = 0 dominates and we
have just a standard string of length R,

2. with R = 0 the n-th energy level is given by topo-
logical flux of charge n,

3. with R = L, i.e. when two charges meet at the ”end
points” of a circle, they annihilate (e+δperiodic(x)+
e−δperiodic(x−L)) = 0) and leave behind a topolog-
ical string with length L and charge bigger by one
unit. In other words the energy levels are shifted
n→ n+ 1.

Hence varying the distance R allows us to interpolate
between integer valued topological fluxes. This is the
meaning of the second representation in eq. (14). How-
ever the first term is not the whole story (apart from
ρ = 0, 1). There is also the second, constant in n but
R and L dependent, contribution which guarantees the
linear dependence of eigenenergies on distances involved.
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The hamiltonian

The transfer matrix corresponding to eq. (12) is similar
to eq. (9)

〈θ|TPP |θ′〉 =
∫ Nx

∏

j=1

dϑj
∏

P

B(P )e−iϑ1eiϑnx+1 (15)

except for two additional link variables coming from
Polyakov lines P (1) and P (nx+1). Again we have chosen
the Coulomb gauge, hence the matrix element depends
only on two angles θ (θ′) which specify a state of upper
(lower) row. As before, upon expanding in characters
and integrating over vertical links, one obtains

〈θ|TPP |θ′〉 =
=

∑

n

In(β)
Nx−nxIn+1(β)

nxeinNx(θ−θ′)einx(θ−θ′) (16)

which in the continuum limit reads

〈θ|TPP |θ′〉 =
∑

n

e−
e2La

2 ((n+iρ)2+ρ(1−ρ))ei(n+ρ)L(A−A′)

= K̃PP (A,A
′, a), ρ =

R

L
. (17)

This is again a simple Feynman kernel propagating a one
DOF system by a time lapse a.
An explicit form of the corresponding hamiltonian de-

pends on the basis of eigenfunctions we choose. One pos-
sibility is

H̃PP =
e2L

2

(

− d2

dχ2
+ ρ(1− ρ)

)

, (18)

ψn(χ) = ei(n+ρ)χ, χ = LA

in this case wave functions are not periodic. The other
choice is

HPP =
e2L

2

(

−
( d

dχ
+ iρ

)2

+ ρ(1− ρ)
)

, (19)

ψn(χ) = einχ

with periodic eigenfunctions. The two are related by the
transformation ψ → eiρχψ, which in general is not peri-
odic.
This freedom corresponds exactly to the ambiguity dis-

cussed in [4] and [6], with Manton’s parameter Θ acquir-
ing now a straightforward interpretation

Θ =
R

L
. (20)

Namely, as always said, e2

2 Θ represents the external elec-
tric field in this context. In the original theory, in the

finite volume L, the field extends over a fraction R/L of a
whole volume. However in our 1 DOF system the notion
of the spatial distance is lost. Therefore (20) represents
an effective field in the reduced model, i.e. the field in the
extended QMD2, but averaged over the whole volume L.
In fact the equivalence discussed above is the simplest ex-
ample of the dimensional reduction so successful in many
studies [7–14].

GENERALIZATIONS AND SUMMARY

Two extensions immediately suggest themselves.
One, is to add many different, static charges (with total

charge being zero) in various positions. Corresponding
lattice correlation functions of many time-like Polyakov
loops can be readily calculated analogously to eq. (12).
For example four charges with different magnitudes will
be described by

Z〈P (i)†P (j)2†P 2(j + n2)P (i + n1)〉 =
=

∑

n

In(β)
Nt(Nx−n1−n2)In+1(β)

Nt(n1−n2)In+3(β)
Ntn2 ,

with doubly charged sources located inside the single
charged ones, i.e. R2 ≤ R1 ≤ L. Repeating above
calculations leads to the following eigenenergies in the
continuum limit

EPP
n =

e2

2

(

n2(L−R1 −R2)+

+ (n+ 1)2(R1 −R2) + (n+ 3)2R2

)

etc. Corresponding 1 DOF quantum mechanical sys-
tems can be also readily constructed. This time Θ =
(R1 + 2R2)/L, i.e. it is again equal to the external field
averaged over the whole volume.
Second generalization is for the non-abelian pure gauge

theory, QYMD2, with arbitrary number of colors. The
lattice solutions eq. (4) and eq. (12) are basically the
same with Bessel functions replaced by the coefficients
of the character expansions of Boltzmann factors for an
SU(N) gauge group. Corresponding continuum energies
follow from the large β behavior of these coefficients.
To summarize, the spectrum of topological fluxes, pre-

dicted by Manton quite some time ago, can be also ob-
tained from the continuum limit of seemingly trivial two-
dimensional, abelian lattice gauge theory. The hamil-
tonian of the corresponding reduced system also follows
from the lattice formulation in Coulomb gauge. Addition
of external charges on a lattice leads again to a simple 1
DOF quantum system. Resulting hamiltonian is, up to a
new constant term, the same as Manton’s one with non-
zero Θ parameter, which acquires a straightforward in-
terpretation Θ = R/L. Generalizations for many charges
and for non-abelian theories were also briefly outlined.
We plan to discuss these issues in more detail elsewhere.
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