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We analyze the problem of screening in 1+1 dimensional gauge theories. Using QED2 as a warm-
up for the non-abelian models we show the mechanism of the string breaking, in particular the
vanishing overlap of the Wilson loops to the broken-string ground state that has been conjectured
in higher-dimensional analyses. We attempt to extend our analysis to non-integer charges in the
quenched and unquenched cases, in pursuit of the numerical check of a renowned result for the
string tension between arbitrarily-charged fermions in the massive Schwinger model.
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1. Introduction

Two-dimensional U(1) gauge theory with fermions (QED2) has long been a test-bed for con-
cepts relating to four-dimensional gauge theories. Being extremely simple compared to QCD it
captures some of its crucial non-perturbative features such as confinement and string breaking.
Although over the years there has been a plethora of numerical studies of QED2 using various
methods such as discrete light cone quantization, hamiltonian lattice field theory, euclidean LFT
(see Refs. [1, 2, 3] and references therein), this system still attracts a lot of attention, see e.g.
Refs. [2, 4].

As far as the pure gauge theory (Quantum Maxwell Dynamics, QMD2) is concerned, when
formulated in R2 it turns out to be trivial and results in a linear confining potential for the probe
charges [5]. On a torus the situation is altered – due to the fact that one cannot gauge away the fields
along closed contours there exists a single space-independent quantum degree of freedom and the
spectrum of the theory yields the Manton’s model of QMD2 on a circle [6] in the continuum limit
[7].

The massless case for N f = 1 was solved by Schwinger [8] using bosonisation trick, that
however is not easily generalized to the massive or multiflavour case. The solution shows that
all real values of external charge Qext are screened by the vacuum polarization1. Subsequently, a
perturbative addition of a small fermion mass was introduced by Coleman et al. in Ref. [9] – it was
shown that with m 6= 0 only the integer probe charges are screened by fermion-antifermion pairs,
in a mechanism reminiscent of the string breaking in QCD. The non-integer charges are expected
to have a non-vanishing string tension in accordance with

σ ∼ m(1− cos(2πQext)) . (1.1)

Non-abelian two-dimensional models, which are the ultimate aim of our investigation [10] are
even more interesting. There are theoretical predictions for the spectrum of QCD2 with fundamen-
tal fermions [11] and the large-N limit of the theory was analytically solved by ’t Hooft [12]. The
practicality of this solution is however limited by the fact that the fundamental matter is quenched
in the large-N limit, thus even more interesting are the large-N limits of theories with two-index
representation matter where the fermion dynamics plays an important role.

For example, the adjoint fermions in 1+1 dimensions were analyzed both theoretically, giving
encouraging results [13], and numerically by DLCQ techniques [14]. However, no lattice analysis
has been performed until recently.

In this letter we report the results of our study of QED2, treated as a warm-up for the non-
abelian models. In Section 2 we study the string breaking in QED2 using Wilson loops and in
Section 3 we sum up our attempts to define operators carrying fractional charges and to calculate
the string tension with them, which would lead to a lattice verification of Eq. (1.1).

2. String breaking in QED2

We analyze lattice QED2 with N f = 1 (the massive Schwinger model) by means of euclidean

1In this letter we always write Qext as a dimensionless quantity, i.e. the multiplicity of the fundamental electric
charge.
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Figure 1: Energies and overlaps to the Wilson loop of the ground state and first excited state, V = 24×24,
g−2 = 1.5, κ = 0.245. The red points of in Fig. (a), inserted for comparison, are the numerical calculation
of the (analytically known) pure gauge result.

Monte Carlo simulations. We use Wilson fermions and generate the configurations using the Ra-
tional Hybrid Monte Carlo algorithm. As a test of the possibilities of the simulation we analyze the
string breaking using Wilson loops.

It is well known that QED2 resembles QCD4 in this respect. It exhibits a confining linear
potential in the pure gauge case (as does pure gauge lattice QCD4 [15]) and charge screening at
large distances, interpreted as string breaking by quark-antiquark pair [9, 16]. The string breaking
is very hard to observe in the lattice QCD using Wilson loops alone – a poor overlap of the Wilson
loop to the broken-string ground state was postulated and a larger set of operators had to be used
to deliver a firm observation [17].

As QED2 is computationally much less demanding than QCD4 we are able to use a different
approach. By using very high statistics (tens of millions configurations) we are able to perform
two-exponent fits to the unsmeared Wilson loop data

W (R,T )∼=C0e−E0(R)T +C1e−E1(R)T , (2.1)

extracting the ground state and the first excited state from the Wilson loop together with the cor-
responding overlaps. Sample results are presented in Fig. 1. It is natural to interpret Fig. 1(a) as a
confined state and a broken-string state, where the latter becomes the ground state around R' 4−5,
with quantum repulsion (i.e. mixing) of states observed. Perhaps the most instructive result of this
exercise it Fig. 1(b) where one can see how the Wilson loop clearly prefers the confined state,
explaining the difficulty of observing the string breaking using solely this operator.

3. Non-integer charges

In this section we analyze the possibility of introducing operators carrying arbitrary real charge
Qext to verify the equation (1.1) (from now on, to be concise, we refer to Qext simply as Q). This
is a relatively unexplored topic on the lattice. One notable exception is Ref. [18] presenting a
hamiltonian lattice analysis where real charges were introduced by means of constant electric field.
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In this work we have approached a different method. We define the “charged Wilson loop” over a
contour Γ as

WQ(Γ) = ∏
j∈Γ

(U j)
Q . (3.1)

Note that one can formulate an alternative definition as

W (alt)
Q (Γ) =

(
∏
j∈Γ

U j

)Q
. (3.2)

While the two coincide for integer charges, they can give vastly different results for the non-integer
case when the complex logarithms used to define the non-integer powers fall on different branches.
The numerical results presented in this work are obtained using the first definition (3.1). We will
briefly discuss the different results given by the second method later in this section.

To find the string tension dependence on Q in the massive Schwinger model we have performed
similar analysis as for the “ordinary” Wilson loops in the previous section. For every real Q we
found that up to additional perimeter terms, that do not influence the string tension, the Wilson
loops with charge Q behave in a very similar manner to the ones with the integer charge closest to
Q – thus for every charge analyzed the data is consistent with σQ = 0.

To understand this result we went to an even simpler theory i.e. the pure gauge model (QMD2).
There we know the exact results for the string tension of integer charges both on infinite [5] and
finite lattices [7]. In the continuum limit one might also expect the well-known continuum result
σQ ∼ Q2/2 for all real charges.

One might thus expect that σQ for non-integer charges smoothly interpolate between the an-
alytically known results for integer values. However, the values of the string tension obtained
from the single-exponent fits (see Fig. 2(a)) show that the string tension is projected to the nearest
integer-charged value2. A similar behaviour is observed in the pure gauge case of Manton’s model
of continuum QED2 on a spatial circle [6]. In this model one can set the gauge so that Ax(x, t)
is independent of x and that Ax ∈ [0,1) with both ends identified – the periodicity of the physical
space results in the periodicity of the field space. One then obtains a quantum-mechanical system
with a hamiltonian

H =
π

e2 Ȧ2
x (3.3)

and the Hilbert space consisting of wave functions satisfying ψ(Ax = 0)=ψ(Ax = 1). Only integer-
charged states satisfy periodicity. A state created by an operator with arbitrary charge Q is a result
of projection onto the physical Hilbert space. To see this let us define spatial Polyakov loop in this
model as P(Ax,τ) = e2πiAx(τ). The “charged” Polyakov loop is then simply:

PQ(Ax,τ) = e2πiQAx(τ). (3.4)

The correlation function of the Polyakov loops is then a sum over integer-charged states with proper
overlaps:

〈P†
Q(Ax,τ)PQ(Ax,0)〉=

∞

∑
n=0

e−n2e2πτ

(
sin(π(Q−n))

π(Q−n)

)2

. (3.5)

Driven by this analogy, we formulated an ansatz that very well describes the data (see Fig. 2(b)):
2This result shows no sign of volume dependence, up to the largest analysed lattice of volume 256×256.
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Figure 2: Charged Wilson loops in QMD2.

WQ(R,T ) =
∞

∑
n=0

( In(β )

I0(β )

)RT(sin(π(Q−n))
π(Q−n)

)2R+2T
. (3.6)

The ansatz assumes that the finite size effects for the integer charges are negligible. In fact, using
the results of Ref. [7] one can include them, leading to an exact result [19].

The results obtained using the second definition, Eq. (3.2) lead to similar conclusions with a
similarly successful ansatz of the form

W (alt)
Q (R,T ) =

∞

∑
n=0

( In(β )

I0(β )

)RT(sin(π(Q−n))
π(Q−n)

)
, (3.7)

the only difference being the exponent of the sine part3.
The periodicity of the configuration space in the compact formulation implies that the operator

with non-integer charge, which does not satisfy periodicity

eiQ(A+2π) 6= eiQA, (3.8)

creates a state which is a combination of states belonging to the Hilbert space, i.e. the integer-
charged states. We conjecture that the same phenomenon occurs for dynamical fermions and is the
reason of the incompatibility of our string tension calculations and Eq. (1.1). When only the integer
part of the probe charge has a physical meaning then the effects of fractional charges are projected
out, which explains the vanishing of the string tension for all real Q.

4. Conclusions

In this work we have studied the phenomena of confinement and screening in two-dimensional
lattice gauge theories. Using high precision data from Wilson loops we investigated the string
breaking in QED2 and found a rapidly decreasing overlap of Wilson loops on the broken-string

3Also calculations using Polyakov loops defined with both methods lead to the same conclusions and differ from
the Wilson loops only by the exponents over the sine parts.
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state, which accounts for the difficulties in observing the string breaking in lattice QCD simulations
which use solely this operator.

Then we proposed two generalizations of Wilson loops for arbitrary real charges Q. We found
that for both of them the string tension vanishes for any Q, which would be in disagreement with the
prediction of Coleman et al. [9]. Based on the experience from the pure gauge theory, we suggested
an explanation by pointing out that in the compact formulation the effects of fractional charges are
projected out of the Hilbert space and only the integer charges have a physical meaning. The value
for the string tension between integer charges predicted by Eq. (1.1) is indeed zero for all values of
the fermion mass.
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