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Field distribution analysis in deflecting structures.
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Institute for Nuclear Research, 117312, Moscow, Russia

Abstract

Deflecting structures are used now manly for bunch rotation in emittance exchange

concepts, bunch diagnostics and to increase the luminosity. The bunch rotation is a trans-

formation of a particles distribution in the six dimensional phase space. Together with the

expected transformations, deflecting structures introduce distortions due to particularities

- aberrations - in the deflecting field distribution. The distributions of deflecting fields are

considered with respect to non linear additions, which provide emittance deteriorations

during a transformation. The deflecting field is treated as combination of hybrid waves

HE1 and HM1. The criteria for selection and formation of deflecting structures with

minimized level of aberrations are formulated and applied to known structures. Results

of the study are confirmed by comparison with results of numerical simulations.
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1 Introduction

In particle accelerators Deflecting Structures (DS) - periodical structures with transverse com-
ponents of the electromagnetic field at the axis - were introduced for charged particle deflection
and separation. A bunch of charged particles crosses a DS synchronously with the maximal
deflecting field Ed, corresponding to a phase φ = 0 in the structure, and particles get an incre-
ment in the transverse momentum pt. It allows both to deflect particles from the axis and to
separate particles with different charge and momentum in space, see, for example, [1].
In the modern facilities with short and bright bunches DS found other applications, such as
short bunch rotation for special diagnostics, emittance exchange experiments and luminosity
enhancement. All these applications are related to the transformation of particle distributions
in the six dimensional phase space. For these applications the DS operates in another mode -
the center of the bunch crosses the DS at zero value of Ed, corresponding to φ = π

2
, see, for

example [2].
The applications for particle distribution transformations provide additional specific require-
ments. Usual RF parameters, like RF efficiency, field rise time, total deflecting voltage Vd, de-
scribe general parameters - achievable resolution of measurements, possibility for single bunch
measurements in the bunch train and the price for this with respect to the RF system.
But, together with the expected transformations, DS provide distortions due to particularities
in the deflecting field distribution. The tool for distribution transformation should provide as
minimal as possible intrinsic distortions.
In a complicated DS geometry the distribution of the electromagnetic field components can be
obtained with good precision only in numerical simulations. And the distortions of particle
distributions can be estimated quantitatively also only in numerical simulations of the beam
dynamics.
As it is known from theory, a system with linear spatial distribution of the field components
doesn’t change the bunch emittance. To avoid multiple coupled simulations of field distributions
and particle dynamics for different possible DS solutions and bunch parameters, we investigate
first the different DS options for criteria of field linearity, i.e. minimal deviations from a linear
field distribution.

2 Field description

In the periodical structure the field distribution for each j-th component Ej(ϑ, r, z) can be
represented in complex form and satisfies the Floquet theorem:

Ej(ϑ, r, z) =
̂Ej(ϑ, r, z)e

iψj(ϑ,r,z) − d/2 ≤ z < d/2, (1)

Ej(ϑ, r, z + nd) = ̂Ej(ϑ, r, z)e
i(ψj(ϑ,r,z)−nΘ0), 0 ≤ Θ0 ≤ π,

where ̂Ej(ϑ, r, z) and ψj(ϑ, r, z) are the amplitude and the phase distributions of the field
components at the period, correspondingly, d is the period length, Θ0 is the phase advance per
period, and n is the period number.

If the structure has a planes of mirror symmetry (the mostly realized case in practice), ̂Ej(ϑ, r, z)
is all time an even function with respect to the mirror plane and ψj(ϑ, r, z) is an odd function
with a possible total shift at π/2 or π.
In the beam aperture of a slow wave structure the field components can be expanded, see for
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example [3], into a Fourier series over the spatial harmonics:

Ej(ϑ, r, z) =
p→+∞∑

p→−∞
ajp(ϑ, r)e

−ikzpz, kzp =
Θ0 + 2pπ

d
, p = 0,±1,±2, ...,±∞ (2)

with

ajp(ϑ, r) =
1

d

∫ d
2

− d
2

Ej(ϑ, r, z)e
ikzpzdz. (3)

where ajp(ϑ, r) and kzp are the amplitude and wave number of the p-th spatial harmonic,
respectively. Taking into account parity properties for the amplitude and the phase in (2), the
functions ajp(ϑ, r) in (2) are either real or imaginary.
To avoid the additional introduction of symbols, below we will use and assume the symbols
for spatial harmonics in two options. If the symbol ajp(ϑ, r) is used, it means the function
with respect ϑ, r, including the constant amplitude coefficient. And the symbol ajp, without
dependence on the coordinates, means the constant amplitude coefficient for respective spatial
harmonic.
For the slow wave system the spatial harmonics in the field representation (2) are necessary for
the boundary conditions at the aperture radius r = a. In the aperture volume both total field
and each spatial harmonic should satisfy to the Maxwell equations.

2.1 Relations between field components

For the complete description of the field distribution two independent variables are required.
For structures periodical in z it is common practice to consider the longitudinal components
Ez and Hz as such independent variables.
From Maxwell equations

rot ~H =
∂ ~D

∂t
, rot ~E = −∂

~B

∂t
, div ~B = 0, div ~D = 0, ~D = ǫ0ǫ ~E, ~B = µ0µ ~H, (4)

and assuming a ∼ eiωt time dependence in vacuum, i.e. ǫ = µ = 1, one can get in cylindrical
coordinates r, ϑ, z:

∂2Er
∂z2

+ k2Er =
∂2Ez
∂r∂z

− iknZ0

r
Hz, (5)

∂2Eϑ
∂z2

+ k2Eϑ = −n
r

∂Ez
∂z

+ ikZ0
∂Hz

∂r
,

Z0
∂2Hr

∂z2
+ k2Z0Hr = −ikn

r
Ez + Z0

∂2Hz

∂r∂z
,

Z0
∂2Hϑ

∂z2
+ k2Z0Hϑ = −ik∂Ez

∂r
+
nZ0

r

∂Hz

∂z
,

where

k =
ω

c
= ω

√
ǫ0µ0, Z0 =

√
µ0

ǫ0
, (Ez, Er, Hϑ) ∼ cos(nϑ), (Hz, Hr, Eϑ) ∼ sin(nϑ). (6)

Also in the cylindrical coordinate system one can get the Bessel equation for the spatial har-
monics f(r) of the longitudinal field components Ez(r) or Hz(r) from Maxwell equations:

d2f(r)

dr2
+

1

r

df(r)

dr
+ (k2sp −

n2

r2
)f(r) = 0, k2sp = k2 − k2zp, (7)
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with the finite solutions at r = 0:

f(r) = Jn(kspr), k2sp > 0 or f(r) = In(−ikspr), k2sp < 0, (8)

where Jn(x) and In(x) are Bessel functions of the first order.
In representation (2) all spatial harmonics have different relative phase velocities βp :

βp =
vp
c

=
ω

ckzp
=

k

kzp
=

kd

Θ0 + 2pπ
. (9)

The period length d is normally chosen for the synchronous interaction of the particle, moving
with velocity v = βc, β ≤ 1, with a specified, usually the main spatial harmonic (p = 0 in
(2)) and

β = β0 ⇒ β =
kd

Θ0
, d =

Θ0β

k
=

Θ0βλ

2π
, (10)

where λ is the operating wavelength. From (10, 9, 2) follows |βp| < 1 for all p 6= 0, resulting
always in k2sp = k2(1− 1

β2
p
) ≤ 0, see (8). The modified Bessel functions In(x) describe the radial

dependences of the spatial harmonics in the representation of the field components (2).

2.2 Properties of Bessel functions

The general expansion of In(x) in a power series in x is:

In(x) = (
x

2
)n

∞∑

j=0

(x
2
)2j

j!Γ(n + j + 1)
, I(1)n (x) =

dIn(x)

dx
= In−1(x)−

n

x
In(x), (11)

where Γ(n+ j + 1) is the Gamma function for integer arguments.
For large arguments x≫ 1 the functions In(x) rises exponentially with increasing argument

In(x) ≈
ex√
2πx

. (12)

For the approximate estimation of the field components near the axis (x= k∗spr ≪ 1) and for
the main spatial harmonic with β0 → 1 we can obtain from (11):

In(x) ≈
xn

2n(n− 1)!
+

xn+2

2n+2n!
+ ..., I0(x) ≈ 1 +

x2

4
+ ..., I1(x) ≈

x

2
+
x3

8
+ ..., (13)

2.3 Field components of dipole mode

For the longitudinal components Ez and Hz of the dipole mode n = 1 representation (2) can
be rewritten as:

Ez(ϑ, r, z) = cos(ϑ)
p→+∞∑

p→−∞
ezpI1(k

∗
spr)e

−ikzpz, k∗sp = −i
√
k2sp, (14)

Z0Hz(ϑ, r, z) = sin(ϑ)
p→+∞∑

p→−∞
Z0hzpI1(k

∗
spr)e

−ikzpz.
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Relations for coefficients and radial dependencies for spatial harmonics in the other field com-
ponents can be expressed from (5) as:

k2sp(r)erp(r) = −ikzpk∗spI
(1)
1 (k∗spr)ezp −

ik

r
I1(k

∗
spr)Z0hzp, (15)

k2speϑp(r) =
ikzp
r
I1(k

∗
spr)ezp + ikk∗spI

(1)
1 (k∗spr)Z0hzp,

k2spZ0hrp(r) = −ik
r
I1(k

∗
spr)ezp − ikzpk

∗
spI

(1)
1 (k∗spr)Z0hzp,

k2spZ0hϑp(r) = −ikk∗spI
(1)
1 (k∗spr)ezp −

ikzp
r
I1(k

∗
spr)Z0hzp.

2.4 Basis problem. Hybrid waves HE, HM

Figure 1: Field distributions for waves with Θ0 =
2π
3
with deflecting effect for different

structures and modes. a) - with a
λ
= 0.23 at the first DLW passband, βg < 0, b) - with

a
λ
= 0.23 at the second DLW passband, βg > 0, c) - with a

λ
= 0.30 at the first DLW passband,

βg > 0, d) - with a
λ
= 0.067 at the first passband for a decoupled TE-type structure [4], βg > 0.

The representation (5) is the well known description of an arbitrary field in terms of transver-
sal electric TE and transversal magnetic TM waves. In (15) it is detailed for a slow wave system
with spatial harmonics. In a mathematical sense it is a basis for a field expansion. This basis
works always well, except for one point. For an ultra relativistic particle β = 1 the synchronous
main spatial harmonic p = 0 has kz0 = k, (2,9) and ksp = 0, (8) and there is an indefiniteness
in the relations (15) between the amplitudes of the field components for the main spatial har-
monics.
For β0 → 1 both TE and TM waves degenerate into a simple plane TEM wave with transversal
components only. Attempts for deflecting field description basing only on TE − TM terms are
hence not successful.
It is just a methodical problem of the description for the real physical objects - the fields with
the effect of deflection. In Fig. 1 the field distributions are shown for different modes and
different structures, but all exhibiting effect of deflection. In Fig. 1a, b, c are field distributions
in the well known Disk Loaded Waveguide (DLW) shown. The definition of dimensions are: a
is the aperture radius, b is the cell radius, td is the disk thickness, βg is the group velocity. A
TE-type structure, [4], is shown in Fig. 1d.
Nearly simultaneous investigations in different laboratories, see summarizing papers [5],[6],[7],
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resulted in the proposal of another basis for the field representation in cylindrical coordinates.
This basis was named as ’hybrid’ EH in [5] and [7], HM − HE in [6] and was derived from
Herzian vectors as another independent solution of the Helmholtz vector equation.
Such an introduction of additional elements in the basis of waves was not the first one. LE and
LM waves were introduced for the β0 = 1 case description in rectangular slow wave systems,
see the book [9] and references for earlier papers.
Comparison of TE − TM and HE − HM waves is done in [6] and expressions for field com-
ponents are reproduced here in the Table 1. The HEn −HMn waves can be treated as hybrid

Table 1: Field components for the transverse TE − TM and hybrid HE −HM waves, [6].
TM TE HM HE

Er ∼ −ikz J
(1)
n (ksr)

kn−1
s

−iknJn(ksr)
kns r

ikkz
Jn+1(ksr)

kn+1
s

i(k2z
Jn+1(ksr)

kn+1
s

+ nJn(ksr)
kns r

)

Eϑ ∼ −ikznJn(ksr)kns r
ik J

(1)
n (ksr)

kn−1
s

ikkz
Jn+1(ksr)

kn+1
s

i(k2 Jn+1(ksr)

kn+1
s

− nJn(ksr)
kns r

)

Ez ∼ k2s
Jn(ksr)
kns

0 k Jn(ksr)
kns

kz
Jn(ksr)
kns

Hr ∼ −iknJn(ksr)
kns r

−ikz J
(1)
n (ksr)

kn−1
s

−i(k2z Jn+1(ksr)

kn+1
s

+ nJn(ksr)
kns r

) −ikkz Jn+1(ksr)

kn+1
s

Hϑ ∼ −ik J
(1)
n (ksr)

kn−1
s

−ikznJn(ksr)kns r
i(k2 Jn+1(ksr)

kn+1
s

− nJn(ksr)
kns r

) ikkz
Jn+1(ksr)

kn+1
s

Hz ∼ 0 k2s
Jn(ksr)
kns

−kz Jn(ksr)kns
−k Jn(ksr)

kns

wave with simultaneously existents of all six field components. The longitudinal components
Ez and Hz are non vanishing for ksp = 0, but are not independent too. For more details of
HEn −HMn properties see [6] and [5].
As one can see from the Table 1, taking into account the behavior of the Bessel functions(13),
for a dipole mode n = 1 at the DS axis r = 0 an HE1 wave has non zero transversal components
of the electric field Er, Eϑ and simultaneously Hr = Hϑ = 0 at r = 0. Non zero transverse
components of the magnetic field Hr, Hϑ at r = 0 are represented by an HM1 wave only. To
describe in a real DS the field with simultaneous non zero transverse electric and magnetic
components at the axis, we need the linear combination

~E = A~EHE +B ~EHM , ~H = A~HHE +B ~HHM , (16)

where the coefficients A,B can be defined from the transverse field components Er, Ex and
Hϑ, Hy distributions at the DS axis.
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2.5 Supporting structure

The hybrid waves HEn − HMn can not exist without a supporting structure. Differing from
TEn − TMn waves, hybrid waves can not exist even in a smooth cylindrical waveguide. In a
practical sense HEn−HMn waves are the tool for deflecting effect description and analysis for
the main spatial harmonic in the beam aperture, where the usual TEn − TMn basis doesn’t
work for β0 = 1. A preference to describe higher spatial harmonics in terms of HEn − HMn

is however not evident. It can be done, using the expressions for the field components in the
Table 1 and (16), but for all harmonics with p 6= 0 the more conventional TEn − TMn basis
works well.
The complete description of DS parameters in terms of HE−HM waves appears not possible,
at least it is not effective. By using the modern software for the numerical simulation of
field distributions and frequency calculations, we can estimate all required RF parameters and
extract amplitudes of synchronous HE and HM harmonics in the field from the simulated field
distribution, basing on (16).
For the DLW structure the solution was obtained in closed form for a small pitch approximation
d ≪ λ, td

d
≪ 1, β = 1 in the first passband of dipole modes. From the approximated boundary

conditions at r = a both estimation for frequency and for field components (for r < a) were
obtained [5]:

Ez(r, ϑ) =
E0

2
(kr)cos(ϑ), Z0Hz(r, ϑ) = −E0

2
(kr)sin(ϑ), (17)

Er(r, ϑ) = i
E0

8
(k2a2 + k2r2)cos(ϑ), Z0Hr(r, ϑ) = i

E0

8
(k2a2 − k2r2 − 4)sin(ϑ),

Eϑ(r, ϑ) = −iE0

8
(k2a2 − k2r2)sin(ϑ), Z0Hϑ(r, ϑ) = i

E0

8
(k2a2 + k2r2 − 4)cos(ϑ),

This result is widely used a long time in many papers, see, for example [10], and leads to some
important conclusions.
The total flux of traveling RF power P tot

tr in a periodical structures is due to the main space
harmonic. Using expressions (17), we obtain:

P tot
tr =

ℜ
2

∫

S
([ ~E, ~H∗],~iz)dS =

πk2a4

32Z0
(
k2a2

3
− 1), (18)

For the small aperture radius ka <
√
3 the total power flux P tot

tr < 0, βg < 0 and DLW in the
first dipole passband is a backward wave TW structure. For ka >

√
3 the group velocity is

positive and βg increases with further rise of a. The point ka =
√
3, βg = 0 is known as the

inversion point, where βg changes the sign.
The small pitch approximation is suitable for the description of a DLW operation in Traveling
Wave (TW) mode with very low phase advance Θ0 ≪ π. For TW mode with Θ0 ≥ π/2 or
Standing Wave (SW) operation Θ0 = π the assumption d ≪ λ is not valid and (17), (18) are
just indications.
Considering the DLW deflecting field as the combination of HE1 and HM1 waves, from (16),
(17) we can define the ratio for the small pitch approximation as

B

A
= (

Z0Hϑ

Er
)r=0 =

k2a2 − 4

k2a2
. (19)
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3 Deflecting field representation and analysis

The Lorenz force acting onto a particle, moving along the z axis with velocity v = βc is:

~FL = e( ~E + [~v, ~B]) = e(~ir(Er − βZ0Hϑ) +~iϑ(Eϑ + βZ0Hr) +~izEz). (20)

where e is the electron charge and ~ir,~iϑ,~iz are unit vectors. The deflecting force Fd and an
equivalent deflecting field Ed can be defined through the transverse components of the Lorenz
force:

~Fd = e ~Ed = e(~ir(Er − βZ0Hϑ) +~iϑ(Eϑ + βZ0Hr)). (21)

The deflecting field Ed is the linear combination of the original field components. Regardless
to a field description in terms of TM − TE or HM − HE waves, each field component can
be represented as the sum over spatial harmonics, because (2) is the sequence of the structure
periodicity. From linearity, Ed components also can be represented as

Edr,dϑ(ϑ, r, z) =
p→+∞∑

p→−∞
ap,dr,dϑ(ϑ, r)e

−ikzpz, (22)

where the amplitudes ap,dr,dϑ(ϑ, r) can be obtained, by using (21), from the corresponding
amplitudes in the expansions of field components.
In the cylindrical coordinate system the deflecting field amplitude ~Ed can be defined, at least
for the main harmonic p = 0, [6], from the longitudinal components only, [5]:

~Fd =
e

kz0
(
1− ββ0
1− β2

0

∇tEz +
β − β0
1− β2

0

Z0[~iz,∇tHz]), ∇t =~ir
∂

∂r
+~iϑ

1

r

∂

∂ϑ
, (23)

This general expression is valid also for a non synchronous interaction β 6= β0. For synchronous
particle motion β = β0 relation (23) simplifies as:

~Fd =
e

kz0
∇tEz, (24)

For ultra relativistic particles (β = 1) the statement (24) was derived by Panofsky and Wenzel,
[8], regardless of a classification of the waves as TM − TE or HM −HE.

3.1 Synchronous spatial harmonic

In the analysis of the main spatial harmonic p = 0 we have to distinguish two cases - β0 = 1
and β0 < 1.
For ultra relativistic particles β = β0 = 1. In this case kz0 = k in (2) and k2s0 = 0 in (7) - the
Bessel equation degenerates into the Laplace equation for Ez. As one can see from Table 1,
HE and HM waves are constructed to have non vanishing Ez and Hz components for k2s0 → 0.
Expressions for HE and HM field components in the case β0 = 1, k2s0 = 0 also are considered
in [6] and reproduced here in the Table 2. By using (24) and Ez = E0kr

2
for a dipole mode

according to Table 2, one can directly get:

~Fd =
eE0

2
(~ircos(ϑ)−~iϑsin(ϑ)) =

eE0

2
~ix. (25)

For β0 = 1 the deflecting force from the synchronous harmonic, both for HE1 and HM1 waves,
is constant, both in value and in direction, in all points inside the DS aperture. Due to the
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Table 2: Field components for hybrid HE −HM waves with β0 = 1, [6].
HM HE ϑ

Er ∼ i k2rn+1

2n+1(n+1)!
i( k2rn+1

2n+1(n+1)!
+ rn−1

2n(n−1)!
) cos(nϑ)

Eϑ ∼ i k2rn+1

2n+1(n+1)!
i( k2rn+1

2n+1(n+1)!
− rn−1

2n(n−1)!
) sin(nϑ)

Ez ∼ krn

2nn!
krn

2nn!
cos(nϑ)

Hr ∼ −i( k2rn+1

2n+1(n+1)!
+ rn−1

2n(n−1)!
) −i k2rn+1

2n+1(n+1)!
sin(nϑ)

Hϑ ∼ i( k2rn+1

2n+1(n+1)!
− rn−1

2n(n−1)!
) i k2rn+1

2n+1(n+1)!
cos(nϑ)

Hz ∼ − krn

2nn!
− krn

2nn!
sin(nϑ)

linearity in (24), this statement is also valid for the total field (16). The deflecting force from
the synchronous harmonic is free from aberrations.
For the lower phase velocity, β0 < 1, the longitudinal component Ez ∼ k J1(ks0r)

ks0
for the HM1

wave and Ez ∼ kz0
J1(ks0r)
ks0

for the HE1 wave, see Table 1. Considering the combination A ·
HE1 +B ·HM1, applying (24) and taking into account k2s0 < 0, we get:

~Fd =
e(Akz0 +Bk)k∗s0

kz0ks0
(~irI

1
1 (k

∗
s0r)cos(ϑ)−~iϑ

I1(k
∗
s0r)

k∗s0r
sin(ϑ)), (26)

Using (11) and the approximated expansion (13), in cylindrical coordinates we have:

~Fd ≈
e(Akz0 +Bk)k∗s0

2kz0ks0
(~ir(1 +

(k∗s0r)
2

4
)cos(ϑ)−~iϑ(1 +

(k∗s0r)
2

4
)sin(ϑ)), (27)

We see in the deflecting force non linear additions ∼ (k∗s0r)
2. Transferring (27) into Cartesian

coordinates, we have:

~Fd ≈~ixFx =~ix
e(Akz0 +Bk)

2kz0
(1 +

(k∗s0x)
2 + (k∗s0y)

2

4
), Fy ≈ 0, (28)

The conclusion Fy ≈ 0 in (28) is due to the expansion limitation in (13) for each Bessel function
with two first terms and with additional higher terms Fy ∼ (k∗s0)

4(x3y + xy3).
For not relativistic case the deflecting force is not free from aberrations - there are non linear
additions even in the force from the synchronous harmonic. These inevitable additions are

proportional to the constant term in the force and vanish as (1−β2)
β2 = 1

γ2β2 for β → 1, where γ

10



is the Lorenz factor. The non linear additions in deflecting field x component are always even
functions with respect to the planes x = 0, y = 0 while the y field component are odd functions.
Based on the conclusions (25) and (28) that the deflecting force is directed in the x direction,
for simplification of the further analysis of numerical results for different DS’s, we will assume
equivalent deflecting field at the axis as:

Ed = Ex − Z0βHy, (29)

neglecting a possible y component. Transversal y component in the deflecting field can be due
to non linear additions only. Moreover, in conversion from cylindrical to Cartesian coordinate
systems at the DS axis r = 0 for ϑ = 0, Er = Ex, Hϑ = Hy.
From (29) we can define coefficients A,B in the total field representation, because Ex =
AEx(HE1) from the HE1 component and Hy = Hy(HM1) from the HM1 component in (16).

3.2 Higher spatial harmonics for dipole mode

The higher spatial harmonics p 6= 0 in the Ed representation (22) always have a low phase
velocity |βp| < 1 and |ksp| ∼ |kzp| > k. Relation (24) for higher harmonics is not proven in [6]
and we will use general approach. For transformation reduction, let us consider for beginning
spatial harmonics in HE1 wave only. According to Table 1, the p-th spatial harmonic in the
Ez component is:

ezp(r) ∼ kzp
J1(kspr)

ksp
, or ezp(r) = CpI1(k

∗
spr), Cp = const1 ·

kzp
ksp

. (30)

Because Ez and Hz components are not independent in hybrid waves, the respective harmonic
in the Hz representation is:

hzp(r) = DpI1(k
∗
spr), Dp = −Cpk

kzp
. (31)

To define the amplitudes of the spatial harmonics in the transverse field components, we use
relations (15), which are a direct consequence of the Maxwell equations. Following (21), the
amplitudes of p-th spatial harmonics in the Ed components, assuming β = 1, are:

edrp(r) = erp(r)− Zohϑp(r) ≈
i(kzp − k)

2k∗sp
(Cp −Dp)(1 +

(k∗spr)
2

4
)ezp, (32)

edϑp(r) = eϑp(r) + Z0hrp(r) ≈
−i(kzp − k)

2k∗sp
(Cp −Dp)(1 +

(k∗spr)
2

4
)ezp.

where the approximated expansion (13) is applied. From (33) we get in Cartesian coordinates
for the spatial harmonic in the deflecting field due to the HE1 wave:

edxp(x, y) ≈
i(kzp − k)

2k∗sp
(Cp −Dp)(1 +

(k∗spx)
2 + (k∗spy)

2

4
)ezp, edyp(x, y) ≈ 0. (33)

A similar expression, but assuming Cp = const2 · k
ksp
, Dp = −Cpkzp

k
can be obtained for the

spatial harmonic in the deflecting field due to the HM1 wave.
Considering the deflecting field as combination A·HE1+B ·HM1, (16), and taking into account
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the relations between coefficients Cp and Dp both for the HE1 and HM1 waves, for the p-th
harmonic in the total deflecting field we get:

edxp(x, y) ≈
iksp
2

(1 +
(k∗spx)

2 + (k∗spy)
2

4
)(A +B)ezp, edyp(x, y) ≈ 0. (34)

Here the spatial harmonic ezp for the total Ez component is used. In the derivation of (33) the

transformations are the same for the HE1 and the HM1 component and Cp −Dp =
kzp+k
ksp

for

both waves.
The relation (34) indicates the possibility that for A ≈ −B the amplitude of the p-th spatial
harmonic edxp(x, y) in the deflecting field Ed reduces regardless of the amplitude of the p-th
harmonic in the distributions of the original field component ezp.
As one can see, comparing the expressions for the synchronous harmonic p = 0 for β < 1 (28)
and for p 6= 0, (34), it looks very similar. But there is a big difference. The higher spatial
harmonics do not vanish, even for β = 1. It have a field modulation in the z direction, reflected
in (34) by the first multiplier ksp, for a synchronous particle. The constant (with respect x, y)
term in the transverse direction in edxp is modulated in the z direction. As one can estimate
from (2), (7), for |p| > 1, |ksp| ∼ 2πp

d
≫ k. Non linear additions in edxp rise fast with r, as

∼ (2πpr
d

)2.
The higher spatial harmonics are the main source of non linear additions in the deflecting field
distribution.

3.3 Multipole additions

A complete rotational symmetry is not allowed for operating a DS. In this case two waves with
deflection in x and in y directions are degenerated in frequency, resulting in not predictable
direction of the actual deflection. To cancel the degeneration, in a DLW special holes in the
disks are used, which deteriorate the axial symmetry. Also there are DS’s, see for example Fig.
1d, which originally have no axial symmetry.
But to support the deflecting mode with n = 1, the DS geometry should be symmetric. The de-
flection in x direction corresponds to zero normal magnetic field at the plane x = 0, Hnorm = 0.
And the deflecting mode satisfies the boundary condition of zero tangential electric field Eτ = 0
at the plane y = 0, Eτ = 0. But these boundary conditions simultaneously satisfy also waves
with n = 3, 5, 7, 9....
In the field distribution of a real DS, especially with essential deterioration of the rotational
symmetry, similar to the DS shown in Fig. 1a, always such higher multipole components
n = 3, 5, 7... with a dependence on the azimuth as (6) are present. Similar to spatial harmonics
in the deflecting mode, the multipole field components in the beam aperture are required to
satisfy the boundary conditions at r = a and decay towards the beam axis. These components
should be presented in (2) with additional summations over n. But we can consider the prop-
erties of these components independently, due to the linearity of the Maxwell equations.
Let us consider the deflecting field from the first multipole component - the synchronous sex-
tupole wave n = 3 for β = 1. Taking the distribution of the Ez component from Table 2 and
using (24) we find:

Ez = A0
kr3

48
cos(3ϑ), ~Fd =

eA0

16
r2(~ircos(3ϑ)−~iϑsin(3ϑ)) (35)
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Transferring to Cartesian coordinates,

~Fd =
eA0

16
(~ix(x

2 − y2) +~iy2xy). (36)

The transverse force from multipole components even for the synchronous harmonics has only
non linear terms. They are non vanishing synchronous additions. The amplitudes of multipole
additions depend on the DS geometry and should be minimized, as far as possible, during the
DS shape development.
Similar to the dipole mode, we can consider the spatial harmonics for multipole waves. Always
it will be just nonlinear additions, starting with higher power than x2, y2. The higher spatial
harmonics in the multipole component decay faster toward the beam axis and are hence not so
dangerous for the field quality as synchronous multipole waves.

3.4 Bunch deflection and bunch rotation

Let us consider the difference between bunch deflection and bunch rotation for a TW operating
mode.
The force from the field component Ej(ϑ, r, z) in (1) on the particle, moving with velocity βc,
is:

Fj(ϑ, r, z)

e
= ℜ ̂Ej(ϑ, r, z)e

i(ψj(ϑ,r,z)+kz0z+φ), ωt =
ωz

βc
= kz0z, (37)

where φ is the initial phase shift between the particle and the wave.
For bunch deflection φ = 0 for the central particle and, using (22) for the deflecting field, from
(37) it follows:

Fdr,dϑ(ϑ, r, z)

e
= ad0,dr,dϑ(ϑ, r) +

∑

p=1

adp,dr,dϑ(ϑ, r)cos(
2pπz

d
). (38)

The particles get a permanent deflection from the synchronous interaction with the main har-
monic p = 0 and the bunch oscillates as a whole with respect of the deflection direction. Usually
the main spatial harmonic dominates in the field expansion and the effect of higher spatial har-
monics can be acceptable for bunch deflection the bunch oscillation is in the background of
the dominating deflection. In bunch deflection mode exists an analogy with the particle ac-
celeration due to a longitudinal field - there is a permanent acceleration from the synchronous
harmonic and oscillations with respect to the synchronous motion due to the interaction with
higher spatial harmonics.
For the general description of an accelerating field in accelerating structures the transit time
factor Tz is used and we can define in an equivalent way the transit time factor Td for the
deflecting field at the DS axis:

Tz =
| ∫

d
2

− d
2

Ez(z)e
ikz0zdz|

∫ d
2

− d
2

Êz(z)dz
, Td =

| ∫
d
2

− d
2

Ed(z)e
ikz0zdz|

∫ d
2

− d
2

Êd(z)dz
(39)

For bunch rotation φ = π
2
and, similar to (38),

Fdr,dϑ(ϑ, r, z)

e
=

∑

p=1

adp,dr,dϑ(ϑ, r)sin(
2pπz

d
). (40)
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Figure 2: Illustration of the bunch rotation for measurements of longitudinal distributions,
[11].

Schematically a bunch rotation is illustrated in Fig. 2, see [11] for more explanations about
measurements of bunch parameters. During bunch rotation the central bunch particle doesn’t
see the main spatial harmonic and moves along the DS axis. But upstream and downstream
particles will receive a synchronous deflection in opposite directions - the bunch rotates. To-
gether with the synchronous rotation, the bunch oscillates as a whole with respect to the DS
axis due to the higher spatial harmonics in (40).
In structures with planes of mirror symmetry the effective deflecting field in (38) is an even
function on z with respect to the mirror planes and the residual field in (40) is an odd function.

3.5 Criterion for higher harmonics estimation in periodical struc-

tures

To compare different DS realizations with respect to the relative level of higher harmonics in
the field distributions, we need a criterion for this comparison.
Let us consider the phase dependence ψj(ϑ, r, z) in (1). Subtracting the synchronous spatial
harmonics from the phase distribution, from (2) we get:

Ej(ϑ, r, z) =
̂Ej(ϑ, r, z)e

iψj(ϑ,r,z)+kz0z =
p→+∞∑

p→−∞
ajp(ϑ, r)e

−i 2pπz

d , (41)

or

ℜ ̂Ej(ϑ, r, z)e
iψj(ϑ,r,z)+kz0z =

∑

p=0

ajp(ϑ, r)cos(
2pπz

d
), (42)

ℑ ̂Ej(ϑ, r, z)e
iψj(ϑ,r,z)+kz0z = −

∑

p=1

ajp(ϑ, r)sin(
2pπz

d
).

In (42) we find a simple expansion in a Fourier set, where

ajp(ϑ, r) =
1

d

∫ d
2

− d
2

Ej(ϑ, r, z)sin(ψj(ϑ, r, z) + kz0z)sin(
2pπz

d
)dz. (43)

Spatial harmonics are essential at the aperture radius r = a and we can assume ajp(ϑ, a) ∼
a0p(ϑ, a). As one can see from (14) and (15), the distributions for harmonics are described with
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combinations of Bessel functions. According to (12), the higher harmonics |p| ≫ 1 attenuate
to the axis as:

ajp(0) ∼ ajp(a) · exp(−
4π2|p|
βΘ0

· a
λ
). (44)

At the beam axis r = 0 just the lower harmonics p = ±1,±2,±3 are really essential.
For an ’in total’ estimation of the harmonic content we will consider the deviation of the total
phase distribution ψj(ϑ, r, z) at the axis from the phase of the synchronous harmonic δψj(z)
and use the parameter Ψj

δψj(z) = ψj(z) +
Θ0z

d
, Ψj = max(|δψj(z)|), 0 ≤ z ≤ d, r = 0. (45)

From symmetry properties δψj(z) is always an odd function with respect to the mirror symmetry
planes and we can use only half of period length in (45). For the cases of our interest |ajp| ≪ |a0p|
it is ∼ sin(2piz

d
) function with small deviations due to the second and the third harmonics. In

this case the usage of Ψj instead of δψj(z) in (43) will lead to an upper estimation of ajp(0)
and smaller values of Ψj correspond to smaller values of ajp(0).
The slow wave system with perfectly linear phase dependence ψj(ϑ, r, z) is not possible, because
it means δψj(z) = 0 and, from (43), ajp = 0, |p| 6= 0 corresponds to a single wave, which can
exists only in a smooth waveguide. But slow wave systems with essentially damped harmonics
at the beam axis are possible.

3.6 Panofsky-Wenzel theorem

The relationship

~pt = −i(ec
ω
)
∫ L

0
∇tEzdz (46)

where ~pt is the transverse particle momentum gain, has been derived in [8] regardless of the
field classification, but with an important assumption the particle velocity is large enough to
allow the particle direction to remain essentially unchanged by the transverse force. It is the
case β = 1. For lower electron energy this statement is a framework.
As one can see comparing (24) and (46), both formulations lead to similar value of the deflecting
force. But in (46) the total value of the Ez component, without specification of the synchronous
space harmonic, is used.

From the Maxwell equation rot ~E = −∂ ~B
∂t

we find directly:

∂Ez
∂r

=
∂Er
∂z

+ ikZ0Hϑ or
∂Ez
∂x

=
∂Ex
∂z

+ ikZ0Hy. (47)

We can expand each component either into a Fourier series over space harmonics, (2) (dis-
crete kzp spectrum for periodical structures) or provide a Fourier transform - continuous kzp
spectrum for single cavity. The interaction with a particle, traveling along z with unchanged
velocity, is described by eikz0z and will select only the synchronous component. With the inverse
transformation, we obtain:

∂ez0(r)

∂r
= −ikz0(er0(r) + β0Z0hϑ0(r)) = −ikz0ed0(r), (48)

where ed0 is the amplitude of the synchronous harmonic of the equivalent deflecting field, see
(21).
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Figure 3: A TW DLW structure (a) with Θ0 =
2π
3
and field distributions for Ed at the axis,

φ0 = 0 (dark blue) and φ0 =
π
2
(red), and Ez distribution along the line x = 2mm also for

φ0 = 0 (blue) and φ0 =
π
2
(brown).

As one can see from expressions for HM −HE wave components in the Table 2, for a dipole
mode Ez(r) ∼ kr,⇒ ∂Ez(r)

∂r
∼ k. Instead of the representation via the total Ez component, the

coupling of longitudinal and transverse motion is generated through the synchronous harmonics.
This theorem provides an important indication the longitudinal and transverse forces are shifted
in phase at π

2
.

In Fig. 3a a TW deflecting structure with operating phase advance Θ0 = 2π
3

is shown. This
structure is the well known LOLA IV option, [13], scaled to an operating frequency of 3000MHz
and differing in the design of the RF couplers. In Fig. 3b the distributions of Ed and Ez are
shown for an operation in bunch deflection (φ0 = 0) and bunch rotation mode (φ0 = π

2
).

The plots in Fig. 3b illustrate - for bunch deflection Ed is maximal, but the average Ez is
zero and there are only oscillations due to Ez(z), similar to (40). The bunch deflection is not
accompanied by an average change in the longitudinal momentum. For bunch rotation Ed is
zero on average, according (40), while Ez is on average not zero, similar to (38). The bunch
rotation is accompanied by an average change in the longitudinal particle momentum which is
proportional to radial particle position.

4 Traveling and standing wave operation

Let us consider some differences due to different operating modes of DS.
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4.1 Deflecting field distributions for TW and SW mode

Figure 4: The distributions of amplitudes for Ex, Z0Hy and deflecting field Ed, φ = 0 and
Ed, φ = 90 (upper row) and distribution of phases for Ex, Hy and Ed (bottom row) for DS’s,

shown in Fig. 1a, b and d, TW operating mode, Θ0 =
2π
3
.

For a TW mode each field component has both real and imaginary parts. The amplitudes of
all spatial harmonics in (2) are constant over the structure period d. Considering the deflecting
field composed as (21) or (29), for the deflecting force, similar to (37), we have at the DS axis:

Fd(z)

e
= ℜ(

∑

p=0

(erp − Z0hϑp)e
i(kzp+kz0z+φ)) = (er0 − Z0hϑ0)cos(φ) + (49)

+cos(φ)
∑

p=1

(erp − Z0hϑp)cos(
2pπz

d
) + sin(φ)

∑

p=1

(erp − Z0hϑp)sin(
2pπz

d
).

In Fig. 4 the distribution of the amplitudes for Er = Ex, Z0Hϑ = Z0Hy and the deflecting
fields Ed, φ = 0 and Ed, φ = π

2
(upper row) and the distribution of the phase for Ex, Hy and

Ed (bottom row) for the DS, shown in Fig. 1a, b and d, assuming a TW operating mode with
Θ0 =

2π
3
, are shown. There are some differences in deflecting field distributions due to different

phasing and balance of hybrid waves HE1 and HM1 in (16), but the common properties are
the same:
The interaction with the synchronous harmonic is constant over the period, regardless to the
ratio of er0 and Z0hϑ0 components. Always an initial phase shift φ = π

2
between the wave and

the central particle of the bunch exists when the central particle doesn’t see the synchronous
harmonic i.e. the perfect bunch rotation operating mode. Always oscillations of Ed take place
due to higher spatial harmonics only.
For TW mode harmonics the attenuation (44) works for all original field components and is
especially essential for lower phase advance Θ0 ≪ π. Every DS, operating in TW mode with
a low phase advance, has a reduced level of spatial harmonics, both for the longitudinal and
transverse field components. For the deflecting field Ed, composed from electric and magnetic
components of the original field, further reduction of harmonics takes place for opposite phasing
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of HE1 and HM1 waves, A · B < 0 in (16). According to (34), we can expect |edp| ≪ |ezp| for
A ∼ −B.
The criterion for harmonics estimation (45) in TW mode works naturally both for longitudinal
and transverse components of the Lorenz force (20). The minimal value of Ψd corresponds to
a minimal level of spatial harmonics for bunch rotation φ = π

2
and, simultaneously, for bunch

deflection φ = 0, according to (43).
For SW operation mode the field distribution for 0 < Θ0 < π can be obtained as the sum of
the forward wave Ej(ϑ, r, z), (2), and the backward wave E∗

j (ϑ, r, z). But for Θ0 = 0, π the
forward and the backward waves are identical, [9]. A specific case of a compensated structures
is, see [3], when at the operating frequency two 0 or two π modes from two different passbands,
which have a conjugated parity of field distributions with respect to mirror symmetry planes,
coincide. There is just one proposal of the compensated DS known, [12], which is not realized
in practice.
As for every periodical structure, SW modes for DS with 0 < Θ0 < π are not effective with
respect to the RF parameters. There are no references for DS, operating with Θ0 = 0 or
Θ0 = 2π. Considering DS SW operation, we assume in the following Θ0 = π.
For the SW case each field component Ej(ϑ, r, z) in (1) has only either real or imaginary

Figure 5: The distributions of amplitudes for Ex, Z0Hy and Ed, deflecting field Ed, φ = 0 and
Ed, φ = 90 (upper row) and distribution of phase for Ex, Hy and Ed (bottom row) for DLW

with a
λ
= 0.18, (a) and for decoupled DS, Fig. 1d, a

λ
= 0.07, Θ0 = π.

part and the phase ψj(ϑ, r, z) is a step-wise function with one step of π over the period. The
periodicity in the field distribution, similar to (2) and the linearity in (21) remain.
For each component separately Ψj =

π
2
holds, according to (45). The longitudinal component

in the Lorenz force (20) is only due to the Ez component and a reduction of harmonics can be
obtained only due to attenuation (44), which is not so effective for lower harmonics at Θ0 = π.
Typical values of Tz, (39), are Tz ≈ (0.75 ÷ 0.8), ez1 ∼ 0.6. A reduction of aberrations in
the longitudinal force component for the SW mode can be achieved only at the expense of an
increased aperture radius.
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In Fig. 5 the distributions of amplitudes for Er = Ex, Z0Hϑ = Z0Hy and deflecting fields
Ed, φ = 0 and Ed, φ = π

2
(upper row) and distributions of phase for Ex, Hy and Ed (bottom

row) for DLW a
λ
= 0.18, (a) and for decoupled DS, Fig. 1d, a

λ
= 0.07 are shown for SW

operation mode.
Taking into account DS symmetry properties, for deflecting field Edr we can write:

Edr(z) = cos(ωt+ φ) ·
∑

p=0

erpcos(
(π + 2pπ)z

d
)− sin(ωt+ φ) ·

∑

p=0

Z0hϑpsin(
(π + 2pπ)z

d
). (50)

Considering just the main harmonics p = 0 for the synchronous particle ωt = kz = πz
d
, we see:

Edr(z) = er0cos(kz + φ)cos(kz)− Z0hϑ0sin(kz + φ)sin(kz) = (51)

=
er0 − Z0hϑ0

2
· cos(φ) + er0 + Z0hϑ0

2
· cos(2kz + φ))

For any intial phase shift φ the central particle sees both a uniform and an oscillating impact
of the deflecting field. Even if the main harmonics are free from aberrations, the oscillating
part in (51) shifts the particle from the DS axis to regions with higher field nonlinearities from
the spatial harmonics. As one can see from (51), the ratio of uniform and oscillating parts
depends on the phasing and the balance of the synchronous harmonics er0 and Z0hϑ0. For
opposite phasing er0 · Z0hϑ0 < 0 the amplitude of the uniform deflection er0 − Z0hϑ0 exceeds
the amplitude of the oscillations er0 + Z0hϑ0. For the case er0 = −Z0hϑ0, corresponding to
A = −B in (16), the central particle moves under action of the synchronous field harmonics
without oscillations and the perfect bunch rotation is possible for φ = π

2
.

Taking into account the spatial harmonics in the Er and Hϑ field components, for the deflecting
field one can get:

Edr(z) =
er0 − Z0hϑ0

2
· cos(φ) + (52)

+
cosφ

2
·
∑

p=1

(erp−1 + Z0hϑp−1 + erp − Z0hϑp)cos(
2pπz

d
)−

−sinφ
2

·
∑

p=1

(erp−1 + Z0hϑp−1 − erp + Z0hϑp)sin(
2pπz

d
)).

This is the general case of the force onto the central particle from the force sources, Er and Hϑ,
which are shifted both in distance along the axis and in time. As one can see the amplitudes of
the p-th and p − 1 harmonics are coupled in the amplitudes of the oscillations ∼ sin(2pπz

d
),∼

cos(2pπz
d

). Just for the case er0 = −Z0hϑ0 oscillations appear due to the higher spatial harmonics
only. For equal phasing er0 ·Z0hϑ0 > 0 the amplitude of the oscillations can exceed the average
value of deflecting field.
We can rewrite (52) as:

Edr(z) =
e
′

d0

2
· cosφ+

cosφ

2
·
∑

p=1

eedpcos(
2pπz

d
)− sinφ

2
·
∑

p=1

eodpsin(
2pπz

d
). (53)

e
′

d0 = er0 − Z0hϑ0, eedp = erp−1 + Z0hϑp−1 + erp − Z0hϑp,

eodp = erp−1 + Z0hϑp−1 − erp + Z0hϑp.

As one can see from (53), the amplitudes of the even oscillating terms eedp differ from the
amplitudes of the odd oscillating terms eodp for the same p.
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The criterion for harmonics estimation (45) in SW mode works formally as for a TW mode.
Taking into account the time dependence, for deflecting field we can write:

Edr(z)e
iωt = (Er(z)− iZ0Hϑ(z))e

iωt or Edr(z)e
ikz = (Er(z)− iZ0Hϑ(z))e

ikz. (54)

and can consider Edr(z)e
ikz as a complex function with real and the imaginary parts, which de-

scribes an ’equivalent’ traveling wave. In a mathematical sense the parameter Ψd = max(|δψd(z)|)
reflects the imaginary part of the complex function (54). For the opposite er0, hϑ0 phasing
er0 ·Z0hϑ0 < 0 the parameter Ψd reflects ’in total’ the oscillating part in (54), which is described
by the odd oscillating terms eodp, including both higher spatial harmonics and oscillations due to
the not compensated term er0 +Z0hϑ0 6= 0 in the main harmonics. Thus the condition (Ψd)min
corresponds to the most uniform motion of the central particle near the axis during bunch
rotation for a SW mode. But the Ed distribution for the bunch deflection condition (Ψd)min
corresponds due to the eodp and eedp difference not to the minimal level of oscillating additions.
In the distribution Ed(z), φ = 0, obtained for the condition (Ψd)min we will always have larger
deviations from the average value, than in the distribution Ed(z), φ = π

2
.

For equal er0, hϑ0 phasing the parameter Ψd is not useful, because the ’equivalent’ traveling
wave in (54) is the backward wave with respect to the central particle and (Ψd)min = π. But
for equal phasing we have both strong oscillations due to the main harmonics, according to
(52), and increased amplitudes for higher Ed harmonics, according to (34).

4.2 Phase deviations in deflecting field distribution

Suppose for a TW mode we have at the DS axis a phase deviation dψd(z) in the phase distri-
bution ψd(ϑ, r, z) of the deflecting field due to some reasons. Similar to (37) and (38), the force
from the deflecting field for bunch deflection is:

Fd(z)

e
= ℜ(Êd(z)ei(ψ(z)+kz0z+dψd(z))) = Êd(z)cos(δψd(z) + dψd(z)) = (55)

= cos(dψd(z)) · (ed0 +
∑

p=1

edpcos(
2pπz

d
))− sin(dψd(z)) ·

∑

p=1

edpsin(
2pπz

d
).

where (38) and (40) are taken into account. For bunch rotation

Fd(z)

e
= ℜ(Êj(z)ei(ψ(z)+kz0z+dψd(z)+π/2)) = Êd(z)sin(δψd(z) + dψd(z)) = (56)

= sin(dψd(z)) · (ed0 +
∑

p=1

edpcos(
2pπz

d
)) + cos(dψd(z)) ·

∑

p=1

edpsin(
2pπz

d
).

From (55) and (56) we see a quite different role of the phase deviation dψd(z) for bunch deflection
and bunch rotation. For small deviations |dψd(z)| ≪ 1

cos(dψd(z)) ≈ 1− (dψd(z))
2

2
, sin(dψd(z)) ≈ dψd(z). (57)

For bunch deflection the phase deviations dψd(z) leads to a second order change in the distri-
bution of the deflecting field (38) and to the generation of small residual field (40). For a bunch
rotation mode the phase deviations immediately generate a bunch deflection ≈ ed0dψd(z) by
the synchronous harmonic. At the plots of Ed(z), φ = π/2 arise peaks of Ed and the bunch as
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a whole will be deflected from the axis, similar to the oscillations in (51), with the same effect.
The bunch will be displaced as a whole from the axis to a region with higher level of nonlinear
additions in the field distributions.
We have to distinguish possible reasons of phase deviations. The first reason are possible errors
in the cell frequencies. It can be reduced by appropriate RF tuning.
The second reason are violations of the structure periodicity - RF coupler cell, end cell with
connected beam pipe and so on. For such elements special attention is required.
The criterion for spatial harmonics estimation, introduced in (45), works well also for the total
structure, including cells with violated periodicity. If we see large phase deviation in the RF
coupler cell from the phase of the synchronous particle, according to (56) we will have corre-
sponding unwanted peaks in the Ed distribution for bunch rotation. Reduction of the phase
deviation dψd(z) simultaneously leads to a reduction of the peaks.

4.3 RF efficiency for TW and SW mode

Both for bunch deflection and bunch rotation we need the value of deflecting voltage Vd for a
specified RF power P .
For SW mode all RF power is dissipated in the cavity surface and Vd is directly related to the
effective transverse shunt impedance Z(SW )

e per unit length:

Z(SW )
e =

| 1
k

∫ L
0

∂Ez

∂z
eikz0zdz|2

PsL
=

(Ed0L)
2

PsL
, β = 1, (58)

where L is the total structure length. This definition of Ze is based on the Panofsky-Wenzel
theorem.
For TW mode the wave propagates along the structure, both providing the required field and
attenuating in amplitude due to RF power dissipation in the surface of the structure. The rest
of the RF power comes to the RF load at the end of the TW structure. The TW structure
parameter, independent with respect to frequency scaling, is the normalized field strength:

Ed0λ√
Pt

=

√√√√2πλZ
(TW )
e

|βg|Q
, (59)

where Z(TW )
e is defined similar to (58), Ed0 is the field value for the synchronous deflecting

harmonic and Pt is the RF power flux. The total deflecting voltage V
(TW )
d is:

V
(TW )
d =

∫ L

0
E

(i)
d0 e

−αzdz =
E

(i)
d0

α
(1− e−αL), (60)

where α is the attenuation constant α = π
λ|βg|Q and E

(i)
d0 is the value of Ed0 at the beginning of

the TW structure.
Assuming the structure is not so long, αL ≪ 1, and estimating Z(SW )

e ≈ Z(TW )
e , from (58) -

(60) we can estimate the ratio:

V
(TW )
d

V
(SW )
d

≈
√

2πL

λ|βg|Q
. (61)

For structures operated as TW the choice of |βg| is of primary importance, simultaneously

defining both positive and negative DS properties - RF efficiency (59) as ∼ (|βg|)−
1
2 , wave
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attenuation α ∼ (|βg|)−1, phase distribution sensitivity to cell frequencies deviations ∼ (|βg|)−1.
A typical value of (|βg|) ∼ 10−2 is usually accepted as a compromise.
For S-band applications, λ = 0.1m,Q ∼ 104 one can conclude from (61) - for structure length
L < 1 m SW operating regime is more effective to obtain required value of Vd.

5 Parameters of the DLW structure

Figure 6: The surfaces βg(a,Θ0) (a), Ze(a,Θ0) (b) and
Es

Ed
(a,Θ0) for a DLW structure,

td
λ
= 0.054, λ = 10cm.

The study of DLW parameters has been performed in a wide range of operating parameters
π
9
≤ Θ0 ≤ π and for aperture radii a in the range of 0.11 ≤ a

λ
≤ 0.30, assuming λ = 10cm.

Always the Ez distribution is calculated along the line x = 2mm. The results are presented in
Fig. 6 and Fig. 7 as two dimensional surfaces to have general view for the DLW properties. In
Fig. 6 the surfaces for group velocity βg(a,Θ0), Fig. 6a, effective transverse shunt impedance
Ze(a,Θ0) and ratio Es

Ed
(a,Θ0), where Es is the maximal electric field at the surface, are plotted.

As it is common for slow wave structures, βg(a,Θ0) → 0,Θ0 → 0, π. For each intermediate
value of Θ0 6= 0, π there is the inversion point, (18), ( a

λ
)inv(Θ0) corresponding to βg = 0. Below

this point ( a
λ
) < ( a

λ
)inv the group velocity is negative βg(

a
λ
) < 0, corresponding to the backward

traveling wave. For ( a
λ
) > ( a

λ
)inv the group velocity is positive βg(

a
λ
) > 0, corresponding to the

forward wave.
The surface Ze(a,Θ0) has an upland for Θ0 ≈ π

2
and the general trend is that Ze decreases with

increasing a.
The surface of the ratio Es

Ed
has a valley for Θ0 ≈ π

3
and the general trend is that Es

Ed
increases

with increasing a.
In Fig. 7 the surfaces Ψzm(a,Θ0), Fig. 7a, Tz(a,Θ0), Fig. 7b, Ψdm(a,Θ0), Fig. 7c, and
Td(a,Θ0), Fig. 7d, which are related also to the quality of the field distributions, (39) are
shown.
The transit time parameter is a more usual value in the list of features for periodical structures
and describes also the relative weight of the synchronous harmonic in the total distribution.
Always there is a connection a smaller value of Ψj leads to a higher value of Tj .
For the original field component Ez the maximal phase deviation Ψzm(a,Θ0) rises fast with Θ0,
see Fig. 5a, and for Θ0 → π (SW mode) Ψzm(a,Θ0) → π

2
. It reflects the natural attenuation

(44) for higher spatial harmonics at low values of Θ0. The corresponding Tz(a,Θ0) reduction
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Figure 7: The surfaces Ψzm(a,Θ0) (a), Tz(a,Θ0) (b), Ψdm(a,Θ0) (c) and Td(a,Θ0) (d) for a
DLW structure, td

λ
= 0.054, λ = 10cm.

can be seen in Fig. 7b and for Θ0 → π, Tz(a, π) →≈ 0.75. For larger values of aperture radii
a Ψzm rises slower, also due to the stronger attenuation of higher spatial harmonics from the
iris r = a to the axis r = 0.
For small aperture radii ( a

λ
) < ( a

λ
)inv the components of the deflecting field er0, hϑ0 in a DLW

have opposite phasing and the deflecting field Ed reaches smaller values of Ψdm(a,Θ0), as
compared to the original field components, Fig. 7c. It reflects the reduction of edp amplitudes,
according to (34) for the opposite phasing of HE1 and HM1 waves. For small values of Θ0

Ψdm(a,Θ0) < ΨExm,Hym(a,Θ0) because the corresponding values for contributing components
are small too and additionally the compensation due to opposite Ex, Hy phasing works. This
compensation essentially decelerates the rising of Ψdm(a,Θ0) with increasing Θ0.
With Θ0 → π the TW mode tends to the SW with Θ0 = π. But the distribution of Ed for
a SW mode has the properties of an ’equivalent’ traveling wave, (54). For the reduction of
Ψdm(a,Θ0) both opposite phasing and the balance of the amplitudes ex0, hy0 are essential. The
second component becomes important for Θ0 ≈ π. The balance between the amplitudes ex0
and hy0 depends on the aperture radius a, (19) and for ex0 ∼ −Z0hy0 we get Ψdm(a, π) ∼ 0
instead of ΨEx

= ΨHy
= π

2
. One can see a clear canyon in the Ψdm(a,Θ0) surface in Fig. 7c and

a corresponding arc in the Td(a,Θ0) surface in Fig. 7d for Θ0 → π. Unfortunately, the bottom
of this canyon is not so far from the curve ( a

λ
)inv(Θ0) and not so close to the region with high

values of Ze.

5.1 Parameters for TW mode

In more details the DLW parameters for the TW mode are plotted in Fig. 8. The important
TW parameter is βg. In Fig. 8a the dependences of the aperture radius a on the operating

23



Figure 8: The dependences on Θ0 for aperture radius a (a), the maximal phase deviation Ψzm

(b), Ψdm (c), attenuation α (d), normalized field Ed0λ√
Pt

(e) and ratio Es

Ed
(f) for relative group

velocity values βg = −0.01 (red curves), βg = −0.02 (green curves) and βg = −0.03 (blue
curves).

phase advance Θ0 is plotted as to get the required value of βg. The brown curve (2 in Fig. 8a)
shows the calculated position of the inversion point βg = 0 in dependence on Θ0. According to
the small pitch approximation, the inversion radius should be constant for all values of Θ0 and
ainv =

√
3

2π
λ = 27.57mm, (18). It is shown by the line 1 in Fig. 8a. The difference between the

line 1 and the curve 2 points out the usability for the small pitch approximation.
Also in Fig. 8a are plotted the required values of a to get βg = −0.01 (red curve), βg = −0.02
(green curve) and βg = −0.03 (blue curve). Other DLW parameters are plotted in Fig. 8b, f
for the obtained values of a with the respective colors.
The phase deviation Ψzm (Fig. 8b) rises fast for Θ0 >

π
2
. Comparing plots in Fig. 8b and Fig.

8a, one can conclude, that for the condition βg = const lower values of Θ0 are more important
for an efficient attenuation of higher harmonics (44) in the original field components.
Due to opposite phasing of the hybrid waves, the phase deviation Ψdm for the deflecting field
(Fig. 8c) rises not so fast and a low aberration level in the Ed distribution is possible for
Θ0 ≤ 2π

3
.

For small values of Θ0 <
π
3
the DLW structure is closer to the small pitch approximation. The

sequence of this approximation is a lower quality factor Q and a higher attenuation constant
α values, Fig. 8d. The total deflecting voltage Vd (52) depends on both normalized field value
Ed0λ√
Pt
, Fig. 8e, and α. Operation with Θ0 <

π
3
should be considered additionally from the point

of RF efficiency.
For the electrical strength of the structure the range 45o ≤ Θ0 ≤ 2π

3
is preferable, Fig. 8f.
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5.2 Parameters for SW mode

Parameters of the DLW structure for SW mode are plotted in Fig. 9.
The effective shunt impedance Ze decreases with increasing a, Fig.9a, and the maximal electric

Figure 9: The parameters of the DLW structure for SW mode in dependence on aperture
radius. Effective transverse shunt impedance Ze (a), ratio

Es

Ed
(b), transit time factor Tz (c),

the maximal phase deviation Ψdm (d) and transit time factor Td (e) for the deflecting field.

field at the surface increases, Fig. 9c. The maximal phase deviation Ψzm for the longitudinal
Ez component is always Ψzm = π

2
, due to the step-wise rise in the Ez phase in SW mode and

Tz is always Tz ≃ 0.75, Fig. 9c.
For the deflecting field Ed the value of the phase deviation Ψdm depends on the amplitude
balance of ex0 and hy0, Fig. 9d, which defines also the value of Td ∼ 1, Fig. 9e. We can
get Ψdm ≈ 0, see Fig. 9d, at some value of a0, but it is close to the position of the inversion
point. For DLW in SW mode with Ψdm ≈ 0 exist limitations from the mode mixing problem
as described below
As it was shown in Section 4.3, the SW operating mode is more efficient for obtaining a required
value of Vd with a short DS. As for the homogeneity of the longitudinal component Ez, essential
reductions of aberrations (reduction of higher spatial harmonics) can not be realized for SW
mode. As for aberrations in the transverse field Ed, we have a contradictory choice for DLW -
either RF effective operation with smaller Es values, but significant level of nonlinear additions,
or operation with reduced aberrations at the expense of RF power and at higher surface field.

6 Parameters of the decoupled TE-structure

In DLW structures the aperture radius a defines simultaneously both RF efficiency, and disper-
sion properties. In TE-structures (Fig. 1d) these parameters are separated. The RF efficiency
depends mainly on the distance between the noses (effective aperture radius) and the disk
thickness. The passband width can be changed by the inner disk radius rw. This structure
has no rotational symmetry. For the complete description of the field distribution, starting
from (2), we have to add waves and harmonics with n = 3, 5, 7, ... variations along azimuth, see
Section 3.3. Below we do however not consider multipole additives. The nose tip shape was
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optimized to reduce the multipole additives and this shape was used for consideration.
The study of the RF parameters has been performed in a range of π

9
≤ Θ0 ≤ π and 0.06 ≤

a
λ
≤ 0.15, assuming λ = 10cm with all other parameters - the disk thickness td ≈ 0.52d and iris

radius rw
λ

= 0.24 fixed from the previous RF efficiency optimization.
Results are presented in Fig. 10 as two dimensional surfaces. The range of aperture radii,

Figure 10: The surfaces of βg(a,Θ0) (a), Ze(a,Θ0) (b) Ψzm(a,Θ0) (c) and Ψdm(a,Θ0) for the
TE-structure, λ = 10cm.

considered for the TE-structure and DLW, have a common region 0.11 ≤ a
λ
≤ 0.15. It allows

us to compare the general behavior of structure parameters both qualitatively and quantita-
tively. For small aperture radii a

λ
≤ 0.11 the structure has equal phasing of the synchronous

harmonics ex0, hy0 and, as a consequence, a positive group velocity βg > 0, Fig. 10a, which
decreases with aperture increasing radius. Also for each value of Θ0 we find the inversion point
( a
λ
)inv(Θ0) ≈ 0.11, corresponding to βg = 0. Above the inversion point βg < 0 and with further

increasing a
λ
the TE-structure degenerates into a DLW.

For small aperture radii the TE-structure reaches high values of Ze, Fig. 10b, which decrease
with increasing a. For the same aperture radius both TE-structure and DLW have approxi-
mately equal values of Ze, but differ strongly in the width of the passband.
Similar to a DLW, see Fig. 7a, the phase deviation Ψzm(a,Θ0) rises with Θ0, Fig. 10c, but
the rise is faster - for smaller values of a the attenuation of higher harmonics in TE-structures,
according to (44), is not so strong.
For equal ex0, hy0 phasing the phase deviations Ψdm(a,Θ0) for the deflecting field Ed is larger
than for the Ex, Hy components and rises faster with Θ0 for small values of a. According to
(34), the amplitudes of the spatial harmonics in the Ed description, are enlarged for equal
phasing of HE1 and HM1 waves as compared to opposite phasing.
For values of a above the inversion point the harmonics ex0 and hy0 obey an opposite phasing
and the partial compensation starts, leading to a reduction of Ψdm(a,Θ0), which is however
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not very effective. For the compensation of the harmonics both opposite phasing and compa-
rable values for amplitudes are essential. In the TE-structure with introduced noses, for the
considered range of parameters, the amplitude of ex0 dominates with respect to the amplitude
of Z0hy0 and the phase deviation Ψdm(a,Θ0) for the Ed is defined mainly by Ψxm(a,Θ0) for the
Ex component, Fig. 10d, which rises with Θ0 as all original field components. In the consid-
ered range of parameters this is the reason for the absence of a canyon in the dependence of
Ψdm(a,Θ0) on a for Θ0 ∼ 1800, as we have seen for the DLW structure in Fig. 7c, Fig. 9d.

6.1 Parameters for TW mode

Figure 11: The dependences on Θ0 on the aperture radius a (a), the maximal phase deviation
Ψzm (b), Ψdm (c), attenuation α (d), normalized field Ed0λ√

Pt
(e) and ratio Es

Ed
(f) for relative

group velocity values of βg = −0.01 (red curves), βg = 0.01 (blue curves), βg = −0.02 (green
curves) and βg = 0.02 (magenta curves).

Regarding RF efficiency in the TW mode, small values of a are not attractive, because they
result in high values of βg and related lower values of normalized field Ed0λ√

Pt
. The inversion of

the sign of βg allows, similar to the DLW, a reasonable choice of βg. The dependence of the
inversion value ( a

λ
)inv on Θ0 is shown in Fig. 11a with a brown curve.

Parameters of the TE-structure for TW mode are plotted in Fig. 11 in the same style with
equivalent parameters as for the DLW in Fig. 8. Comparing the plots in Fig. 10b, c and Fig.
8b, c, one can see for the same value of βg larger phase deviations Ψzm(a,Θ0) for Ez, Fig. 11b,
Fig. 8b, and essentially larger phase deviations Ψdm(a,Θ0) for Ed, Fig. 11c, Fig. 8c in the
TE-structure. These results are the consequences of small values of a and equal phasing of
ex0andhy0.
As compared to a DLW, the structure has a lower Q-factor, resulting in a higher attenuation
constant α, as one can see by comparing the plots in Fig. 11d and Fig. 8d. But the normalized

27



field Ed0λ√
Pt

(59) is essentially higher, see plots in Fig. 11e and Fig. 8e. The total deflecting
voltage Vd depends on the normalized field, the attenuation constant and the structure length
L (60). Instead of a higher α, the reserve in the value of Ed0λ√

Pt
is sufficient to find values of

L with higher RF efficiency. As one can see from Fig. 11e, f, regarding RF efficiency a TW
operation with βg > 0 is preferable - as compared to βg < 0 a higher value Ed0λ√

Pt
is reached for

the same α. But the phase deviations, both Ψzm and Ψdm, are larger for βg > 0, see Fig. 11b,
c.
Due to the noses and, especially, the nose end shape, TE-structures reach higher Es

Ed
ratios,

see Fig. 11e and Fig. 8e. Generally, DS’s with equal Ex and Hy phasing should have higher
values of the ratio Es

Ed
. The maximal electric field at the surface Es is connected with Ex. For

the opposite phasing of the ex0andhy0 components Ex and Hy contribute together, (21) to the
creation of Ed. For equal ex0, hy0 phasing the magnetic field partially compensates the deflection
from the electric field and a higher value of Ex is required to produce the same deflecting effect.

6.2 Parameters for SW mode

Figure 12: The shunt impedance Ze (a) and the maximal phase deviation Ψdm (b) for SW
mode in dependence on the aperture radius a.

Due to higher values of Ze, Fig. 12a, SW mode was originally proposed as preferable
application of TE-structures. As compared to a DLW, a decoupled TE-structure has additional
freedom in the dimensions - nose opening along azimuth and inner disk radius, which differs
from the aperture radius. The cell dimensions were optimized for RF efficiency assuming an
L-band operation with a = 15.5mm, corresponding to a = 6.72mm in the S-band range.
The phase deviation Ψzm shows a typical SW mode behavior at Ψzm = π

2
. Concerning the

deflecting field Ed the dependence of Ψdm on a is more interesting, Fig. 12c. In the range 5mm <
a < 11mm (below the inversion point), hybrid waves have equal phasing; the ’equivalent’
traveling wave in (54) is the backward wave with respect to the particle motion and Ψdm ≈ π

2
.

Above the inversion point a > 11mm we find a negative structure dispersion, opposite ex0, hy0
phasing and Ψdm decreases with further increasing a. If the plot of Ψdm in Fig. 12b would be
continued to a ≈ 20mm, a second inversion point and a valley in the plot of Ψdm would appear,
similar to the valley in the plot of Ψdm for the DLW in Fig. 9d, because the TE-structure
degenerates in its properties to a DLW for large values of a.
The decoupled TE-structure has been considered here mainly in contrast to a DLW. For a
small aperture radius this DS shows an equal ex0, hy0 phasing, a high RF efficiency, but a poor
deflecting field quality for bunch rotation. In the DLW consideration the necessity of opposite
ex0, hy0 phasing was illustrated to achieve a high quality of the deflecting field, but at the
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expense of RF efficiency.
The main value of this study is the detection of the dispersion inversion at a small aperture
radius. After that the advantage of the decoupled control over the field distribution was used
to combine RF efficiency and deflecting field quality, [14].

7 Hybrid waves phasing and balance.

In the following plots for field distributions are shown to compare the effect of both the opposite
and the equal phasing of ex0 and hy0.
A DS with a total length of 200mm = 2.0 · λ is considered for operation in TW and SW mode
with the same average deflecting field of Ed0 = 1MV/m. To emphasize the particularities in
distributions, some frames in plots have different scales of the field strength.
In Fig. 13 plots of distributions for opposite ex0, hy0 phasing are shown, for a DLW structure

Figure 13: Plots of EdandEz distributions for DLW TW (upper row) and SW mode (bottom
row). TW mode with Θ0 =

π
3
, π
2
, 2π

3
- blue, red and green curves, respectively. SW mode for

a
λ
= 0.12, 0.194, brown and dark blue curves, respectively. The plotted distributions show

Ed, φ = 0, (a), (d) - Ed, φ = π
2
, (b), (e) and Ez, φ = π

2
(c), (f).

with large aperture radius a
λ
∼ 0.23. A detailed description of the plots is given in the caption

of Fig. 13. For direct comparison equivalent plots are shown in Fig. 14 for the decoupled TE
structure with equal ex0, hy0 phasing and small aperture radius a

λ
∼ (0.07− 0.11). In addition

to plots for equal phasing, corresponding to βg > 0, plots for opposite phasing, i.e. βg < 0
are presented in Fig. 14. Numerical data - amplitudes of the spatial harmonics, calculated
according (43) - are presented in the Table 3.
Comparing the distributions of the original field component Ez for TW mode, Θ0 =

π
3
, in Fig.

13c, Fig. 14c and the ezp coefficients in the Table 3, we see the effect of a large aperture radius,
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Figure 14: Plots of Ed and Ez distributions in the decoupled TE structure for TW (upper
row) and SW (bottom row) operation. TW mode with Θ0 =

π
3
, βg = −0.01 ,

Θ0 =
π
3
, βg = 0.01, Θ0 =

π
3
, βg = −0.02 and Θ0 =

π
2
, βg = 0.02 - blue, red, green and brown

curves, respectively. SW mode for a
λ
= 0.0672, 0.108 - dark blue and red curves, respectively.

The plotted distributions show Ed, φ = 0, (a), (d) - Ed, φ = π
2
, (b), (e) and Ez, φ = π

2
(c), (f).

which provides a stronger attenuation of harmonics toward the axis, (44). The amplitudes of
higher harmonics in ezp are essentially smaller in DLW. With increasing Θ0 the amplitudes of
harmonics in the original field components at the axis rise due to weaker attenuation.
For the deflecting field Ed we directly see from Fig. 13 a, b, Table 3, a reduction of harmonic
amplitudes |edp| ≪ |ezp|, as compared to the original field components, for opposite ex0, hy0
phasing both for bunch deflection φ = 0 and for bunch rotation φ = π

2
. The spikes in Fig. 13b

(Ed, φ = π
2
) reflect just numerical noise in the simulation of the fields; the regular effects in the

deviations of Ed are much below the noise. According to (34), for opposite phasing of HE1

and HM1 waves in the field description (16) the higher spatial harmonics in the Ex and Hy

components compensate each other on the background of an increased total main harmonic.
For equal ex0, hy0 phasing we do not see, Fig. 14 a, b, Table 3, a reduction of the harmonics
amplitudes in Ed in comparison with the original field components.
The advantage of opposite ex0, hy0 phasing for the suppression of harmonics is especially brightly
shown in the TW mode in Fig. 14 a, b, c - for the negative group velocity (opposite phasing) the
deviation from the average (due to the higher spatial harmonics) is always larger, as compared
to the same value but positive group velocity (equal phasing).
For a TW mode with low value of Θ0 ≤ π

2
the amplitude balance |Z0hy0

ex0
| is not of primary

importance - for harmonics suppression in the deflecting field the attenuation (44) in original
field components is more essential. The plots of the hy0

ex0
balance are given in Fig. 15a together

with the corresponding plots of Ψdm both for TW and SW mode. The black dotted curve in Fig.
15a shows the plot of the Z0hy0

ex0
balance in a DLW according to the small pitch approximation,
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Table 3: The relative amplitudes for higher spatial harmonics in the field distributions for the
DLW and decoupled TE structures.

DS, Operation, Θ0 Ez, Ez, Ez, Ed, Ed, Ed,
a =, mm ez1 ez2 ez3 ed1 ed2 ed3
DLW,TW,23.80mm 60 -0.0048 -0.0007 -0.0010 0.0006 -0.0009 0.0006
DLW,TW,23.58mm 90 -0.0581 -0.0004 -0.0003 0.0009 -0.0001 -0.0001
DLW,TW,22.33mm 120 -0.1950 -0.0048 0.0001 0.0020 -0.0015 0.0012
DLW,SW,12.0mm 180 -0.6103 -0.1385 -0.0348 -0.3818 -0.0623 -0.0008
DLW,SW,19.4mm 180 -0.5619 -0.0691 -0.0077 -0.0271 -0.0148 0.0047
TE-,TW,10.45mm 60 -0.1131 -0.0002 0.0000 0.0227 -0.0001 0.0002
TE-,TW,11.39mm 90 -0.2520 -0.0024 0.0006 0.0896 0.0002 -0.0001
TE-,SW,6.72mm 180 -0.5178 0.0998 0.1165 -0.3010 -0.0194 0.0124
TE-,SW,10.08mm 180 -0.4842 0.0640 0.0472 -0.4384 -0.0064 0.0076

(19). As can be seen from Fig. 15b, for a DLW in TW mode with Θ0 =
π
3
the phase deviations

Ψdm are very small for all values of the aperture radius a, even though the harmonic amplitudes
Z0hy0 and ex0 are not balanced, Fig. 15a.

The role of the balance of Z0hy0
ex0

increases with Θ0 → π and for a SW operation it is the only

Figure 15: Plots of Z0hy0
ex0

balance (a) and corresponding plots of Ψdm (b) for a DLW in TW
mode (Θ = π

3
, blue curves) and SW mode, green curves. The red curve represents the balance

of Z0hy0
ex0

for a decoupled TE-structure in SW mode.

way to suppress harmonics in a deflecting field. The aperture radius a
λ
= 0.194 for a DLW in SW

mode corresponds to the minimal value of phase deviation of Ψdm ≈ 1.8o and Z0hy0
ex0

≈ −0.85,
Fig. 15b,c. Comparing the amplitudes edp in the Table 3 for a

λ
= 0.12 and a

λ
= 0.194, one can

see a reduction of ed1 by more than an order of magnitude and a reduction of ed2 by more than
a factor of four. But the deflecting field deviations are suppressed for a

λ
= 0.194 in ’total, i.e.

on the background of the first harmonic ed1 which is reduced by one order of magnitude we
see in the distribution of the second harmonic Ed, φ = π

2
in Fig. 13e ed2 - Ed non symmetric

deviations.
Differing from the prediction of edxp(x, y) ≈ 0 for A = −B, (34), the results of the numerical
simulations show for a SW mode a minimal value Ψdm ≈ 2o at B ≈ −0.87 · A. In this case we
realize a DS option with damped eodp terms in (53), when the not compensated contribution of
er0+Z0hϑ0 to the oscillations in (52) from the synchronous harmonics in Er and Hϑ is damped
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by the first harmonics er1 + Z0hϑ1 and simultaneously the amplitudes for higher harmonics in
Ed are reduced, according to (34).

7.1 Structures classification

The classification of a structure with a complicated field distribution is always rather condi-
tional. Often the visual characteristics of the structure or field distribution are used. For
example, the DS with evidently dominating transverse electric field, Fig. 1d, was treated in
[4] as TE-type. In Fig. 16 it is shown, how this DS can be continuously transformed, with an
appropriate transformation of the field distribution, into other DS’s.
Suppose the starting point is (b) in Fig. 16 - the original DS option, described in [4]. By
reducing the iris radius rw → a we come through Fig. 15c, Fig. 15d to Fig. 15e - the well
known DLW. In this way an equal ex0, hy0 phasing changes into an opposite phasing. Trans-
formation into another direction rw → b leads to other structures, Fig. 15 a, which are very
compact, 2b ≤ λ

2
, have a high value of Ze in SW π mode and an equal ex0, hy0 phasing, similar

to the initial Fig. 15b option. The deflecting field distribution in such structures is described
by (53), and looks similar as the plots in Fig. 14 d, e. In such structures, Fig. 15a, the
central bunch particle will receive, both for bunch deflection and for bunch rotation, a strong
oscillating impact, comparable to the average deflecting field, and can thus be displaced to a
region with strong nonlinear additions in the field. Application of these structures for heavy
ions is tolerable due to the small transverse dimensions at low frequencies, [16]. Moreover, for
β ≪ 1 the magnetic component in the deflecting force is reduced and there is no substantial
difference between opposite and equal ex0, hy0 phasing in (52). For bunch rotation at β ∼ 1,
especially for multiple bunch passages, such DS’s should be considered more carefully. With a
small deterioration of the transverse emittance in each DS passage, the danger of cumulative
emittance growth in the multiple passages appears.
It the previous consideration we have seen the importance of the ex0, hy0 phasing and balance

Figure 16: Transformation of deflecting structure.

for the deflecting field quality. Most important is the phasing. For TW mode we can have
always a tolerable field quality for low Θ0, but opposite ex0, hy0 phasing leads to a better Ed
distribution, regardless of the Z0hy0

ex0
balance. For a SW mode the opposite ex0, hy0 phasing also

leads first to a better Ed distribution and allows (second) to reduce aberrations in Ed for the
appropriate Z0hy0

ex0
balance.

With respect to the deflecting field quality, it looks attractive to distinguish all DS in two groups
- with opposite and with equal hybrid waves HE1, HM1 phasing. But hybrid waves HE1 and
HM1 are special functions, practically inaccessible to a visual perception. We can define the
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phasing and the balance from the results of a treatment for the simulated field distribution,
but it is not clear.
Suppose we have a DS with a pronounced predominance of the transverse electric field in the
aperture ~E ≈ ~ixEx ≈ ~irEr, for example the DS, shown in Fig. 1b, Fig. 1d or Fig. 15a.

From the Maxwell equation rot ~E = −∂ ~B
∂t

for the synchronous harmonics in (2) for each field
component we find:

− ikZ0hϑ0(r, z) =
∂er0(r, z)

∂z
− ∂ez0(r, z)

∂r
,⇒ Z0hϑ0(r) =

kz0
k
er0(r)−

i

k

∂ez0(r)

∂r
. (62)

All DS with a pronounced predominance of the transverse electric field in the aperture |Ex| ≫
|Ez| have an equal phasing of the hybrid waves HE1 and HM1. This is valid also for DS with
rods and DS utilizing a TM010 mode in combination with a transversely passing bunch.
To have an opposite phasing for the hybrid waves HE1 and HM1, in the distribution of the
original electric field the Ez component should dominate, as one can see it in Fig. 1a, Fig. 1c
and Fig. 15c.

8 End cell problem

In periodical structures with a finite length the natural boundary conditions are magnetic or
electric wall conditions at the planes of mirror symmetry. The practical case are electric con-
ditions in the middle plane between adjacent disks. In this case the distributions for the field
components in a SW cavity are perfectly the same as for a periodical structure.
In a real DS perfect boundary conditions are not possible at the ends of the structure - always
a beampipe is required. The field penetrating into the beampipe decays away from the struc-
ture but provides an initial transverse kick, which starts before the particles enter the actual
structure. The field distribution in the beampipe is not controllable and in order to reduce this
part of the deflection and thus simultaneously reduce the total input kick the beampipe radius
rt should be as small as reasonably possible.

8.1 End cell for SW mode

A model for the definition of the end cell in a SW cavity is shown in Fig. 17. The end
cells together with the beampipe are tuned to the operating frequency as separate units by
adjusting the cell radius rce while keeping the boundary condition Eτ = 0 in the middle of
the iris connecting to the periodic structure. This ensures that the frequency and the field
distribution are independent of the number of regular cells in the cavity.
By changing the length Le of the end cell the distribution of Ed, φ = π

2
can be changed in a wide

range, Fig. 18. The transverse field can be reduced but does not disappear completely. In order
to reduce the input kick the minimization of the phase deviation from the synchronous particle,
following to (54) is possible. But another procedure is more convenient for a SW mode, [14].
The first integral Int1t(z)

Int1t(z) =
∫ z

−∞
Ed(z

′

, φ =
π

2
)dz

′

. (63)

is proportional to the transverse momentum and thus the transverse velocity of a particle,
which defines the direction of the particle motion. Equivalently we can calculate the second
integral Int2t(z), which is proportional to the transverse displacement of a particle. By varying
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Figure 17: Model for the definition of the end cell (a) and distributions for field components
(b) - Ed, φ = 0 (blue curve), Ed, φ = π

2
(red curve) and Ez, φ = π

2
(green curve).

the end cell length Le we can control either the central particle direction or displacement at a
specified point.
The final field distributions, shown for three a cell cavity in Fig. 17b, are obtained from the
condition Int1t(z) = 0 at the position of the first iris, i. e. the particle enters the regular
cavity part parallel to the axis. It is realized for Le +

td
2
≈ d

2
- the length of the end cell is

approximately half of the structure period.
The condition Int1t(z) = 0 results in a reduced variation of Ed, φ = π

2
in the end cell, comparable

to the residual Ed, φ = π
2
variation in the regular structure and keeps the central particle near

the DS axis.

8.2 End cell for TW mode

The end cell problem for a TW mode requires a more difficult technique, because the end cell
is simultaneously the RF coupler cell. Additionally to the task of reducing the input kick we
have the task of RF matching.
For a TW mode the input kick in the end cell is described by phase deviations in the deflecting
field distribution, (56) and the kick minimization is equivalent to the |dψd(z)| minimization in
the end cell. For this purpose the method calculations of reflection coefficients for RF coupler
matching at φ = 0, [15], has been extended for simultaneous dψd(z) determination at φ = π

2
.

In Fig. 19 the distributions of Ed and Ez are plotted for a DLW in TW mode, Θ0 = π
3
.

Comparing with the corresponding plots in Fig. 3, one can see, at first, essentially reduced
variations of Ed and Ez inside the regular structure for Θ0 = π

3
. It is the consequence of

stronger harmonics attenuation for lower Θ0. But, on the background of reduced aberrations
in the regular structure, the input kick is clearly visible.
Similar to the SW case, the input kick already starts in the beampipe. It is not a controllable
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Figure 18: Examples of input kick control in a wide range (a) and for more precise
compensation (b) by the choice of the end cell length Le.

Figure 19: Plots of Ed and Ez distributions for a DLW in TW mode, Θ0 =
π
3
. The plots are -

Ed, φ = 0 - blue curve, Ed, φ = π
2
- red curve and Ez, φ = π

2
- green curve.

region and the only way to reduce the kick is the reduction, if possible, of the beampipe radius.
For a large beampipe radius the value of the first integral (63) over the beam pipe region is
essentially large and some times it is not so easy to compensate it with the end cell only.
The most essential parameter for the value of the input kick is the length of the end cell, similar
to the SW case, and the minimal kick values are obtained for an end cell length of ≈ 0.5d. The
plots of the field component distributions in Fig. 19 and Fig. 5 correspond to the half cell RF
couplers.
For the DS with visible Ed deviations, Fig 5, Θ = 2π

3
, it is not a big problem to reduce the

input kick to the level of the Ed deviations in the regular part of the DS. If we use a DS with
a more uniform field distributions, Θ = π

3
, Fig. 19, the input kick is a single source for a field

nonlinearity and we see an additional effect of the RF coupler cell - as the deterioration of the
periodicity the RF coupler perturbs the phase distribution in the adjacent DS cells. In Fig. 19
the maximal value of Ed, φ = π

2
is displaced from the structure ends to the adjacent DS cells,

even though the dimensions of these cells are unchanged. This effect needs more study.
The distribution of Ed(z, φ = π

2
) is always an odd function with respect to the DS middle. This

means, that Int1t(z) and Int2t(z) are always even and odd, respectively, functions with respect
to the DS middle.
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9 Dispersion properties and limitations

In periodical structures the main spatial harmonics provide flux propagation of the the RF
power. In most cases the opposite er0, hϑ0 phasing at the DS axis results in a negative value
of βg. This is not the same statement. The opposite er0, hϑ0 phasing at the DS axis definitely
means a part of the RF power P−

tr in the nearest vicinity of the axis, propagates into negative
direction. But the distribution of the field components depends on the radius r which can result
in a part of the RF power P+

tr propagating into positive direction near r ∼ a. The sign and
the value of the group velocity depends on the total flux P tot

tr = P+
tr + P−

tr . By changing the

aperture radius in a DLW we change the ratio
P−

tr

P+
tr

and for P−
tr +P

+
tr = 0 βg inversion is reached,

(18). The inversion phenomenon is the consequence of the field distribution in the hybrid waves
HEn and HMn, even for a single passband, when mode mixing effects are absent.
Together with more flexibility, the inversion phenomenon and, mainly, the dependence of the
inversion point on Θ0, provides some limitations on the choice of the DS dimensions.
In Fig. 20a the plots of the dependence of aperture radius a on Θ0 to get a required value

Figure 20: The dependences of the aperture radius a on Θ0 (a) and the dispersion curves for
the DLW TW structure with Θ0 =

π
3
(b) and Θ0 =

2π
3
(c) corresponding to

βg = −0.01,−0.02,−0.03, red, green and blue curves, respectively.

of βg for a DLW in TW mode is reproduced from Fig. 8a. The inversion point dependence is
plotted in Fig. 20a by a brown curve. In Fig. 20 b, c the dispersion curves for a DLW with
different values of Θ0 and βg are plotted. As one can see from Fig. 20 b, some curves have a
complicated behavior - the tail of the dispersion curve at Θ → π goes up and the curve can
cross the line of the operating frequency another time.
For sufficient RF efficiency the usual value is |βg| ≈ (0.01 ÷ 0.02) which is not so far from the
inversion curve. Suppose the operating point is chosen as Θ0 = π

3
, βg = −0.01, as it is shown

in Fig. 20a. The dispersion curve behavior can be understood qualitatively by moving along
a horizontal line r = a0, Fig. 20a. Staring in direction of increasing Θ we are in the region of
negative dispersion and the mode frequency decreases. At some Θ value we cross the inversion
curve and the decrease of the frequency comes to an end. We enter the positive dispersion
region and for further increase of Θ the mode frequency rises.
The simultaneous existence of two waves with different phase advance at the operating frequency
is not tolerable both for RF and for beam dynamics reasons. In the classical DLW it can be
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avoided only by limiting our choice of the operating point and restrict βg ≤ −0.023 for Θ0 =
π
3
,

βg ≤ −0.018 for Θ0 =
π
2
and βg ≤ −0.01 for Θ0 =

2π
3
at the expense of the required RF power.

For a SW mode the condition for the minimal value of Ψdm ≈ 2o could be realized for B
A

=
Z0hy0
ex0

≈ −0.87, [14], reflecting the minimal deviation of the central particle during bunch
rotation, (53).
In general we can not derive a simple equation for the DS dispersion curve to understand the
relative position of the point B

A
≈ −0.87. According to the small pitch approximation for a

DLW, from (19) the condition B
A

= −1.0 corresponds to k2a2 = 2, the condition B
A

≈ −0.87
corresponds to k2a2 ≈ 2.13 and the inversion, (18), corresponds to k2a2 = 3 or B

A
= −0.333

(19). Results of simulations also show that a DS, which fulfills the condition of minimal Ψd,
has a negative dispersion and a limited passband width ∼ (50 ÷ 70)MHz, [14]. For the DLW
SW case the dependence of the mode frequency on the aperture radius is plotted for different
Θ in Fig. 21.
Due to the inversion phenomenon, the DS dispersion curve has not a classical ’cos’ - like shape,

Figure 21: Plots of the mode frequency for the DLW SW case.

Fig. 20c, with very small frequency separation near the π mode. This provides a limitation
either on the possible number of cells in the SW DS with minimized aberrations - the minimal
value of Ψdm, or on the possible Ψd value.
To improve the frequency separation, the application of resonant slots is proposed in [14]. The
resonant slots were also proposed for the stabilization of the deflecting plane [17]. One resonant
slot with eigenfrequency fs ≫ f0 is introduced into the disk to interact with the modes of the
operating direction. The intensity of the slot excitation depends on both the value of fs and of

Θ of the cavity mode. The mode frequency shift, caused by the slots, δf ∼ (sinΘ
2
)2

f2s−f2π
, increases

with Θ.
The slots result in Ez 6= 0 at the structure axis. To provide a larger δf with smaller slot
excitation and reduced Ez 6= 0 at the deflector axis, the slots in adjacent disks should be
rotated by π. The idea of the application of slots is to increase the negative slope of dispersion
curve or to decrease the positive slope, Fig. 20 b, for Θ ≈ π and relax, or remove in this way
the limitations on choice of the DS parameters from the dispersion properties. For a practical
realization this idea needs more detailed considerations.
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10 Summary

In the beam aperture of deflecting structure the field distribution for the dipole mode can be
described by linear combination of hybrid waves HE1 and HM1. The deflecting field is com-
posed from transverse components of electric and magnetic fields.
Only for the ultra relativistic case β = 1 is the synchronous spatial harmonic in the deflecting
force free from non linear additions or aberrations. For lower particle energies even the syn-
chronous harmonic has non linear additions, vanishing as 1

γ2β2 in the distribution.
The sources of aberrations in the Lorenz force components are the higher spatial harmonics for
the dipole mode and multipole additions. The multipole additions should be minimized in the
development of the structure cross section. To estimate the relative level of spatial harmonics
for the dipole mode components the criterion of maximal deviation of the field component phase
from the phase of the synchronous harmonic is applied successfully.
For TW modes with low phase advance Θ0 ≤ π

3
all structures have a relatively low level of

spatial harmonics at the axis, both for the longitudinal and the transverse Lorenz force com-
ponents. This is due to a strong attenuation of the harmonics from the aperture radius to the
structure axis.
The level of aberrations in the Ed distribution strongly depends on the phasing and the balance
of the hybrid waves HE1 and HM1 in the original field. For opposite phasing the synchronous
harmonics in the transverse components of the electric and magnetic fields work for the deflec-
tion together, but higher harmonics compensate. For balanced amplitudes of the hybrid waves
it leads to a strongly reduced level of higher harmonics in the Ed distribution, regardless of the
level of harmonics in the original field components. This is also the only way to reduce aber-
rations in Ed strongly for SW modes, Θ0 = π, when the attenuation of harmonics in original
field components is not sufficient.
For equal phasing of hybrid waves the level of spatial harmonics in Ed distribution is enlarged
even as compared to the level of harmonics in original field components. In the motion of par-
ticles enlarged oscillations with respect to the line of deflection appear. In this case the bunch
as a whole can be shifted to the outer region with an enlarged level of nonlinear additions in
the field.
All structures with a pronounced predominance of the transverse electric field in the aperture
have an equal phasing of hybrid waves.
Due to particularities in the hybrid wave distributions exists in DS’s the phenomenon of the
group velocity inversion. In most practical cases the opposite phasing results in a negative
dispersion and a backward wave structure. The dispersion properties lead to limitations in the
choice of structure parameters.
In a DLW structure the minimization of aberrations in Ed is possible at the expense of RF
efficiency. Decoupling the control over magnetic and electric field distributions near the axis
allows to combine both minimized aberrations and RF efficiency in the deflecting structure.
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