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Abstract

We construct a covariant functor from a category of Abelieingipal bundles over globally hyper-
bolic spacetimes to a categoryefilgebras that describes quantized principal connectidfeswork
within an appropriate differential geometric setting byngsthe bundle of connections and we study
the full gauge group, namely the group of vertical principahdle automorphisms. Properties of our
functor are investigated in detail and, similar to earlierks, it is found that due to topological obstruc-
tions the locality property of locally covariant quantumidiéheory is violated. Furthermore, we prove
that, for Abelian structure groups containing a nontrie@ipact factor, the gauge invariant Borchers-
Uhlmann algebra of the vector dual of the bundle of connastis not separating on gauge equivalence
classes of principal connections. We introduce a topolgjeneralization of the concept of locally
covariant quantum fields. As examples, we construct fordlisdibcategory of principdl (1)-bundles
two natural transformations from singular homology fumstio the quantum field theory functor that
can be interpreted as the Euler class and the electric chartgs case we also prove that the electric
charges can be consistently set to zero, which yields anqtfatum field theory functor that satisfies
all axioms of locally covariant quantum field theory.
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theory on principal bundles
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1 Introduction

The algebraic theory of quantum fields on Lorentzian mad#dlas made tremendous developments since
the introduction of the principle of general local covadarby Brunetti, Fredenhagen and Ver&i03],

see alsofV12]. Mathematically, this principle states that any reastsmgbantum field theory has to be for-
mulated by a covariant functor from a category of globallpénpolic Lorentzian manifolds (spacetimes)
to a category of unitalC')*-algebras, subject to certain physical conditions. Marangles of linear quan-
tum field theories satisfying the axioms of locally covatignantum field theory have been constructed in
the literature, see e.gB{5P07 BG11] and references therein. The mathematical tools which sed in
these constructions is the theory of normally hyperbolid Birac-type operators on vector bundles over
spacetimes together with tlRE9R and AR quantization functors. In our previous worRDPS172 we
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have generalized these constructions to classes of opemt@ffine bundles over spacetimes. In addition
to these exactly tractable models, the techniques of lpcalvariant quantum field theory are essential
for the perturbative construction of interacting quantuetdfitheories, see for examplBIDF09, and the
generalization of the spin-statistics theorem from Minkkixspacetime to general spacetimesrD1].

One of the weak points of the current status of algebraic ynarield theory is our incomplete un-
derstanding of the formulation of gauge theories. Evendhdhere exist important results on the quan-
tization of electromagnetisnDim92, Pfe09 DL12, DS13 SDH13, linearized general relativityqH12|
and generic linear gauge theori¢$g13, as well as on the perturbative quantization of interactiauge
theories Hol08, FR13, there are still open problems that deserve a detailed/stagbarticular, there is up
to now no satisfactory formulation of quantized electronetgm for the following two reasons: Firstly,
applying canonical quantization techniques it has beenddbat electromagnetism violates the locality
axiom of locally covariant quantum field theory. This hasrbsbown for the field strength algebra in
[DL12] and for the vector potential algebra iBIDH13. The latter reference also gives an interpretation
of this feature in terms of Gauss’ law. Secondly, the diffitied geometric developments over the past
decades indicate that the natural language for formulajsugge theories of Yang-Mills type is that of
principal connections on princip&¥-bundles, which includes electromagnetism by choosing: U(1).
Taking into account the principal bundle structure has éaching consequences for the very principle
of general local covariance: Since principal connecticas ot be associated to spacetimes, but only to
principal bundles over spacetimes, the category of spaestin BFV03] should be replaced by a category
of principal bundles over spacetimes. This notion of gdriecal covariance for gauge theories of Yang-
Mills type appeared recently in the discussion of the |gcedivariant charged Dirac fiel@ph13, where
however the principal connections were assumed to be noardigal background fields. Besides this new
notion of general local covariance in gauge theories of Yslilts type, the classical configuration space is
different to the one used in previous works: The set of ppalctonnections does not carry a vector space
structure, but it is an affine space over the vector spaceugfegpotentials. The vector space structure em-
ployed in the worksIDim92, Pfe09 DS13 SDH1J comes from a (necessarily non-unique) fixing of some
reference connection, which is unnatural in differentiabignetry and leads to the unnecessary question of
independence of the theory on this choie®[08§].

We outline the structure of our paper: In Sectidmwe fix the notations and review some aspects
of the theory of Abelian principal bundles and principal weations. This material is essentially well-
known in the differential geometry literature, but we regusome details that go beyond standard textbook
presentations and hence are worth for being discussed.rtioyar, we need a full-fledged study of the
bundle of connectionsAlti57] together with the action of principal bundle morphisms #melgauge group
(the group of vertical principal bundle automorphisms)miedi on it. Sections of the bundle of connections,
that is an affine bundle over the base space, are in bijeaivespondence with principal connection forms
on the total space, but they have the advantage of being Galtlse base space and not on the total space.
This has far reaching consequences when one studies dyalamigations of connections and causality
properties, since the total space is not equipped with arltpisan metric.

In Section3 we associate to any Abelian principal bundle a gauge invephase space for its principal
connections by extending ideas fro0)S14 and [HS13. Our notion of gauge invariance is dictated
by the principal bundle and in the general case differs froendne employed indim92, Pfe09 DS13
SDH13. The phase space is not symplectic, but only a presympleetitor space, whose radical contains
topological information to be discussed in Section

We characterize explicitly the gauge invariant phase spackits radical in Sectios by usingCech
cohomology. This leads to two interesting observationsstlyi the gauge invariant phase space and its
radical for theories with a compact Abelian structure grespibit a different structure with respect to
their counterparts with a non-compact Abelian structuugr Secondly, if the Abelian structure group
contains a compact factor, then the gauge invariant phasgesp not separating on gauge equivalence
classes of principal connections. In particular, gaugeeuguivalent flat connections can not be resolved.
The reason for this feature is that our gauge invariant pepaee consists of affine functionals, but for
Abelian structure groups with compact factors the set ofjgaquivalence classes of principal connections



is in general no longer an affine space. This shows that iretb@ses the standard phase space of sections
of the vector dual of affine bundles introduced BOS12 has to be extended in order to be separating.
Natural candidates for this extension are Wilson loopsctvhire however too singular for a straightforward
description in algebraic quantum field theory. We hope toebiack to this issue in future investigations.

The results above are combined in Secfida construct a covariant functor from a category of Abelian
principal bundles over spacetimes to a category of pressutiplvector spaces. Composing this functor
with the usualC¢Ri-functor we obtain a quantum field theory functor that satssthe causality property
and the time-slice axiom. However, the locality propertyBFV03] is violated, confirming that the results
of [DL12, SDH17 also hold true in our principal bundle geometric approakhis result was not obvious
from the beginning, since our concept of morphisms and cordtgn space is different from the ones in
earlier investigations.

In Section6 we extend the concept of a locally covariant quantum fieleliped in BFV03] to what
we call a ‘generally covariant topological quantum fieldy 8is we mean a natural transformation from
a functor describing topological information to the quantfield theory functor. For the full subcategory
of principal U (1)-bundles we provide two explicit examples where the fundescribing topological in-
formation is a singular homology functor. The natural tfanmsations are then the coherent association of
observables that measure the Euler class of the principall®wand the electric charge, that is a certain
cohomology class.

Following the electric charge interpretation of the presicsection (see als&PH17] for an earlier
account) we show in Sectionthat the electric charges can be consistently set to zers. g physically
motivated since in pure electromagnetism, without thegires of charged fields, there can not be electric
charges. The resulting quantum field theory functor theisfeed in addition to the causality property and
the time-slice axiom also the locality property. With thie wucceed in constructing a locally covariant
quantum field theory.

2 Geometric preliminaries

In this work all manifolds will be of clas§’>°, Hausdorff and second-countable. If not stated otherwise,
maps between manifolds af&>.

2.1 Spacetimes

We briefly review some standard notions of spacetimes, B&D7 BG11, WallZ for a more detailed
discussion.

Let M be a manifold that for later convenience we assume to fiaité type, i.e. M possesses a finite
good coveld = {U, }aez, With Z finite. A Lorentzian manifold is a triple (M, o, g), whereM is a mani-
fold (of finite type),o is an orientation o/ andg is a Lorentzian metric o/ of signature(—, +, ..., +).
Given a time-orientatiornt on a Lorentzian manifold)/, o, g), we call the quadruplé)M, o, g, t) aspace-
time. Let (M, 0, g, t) be a spacetime arn§l C M be a subset. We denote tbeusal future/pastof S in M
by Ji(S). Furthermore,Jy;(S) := J;;(S) U J;;(S). The subsef C M is calledcausally compatible
if Jsi\?{x}) = J5;({z}) N S, for all 2 € S. A Cauchy surfacein a spacetimgM, o, g,t) is a subset
Y. € M, which is met exactly once by every inextensible causaleuf/spacetiméM, o, g, ) is called

globally hyperbolic, if it contains a Cauchy surface.

2.2 Abelian principal bundles

We briefly review standard notions of principal bundles agférrto the textbook{N96] for more details.

Definition 2.1. Let M be a manifold and+ a Lie group. Aprincipal G-bundle over M is a pair(P,r),
whereP is a manifold and- : P x G — P, (p,g) — r4(p) =: pg is a smooth rightG-action, such that

(i) the rightG-actionr is free,



(i) M = P/G is the quotient of th&-actionr and the canonical projection: P — M is smooth,

(iii) P is locally trivial, that is, there exists for evety € M an open neighborhood C M and a
diffeomorphismy : 7= 1[U] — U x G, which isG-equivariant, i.e., for alp € #—![U] andg € G,
¥(pg) = ¥(p) g, and fibre preserving, i.@r; o ¢ = 7. The rightG-action onU x G is given by,
forallz € Uandg,¢ € G, (z,9)¢ := (x,9¢) andpr; : U x G — U denotes the canonical
projection on the first factor.

We call P thetotal space M the base spaceG the structure group and the projection.

Definition 2.2. Let M; be a manifold(; a Lie group and P;, r;) a principalG;-bundle overM;, i = 1, 2.
A principal bundle map is a pair of smooth mapg = (f : P, — P, ¢ : G; — G3), such thaip is a
homomorphism of Lie groups anfisatisfies, for alp € P, andg € Gy, f(pg) = f(p) ¢(g).

Remark 2.3. For every principal bundle map = (f P — Py G — Gz) there exists a unique
smooth mayf : M; — Mo, such that the following diagram commutes:

pn—"L1 .p (2.1)

M — M,
We now define a suitable category of Abelian principal busdieer spacetimes.
Definition 2.4. The categoryPrBuGlobHyp consists of the following objects and morphisms:

e An object inPrBuGlobHyp is a tripleZ = ((M, 0, g,t), (G, h), (P, 7)), where(M, 0, g, ) is a glob-
ally hyperbolic spacetimé7 is a connected Abelian Lie group with bi-invariant pseuderRannian
metrich and(P, r) is a principalG-bundle over/.

e A morphism between two objecE;, i = 1,2, in PrBuGlobHyp is a principal bundle map' = (f :
P —=DP,¢:G — Gg), such thaty : G1 — G is an isometry ang : M; — M> is an orientation
and time-orientation preserving isometric embedding with/;] C M, causally compatible and
open.

Remark 2.5. The categoryPrBuGlobHyp is quite big in the sense that it contains principal bundtes f
all possible connected Abelian structure groups. In plsysimight be of interest to study only the case
G = U(1) which corresponds to electromagnetism. This can be aahleyeestricting all functors that we
will construct in this paper to the full subcategd?yBuGlobHyp® defined by the subcollection of objects
2 = ((M,0,9,%),(G,h),(P,r)) whereG is fixed. We have decided to include a bi-invariant pseudo-
Riemannian metrié on the structure grou@ in the data of the category. This datum is equivalent to an
ad-invariant inner product (possibly indefinite) on the Ligetrag of GG, which is required to specify the
action functional and therewith a covariant Poisson briftkehe gauge theory.

Let M be a manifoldG a Lie group and P, ) a principalG-bundle overM . For every manifoldV
with a smooth leftG-actionp : G x N — N, (g,£) — g¢& there exists a fibre bundle ovéf associated
to (P,r) with N as typical fibre: Consider the Cartesian prodiick N and define the following right
G-actionP x N x G — P x N, (p,&,9) = (pg,g~*&). Denote byPy := (P x N)/G the quotient
of this right G-action and define the mapy : Py — M, [p,&] — =(p), which is well-defined since
m(pg) = w(p), forallp € P andg € G. The data(Py, M, 7y, N) specifies a fibre bundle (the local
trivialization is shown to exist inKN96]), which we call the(V, p)-associated bundle tq P, r).

Of particular relevance for us is the case whatés the Lie algebrg of the Lie groupG andp is the
adjoint actiomd : G x g — g. The(g, ad)-associated bundle is called tadjoint bundle of the principal
bundle(P, ) and we denote it also b@ad(P), M, wg,g). We notice that the metrik on the Lie group
specifies a fibre metric on the adjoint bundle

ad(P) xpad(P) = M xR, ([p,&], [P, €]) = (w(p), h(€, &) - (2.2)



Lemma 2.6. Let M be a manifold(z an Abelian Lie group andP, r) a principal G-bundle overM . Then
ad(P) = M x g, i.e. the adjoint bundle is trivial.

Proof. SinceG is Abelian the adjoint action is trivial, which impliesl(P) = (P x g)/G = P/G x g =
M x g. O

Any principal bundle mag” = (f : P, — P»,¢ : Gi — G») induces a vector bundle map,qp) :
ad(Py) — ad(P), f: My — Mg) between the corresponding adjoint bundles, where

Faapy - ad(Py) = ad(By) , [p,&] = [£(p), #+(£)] (2.3)

ando. : g1 — g2 denotes the push-forward. Singds an isometry this vector bundle map preserves the
fibre metrics. By Lemma&.6 we have that for Abelian structure groups(P;) = M; x g;, ¢ = 1,2, and
thus @.3) reads

Farxg s My x g1 — Ma x ga, (2,6) = (f(2),:(8)) . (2.4)
We will now show that the association of the adjoint bundifuisctorial.
Definition 2.7. The categoryveBuGlobHyp consists of the following objects and morphisms:

e An object inVeBuGlobHyp is a pair((M, 0,g,t), (V,M,my,V)), where(M, o, g, t) is a globally
hyperbolic spacetime an/, M, my, V) is a vector bundle ovel/.

o A morphism between two objec{$);, 0;, gi, t;), (Vi, M;, mv, Vi), i = 1,2, in VeBuGlobHyp is a
vector bundle magf : Vi — Vy, f : My — My), such thatf|, : Vi|, — Va|y(,) is a vector space
isomorphism, for al: € My, andf : My — M, is an orientation and time-orientation preserving
isometric embedding witlf [/ ] C M, causally compatible and open.

Lemma 2.8. There is a covariant functao : PrBuGlobHyp — VeBuGlobHyp. It is specified on objects
by 200(Z) = ((M,o0,9,t), (ad(P), M, 7y, g)) and on morphisms bY0(F) = (Fua(p), f), With Foqp)
givenin @.3).

Proof. Let = be an object irPrBuGlobHyp, then2d(Z) = ((M, 0, g,1), (ad(P), M, my,g)) is an object
in VeBuGlobHyp. Let I be a morphism irPrBuGlobHyp, thenAo(F) = (F,q(p), f) is @ morphism in
VeBuGlobHyp, since the push-forward, of the isometryp is a vector space isomorphism.

For the identityid= = (idp : P — P,idg : G — G) we obtainidp = idys, ¢« = idg and hence
by (2.3 it holds 20(idz) = (idaq(p),idar). For two morphismsF : =) — Zy and F' : Z3 — =3
in PrBuGlobHyp we obtain2d(F’ o F) = ((F' o F)ad(p),(f’of)) = (F;d(P) o Faapy, [’ © f) =
A0(F') o AD(F). O
Remark 2.9. We can also associate functorially to any objectn PrBuGlobHyp a vector bundle as
in VeBuGlobHyp equipped with the fibre metri2(2) and to any morphisn¥' in PrBuGlobHyp a vector

bundle map as iWeBuGlobHyp which preserves the fibre metrics. We refrain from introdggret another
notation for a category of vector bundles with fibre metricd emember this fact when necessary.

2.3 Principal connections

Connections on principal bundles constitute the fundaaiel®grees of freedom in gauge theories of Yang-
Mills type. In this subsection we will review the relevanfidéions and properties following{N96].

Definition 2.10. Let M be a manifold( a Lie group and P, r) a principalG-bundle overM . A connec-
tion form on (P, ) is ag-valued one-formu € Q!(P, g) satisfying:

0] w(Xg) =¢, forall¢ e gandp € P, whereX§ € T, P is the fundamental vector atcorresponding
to&.



(i) r5(w) =adg-1(w), forallg € G.
We denote the set of all connection forms®yn(P).
Remark 2.11. Due to [KN96, Chapter I, Theorem 2.1] there exists a connection foreaCion(P) # (.
Definition 2.12. Let Q*(P, g) be the vector space gfvaluedk-forms,k = 0, ..., dim(P).

(i) We calln € QF(P, g) G-equivariant, if r5(n) = adg-1(n), forallg € G.

(if) We call n € Q¥(P,g) horizontal, if (Y1,...,Y:) = 0 whenever at least ong € T,,P is vertical,
ie.m(Y;) =0.

The vector space d@F-equivariant and horizontglvaluedk-forms is denoted byl{jor(P, g)°L.

Proposition 2.13. Let M be a manifold(G an Abelian Lie group andP, r) a principal G-bundle over)M .
Then there exists a linear isomorphism betwg¢n (P, g)°% and* (M, g), forall k = 0, ..., dim(M).

Proof. Letn € QF (P, g)°" be arbitrary. We define an elemept QF(1M, g) by, for all Xi,..., X}, €
T.M,xz € M,

(X1, ..., Xg) =n1,..., %), (2.5)

whereYy, ..., Y, € T,P are tangent vectors at € 7 [{z}], such thatr.(Y;) = X;, for all i. Since

n is horizontal, does not depend on the choice of si¢h (We can in particular sét; = Xi;w as the
horizontal lift of X; with respect to some connection.) Due(teequivariance the construction does not
depend on the choice pfc 7~ [{x}].

Let nown € QF(M, g) be arbitrary and consider the pull-bagk= 7*(n) € Q¥(P, g). This element
is G-equivariant, since, for aj € G, r; () = (7 o 14)*(n) = ©*(n) = 7. Itis also horizontal, since for

all'yy,..., Y, € T,P with at least one vector vertical (this vector is annihitabgy 7.) we have
ﬁ(Yl,,Yk)zn(ﬂ*(yl),,ﬂ*(yk)) =0. (26)
These two identifications provide the desired vector spsm@orphism. O

Lemma 2.14. Let M be a manifold( an Abelian Lie group andP, ) a principal G-bundle overl. Let
us define the map

® : Con(P) x QY(M,g) — Con(P), (w,n)+ ®(w,n) =w+7. (2.7)
Then(Con(P),Q' (M, g), ®) is an affine space.

Proof. The one-formw + 7 € Q!(P, g) is an element ifCon(P), since7 is horizontal and-equivariant.
The action 2.7) is free and transitive. O

Definition 2.15. Let M be a manifold,G a Lie group and P,r) a principal G-bundle overM. The
curvature is given by the following map
1
F:Con(P) — QF (P, g)°" |, wrs Flw)=dw+ i[w,w]g , (2.8)
whered is the exterior differential ang, -], denotes the Lie bracket gm In caseG is Abelian, the
curvature reads, for all € Con(P), F(w) = dw, since the Lie bracket is trivial.

Remark 2.16. Let G be an Abelian Lie group. Applying Propositichl3we can consider equivalently
the curvature as a map

F: Con(P) = Q*(M,g), wr Flw)=F(w) =dw. (2.9)

As a consequence of the (Abelian) Bianchi idendt§f(w) = ddw = 0, for all w € Con(P), we obtain
that F(w) € Q3(M, g) is closed, for altu € Con(P).
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Lemma2.17.Let M be a manifold(Z an Abelian Lie group andP, r) a principal G-bundle overM . The
map.F : Con(P) — Q%(M, g) is an affine map with linear padE,, : Q' (M, g) — Q2(M,g), n+ dn.

Proof. Letw € Con(P) andn € Q!(M, g) be arbitrary, then
L(w+7) =dw+dn = F(w) +dr’(n) = E(w) + 77 (dn) = E(w) +d . (2.10)
U

2.4 The Atiyah sequence

We present the Atiyah sequence only for Abelian principaldbeis and refer toAti57] for the general case.
Let us consider the tangent bundEP, P, 77 p, REm(P)) over P. On the total spac P there is a right
G-action in terms of the push-forward of tangent vectors

e : TP xG—=TP, (Y,g) = rg.Y). (2.12)

For anyY e T,P we haver,.(Y) € T,,P and hencerrp o ry. = ry 0 mrp, forallg € G. In
other words,mrp : TP — P is G-equivariant. As a consequence, we can define the quotiemtidou
(TP/G, P/G, 7 o mpp, RE™P)) 'which is a vector bundle oved/ = P/G. We denote the projection of
this vector bundle byt p/g := 7o mrp.

The push-forward ofr : P — M gives a vector bundle map from the tangent bundle @¥¢o the
tangent bundlé T M, M, 7y pr, RE™PD) over M, i.e. the following diagram commutes:

TP—"  TM (2.12)
P—T M
Sinceror, =7, forall g € G, and thus alsar, o ry, = (7 o 7y), = m,, for all g € G, we can perform

the quotient byG and obtain the vector bundle map (denoted with a slight abtisetation by the same
symbol):

TP/G ————TM (2.13)

Trp/ Gl lﬂ M

Mid—M>M

There is also a vector bundle map from the adjoint bundle érebrer thabd(P) = M x g sinceG is
Abelian, cf. Lemma2.6) (M x g, M,pry,g) to (TP/G, M, wrp/q, REMP):

M xg———TP/G (2.14)
PHJ \LWTP/G
M id]\,j M

The map is defined by, for al(x, §) € M xg, c(z,§) := [Xg] , whereX§ € T, P is the fundamental vector
corresponding t@ andp € = ![{z}] is arbitrary. Indeed, the mapis well-defined, since for any other

p' € m![{z}] there exists @ € G, such thap’ = pg and hence{Xg,] = [X54] = [rg*(ngg(g))] =
[ry+(X5)] = [X5], where we have again used tidais Abelian.

Consider now also the trivial vector bund(@/ x {0}, M, pr;,{0}) and the following two vector
bundle maps

M x {0} —=—— M xg (2.15a)

pr1l lpﬁ

M M

idas




with a(z,0) = (z,0), for allz € M, and

B

TM —"— M x {0} (2.15b)
WTAJ\[ prll
idps
M M

Wlthﬁ( ) (7TTJM( ) )fOI’&"XGTM

Composing 2.159, (2.14), (2.13 and .15 we obtain the following sequence of vector bundle maps
(we can drop the base space maps since they are all givieh )y

Trx B

M x {0} —*= M x g——TP/G M M x {0} . (2.16)

This is theAtiyah sequencgAti57]. For completeness, we review the following
Proposition 2.18. The Atiyah sequence.(L6) is a short exact sequence.

Proof. First, we have to show that the composition of two subsegueapss is the trivial map, i.e. the vector
bundle map which restricted to all fibres(is For . o « this property holds true due to linearity. Let now
(x,&) € M x g, thenm,(¢(x,€)) = ﬂ*(Xg) = 0, sinceX} is by construction a vertical vector. Fgro ,
this property holds trivially.

Next, we have to prove exactness at every step:(kgf) € M x g be such that(z,§) = [Xé] = 0.
This implies thatX,§ = 0 and sinceX, is a vector space isomorphism betwgeand vertical vectors
atp € Pwe find¢ = 0. Letnow[Y] € TP/G|, be such thatr,([Y]) = 0. This implies that any
representative” € T,P (wherep € 7 ![{z}]) is vertical and due to the aforementioned isomorphism
there exists & € g, such that(z,&) = [Xé] = [Y]. For the last step leX' € T, M be such that
B(X) = (z,0). This condition is satisfied for alk. Using a local trivialization o> we can lift X € T, M
to a vectorX € T, P (wherep € =~ *[{x}]), such thatr, (X) = X. The equivalence cla$x| € TP/G|,
is the element which proves exactness at this step. O

Similar to Lemm&2.8, one can show that all vector bundles appearing in the AsgajuenceZ.16) are
assigned by a covariant functor fraPaBuGlobHyp to VeBuGlobHyp. We do not repeat all the steps in this
proof and just give an explicit expression for the inducegsnd et F' = (f P — Py Gy — Gz)
be a morphism between two objeéls = ((MZ-, 0i,9i, ), (Gi, hi), (Pl-,ri)), i = 1,2, in PrBuGlobHyp.
Then the induced vector bundle maps (coverfigre given by

Frrxqoy s My x {0} — Mz x {0}, (2,0) = (f(z),0), (2.17a)
Frsg : My x g1 — Mz x g2, (2,€) = (f(2),04(€)) , (2.17Db)
Frpiq: TP/G1 = TPy/Gy, [Y] = [fu(Y)], (2.17¢)
Fryg : TMy —TM,y , X — f (X). (2.17d)

Notice further that fory;, ¢;, 7; +, 5; denoting the vector bundle maps in the Atiyah sequecdfor the
object=; in PrBuGlobHyp, 7 = 1, 2, we obtain the commuting diagram:

My x {0} =2 My x g1 =2 TP /Gy s Ty~ My x {0} (2.18)

FJVIX{O}l lFJ\JXg lFTP/G JFT]M \LFJMX{O}
B

My x {0} =25 My x gy —2= TPy /Gy —2 T My — M; x {0}




2.5 The bundle of connections

We show that the affine space of connecti¢fen(P), 2! (M, g), ®) constructed in Lemma.14is iso-
morphic to the affine space of sections of an affine bundle dier

Consider the bundi¢Hom(T'M,TP/G), M, Tyom(rr1,rP/G)> Homg (REMM) RAmP))) of homo-
morphisms, that is a vector bundle. Sections of this bundieirabijective correspondence with vector
bundle mapgX : TM — TP/G,idy : M — M). We say that such a vector bundle map &pitting of
the Atiyah sequencg2.16), if 7, o A = idp)s. These splittings can be described equivalently by sextion
of a subbundle oHom (7'M, TP/G).

Definition 2.19. Thebundle of connections(C(P), M, m¢(p), A) is the subbundle of the homomorphism
bundle (Hom(TM,TP/G), M, Tom(um,1P/c), Homg (REMM) RAm(P))) specified by the submani-
fold C(P) := {\ € Hom(TM,TP/G) : my 0 A = idpas } .

Remark 2.20. The typical fibreA is the set of all linear maps € Homg (RI™M) RAm(P)) satisfying
7x 0 L = idgaiman, Wherew, € Homg(RU™(P) RImIM)) s given in a baside; € RI™M) . 4 =
1,...,dim(M)} and{E, € RE™(P”) . ¢ =1 ... dim(P)} by

N {ei , fora=ie{1,...,dim(M)}, (2.19)

m(Ea) = 0 else

Notice thatA is an affine space modeled dlomp (RI™M) Rdim(P)—dim(M)) "which is the typical fibre
of the homomorphism bundléom (7'M, M x g).

We define affine bundles followind{MS93, Chapter 6.22] andgDS12.

Definition 2.21. An affine bundleis a triple (M, (A, M, 7, A), (V, M, my, V)), whereM is a manifold,
(A, M, ma, A) is a fibre bundle oveM and(V, M, my, V') is a vector bundle ovet/, such that

(i) forall x € M, the fibreA|, is an affine space modeled bf,,
(i) the typical fibreA is an affine space modeled on the typical fibre

(i) for all x € M, there exists a local bundle chaff, ) of (A, M, ma, A) and a local vector bundle
chart(U,yv) of (V, M, my, V), such that, for aly € U, |, : A|, — A is an affine space isomor-
phism with linear part|,,, = ¥vl, : V|, — V. We call the triple(U, ¢, ¢v) a local affine bundle
chart.

Proposition 2.22. Let M be a manifold,G an Abelian Lie group andP, ) a principal G-bundle over
M. The bundle of connection&(P), M, m¢(py, A) is an affine bundle modeled diom(TM, M x

g)v M7 THom (T'M,M xg)» HomR(Rdim(M), Rdim(g))) .

Proof. Using the vector bundle embeddingsee 2.16)) we can consideHom (7'M, M x g) as a vector
subbundle of the homomorphism bundlem (7'M, T P/G). By definition, the bundle of connections is
also a subbundle dflom(T'M,TP/G). The vector space structure on the fibredofn(TM,TP/G)
induces an affine space structure on the fibra3(éf) with underlying vector space given by the fibres of
Hom(TM, M x g). By Remark2.2Q, the typical fibreA is an affine space modeled on the typical fibre
Homp (RY™M) RAm(9)) of Hom(T'M, M x g). The local vector bundle charts 8fom(T'M,TP/G)
induce the required local affine bundle charts. O

By [BDS12 Lemma 2.20], the set of sectiod&*(M,C(P)) of the bundle of connections is an
affine space modeled on tii&° (M )-modulel’> (M, Hom(T'M, M x g)). The latter is isomorphic (as a
C>(M)-module) to theg-valued one-forms on/, i.e. Q' (M, g). Hence,(T>°(M,C(P)), Q' (M, g), ®)
is an affine space, with actioh : T°°(M,C(P)) x Q'(M,g) — I'°(M,C(P)) given by, for all\ e
[ (M,C(P)),n € Q' (M,g)andX € T,M,x € M,

(BN, 7)) (X) := A(X) + ez, (X)) . (2.20)



Proposition 2.23. (I°°(M,C(P)), X' (M, g), ®) and (Con(P), ' (M, g), ®) (cf. Lemma2.14) are iso-
morphic as affine spaces.

Proof. Letw € Con(P) be arbitrary. We define an elemekt € I'°(M,C(P)) by, for all X € T, M,
reM,

Aol(X) = [X]] (2.21)

wherep € 7 [{z}] andX;“ € T, P denotes the horizontal lift at with respect tav. By definition we
have thatr, (A, (X)) = X. The equivalence claga]“] is independent on the choice pfsince for any
otherp’ € =~ '[{z}] there exists g € G, such thap’ = pg and henceX” = X[ = r,.(X]}*). The

last equality follows from the&~-equivariance of the horizontal subspaces(rg*(Xg“)) = X and the
uniqueness of the horizontal lift.

Let now\ € T>°(M,C(P)) andY € T,P with p € 7~ ![{z}], = € M, be arbitrary. By the splitting
lemma, the elemerit’] € TP/G|,, can be decomposed uniquely[&3 = «(x, &) + A\(X) = [Xg] +A(X),
where¢ € gandX € T, M. For the fixed element ¢ 7 ![{x}], there exist unique representatives
X5 € T, P of [X5] and X, € T, P of A(X), such that’” = X5 + X;}. We definevy € Q!(P, g) by setting

wA(Y) = wr(X5+ X)) =¢. (2.22)

Condition (i) of Definition2.10is satisfied. Furthermorey, is G-equivariant (sinc&~ is Abelian this
meansG-invariant), for allY” € T, P,

(r;(w)\))(Y) = wA(rg*(Y)) = wA(ng + ng) =¢{=w)\(Y). (2.23)

This shows thatvy € Con(P). The maps defined above provide a bijection betw€en(P) and
['°¢(M, C(P)).

We now show that they are also affine space isomorphismswLetCon(P), n € Q'(M,g) and
consider’ := ®(w,n) = w + 7 € Con(P). The corresponding elemeiy, € I'>°(M,C(P)) is defined
by, for all X € T, M, A (X) = [X}'], with p € 7—1[{z}] arbitrary. Using that\,~ = X* + X§ for
somet € g, we find

0=u/(X) = w(X*) + TG ) =w(X + X)) +n(X) =& +n(X),  (2.24)

hence¢ = —n(X). We obtain
Ao (X) = [XG] = X[ + XE] = A(X) + [X]]
= Ao(X) + (@, §) = Au(X) — 1z, n(X))

= (2w, —m) (X) . (2.25)
which shows that the isomorphisiy : Con(P) — I'*°(M,C(P)), w — A, is an affine space isomor-
phism with linear parf2! (M, g) — Q' (M, g), n+— —n. O

Corollary 2.24. The map (denoted with a slight abuse of notation by the sambaas the map in Lemma
2.17

F :T°°(M,C(P)) — Q*(M,g), A= F(\) = F(wy) (2.26)

is an affine differential operator in the sense B[]S12 Section 3] with linear partfy, : Q'(M,g) —
O*(M,g), > —dn.

Proof. Combining Propositior2.23 and Lemma2.17 we obtain, for all\ € I'*°(M,C(P)) andn €
Q'(M, g),

E(@(\m) = Flwgy) = F@wr.—n) = Flw) —dj=F(N) —dg.  (2.27)

O
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2.6 Morphisms and gauge transformations of connections

In this subsection we study in detail how morphism$iBuGlobHyp act on the bundle of connections.
This will eventually lead to a functor froRrBuGlobHyp to a categoryAfBuGlobHyp of affine bundles.
Finally, we focus on a special class of morphisms, hamelydhgauge transformations.

We have seen in2(17) that all vector bundles in the Atiyah sequence are obtalyedovariant func-
tors from PrBuGlobHyp to VeBuGlobHyp. Let us also consider the homomorphism bundles entering
the bundle of connections, i.€Hom (7'M, T P/G), M, Tom . 1p/G), Homg (RIMAM) RAmMP))) and
(Hom(T'M, M x g), M, Tom (701, M xg), Homg (RIMM) RAm@)) - Given two objectE;, i = 1,2, and
a morphismF’ : =1 — E5 in PrBuGlobHyp we can induce from2.17) the vector bundle maps (covering
i My — Mz)

Fromrm,rp/a) s Hom(T My, TPy /G1) — Hom(T Ma, TP /Ga) ,

A= FrpgoXoFryy (2.28a)
From(m,mxg) : Hom(T' My, My x g1) — Hom(T'Ma, M3 x g2) ,
nl—)FMXgonoFfj\l/[. (2.28b)

Explicitly, (2.289 mapsA € Hom(T' M1, TPy /G1)|x 10 Faom(rar,rpja)(A) = Frpjale o Ao Pryl;t €
Hom (T My, TP, /G3) ]f(m), which is well-defined sincé’r,|, is a vector space isomorphism. Restricting
the vector bundle map2.289 and @.28h to fibres provides vector space isomorphisms, since by the
hypotheses of DefinitioR.4 also Frpp /| and Fisxql. are vector space isomorphisms, foralk M;.

As a consequence, these homomorphism bundles are obtairmadriant functors fronPrBuGlobHyp

to VeBuGlobHyp.

Also the bundle of connections of Propositidr22is obtained functorially.
Definition 2.25. The categonAfBuGlobHyp consists of the following objects and morphisms:

e AnobjectinAfBuGlobHypis atriple((M, o0, g,t), (A, M,ma, A), (V, M, 7y, V)), where(M, 0, g, t)
is a globally hyperbolic spacetime atWl, M, 7a, A) is an affine bundle ovel/ modeled on the vec-
tor bundle(V, M, my, V).

e A morphism between two objec{$M;, 0;, g, t;), (Ai, My, mia, 4i), (Vi My, miv, Vi), i = 1,2, in
AfBuGlobHyp is a fibre bundle magf : Ay — A, f : My — My), such thatf|, : A1l — As|s)
is an affine space isomorphism, for alle M, andf : My — M> is an orientation and time-
orientation preserving isometric embedding \/@Wﬂ_g M, causally compatible and open.

Remark 2.26. Every morphism(f, f) in AfBuGlobHyp determines a unique vector bundle map between
the underlying vector bundles (that is a morphismVaBuGlobHyp) by taking fibre-wise the linear part.
We call this vector bundle map with a slight abuse of notattm linear part of(f, f) and denote it by

(fv, [)

Proposition 2.27. There is a covariant functaf : PrBuGlobHyp — AfBuGlobHyp. It associates to any
object= in PrBuGlobHyp the bundle of connections (cf. Propositi&r22). To any morphisn¥” : =1 — Z»
in PrBuGlobHyp the functor associates the restriction of the vector bumdég €.289 to the bundles of
connections. The linear part i2 (280

Proof. The nontrivial step is to show tha2.289 restricts to a morphism between the bundles of connec-
tions. We define the induced fibre bundle map (covefipg

FC(P) : C(Pl) — HOIH(TMQ,TPQ/GQ) s
A Frpjg oo Fry (2.29)
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and obtain, for al\ € C(FPy),

72+ © Fo(py(A) = m2s 0 Frpjg o Ao Fri, = Fryom oo Fry
= Fra o Epyy = idra, (2.30)
where we used in the second equali®yl® and in the third equality that is a splitting of the Atiyah
sequence. This implies thagp) : C(P1) — C(F%) is afibre bundle map covering

It remains to show that the restrictiofs p)|. : C(P1)|. — C(P»)|s(») are affine space isomorphisms,
for all x € M;. We obtain, for all\ € C(P,)|, andn € Hom (T My, M; X g1)|z,

Fepy(A+u10n) = Frpjg o (A +u on) o Fry = Fopy(A) + 2.0 Farxg oo Fry

= Fe(py(A) + 12 © Friom(ra,mxg) (M) 5 (2.31)
where in the second equality we have used adgaitg( and in the last one2(28h). Fibre-wise invertibility
follows from the fibre-wise invertibility ofZ.289 and @.28h. O

Remark 2.28. A morphismF : Z; — =5 in PrBuGlobHyp acts via pull-back on sections of the bundle
of connections,F™* : I'°(Ma,,C(P)) — I'*°(M;,C(P1)), A — F*(\) = Fg(}) oXo f. A short
calculation shows compatibility with the affine space die 2.20), for all A € T'*°(M;,C(P,)) and

n € QU (Ma, g2),

F*(Do(\,1)) = 1 (F*(N), f* (651 () (2.32)

where f* is the pull-back of differential forms alonfj: M; — M andg¢; ! (n) € QF(M,, g1) is defined
by, forall X1, ..., Xy € T, Ms, z € M, (671 (n))(X1,..., Xp) == ¢ (n(X1,..., Xi)).

We now study in detail a special, however very importantssiaf morphisms.

Definition 2.29. Let M be a manifoldG a Lie group and P, ) a principalG-bundle overM . A gauge
transformation is a G-equivariant diffeomorphisny : P — P, such thatf = idy;. We denote by
Gau(P) the group of all gauge transformations(a@?, ), where the group operation is given by the usual
composition of morphisms.

Notice that wheneveE = ((M, 0,g.1), (G, h), (P,r)) is an object ifPrBuGlobHyp, a gauge transfor-
mation f € Gau(P) is an automorphisn#’ = (f,id¢) in the same category.

Lemma 2.30. Let M be a manifold,G an Abelian Lie group andP, r) a principal G-bundle overM.
Then there is a group isomorphism betwéeni(P) and C*° (M, G), where the latter group is equipped
with the point-wise group operation.

Proof. Let f € Gau(P) be arbitrary. Then there exists a unigfie C>(P,G), such thatf (p) = p f(p),
forall p € P. Sincef is G-equivariant and is Abelian we obtain thaf is G-invariant, i.e.f(pg) = f(p),
forall g € G andp € P. Hence, it canonically induces a uniqy?ee C*(M,G) on the quotient
M = P/G. Vice versa, for anyf € C>=(M, G) we define an element € Gau(P) by f(p) = p f(=(p)),
for all p € P. This bijection is a group isomorphism, since for All fo € Gau(P) andp € P,

(fio f2)(0) = fi(p fo(m(p))) = fi(p) fo(m(p))
=p fi(n(p) fo(m(p)) = p (f1 f2)(x (D)) - (2.33)

O

By Remark2.28we obtain that a gauge transformatipre Gau(P) acts on\ € I'*°(M,C(P)) via

() = f;;/G o\, (2.34)
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where we have used thgty, = idry and f = idy for f € Gau(P). Notice that, for allx €
I°°(M,C(P)) andn € QN(M,qg), f*(®(\,n)) = ®(f*(\),n), i.e. gauge transformations have trivial
linear parts.

The next proposition provides a characterization of theadf gauge transformations &1 (M, C(P))
in terms of the Abelian group actioh of elements if2! (M, g).

Proposition 2.31. Let M be a manifold(G an Abelian Lie group andP, r) a principal G-bundle over) .
Forany f € Gau(P) and\ € I'*°(M, C(P)) the following identity holds true

PO =2\ (u6)) (2.35)
whereue € QY(G, g) is the Maurer-Cartan form o andf € C*(M, G) is obtained fromf via Lemma
2.30

Proof. Let X € T, M, x € M, be arbitrary. Let us fix any € 7—![{z}] and pick from the equivalence
class\(X) € TP/G|, the unique elemerit € T),P. We have by definitiont\(X') = [Y'] and furthermore
it holds true thatr,(Y) = X, since) is a splitting of the Atiyah sequence. From17) and @.34) we
obtain (f*(X))(X) = [f-*(Y)]. In order to compute, *(Y) € Ty-1, P letus definef € C=(M,G)
according to Lemma.30and introduce the mag, : G — P, g — pg. We obtain by using~*(p) =

pf i x(p) =pf (@),
f*_l(Y) = rql(x)*(Y) + ("ip* © J/c;_l o W*)(Y)
= o1, (V) F i (F1 (X)) = 17y (V) 4 Xy (2:36)
where the second term after the last equality denotes thdafoental vector af ~!(p) corresponding to
Y (ng)(X) € g. It follows that
1%
() X) = rpag,y (V) + X]{_l(p()uc)(X)]
= MX) + ez, [T () (X)) = (@O F 1 (1)) (X) (2.37)

which concludes the proof sincé € T,. M was arbitrary. O

3 The phase space for an object

Let= = ((M,0,9,t), (G, h),(P,r)) be an object irPrBuGlobHyp, (C(P), M, m¢(p), A) the associated
bundle of connections and>(M,C(P)) its sections. We denote the vector dual bundle (829512
Definition 2.15]) by(C(P)T, M, wz,(P),AT) and its compactly supported sectionsltfy (M,C(P)"). The
aim of this section is to construct a gauge invariant phaaessfor dynamical principal connections &n

Maxwell's equations are described in our setting by the eftiifferential operator
MW := 6o F : T(M,C(P)) — Q"(M,g), A MW(\) =35E(\), (3.1a)

whered is the codifferential andr is the curvature affine differential operator, see Corglla24 The
linear part ofMW is given by (cf. Corollan2.24)

MWy - QY(M, g) = Q'(M,g) , 17— MWy (n) = 6Fy (1) = —6dn . (3.1b)

Due to BDS12 Theorem 3.5], the affine differential operatohV is formally adjoinable to a differ-
ential operatoMW* : Q' (M, g*) — I'°(M,C(P)"), with g* denoting the dual of the Lie algebga

Explicitly, MW* is determined (up to the ambiguities to be discussed belgwthé condition, for all

A € I'®(M,C(P)) andn € Q} (M, g*),

() = |

n A x(MW(X)) :/ vol (MW*(n))(}) , (3.2)
M

M
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wherex denotes the Hodge operator and the volume form. We will always suppress the duality pairing
betweeng* andg in order to simplify the notation.

As itis proven in BDS12 Theorem 3.5], the formal adjoint differential operakdw* : O} (M, g*) —
['s°(M,C(P)") is not unique. Uniqueness is restored if we quotient outriliak elements

Triv := {a 1 € I(M,C(P)!) : a € C5°(M) satisfies /

vola = 0} , (3.3)
M

i.e. if we consider the operatddW* : Q}(M,g*) — T5(M,C(P)")/Triv. By 1 € I'*°(M,C(P)")
we denote the canonical section which associates to averyl/ the normalized constant affine map in
the fibreC(P)T|,. The quotient byTriv does not influence the linear part W*(n): Indeed, for all
neQy(M,g*), N € I°(M,C(P)) andy € QY(M,g),

/M vol (MW* () (B(\, 7)) = <n, MW (® (A, 77’))>
= (n, MW(X) — 6dry’)

= /M vol (MW*(n))(X) + (—=ddn, ") (3.4)

implies that the linear part BIW* (1)), = —édn, for all ) € Qf(M, g*).

The next step is to restrict to those elementd' (M, C(P)")/Triv that describe gauge invariant
observables. It is enlightening to introduce the vectorcepa classical affine observablg¢®,, : ¢ €
I'5e(M,C(P)T)/Triv}, whereQ,, is the functional on the configuration spdc® (M, C(P)) defined by

O, :T®(M,C(P)) = R, XA Oy (\) = /M vol p(A) . (3.5)

Let f‘l € C*°(M,G) ~ Gau(P) be an element in the gauge group (cf. Lema0. As we have
shown in Propositior?.31, the gauge transformations ®° (M, C(P)) are given byx — @ (X, f*(ug)).
Demanding invariance aP,, under gauge transformations, i@, (® (), f*(uq))) = O,()) for all A €

>~ (M,C(P)) andf € C>(M, G), leads to the following condition for the linear part: € Q}(M, g*)

of ¢ € [5°(M,C(P)!)/Triv, for all f € C*°(M, G),

<¢v,f*(uc)> =0. (3.6)

This motivates us to define the following vector space

~

e = {pergaeP))/miv: (pv, (ue)) =0, ¥vfec=r.¢)}, @D
which serves as a starting point to construct the phase space
Lemma3.1. a) Forall ¢ € &M the linear partyy € Q}(M, g*) is coclosed, i.e5py = 0.
b) All o € T$°(M,C(P)")/Triv satisfyingpy = on for somen € Q3(M, g*) are elements ig™".

Proof. Proof of a): AsG is by hypothesis a connected Abelian Lie group it is isomarph T* x R,
see e.g.Ada69 Theorem 2.19]. Denoting by;, i = 1,...,l, Cartesian coordinates @& and by®;,
j =1,....k angles or’*, the Maurer-Cartan form reags; = >-%_, d¢; @r t/ + Y\, dz; ®g t5+,
whered¢; denotes the dudHorm of the vector field),,, (we follow the usual abuse of notation and denote
these forms byl¢;, even though they are not exact!).

Let x € C*°(M,g) and consider the element of the gauge group specifiegT’be: expox €
C>(M,G), whereexp : g — G denotes the exponential map. The pull-back of the Maurera@a

By trivial we mean that the corresponding classical affineent|bles §.5), i.e. functionals on the configuration space
I'*°(M,C(P)), vanish.
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form then readg?;(yg) = dy. Letp € &M be arbitrary. Due to3.7) the linear partpy, of ¢ satisfies, for
all xy e C>(M,g),

~

0= <<pv,f;§(uc)> = (v, dx) = (6pv. X) , (3.8)
which impliesépy = 0.
Proof of b): Forallf € C=(M,G),

<<pv,f*(uc;)> = <577, f*(uc)> = <77,df*(uc)> = <77, f*(duc)> =0, 3.9)
since the Maurer-Cartan form of Abelian Lie groups is closed O
Corollary 3.2. Let us define the vector spaces
gmin = Lo e TE(M,C(P)")/Triv : pv € 6Q3(M,g")} (3.10a)
g = {p e IF(M,C(P)")/Triv : oy € Qf 5(M,g%)} . (3.10b)
Then the following inclusions of vector spaces hold true
gmin C ginv ¢ gmax (3.11)

Remark 3.3. This corollary provides us with a lower and upper bound onvéagtor space™ . Notice
that in caseM has a trivial first de Rham cohomology grodpi(M,g) = {0} (which implies that
the dual cohomology group is trividl} ;- (M, g*) := Qg 5(M, g*)/09Q5(M, g*) = {0}), the lower and
upper bounds coincide, i.6™" = £inv = gmax_|n general, the explicit characterization®f" is rather
complicated and will be postponed to Sectibn

The equation of motioMW (\) = 0 is implemented at a dual level g by considering the quotient
vector space™ /MW* [ (M, g*)]. To construct a presymplectic structure on this space lebosider
the Hodge-d’Alembert operatofS ;) = dod +dod : QF(M,g*) — QF(M,g*), that are normally
hyperbolic operators. The corresponding unique retaadivdhced Green’s operators are denoteﬂ‘ﬁy :

Qf(M, g*) — QF(M, g*) and the causal propagators are defined:by := G&) — Gy QF(M, g*) —
QF(M, g*). We notice the relations
D(k) od=do D(k—l) s D(k) od=4do D(k—i—l) , (3.12a)
which imply
+ + + +
G(k) od:doG(kil) , G(k) 0(5:50G(k+1) . (3.12b)

The G-invariant pseudo-Riemannian mettion the Lie groug> determines and-invariant inner product
(possibly indefinite) on the Lie algebgaand hence a vector space isomorphism (denoted with a slight
abuse of notation by the same symbbl) g — g*. We denote by,~! : g* — g the inverse vector space
isomorphism. Using also the pairifg ) we define for ally, ' € Q¥(M, g*) with compact overlapping
support the non-degenerate (indefinite) inner product

('), = (o)) (3.13)

We notice that],, is formally self-adjoint with respect tp, ), and hence ;, is formally skew-adjoint
with respect tq , ), for all elements if2§ (M, g*) (that is the domain of7 (1)-

Proposition 3.4. Let= = ((M,o0,9,t),(G,h),(P,r)) be an object ifPrBuGlobHyp. Then the vector
spacef := £ /MW* [Q} (M, g*)] can be equipped with the presymplectic structure

T EXESR, ([, W) o (el [¥) = (ev, Gy (¥v)), - (3.14)

In other words,(g , T) is a presymplectic vector space.
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Proof. We have to proof that is well-defined, i.e. that for every = MW*(n), n € Q}(M, g*), we have
(v, Gy(¥v)), = 0and(yv, G (pv)), = 0 for the linear partg)y of all elements) € £™. Lemma
3.1limplies thatyvyy, = 0. The first property holds true:

(ov,Gay(Wv)), = (MW (n)y, Gy (¥v)), = — (6dn, Gy (Pv)),
—(7,0dG 1) (¥v)), = — (1, (O) — do)(Gay(¥v))),

= (1,dG ) (0¢v)), = 0. (3.15)
The second property follows analogously, sili¢g is formally skew-adjoint with respect to, ),. From
the latter property it also follows thatis antisymmetric. O

Remark 3.5. The presymplectic structur&.(L4) can be derived from a Lagrangian form by generalizing
the method of PeierlPei5] to gauge theories. This generalization has already bewmlest in Mar93
and it was put on mathematically solid grounds recentlySBIH12 for the vector potential of/(1)-
connections. Since in our approach the configuration sp&og\/,C(P)) is different, we have to adapt
the relevant arguments to our setting: Let us consider tigedrgian formC[\] := —3h(F (X)) Ax(E(N))
and its perturbation by an elemepte £™, i.e. L,[A\] := L[A] + volp(\). The Euler-Lagrange equa-
tion corresponding ta, is given byMW(X) + A~ (¢y) = 0, wherepy € Q) (M, g*) is the linear
part of . Let us take any\ € I'>°(M,C(P)) satisfyingMW(\) = 0. The goal is to construct the
retarded/advanced effect gf on this solution. LetS* c M be two Cauchy surfaces (with™ be-
ing in the future of£™) such thatsupp(pv) C J;; () N Ji;(X7) (this means thapy has support
in the spacetime region betweéh™ andX~). We are looking for aAg € I'*°(M,C(P)) satisfying
the equation of motioMW(AZ) + A~ (py) = 0 and )\fgbﬁ(w) = o), f;(ug))bjz&(w) for some
fi € C(M,G). The latter condition states thag agrees up to a gauge transformation witim the
past/future ob2F. Sincel'™ (M, C(P)) is an affine space ovér' (M, g) we find a uniqueﬁ € QY(M, g)
such that\} = 513()\,77;5). The equations of motion fok and A then imply —ddn + h™'(ov) = 0
and the asymptotic condition reaflg; — Frue )|ﬁ ) = 0 for somef, € C*(M,G). Since any
n@ c QY (M, g) is gauge equivalent to a coclosed one-form, we can assurheuwvibss of generality that
77@ satlsflesén = 0, and hence the equation of motion reads, 77@ = h~Y(yv). For the support condi-
tion 7 ]ﬁ ¥y =0 (that is contained in the asymptotic condition above) thigua solution of this equa-
tionisn; = G (A (¢v)) = h™' (G (wv))- All solutions of the equation-ddr} + ' (pv) = 0
subject to the asymptotic COﬂdIthmso fjE ie)) |JE(E$) = 0, for somefi € C>*(M,G), are ob-
tained by gauge transformationsxpjE = h~ (Gf)(wv))- Let nowvy € £™ and consider the gauge
invariant functionalO,, as in @.5). The retarded/advanced effect of ¢ € & on O, is defined by

EE(0y)(N) == Op(A\F) = Op(N) = (Yv,nE) = <¢v, NG (e ))> <¢V, 1>(W)>h' No-
tice that this expression is well-defined sin@g is gauge invariant. The presymplectic structuBelf) is
given by the difference of the retarded and advanced effect([¢], [¢]) = E} (Oy)(X) — E; (Oy)(N),
which agrees with the idea of PeierRdi53.

We come to the characterization of the radi¢alC £ of the presymplectic structure An element
[] € Eisin N if and only if, for all [¢] € &, 7([¢], [¢]) = 0. In this section we will only provide a lower
and upper estimate for the vector spA¢eThe explicit characterization will be content of Sectibn

Lemma3.6. a) Let[] € AV be arbitrary. Then any representativec £ is such that)y = da for
somea € QF (M, g*).

b) Lety € £ be such thatyy = ddy withy € QL. (M, g*) anddy € Q3(M, g*). Theny)] € N,
The subscript. denotes forms of timelike compact support.

Proof. Proof of a): By hypothesi&)| satisfies, for ally] € &,
7([¢], [¥]) = (pv, Gy(¥v)), =0. (3.16)
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By Corollary3.2we have thatE™" C £V and thus it is necessary @] to fulfill, for all 5 € Q3(M, g*),

0= (0, Gay(¥v)), = (1, Gy (dyv)), - (3.17)

This implies thati(5) (dyv) = 0 and hence due to the fact th@l,) is the causal propagator of a normally
hyperbolic operator we obtaiti)y = [y (a) for somea € Q3(M,g*). Applying d to this equation
shows thatlae = 0, i.e.a € Q%’d(M,g*). Applying ¢ and using thaty, = 0 (cf. Lemma3.1) we find
Oa)(¥v) = Oy (da). This impliesyy = da and completes the proof.

Proof of b): Let nowy € £™ be as specified above. Then we obtain, fof@llc &,

7([e], [¥]) = (pv, Gy (8dy)), = (v, 8dG (7)),
= (¢v, (O —dd)(Gay(7))),, = — (v, dsG (7)),
= — <6(,0V,6G(1) (’y)>h =0 5 (318)

where in the second equality we have used that the domaif,otan be extended ;. (M, g*) [SDH12
and in the last equality thatpy = 0. O

Corollary 3.7. Let us define the vector spaces

Nuin = {¥ € E™ by € 6(QF(M, g*) NdQ (M, g*)) } /MW* [Q(M, g%)] (3.19a)
Ninax 1= {0 € E™ 1 by € 605 o(M, g*) } /MW* [Q5(M, g")] . (3.19b)

Then the following inclusions of vector spaces hold true
Nmin g N g Nmax g gmin g & g gmax . (320)

Remark 3.8. The radical\V' of the theory under consideration is in general differentrfrthat of affine
matter field theories, seBDS12 Proposition 4.4]. Even though the constant affine obségsad1 ], with

a € C§°(M), are contained iV, in general they do not exhaust all elements. The lower bamd/
given in Corollary3.7 coincides with the radical obtained IS[DH17 (up to the constant affine observables
which are not present in this paper since it does not exgieicbmplete geometric structure of the bundle
of connections).

Remark 3.9. If M has compact Cauchy surfaces the vector spégg, is trivial. That this is not gener-
ically the case is shown by the following explicit exampleetlus consider the case in which = R
(implying g* = R) and M is diffeomorphic toR? x S™~2, wherem > 2 andS™? denotes then — 2-
sphere (we suppress this diffeomorphism in the followidg)y Cauchy surfac& C M is diffeomorphic
toR x ™2, SinceHz(R) = R is nontrivial, we can find aa € Qg 4(R) that is not exact. Let us
introduce Cartesian coordinatés z) on theR? factor of M. We denote byy; € Q}],d(M) the pull-back

of a along the projection to the time directigrand bya, € Q(l],d(M) the pull-back ofa along the pro-
jection to the space direction We definen := a; A a,.. The support property af and the compatibility
betweend and the pull-backs entail that < Qg,d(M). Furthermore, sincél}, (M) = {0}, there exists
apB € (M) such thatn, = —dp, which impliesn = d(8 «;), whereB oy € QL.(M). We now show
thatn ¢ dQ§(M): Let vgm—2 be the normalized volume form &2 and letpr : M — S™2 be the
projection fromM to S™~2. Notice that the integran n A pr*(vgm—2) = (fR a)2 # 0, sincecx is not
exact. If there would exist & € Q}(M), such that) = dv, then by Stokes’ theorem the integral van-
ishes, which is a contradiction. Henee= d(5 ay), with S oy € Q%C(M), defines a nontrivial element in
Hng(M). Furthermoren is a representative of a nontrivial class/Af,;,: Indeed, suppose that there
existsy € Q (M) such thatn = §dv. Using that; is closed and of compact support, this equation entails
D2y (n) = O(2) (dy) which yields the contradiction = dv, sincely) is a normally hyperbolic operator.
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4  Explicit characterization of £™ and N/

So far we have obtained for the vector spag&§ and\V only upper and lower bounds, see Coroll&tg
and Corollary3.7. The goal of this section is to provide an explicit charagtgion of€™ and . For this
we have to understand more explicitly how the gauge gfeap(P) ~ C*>°(M, G) acts onl'>° (M, C(P)).
Due to Propositior2.31this amounts to characterizing the Abelian subgroup

{F(ne): fe C®(M,G)} CQ'(M.g). (4.1)

In the proof of Lemma3.1 we have shown that, for evety € C*°(M,g), the mapfx := expoy €
C>*(M, Q) leads tof;(uc) = dx. Furthermore, since the exterior differential commutethwhe pull-

backf* and ¢ is closed, we have thaﬁ*(ug) € Qé(M,g). This implies the inclusions of Abelian
groups

dC™(M,g) € {*(ne) : [ € C™(M,G)} C Q4(M, g) (4.2)
and taking the quotient byC°(M, g) we are led to consider the Abelian subgroup
Ag = {f*(ne) : f € C%(M,G)}/dC™(M,g) C Hip(M.g) . (4.3)

Lemma 4.1. Let us consider the following equivalence relation on theggagroupC'> (M, G)

o~

G~h & 3JxeC>®(M,g) suchthatg=hf (4.4)

wherefx = expoyx € C>®(M, Q). ThenC*> (M, G)/~ is an Abelian group and the following map is an
isomorphism of Abelian groups

CO¥(M, Q) [~ —= Ac, [J] = [F*(ue)] - (4.5)

Proof. C*°(M, G)/~ is an Abelian group with group operation given [tfy[g] = [fg]. The map 4.5 is
obviously a map of Abelian groups and it is well-defined, eifmffx we have(ffx)*(ug) = f*(,ug) +
dyx. Surjectivity holds by definition ofi; and injectivity is shown as follows: L¢f] € C*®(M,G)/~ be
such that[f*(pg)] = 0. This implies that for any representatifethe pull-back is exactf*(pg) = dy for
somey € C*(M, g). Considering the representatifq?_x of the same class, we can set without loss of
generality y = 0, i.e. f*(u¢) = 0. This implies, for allX € TM, 0 = (f*(u(;))(X) = pc(f.(X)) and
since the Maurer-Cartan form is non-degenerate we obwiralf X € 7'M, f*( ) = 0. It follows that
f M — @ is the constant map and her{g"@ is the identity of the groug'>° (M, G)/~. O

Remark 4.2. Due to this lemma the Abelian group; characterizes exactly the gauge transformations
which are not of exponential formxp oy, for somey € C*>°(M, g).

Since any connected Abelian Lie group is isomorphi’oc R, the mapf € QOO(M, G)isgiven by a
k+ l-tuple of maps(f1, ..., fe+1), Wheref; € C°(M,T), fori =1,...,k,andf; € C*(M,R), fori =
k+1,...,k+ 1. The Abelian groug’> (M, G)/~ factorizes into the direct produ¢C> (1, ’]I‘)/N)k

(COO(M, R)/w)l, where~ denotes respectively the equivalence relation of Lemmidor G = T and

G = R. Furthermore, the Lie algebfaof G is given by the direct sum af copies of the Lie algebra
iR of T and! copies of the Lie algebr®& of R, i.e. g = (iR)% @ R%. This allow for a splitting of
the cohomology group into a direct sufi, (M, g) = Hlg(M,iR)® & H),(M,R)®. The Abelian
group A¢ is thus given by a direct sum of Abelian grougg = A%B’“ @ A%l (remember that the direct
product and direct sum of groups over a finite index set yieddsame group). In this way the problem of
characterizingA is reduced to the problem of characteriziAg and Ag.

Proposition 4.3. Ag = {0}.
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Proof. Since the Maurer-Cartan forpr = dz is exact ¢ is a Cartesian coordinate function 6h= R),
forany f € C*°(M, G) the one-formf*(ugr) = df*(x) is also exact. This impliedr = {0}. O

To characterizedr we require techniques froech cohomology which we are going to review now,

see BT82, §10] for more details. Letd be a presheaf of Abelian groups ad andi/ := {U,}aez

a finite good cover, i.eZ is finite and all non-empty intersectiod$,, ., := Uy, N --- N U,, are
diffeomorphic toR4™(M)  The existence of a finite good cover is part of our assumgtimm/. A
p-cochain{na,...a, fag<--<a, € CP(U,A) is a collection of elementg,,..., € A(Uqy...q, ), fOr all

ap < oq < --- < oy FOr not having to keep track of the index orderings we foltbe usual antisymme-
try convention to defingy,....,, for all ag, oy, ..., . TheCech differentiab : C?(U, A) — CP*1(U, A)

is given by, for all{n,,...a, } € CP(U, A),

p+1

(677)a0---ap+1 = Z(_l)i Nag...6...opr1 s (4.6)
i=0

where on the right hand side the restrictiongf. s,...a,., t0 Uag...a,,, IS SUppressed. The cohomology
of the complex

COU, A~ U, A) s, A) s 4.7)

is denoted byiT* (U4, .A) and called th&€ech cohomologyof the coveil/ with values inA.

For our purposes we shall require only the fiéstch cohomology groupl! (i, A) for the constant
presheaves! = iR and. A = 27 Z. In these cases, on account BfT[82, Theorem 8.9 and Theorem 15.8],
H' (U, A) does not depend on the choice of the good céieFurthermore, due t@ — R there exists a
canonical injection of Abelian groups

H'U,2mi Z) = H'U,iR) , [{nap}] = {nas}], (4.8)

which we are going to suppress in the following. B§TB2, Theorem 8.9] there exists for any good
cover{ an isomorphismH i (M, iR) ~ H'(U,iR). We also require an explicit expression for this
isomorphism: Lefy] € H}, (M, R) be arbitrary and take any representative Q! (M, iR). Restricting

n to the open subsets,, of the good covery|y, € QL(Us,,iR), there existy, € C*(U,,iR), such
thatn|y, = dx.. Notice thaty,, is not unique, since we can add arbitrary constant functigns R
onU,, i.e.n|y, = d(xa + ca) = dxa. On double intersection§,z we have to satisfy the condition
dxalv,; = dxglu.s» which implies thaty.s = xo — X = const € iR on U,g. Itis easy to see
that (01)as, = 0 and hence{n,s}] defines an element it/ (2, iR). This element does not depend
on the choice ofy,, since forx, = Xxa + ca With ¢, = const € iR, we find thaty ; = x;, — X} =
Nag + Ca — €5 = Tap + (8¢) . Furthermore, this element does not depend on the choiepsentative
in the clasgn] € Hly (M, iR), since fory’ = n + d¢, with ¢ € C°°(M,iR), x}, = Xa + |v. and hence
onUags, 5 = Xa — X3 = Xa — X8 *+ Clu.s — Clu.s = nap- FOr constructing the inverse of this map let
us take a partition of unityt,, }aez Subordinated to the good covfli, }aer. Let [{n.s}] € H (U, iR)

be arbitrary and take some representafijgs }. Let us definex, := > 5.7 napts € C*(Uq,iR) and
consider the local one-forms$y, € Q}i(Ua,z’R). On the double intersectiorig,s we find x, — x5 =

> vez(Nay = Mgy )ty = N Y- ez ¥y = Nap, Where in the second equality we have used thal, s, =
Mgy — Nay + Nap = 0. It follows thatdx.|v,, = dxslu,, and hence the collection of local formis,,
defines a global closed one-forme Q (M, iR) and an elemerit)] € H} (M, R). The latter element
does not depend on the choice of representatiVérigs }], since for{n, s} = {7nap + ca — cg} We obtain
Xo = 2gerMng¥8 = Xa + Ca — Dpe7 €878 = Xa + Ca + Clu,, Where¢ € C*°(M,iR). This implies
thatdyx/, = dx, + d(|y, and hence) = n+ d¢. The two maps presented above are one the inverse of the
other and thus they provide the desired isomorphism.

Proposition 4.4. Ay ~ H' (U, 2ni 7).
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Proof. Consider an arbitrary elemept*(uu1)] € Ar C HjR(M iR) and a representative € C>(M, T).
Let us restrictf to the open subsets,, of the good cover,f]Ua € C*®(U,,T). Then f*(ur)|v, =
f|Ua (pr) = dxq are exact local one-forms, with, € C*°(U,,iR). In the proof of Lemmat.1we have

shown that this |mplle$]Ua = expo(Xa + Ca), fOr somec, € iR. Redefiningy, by xa + co We can
set without loss of generality, = 0. Since f is a global function we have to satisfy the consistency
conditions in the double intersectiorf$, 5 = exXp oXalU.s = expoxglu,,- This implies that or/g,
NaB = Xa — X3 = const € 2mi Z. Hence [f*(ur)] € A defines an elemeffn.s}] € H (U, 2mi Z) C
H'(U,iR). This element is independent on the represent@‘tme choose.

Let us now take an arbitrary elemeffti.s}] € H'(U,2miZ) C H'(U,iR) and a representative
{Nas}- TheCech-de Rham isomorphism provides us with local functigns= 2561 Naptp € CF(Uq, iR).
Let us define also the local funcUorfg = expoxa € C%°(U,,T). On double intersections we have
fa|Ua5 = eXpoXalU,; = €Xp O(Xﬂ + Nap) v, = expoxglu., = falu.s, Sincenas € 2miZ. Thus, we
can construct a global functiofi € C°°(M, T) and define an elemenff*(ur)] € Ar C Hl. (M,iR).
This element does not depend on the choice of represen{ativg. The two maps are one the inverse of
the other and provide the desired isomorphism. O

Corollary 4.5. Ag ~ H' (U, 2mi Z)®*

For providing an explicit characterization 8V we use that by assumptid¥ is of finite type withZ/
denoting a finite good cover. Following the argumentsvoi()7, Chapter 7.1.1] we obtain an isomorphism

H'U,2miZ) @ R ~ H' (U, iR) . (4.9)

In the generic case wheW is not of finite type, this isomorphism receives correctifnosn the €t and
%ot functors, see the universal coefficient theoreBiBg2, §15]. Since most (if not all) physically relevant
globally hyperbolic spacetimes are of finite type (in patac M/ = R™ x K with K compact is of finite
type), we are restricting ourselves to this case and thesebigl the characterization of thé&xt andTot
parts.

Theorem 4.6. Let= = ((M, 0,g,t), (G, h),(P,r)) be any object irPrBuGlobHyp (G ~ T* x R!). Then
the gauge invariant subspaéé™ (3.7) is given by

M = {p e TF(M,C(P)")/Triv : gy € 6QF(M,iR)™* & Qf 5(M,R)' } . (4.10)

Proof. By definition, £V is the vector subspace ®§°(M,C(P)")/Triv, such that the linear parts an-
nihilate {f*(ug) : f € C>(M,G)}. Due to Corollary3.2 we have that€™ C £max = {o ¢
T5°(M,C(P))/Triv : pv € Qf ;(M,g*)} and hence we can pair the linear parts of elements £™
with cohomology classelg)] € Hl, (M, g), (¢v,[n]) = [, ¢v A *(n). The gauge invariance condition
amounts tdpy, Ag) = {0}, for all ¢ € £™, and by Corollaryt.5this is equivalent to

{pv, H' (U, 2mi Z)®*) = {0} . (4.11)

Since H}y (M, iR) ~ HY(U,iR) ~ H'(U,27iZ) ® R and since the mappy, ) : Hiz(M,g) — Ris
linear, @.11) implies that, for allp € £,

{pv, Hig (M, iR)®r) = {0} . (4.12)

As a consequence of Poincaré duality; € 6Q3(M,iR)®* & Q} ;(M,R)® which completes the proof.
[

Remark 4.7. Notice that ifG ~ T* x R! contains a nontrivial compact factor (i.e.> 0), the vector
space of gauge invariant classical affine functioqéls, : ¢ EmvY (cf. (3.5) does not separate all gauge
equivalence classes of connections: Given two connectigns, € I'>°(M,C(P)) with the same curva-
ture, then there exisig € (M, g) such that\, = ®(\1, 7). Let us assume théy] € Hl, (M, iR)®r C
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Hl:(M,g), but[n] ¢ A suchthat\; and), are not gauge equivalent (this exists e.gfbr~ R™~1 x T).
Then by ¢.12) we obtain, for allp € £, O,(X2) = Ou(A1) + (pv,n) = O,(A1). The origin of this
pathology is the fact thad is only an Abelian group and not a vector space (cf. CoroMa®y. Performing

the quotient of the configuration space (M, C(P)) by the gauge transformations that are of exponential
form (that are all fork = 0) we obtain again an affine space. However, performing theientoof the
resulting affine space by the Abelian grodp: we obtain no affine space anymore (compare this with the
quotientR/Z ~ T). The gauge invariant classical affine functionfd3, : » € £™} do not take into
account the nontrivial topology of the full gauge invariaohfiguration space. For this reason one should
enlarge the algebra of gauge invariant observables catstrin this paper to include additional elements
which can separate all gauge equivalence classes of cammectA natural candidate are Wilson loops,
but, being too singular objects localized on curves, theynoabe added easily to the present formalism
used in algebraic quantum field theory. We hope to come baitkgdssue in our future investigations.

To conclude this section we characterize the radicabf the presymplectic vector spaqée’ ,T) of
Proposition3.4.

Theorem 4.8. Let= = ((M,0,9,t), (G, ), (P, 7)) be any object iPrBuGlobHyp (G ~ T* x R'). Then
the radical\V of (€, 7) is given by

N ={y e & h (py) € 693 4(M,iR)®* @ §(QF(M,R) N dQL (M, R)) ™'} /MW* [Qf (M, g*)] .
(4.13)

Proof. Let [¢)] be an element of the vector space on the right hand sidé D8)( Any representative is
such that:™! (yy) = 61 + dd( for somen € QF 4(M,iR)® and¢ € Qf (M, R)®'. By Theoremt.6any
p € E™ is such thatpy = da+ 3 for somea € O (M, iR)®r andg € Q) 5(M,R)®'. As a consequence,

(o], [¥]) = (v, Gay (W (wv))) = (e, Gy (61)) + (B, G(1)(8dC))
= (a,ddG 9 (1)) + (8,6dG 1) (C)) = — (,8dG 2)(n)) — (B,d6G1)(¢)) =0, (4.14)

hence the vector space on the right hand sidetdfd is contained in the radical/. To show that it is
equal to the radical lep € £ be any element satisfying, for all € £™, 7([¢], [+/]) = 0. Using again
the decompositionpy = da + 3 for somea € QF(M,iR)® and 3 € Qj ;(M,R)¥, as well as the
decompositiorh ™! (¢y) = dn + de, wheren € QF 4(M,iR)®* ande € QF 4(M,R)® (which is possible
due to Corollary3.7), this condition yields

0=7([¢], [¥]) = (6, G1y(6n)) + (B, G(1)(d€)) = (B, G1)(€)) . (4.15)

By (4.19 and Poincaré duality there existsyac C>°(M,R)®, such thaiti ;) (de) = dv. Applying the
codifferential to this equation we find thatsatisfies the wave equatidaly = [ (y) = 0, hence by
[SDH12 there exists @ € C°(M,R)® such thaty = G ) (#). Plugging this into the equation above
yieldsG 1) (de) = dy = G(1)(df), which impliesde = df+J(1)(¢) for someg € QL(M,R)®t. Applying

d and using that is closed we obtaim = d¢, which shows that any element in the radical is contained in
the vector space on the right hand sidebf@). O

5 The phase space functor and¢*R-quantization

In this section we show that the association of the presyctipleector space(S,T) in Proposition3.4

to objects= = ((M,o,g,t), (G, h), (P,r)) in PrBuGlobHyp is functorial. We are going to construct a
covariant functof3hGSp : PrBuGlobHyp — PreSymp, where the latter category is that of presymplectic
vector spaces with compatible morphisms, that are howestesissumed to be injective (see the definition
below). We will then derive some important properties offilnector.

Definition 5.1. The categoryPreSymp consists of the following objects and morphisms:
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e An object inPreSymp is a tupIe(E,T), wheref is a (possibly infinite dimensional) vector space
overR andr : £ x £ — R is an antisymmetric bilinear map (a presymplectic strutur

e A morphism between two objects, 71) and(&,, 72) in PreSymp is a linear magl. : £ — & (not
necessarily injective) , which preserves the presympesttuctures, i.er(L(v), L(w)) = 71 (v, w),
forall v, w € &;.

Before constructing the phase space fun@i®Sp we require two lemmas characterizing the com-
patibility of Maxwell's affine differential operatoMW, the Hodge-d’Alembert operatofs ;) and their
Green’s operatoréla) with morphisms inPrBuGlobHyp.

Lemmab.2. LetZ,;, ¢ = 1,2, be two objects and’ : Z; — Z5 a morphism inPrBuGlobHyp. Then the
following diagram commutes:

(M3, C(P)) L RN O (Ms, g2) (5.1)
FJ lfoqb:l
MW,

[ (My,C(P)) ————— Q' (M, g1)

F* is defined in Remark.28 f* is the usual pull-back along the induced m#p: M; — M, and
71 : g2 — g1 is the inverse of the push-forward of G; — Gb.

Proof. Let A € I'>°(M,,C(P,)) be arbitrary and le, € Con(F») be the associated connection form
(cf. Proposition2.23). Thenwp(,) = f*(¢; ' (wx)) € Con(P1), where on the right hand sigé’ denotes
the usual pull-back of forms alonfy: P, — P,. For the curvatures; : Con(P;) — Qﬁor(Pi,gi)qu we
obtain, for allA € I'°(M,, C(P)),

Fi(wpen) = diwpen) = dif* (05 (wn)) = (o5 (dawn)) = f* (65 (Fa(wn))) - (5.2)
This implies for the associated curvature affine diffem@ndperatorsZ; : T>°(M;,C(P;)) — Q2(M;, i),
£1OF*:fo¢;10£2. (5-3)

Using that by hypothesig : M; — M, is an isometric and orientation preserving embedding, viaiob
for the codifferential$; o f* = f*o04d, and, hence, for the Maxwell operatdBN, o F* = f*o¢; oMWy,

which shows the commutativity of the diagraf1). O
Lemma 5.3. Let=;, i = 1,2, be two objects and’ : =; — =5 a morphism inPrBuGlobHyp.
a) The following diagram commutes for &t

k . Dz (k) k .
Q (M2792)—>Q (M2792) (54)

f*o(b*l lf*o(b*
) .
Qk(MhEh) Qk(MhEh)
¢* : g5 — g7 is the pull-back ofp : G; — Gbs.

b) The Green’s operators satis@f(k) = ffog*o G;‘E(k) of. o o 1x, wheref denotes the push-
forward of compactly supported forms aloffig M; — M, and ¢~1* : gt — g is the pull-back of
qf)_l : Gy — (1.

Proof. Notice that the operatois; ;) act as the identity op;. The commutative diagrand () is then a
consequence gffods = d;o f*, which holds for any smooth map: M; — My, and off*0dy = d10 f7,
which holds sincef is an isometric and orientation preserving embedding.
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To prove b) first notice thaf (f*(n)) = n, for all n € QF(f[Mi],g5) C Qf(Ma,g3), and that
I*(f,(n) =n, forally € Qf(My,g}). Letus defmeGli(,C = f*o¢*o GQi(k) o f, o¢~1*. We show
thatGi( ) are retarded/advanced Green’s operators fof,) and thus by uniqueness it follows the claim

Gli(k) G L (k) Due to the diagrant(4) and the above properties §f and f* we obtain

Uy (k) © éf(k) =0igyofrod™o GQi(k) of,o ¢
— i* o ¢* ° DQ (k) o G;t(k) Oi* o (b*l* = ldQ]OC(thT) (55a)
and onQf (M, g})

éf(k)oml(k) frod OGQ(k of 067" oy
=fro¢" OGQ(k)ODQ(k)Oi*O¢ :idﬂé(MlvET)' (5.5b)

Thus, G1 (r) are Green’s operators fat, ;). They are retarded/advanced Green’s operators, sincdl for a
n € QF(Mi, g7),

supp (G, () € £ [T37, (f[supp(m)])] = J37, (supp(n)) , (5.6)
where in the second step we have used fiat;| C M is by hypothesis causally compatible. O

Definition 5.4. Let =;, i = 1,2, be two objects and” : =; — Z5 a morphism inPrBuGlobHyp. Fur-
thermore, letF™* : T'°°(M,,C(P2)) — I'*°(M;,C(P;)) be the affine map constructed in Remarka
We define the linear map, : T'§°(My,C(P)T)/Trivy — T§°(Ma,C(P2)T)/Trive by duality, for all
@ € TS(My,C(Py)T)/Trivy and\ € T'°°(Ma, C(P)),

/ voly (F.(p))(N) = / voly o(F*(\)) . (5.7)
Mo

My

Theorem 5.5. There is a covariant functof3hSp : PrBuGlobHyp — PreSymp. It associates to any
object= in PrBuGlobHyp the objectl3hSp(Z) = (£,7) in PreSymp which has been constructed in
Proposition3.4. Given a morphisnf' : Z; — =5 between two objects;, i = 1, 2, in PrBuGlobHyp the
functor associates a morphism reSymp as follows

PHSP(F) : BHSp(E1) — BOSP(Z2) , [¢] = [F(v)], (5.8)
where the linear mag, is given in Definitiorb.4.

Proof. First, we show thaf", maps&i™ to £, Letp € £V be arbitrary, i.e. for allf € C>(My,Gh),
<g0v,f (M01)>1 = 0. By Remark2.28and Definition5.4 we obtainF.(¢)y = f (¢~ '*(¢v)) and

hence, for allf € C>°(My, Gs),

(P, Flucn)), = (ov £ (F (67 (16)) ), = (ov, (67 e Fo ) (nen)) ) =0.  (5:9)

In the second equality we have used thaf¢; ! (ua,)) = pa,, whereg* is the pull-back of forms along
(b : G1 — GQ.

Next, we prove thatH.8) is well-defined, that is, for alh € Q{(M;, g}) we haveF, (MWi(n)) €
MW3 [Q4 (M, g5)]. This property is a consequence of the following short datin, for allA € I'™°(Ma, C(P%)),

/M volo (F. (MW (n) ) () = (n, MW1 (F* (1)), = (1, £ (67 (MW(\))) ),



where in the second equality we have used LerBraa

It remains to be shown that the linear Nt Sp(F) in (5.8) preserves the presymplectic structures.
Let us take two arbitrary], [¢] € £ . Then

2 ([Fx(@)], [Fe(¥)]) = (Ful@)v, Go ) (F(d)v) ), - (5.11)

2

Using again thaf,(¢)y = f_ (¢~ *(ev)) (and similar fory) yields

m((E @)L (B @) = (L7 (ov), Co oy (L 67(0v))),
= <SOV7 ([fo¢ oGyqyof, o ¢_1*)(¢V)>hl
= (pv, G1y(Wv)),,, = 1u(le], [¥]) - (5.12)
In the second equality we used thais an isometry and in the third equality Lema b). O

Remark 5.6. The covariant functof3hSp : PrBuGlobHyp — PreSymp does not satisfy the locality
property stating that for any morphisi: =; — =5 in PrBuGlobHyp the morphism3hSp(F') is injective.
We will show this failure by giving a simple example in thelfalibcategoryPrBuGlobHyp" (") where
G = U(1) ~ Tis fixed and we refer to Sectionfor a possible solution of this problem. L& be an
object inPrBuGlobHypY ") such that M, 02, g2, t2) is them-dimensional Minkowski spacetimen(> 2).
Let us denote byE; the object inPrBuGlobHypV () that is obtained by restricting all data 8f to the
causally compatible and globally hyperbolic open subdet:= M \ Jys, ({0}), where{0} is the set of
a single point in Minkowski spacetime (cBGP0O7 Lemma A.5.11]). Notice that/; is diffeomorphic to
R? x ™2, whereS™~2 is them—2-sphere. The canonical embedding (via the ideniity)=; — =, is
a morphism irPrBuGlobHypV ). Let us take any nonexact elementjire Qg’d(Ml, g*), that exists since
by Poincaré duality [ *(Mi,g) ~ HZx (M1, ¢%) and Hy, *(Mi, g) ~ g ~ i R sinceM; is homotopy
equivalent taS™~2. Applying the formal adjoint of the curvature affine diffet@l operator we obtain a
nontrivial element 1 *(n)] € PBhSp(Z;) (this element is contained in the radicsl, cf. Theoren4.9).
Under the morphism3hSp(F') we obtain by usingg.3)

FoSp(F)([F*(n)]) = [Fe(F* ()] = [ (£, ()]
= [£"(d9)] = [MW5(&)] = 0. (5.13)

In the third equality we have used that(¢~"*(n)) € Qf 4(Ma, g*) is exact sincéll; is the Minkowski
spacetime. By Remark 9the same conclusion holds true f6r= R and hence for generi@ ~ T* x R’

Theorem 5.7. The covariant functof3hSyp : PrBuGlobHyp — PreSymp satisfies the classical causality
property:

Let=;, j = 1,2, 3, be three objects and I€f; : =; — =3, ¢ = 1,2, be two morphisms iRrBuGlobHyp,
such thatf,[M;] and f2[M>] are causally disjoint inV/3. Thenrs acts trivially among the vector subspaces

FhSp(F1) [FhSp(=1)] and PhSp(F2) [PhSp(E2)] of PhSp(S;). That is, for all[¢] € PhSp(=1)
and /] € PHSp(Ea),

73(PHSP(F1)([¢]), BhSp (F2)([¢])) = 0. (5.14)

Proof. From (.8) and 3.14) it follows that
™5 (BOSP(F) (1¢]). BoSp (F)([]) = (o, (61" (ov)). Gty (. (67" () ), =0 (5.15)

since the supportaipp(f1, (61 *(¢v))) C fi[Mi] andsupp (Gs 1) (f2, (05 *(@v)))) € Jass (f2[Mo))
are by hypothesis disjoint. O
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Theorem 5.8. The covariant functo®3hSp : PrBuGlobHyp — PreSymp satisfies the classical time-slice
axiom:

Let=;,i = 1,2, be two objects and : Z; — =3 a morphism irPrBuGlobHyp, such thatf[M;] C M,
contains a Cauchy surface 8f,. Then

PBHSp(F) : PHSp(E1) — PHSp(E2) (5.16)
is an isomorphism.

Proof. Let us defineEg|ﬁMﬂ = ((i[Ml], 02|i[M1]392|ﬁM1]> t2|i[M1])> (GQ, hz), (P2|i[]\/jl},r2)), where
P2|f[Mﬂ denotes the restriction of the princip@b-bundle (P, r2) over Ms to f[M;] C M. Notice that
Ea| ¢ IS @n object inPrBuGlobHyp and by definition of the morphisms in this categofy,: =; —
Eo () is @an isomorphism. As a consequence of functoriality, waiokdan isomorphism iRreSymp

PHSp(F) : PHSP(Z1) — BHSp(E2f(ar,)) - (5.17)

Hence, the proof would follow if we could show that in the hifmses of this theorem the canonical map
BHSp (Zaf(ar,)) = BHSP(Z2), [¢] = [¢] is an isomorphism.

Let us first prove injectivity of the canonical map: Lefl € PBhSp(Za|ar,)) be such that when
interpreted via the canonical map as an elemeftiiGy(Z,) we have[p] = 0. As a consequencéy| €
PhSp(Z2lsar,)) has to be in the radicals| s, and by Corollary3.7 there exists for any representative
pann € ngd(i[Ml],gg) such thatpy = d2n7. Notice that due to the quotient in CorollaBy7 the
equivalence clasgp] only depends on the cohomology cldgs € H3 , (f[Mi], g3). By a theorem of
Bernal and SancheBB05 and the hypothesis thagt[A/;] contains a Cauchy surface 8f, we have
that f[M;] and M, are homotopy equivalent (notice also thitn(f[M;]) = dim(Ms>)). By Poincaré
duality [n] specifies a unique element Iﬁiﬁﬁm(M”_Q(i[Ml],gg), which by homotopy invariance of the
de Rham cohomology groups and a further instance of Pa@ndaality specifies a unique element in
HZ 1z (Ma, g3). Using the fact thaltp] = 0 when regarded if3hSp(E,) then implies thafr] is the trivial
element, i.en = dao¢ for some¢ € Q}(f[Mi],g5). Thus, we can find a representatiyeof the class
[p] € BOSP(Z2| fiar,)) Such thatpy = 0,i.e.¢ = a1y with a € C§°(f[M)]). Since[y] lies in the kernel
of the canonical map we obtain= Jar, volaa = fﬂMl] voly a and thusi] = 0in PoSp(Z2| f(ary))-

We now prove surjectivity of the canonical map: Let € PHSp(=,) be arbitrary and lep be any
representative. By hypothesis, there is a Cauchy suifacen M, that is contained inf[M;]. Then
Y o= ifl[zg] is a Cauchy surface in/y, sincef : M; — f[M;] is an isometry. Let us choose two
other Cauchy surfacesy with £ N 1 = § in the future/past oE; and let us denote b¥3 := f[S7]
their images, which are Cauchy surfaces\ia since f[M,] is causally compatible. Let™ € C™(M>)
be any function such thatt = 1 onJJ, (£3) andx™ = 0 onJy, (55). We definex~ € C*°(Ma) by
X"+ x~ =1onM,. Thenn := x* G(_l)(gov) + X~ Ga)(apv) € Qb(Ms,, g5) is of compact support and
the linear part ofy’ := ¢ + MW3;(n), given byy|, = ¢y — d2dan, vanishes outside of[A/;] (remember
that by LemmaB.1d>¢y = 0). The constant affine part ¢f can be treated as iBDS12 Theorem 5.6]
by adding a suitable element @fiv, to ¢/, which leads to a representatiy€ of the same clasf| that
has compact support ififM;]. The clasgy”] € BhSp(Z2|ss,)) Proves surjectivity of the canonical
map. O

We quantize our theory by using ti&R-functor, which we are going to briefly review to be self-
contained.

Definition 5.9. The category Alg consists of the following objects and morphisms:

e An object in*Alg is a unitalx-algebraA overC.
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e A morphism between two objectd;, i« = 1,2, in *Alg is a unitalx-algebra homomorphism :
A1 — As (not necessarily injective).

The ¢¢R-functor is the covariant functaf€R : PreSymp — *Alg which associates to any object
(€, 7) the unital«-algebraC@R(E,7) = T(E)/Z(E, 7). T(E) is the complex tensor algebra ovérand
Z(&, ) is the two-sided ideal generated by the elements w — w ®c v — i 7(v,w) 1, forallv,w € €.
To any morphismL : (&1, 71) — (&2, 72) in PreSymp the functor associates the morphigiégi(L) in
*Alg which is defined on the tensor algebra ®9R(L)(v1 @c -+ @c vr) = L(v1) ®c -+ ®c L(vk),
forall kK > 1 andwy,...,v, € & . SincelL preserves the presymplectic structures, this urialgebra
homomorphism canonically induces to the quotients.

Using the same arguments as BOJS12 Theorem 6.3] it follows immediately from Theore#7 and
Theoremb.8the following

Theorem 5.10. The covariant functo®l := CER o PHGSp : PrBuGlobHyp — *Alg satisfies:

(i) The quantum causality property:

Let=;, j = 1,2,3, be three objects and lef; : =; — =3, ¢ = 1,2, be two morphisms in
PrBuGlobHyp, such thatf,[M;] and f,[M,] are causally disjoint inMs. Then2((Fy)[A(Z,)]
and2(F) [21(Z2)] commute as subalgebras #f=s).

(i) The quantum time-slice axiom:

LetZ;, i = 1,2, be two objects and’ : =; — =5 a morphism inPrBuGlobHyp, such thatf[M;] C
M, contains a Cauchy surface 8f,. Then

AF) : A=) — A(Z2) (5.18)

is an isomorphism.

6 Generally covariant topological quantum fields

According to BFV03], a locally covariant quantum field is a natural transfolioratfrom a covariant
functor describing test sections to the covariant fun@torin this section we introduce the concept of
generally covariant topological quantum fields, that areina@h transformations from a covariant functor
describing topological information to the functiy and construct two examples which can be interpreted
as magnetic and electric charge. We have added the attfgmrierally covariant’ in ‘generally covariant
topological quantum field’ in order to distinguish it frometlusual notion of topological quantum field
theory [Ati89]. For simplifying the discussion we restrict ourselveshistsection to the full subcategory
PrBuGlobHyp”™, where the structure group is fixed @ = U(1) ~ T. The covariant functo®l of
Theoremb.10is also restricted, i.€) : PrBuGlobHyp? () — *Alg.

Definition 6.1. The categoryec consists of the following objects and morphisms:
e An object inVec is a (possibly infinite dimensional) vector spdéeverR.

e A morphism between two objecig, i = 1,2, in Vec is a linear mag. : V; — V5 (not necessarily
injective).

Composingl : PrBuGIobHypU(l) — *Alg with the forgetful functor from frontAlg to Vec we can
considerl as a covariant functor fromrBuGlobHyp” () to Vec (with a slight abuse of notation we denote
this covariant functor again b). The other covariant functors froRYBuGlobHyp? () to Vec which enter
our construction of generally covariant topological quamtields are those of smooth singular homology
with coefficients in the real vector spagé = iR (since the smooth and continuous singular homology
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are isomorphic, the smooth singular homology only contép®logical information). For being self-
contained we review briefly the relevant concepts: Lebe a manifold of finite type. A smooth singular
p-simplex,p € N°, is a smooth map : AP — M, where A? is the standargh-simplex inR?. The
real vector space generated by finite linear combinationsnajoth singulap-simplices is denoted by
Sp(M,g*) and its element3 " .. a;0;, a; € g*, are called smooth singularchains with coefficients in
g* = ¢ R. We will suppress the subscript finite in the following foretter readability. For alp > 0 there
is a boundary operata?, : S,(M,g*) — S,—1(M, g*) satisfyingd, o 9,41 = 0. The homology of the
complex

Bpro By P Bp1
.

”—>Sp+1(M7g*)p—+>Sp(M7g*)—p>Sp—1(M7g*) (61)

is denoted by, (M, g*) and called thesingular homology with coefficients ing* = i R. Explicitly, the
p-th singular homology group is the real vector spatgM, g*) = Ker(9,)/Im(0p11).

Let now= = ((M,0,9,t),(G,h),(P,r)) be an object irPrBuGlobHyp”). The association of the
p-th singular homology group af/ is a covariant functos,, : PrBuGlobHypY™ — Vec: To any object
Z in PrBuGlobHypY(!) the functor associates,(£) = H,(M,g*). To any morphismi = (f : P, —
Po,¢: G — G) : 21 — o in PrBuGlobHypY ") the functor associates

Hp(F) = Hp(Er) — Hp(E2) [Za’j UJ} [Z¢_1*(aj) (iOUj)} . (6.2)

The singular cohomology is defined by dualify; (M, g) := Homg (H.(M, g*),R). Furthermore, by de
Rham’s theorem there exists a vector space isomorpbismi’, (M, g) — HP(M,g), [n] — J([n]),
where7 ([n]) is the linear functional o, ()M, g*) defined by, for ally a; o,

D([Eaa])=Xe [ am. 63)

whereo? is the pull-back ofo; : AP — M and the duality pairing betweest andg is suppressed. By
Poincaré duality there also exists a vector space isonssrpk : H,(M, g*) — Hé’dR*( ,8%) (by the
subscriptdR* we denote the cohomology groups of the codiffererfjapecified by, for all[ > aj aj] €

Hp(Ma g*) and[n] € HgR(Mag)1

(K([Xasos]) )y =T ([ asei]) - (6.4)
The pairing( )+ HY g (M, g*) x Hi. (M, g) — R on the left hand side is that induced by the pairing
= [ ¢ A x(n) ofpforms(er(Mg ) andn € QP(M, g).

We now can construct our first example of a generally covati@ological quantum field, which by
Remarké.3below should be interpreted as magnetic charge (Euler)class

Theorem 6.2. Consider the two covariant functoss,, 2l : PrBuGIobHypU(l) — Vec. We associate to
any object= in PrBuGlobHypY ™ the morphism in/ec

w2 0@ 2 43 . [L o] o |2 (K([Taa]))]. 65)

where F* : Q3(M, g*) — T'S(M,C(P)")/Triv is the formal adjoint of the curvature affine differential
operator (cf. Corollary2.24). The collectiond™*¢ = {¥2*¢} is a natural transformation fronf), to 2.

Proof. The map 6.5) is well-defined due the dual of the (Abelian) Bianchi idgntio £ = 0. Furthermore,
since any representative of the clds§[ > a; o;]) is coclosed, the linear part of*(KC([ 3" a; 05]))
vanishes. HenceE* (K ([ a;05])) € £™ is arepresentative of an elementfiand the image ofd.5)
is contained ir€ C 2A(Z).
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Let F : =, — =, be a morphism irPrBuGlobHyp”M). As a consequence of the dual &f3) and

f.o ¢~ 1* oK1 = Ko0$2(F), which descends fron6(4), we obtain that the following diagram commutes:

mag

$2(21) ———— A1) (6.6)
H2(F )l lﬂl(F )
rTnag
57)2(52) L} 2[(52)
This proves thaft™*¢ = {¥Z*¢} is a natural transformation. O

Remark 6.3. The interpretation of the natural transformati@'®¢ is as follows: The classical affine
functional @.5) corresponding to&* (K ([ >" a; o;])) yields when evaluating on anye I'*°(M,C(P))

Or k(13 a; 0,]) < ({Z% UJD =Y a / (6.7)

Via this identification the elements in the image of the n#d}* determine the cohomology clas&(\)] €
H?2. (M, g) and hence the Euler class of the principdll)-bundle. In physic§Z()\)] is called the mag-
netic charge. This is a purely topological information, @hiexplains our notation generally covariant
topological quantum field. Afte€¢R-quantization, we should interpret the image of the m&ap)(as
magnetic charge observables, which can be assigned ctigereall objects inPrBuGlobHyp” () since
ymag js g natural transformation. We note that the image of the (@ap lies in the center of the algebra
2((Z), hence magnetic charge observables are not subject tortdeiggs uncertainty relation and can be
measured without quantum fluctuations.

Motivated by EDH173 we will now construct a generally covariant topologicalbgtum field, which
by Remark6.5 below should be interpreted as electric charge. For thisegeire a covariant functor
which associates to any objegtin PrBuGlobHyp? (V) the singular homology 9roufd gim(ar)—2(M, g*) =~

Hgid”;{(*M)_Q(M, g*). This functor exists since the set of morphisffs : =; — Z=»} is only nonempty

between object&; and=, where M; and M, have the same dimension (cf. Definiti@). We shall
denote this covariant functor by_, : PrBuGlobHyp? ™) — Vec.

Theorem 6.4. Consider the two covariant functoss_,, 2 : PrBuGlobHyp”(") — Vec. We associate to
any object= in PrBuGlobHypY ™ the morphism inVec

w02 > A3 [Sao] o |2 (x (K([Taa)))]- ©68)

The collection¥®! = {¥¢} is a natural transformation fron_ to 2.

Proof. The map 6.9) is well-defined, since for aly € Q5™ ! (M, g%), F*(x(6x)) = MW*(x(x))
yields the trivial class i€ C 2(Z). For anyn € lem(M) (M, g*) the linear part ofE*(x(n)) is

F*(#(n)),, = 6 #(n), with «(n) € QF 4(M, g*). Hence F* (*(K([Xaj05]))) € €™ is arepresentative
of an element in\V" and the image off(.8) is contained irt C 2A(=).

Let F' : 1 — 5 be a morphism iPrBuGlobHyp” (). Using thatf o ¢ '* 0% =#y0 f og¢~1*
and the same arguments as in the proof of Thedighwe obtain that the following diagram commutes:

el

H-2(F )l lﬁl(F )
\I/EI

H_9(Zp) —2——A(Z,)
This proves that®! = {¥g1 is a natural transformation. O
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Remark 6.5. Following Remark6.3 we can interpretl® as a coherent assignment of electric charge
observables: The classical affine functior&b) corresponding toF* (« (K([ > a;j05]))) yields when
evaluating on any solutioh € I'>°(M,C(P)) of the equation of motioMW () = 0,

O (uii(s s i) = (K[ X s o] ). +(E0) ) =D /de) TH(EW)) - (620)

Via this identification the elements in the image of the n¥&pdetermine the conomology class 7 ()))] €
HS;{“(M)”(M, g) that, via Gauss’ law, is the electric charge. Also in thisecdi® image of the mab (©)
lies in the center of the algebR& =), meaning that electric charge observables in the quanteorttare

not subject to Heisenberg’s uncertainty relation and caméasured without quantum fluctuations.

7 The charge-zero functor and the locality property

In the previous section we have identified electric and mégobarge observables in the algeBfgE) =
C@%(‘Bb@p(E)) for any objectE in PrBuGlobHyp? ("), While magnetic charge observables are certainly
very welcome in our framework since they can measure theldgpoof the principal bundle, electric
charges play a different role. By construction, the covarfanctor 2 : PrBuGlobHyp”(M) — *Alg
models quantized principdl (1)-connections without the presence of any charged fields. Asnae-
quence, all electric charge measurements should yield?zeWe are going to implement this physi-
cal feature into our framework by performing a different tjewt in the presymplectic vector spaces
(5,7) of Proposition3.4. It is then rather straightforward to show that there is aaciewnt functor
BHSpY : PrBuGlobHypY ™ — PreSymp, the charge-zero phase space functor, which associates the
presymplectic vector spaces to object®iBuGlobHyp” ") Interestingly, the functoidh Sp satisfies, in
addition to the classical causality property and the otassime-slice axiom, the locality property stating
that for any morphisn# in PrBuGlobHyp" (") the morphismihSp® (F) in PreSymp is injective. Due to
Remarks.6this is not the case for the functiithSp constructed in Sectioh Composing the charge-zero
phase space functor with tr&e9i-functor we obtain a covariant funct@® that satisfies all axioms of
locally covariant quantum field theory, i.e. the quantumsedity property, the quantum time-slice axiom
and injectivity of2(°(F) for any morphismE” in PrBuGlobHypY ().

Let= = ((M,0,g,t),(G,h), (P,r)) be an object irPrBuGlobHyp?)) and £ the gauge invariant
vector space characterized in Theoréri. Notice that the vector subspage [Qad(M, g*)] C gnv

containsMW* [Qé(M, g*)] as a vector subspace as well as the electric charge obss\aftifheorent.4.
Hence, by considering the quotiefit := £™/F*[Q2 (M, g*)| we implement the equation of motion
and identify all electric charges with zero.

Lemma 7.1. Let = be an object irPrBuGlobHyp.
a) Thene® := &/ F* [0 4(M, g*)] can be equipped with the presymplectic structure
7080 % % =R, (¢l []) = 70 ([l [¥]) = (ov, Gy(Wv)), - (7.1)
In other Words,(é‘o, 70) is a presymplectic vector space.
b) The radical\V* of (£%,79) is

NO = [{w €EM L oy = o}} . (7.2)

Proof. This is a direct consequence of Theoréra O

Similar to Theorenb.5we obtain that the association of these presymplectic vsptces is functorial.

2 \We are very grateful to Jochen Zahn and Thomas-Paul Haclofonents which have led to this insight.
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Theorem 7.2. There is a covariant functaBhSp° : PrBuGlobHyp! (") — PreSymp. It associates to any
object= in PrBuGlobHypY ) the objecthGp®(Z) = (£°,7°) in PreSymp which has been constructed
in Lemma7.1. Given a morphisn#” : =; — =, between two objec;, i = 1,2, in PrBuGlobHyp" (! the
functor associates a morphism reSymp as follows

PHSP"(F) : PHSp®(E1) — PoSp°(Z2) , [¢] = [Fu(0)] (7.3)
where the linear mag is given in Definitiorb.4.
Proof. The proof follows by similar arguments as in the proof of Titeen5.5. O

By slightly modifying the proofs of Theorer®.7 and Theorenb.8it is easy to show that the covariant
functorP3hSp? : PrBuGlobHyp”(M) — PreSymp satisfies the classical causality property and the cldssica
time-slice axiom. In addition, we have have the following

Theorem 7.3. The covariant functog3hSp® : PrBuGlobHyp (") — PreSymp satisfies the locality prop-
erty:

Let F : 2, — =, be any morphism iffrBuGlobHyp" (!, then3hSp® (F) is injective.

Proof. Notice that any elemerity] € PhSp°(Z;) that satisfiedF,(¢)] = 0 is necessarily contained
in the radical\V? C PhSp°(Z;). Let us now assume thap] € A7 is such thafF,(¢)] = 0. By
Lemma7.1b) there exists a representatiyec T'5°(My,C(P;)") of [¢] that is of the formy = a1,
with a € C§°(My). The push-forward along’ of this representative is thefi.(a 11) = f (a) 12, where
f,(a) € C§°(M>) is the push-forward along : M; — M,. Since by hypothesi§F, (p)] = 0, the
representativef (a) 1 is equivalent to an element ifirivy, i.e. for somen € Q%’d(Mz,g*) andb €
C3e (M) satisfyinngZ volp b = 0, we havef (a) 1z = b1y + 5" (n). Comparing the linear parts of
both sides of the equality we obtadan = 0, i.e.n € Qad(Mg,g*) is both closed and coclosed. As a
consequence,l; ) () = 0, which due to normal hyperbolicity implies that= 0. We find f _(a) = b
and in particula0 = [, volz f (a) = [,, voli a. Thus,[¢] = [a11] = 0 sincea 1; € Trivy. O

Let us denote byPreSymp™ the subcategory oPreSymp where all morphisms are injective. We
have shown above the existence of the covariant furisip&p® : PrBuGlobHypY™ — PreSymp™.
Since thes ¢R-functor restricts to a covariant funct@ei : PreSymp™ — *Alg'™, where we have used
the obvious notation for the subcategory*@fig with injective morphisms, we obtain by composition a
covariant functor? : PrBuGlobHyp?” (") — *Alg™. The classical causality property and the classical
time-slice axiom extend via th&égR-functor to the quantum case, see eBDE12 Theorem 6.3]. The
main result of this section can be summarized as follows:

Theorem 7.4. The covariant functoRl? := ¢¢R o PHhSp° : PrBuGlobHyp? M) — *Alg™ is a locally
covariant quantum field theory, i.8(° satisfies the quantum causality property, the quantum sice-
axiom and the locality property.
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