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Abstract

We construct a covariant functor from a category of Abelian principal bundles over globally hyper-
bolic spacetimes to a category of∗-algebras that describes quantized principal connections. We work
within an appropriate differential geometric setting by using the bundle of connections and we study
the full gauge group, namely the group of vertical principalbundle automorphisms. Properties of our
functor are investigated in detail and, similar to earlier works, it is found that due to topological obstruc-
tions the locality property of locally covariant quantum field theory is violated. Furthermore, we prove
that, for Abelian structure groups containing a nontrivialcompact factor, the gauge invariant Borchers-
Uhlmann algebra of the vector dual of the bundle of connections is not separating on gauge equivalence
classes of principal connections. We introduce a topological generalization of the concept of locally
covariant quantum fields. As examples, we construct for the full subcategory of principalU(1)-bundles
two natural transformations from singular homology functors to the quantum field theory functor that
can be interpreted as the Euler class and the electric charge. In this case we also prove that the electric
charges can be consistently set to zero, which yields another quantum field theory functor that satisfies
all axioms of locally covariant quantum field theory.

Keywords: locally covariant quantum field theory, quantum field theoryon curved spacetimes, gauge
theory on principal bundles
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1 Introduction

The algebraic theory of quantum fields on Lorentzian manifolds has made tremendous developments since
the introduction of the principle of general local covariance by Brunetti, Fredenhagen and Verch [BFV03],
see also [FV12]. Mathematically, this principle states that any reasonable quantum field theory has to be for-
mulated by a covariant functor from a category of globally hyperbolic Lorentzian manifolds (spacetimes)
to a category of unital(C)∗-algebras, subject to certain physical conditions. Many examples of linear quan-
tum field theories satisfying the axioms of locally covariant quantum field theory have been constructed in
the literature, see e.g. [BGP07, BG11] and references therein. The mathematical tools which are used in
these constructions is the theory of normally hyperbolic and Dirac-type operators on vector bundles over
spacetimes together with theCCR andCAR quantization functors. In our previous work [BDS12] we
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have generalized these constructions to classes of operators on affine bundles over spacetimes. In addition
to these exactly tractable models, the techniques of locally covariant quantum field theory are essential
for the perturbative construction of interacting quantum field theories, see for example [BDF09], and the
generalization of the spin-statistics theorem from Minkowski spacetime to general spacetimes [Ver01].

One of the weak points of the current status of algebraic quantum field theory is our incomplete un-
derstanding of the formulation of gauge theories. Even though there exist important results on the quan-
tization of electromagnetism [Dim92, Pfe09, DL12, DS13, SDH12], linearized general relativity [FH12]
and generic linear gauge theories [HS12], as well as on the perturbative quantization of interacting gauge
theories [Hol08, FR13], there are still open problems that deserve a detailed study. In particular, there is up
to now no satisfactory formulation of quantized electromagnetism for the following two reasons: Firstly,
applying canonical quantization techniques it has been found that electromagnetism violates the locality
axiom of locally covariant quantum field theory. This has been shown for the field strength algebra in
[DL12] and for the vector potential algebra in [SDH12]. The latter reference also gives an interpretation
of this feature in terms of Gauss’ law. Secondly, the differential geometric developments over the past
decades indicate that the natural language for formulatinggauge theories of Yang-Mills type is that of
principal connections on principalG-bundles, which includes electromagnetism by choosingG = U(1).
Taking into account the principal bundle structure has far reaching consequences for the very principle
of general local covariance: Since principal connections can not be associated to spacetimes, but only to
principal bundles over spacetimes, the category of spacetimes in [BFV03] should be replaced by a category
of principal bundles over spacetimes. This notion of general local covariance for gauge theories of Yang-
Mills type appeared recently in the discussion of the locally covariant charged Dirac field [Zah12], where
however the principal connections were assumed to be non-dynamical background fields. Besides this new
notion of general local covariance in gauge theories of Yang-Mills type, the classical configuration space is
different to the one used in previous works: The set of principal connections does not carry a vector space
structure, but it is an affine space over the vector space of gauge potentials. The vector space structure em-
ployed in the works [Dim92, Pfe09, DS13, SDH12] comes from a (necessarily non-unique) fixing of some
reference connection, which is unnatural in differential geometry and leads to the unnecessary question of
independence of the theory on this choice [Hol08].

We outline the structure of our paper: In Section2 we fix the notations and review some aspects
of the theory of Abelian principal bundles and principal connections. This material is essentially well-
known in the differential geometry literature, but we require some details that go beyond standard textbook
presentations and hence are worth for being discussed. In particular, we need a full-fledged study of the
bundle of connections [Ati57] together with the action of principal bundle morphisms andthe gauge group
(the group of vertical principal bundle automorphisms) defined on it. Sections of the bundle of connections,
that is an affine bundle over the base space, are in bijective correspondence with principal connection forms
on the total space, but they have the advantage of being fieldson the base space and not on the total space.
This has far reaching consequences when one studies dynamical equations of connections and causality
properties, since the total space is not equipped with a Lorentzian metric.

In Section3 we associate to any Abelian principal bundle a gauge invariant phase space for its principal
connections by extending ideas from [BDS12] and [HS12]. Our notion of gauge invariance is dictated
by the principal bundle and in the general case differs from the one employed in [Dim92, Pfe09, DS13,
SDH12]. The phase space is not symplectic, but only a presymplectic vector space, whose radical contains
topological information to be discussed in Section6.

We characterize explicitly the gauge invariant phase spaceand its radical in Section4 by usingČech
cohomology. This leads to two interesting observations: Firstly, the gauge invariant phase space and its
radical for theories with a compact Abelian structure groupexhibit a different structure with respect to
their counterparts with a non-compact Abelian structure group. Secondly, if the Abelian structure group
contains a compact factor, then the gauge invariant phase space is not separating on gauge equivalence
classes of principal connections. In particular, gauge non-equivalent flat connections can not be resolved.
The reason for this feature is that our gauge invariant phasespace consists of affine functionals, but for
Abelian structure groups with compact factors the set of gauge equivalence classes of principal connections
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is in general no longer an affine space. This shows that in these cases the standard phase space of sections
of the vector dual of affine bundles introduced in [BDS12] has to be extended in order to be separating.
Natural candidates for this extension are Wilson loops, which are however too singular for a straightforward
description in algebraic quantum field theory. We hope to come back to this issue in future investigations.

The results above are combined in Section5 to construct a covariant functor from a category of Abelian
principal bundles over spacetimes to a category of presymplectic vector spaces. Composing this functor
with the usualCCR-functor we obtain a quantum field theory functor that satisfies the causality property
and the time-slice axiom. However, the locality property of[BFV03] is violated, confirming that the results
of [DL12, SDH12] also hold true in our principal bundle geometric approach.This result was not obvious
from the beginning, since our concept of morphisms and configuration space is different from the ones in
earlier investigations.

In Section6 we extend the concept of a locally covariant quantum field developed in [BFV03] to what
we call a ‘generally covariant topological quantum field’. By this we mean a natural transformation from
a functor describing topological information to the quantum field theory functor. For the full subcategory
of principalU(1)-bundles we provide two explicit examples where the functordescribing topological in-
formation is a singular homology functor. The natural transformations are then the coherent association of
observables that measure the Euler class of the principal bundle and the electric charge, that is a certain
cohomology class.

Following the electric charge interpretation of the previous section (see also [SDH12] for an earlier
account) we show in Section7 that the electric charges can be consistently set to zero. This is physically
motivated since in pure electromagnetism, without the presence of charged fields, there can not be electric
charges. The resulting quantum field theory functor then satisfies in addition to the causality property and
the time-slice axiom also the locality property. With this we succeed in constructing a locally covariant
quantum field theory.

2 Geometric preliminaries

In this work all manifolds will be of classC∞, Hausdorff and second-countable. If not stated otherwise,
maps between manifolds areC∞.

2.1 Spacetimes

We briefly review some standard notions of spacetimes, see [BGP07, BG11, Wal12] for a more detailed
discussion.

LetM be a manifold that for later convenience we assume to be offinite type, i.e.M possesses a finite
good coverU = {Uα}α∈I , with I finite. A Lorentzian manifold is a triple(M, o, g), whereM is a mani-
fold (of finite type),o is an orientation onM andg is a Lorentzian metric onM of signature(−,+, . . . ,+).
Given a time-orientationt on a Lorentzian manifold(M, o, g), we call the quadruple(M, o, g, t) a space-
time. Let (M, o, g, t) be a spacetime andS ⊆M be a subset. We denote thecausal future/pastof S inM
by J±

M (S). Furthermore,JM (S) := J+
M (S) ∪ J−

M (S). The subsetS ⊆ M is calledcausally compatible,
if J±

S ({x}) = J±
M ({x}) ∩ S, for all x ∈ S. A Cauchy surfacein a spacetime(M, o, g, t) is a subset

Σ ⊆ M , which is met exactly once by every inextensible causal curve. A spacetime(M, o, g, t) is called
globally hyperbolic, if it contains a Cauchy surface.

2.2 Abelian principal bundles

We briefly review standard notions of principal bundles and refer to the textbook [KN96] for more details.

Definition 2.1. LetM be a manifold andG a Lie group. Aprincipal G-bundle overM is a pair(P, r),
whereP is a manifold andr : P ×G→ P , (p, g) 7→ rg(p) =: p g is a smooth rightG-action, such that

(i) the rightG-actionr is free,
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(ii) M = P/G is the quotient of theG-actionr and the canonical projectionπ : P →M is smooth,

(iii) P is locally trivial, that is, there exists for everyx ∈ M an open neighborhoodU ⊆ M and a
diffeomorphismψ : π−1[U ] → U ×G, which isG-equivariant, i.e., for allp ∈ π−1[U ] andg ∈ G,
ψ(p g) = ψ(p) g, and fibre preserving, i.e.pr1 ◦ ψ = π. The rightG-action onU × G is given by,
for all x ∈ U andg, g′ ∈ G, (x, g) g′ := (x, g g′) andpr1 : U × G → U denotes the canonical
projection on the first factor.

We callP the total space, M thebase space, G thestructure group andπ theprojection.

Definition 2.2. LetMi be a manifold,Gi a Lie group and(Pi, ri) a principalGi-bundle overMi, i = 1, 2.
A principal bundle map is a pair of smooth mapsF =

(
f : P1 → P2, φ : G1 → G2

)
, such thatφ is a

homomorphism of Lie groups andf satisfies, for allp ∈ P1 andg ∈ G1, f(p g) = f(p)φ(g).

Remark 2.3. For every principal bundle mapF =
(
f : P1 → P2, φ : G1 → G2

)
there exists a unique

smooth mapf :M1 →M2, such that the following diagram commutes:

P1

π1
��

f
// P2

π2
��

M1

f
//M2

(2.1)

We now define a suitable category of Abelian principal bundles over spacetimes.

Definition 2.4. The categoryPrBuGlobHyp consists of the following objects and morphisms:

• An object inPrBuGlobHyp is a tripleΞ =
(
(M, o, g, t), (G,h), (P, r)

)
, where(M, o, g, t) is a glob-

ally hyperbolic spacetime,G is a connected Abelian Lie group with bi-invariant pseudo-Riemannian
metrich and(P, r) is a principalG-bundle overM .

• A morphism between two objectsΞi, i = 1, 2, in PrBuGlobHyp is a principal bundle mapF =
(
f :

P1 → P2, φ : G1 → G2

)
, such thatφ : G1 → G2 is an isometry andf :M1 →M2 is an orientation

and time-orientation preserving isometric embedding withf [M1] ⊆ M2 causally compatible and
open.

Remark 2.5. The categoryPrBuGlobHyp is quite big in the sense that it contains principal bundles for
all possible connected Abelian structure groups. In physics it might be of interest to study only the case
G = U(1) which corresponds to electromagnetism. This can be achieved by restricting all functors that we
will construct in this paper to the full subcategoryPrBuGlobHypG defined by the subcollection of objects
Ξ =

(
(M, o, g, t), (G,h), (P, r)

)
whereG is fixed. We have decided to include a bi-invariant pseudo-

Riemannian metrich on the structure groupG in the data of the category. This datum is equivalent to an
ad-invariant inner product (possibly indefinite) on the Lie algebrag of G, which is required to specify the
action functional and therewith a covariant Poisson bracket for the gauge theory.

LetM be a manifold,G a Lie group and(P, r) a principalG-bundle overM . For every manifoldN
with a smooth leftG-actionρ : G×N → N , (g, ξ) 7→ g ξ there exists a fibre bundle overM associated
to (P, r) with N as typical fibre: Consider the Cartesian productP × N and define the following right
G-actionP × N × G → P × N , (p, ξ, g) 7→ (p g, g−1 ξ). Denote byPN := (P × N)/G the quotient
of this rightG-action and define the mapπN : PN → M , [p, ξ] 7→ π(p), which is well-defined since
π(p g) = π(p), for all p ∈ P andg ∈ G. The data(PN ,M, πN , N) specifies a fibre bundle (the local
trivialization is shown to exist in [KN96]), which we call the(N, ρ)-associated bundle to(P, r).

Of particular relevance for us is the case whereN is the Lie algebrag of the Lie groupG andρ is the
adjoint actionad : G× g → g. The(g, ad)-associated bundle is called theadjoint bundle of the principal
bundle(P, r) and we denote it also by

(
ad(P ),M, πg, g

)
. We notice that the metrich on the Lie groupG

specifies a fibre metric on the adjoint bundle

ad(P )×M ad(P ) →M ×R , ([p, ξ], [p′, ξ′]) 7→ (π(p), h(ξ, ξ′)) . (2.2)
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Lemma 2.6. LetM be a manifold,G an Abelian Lie group and(P, r) a principalG-bundle overM . Then
ad(P ) =M × g, i.e. the adjoint bundle is trivial.

Proof. SinceG is Abelian the adjoint action is trivial, which impliesad(P ) = (P × g)/G = P/G × g =
M × g.

Any principal bundle mapF =
(
f : P1 → P2, φ : G1 → G2

)
induces a vector bundle map

(
Fad(P ) :

ad(P1) → ad(P2), f :M1 →M2

)
between the corresponding adjoint bundles, where

Fad(P ) : ad(P1) → ad(P2) , [p, ξ] 7→ [f(p), φ∗(ξ)] (2.3)

andφ∗ : g1 → g2 denotes the push-forward. Sinceφ is an isometry this vector bundle map preserves the
fibre metrics. By Lemma2.6 we have that for Abelian structure groupsad(Pi) = Mi × gi, i = 1, 2, and
thus (2.3) reads

FM×g :M1 × g1 →M2 × g2 , (x, ξ) 7→ (f(x), φ∗(ξ)) . (2.4)

We will now show that the association of the adjoint bundle isfunctorial.

Definition 2.7. The categoryVeBuGlobHyp consists of the following objects and morphisms:

• An object inVeBuGlobHyp is a pair
(
(M, o, g, t), (V,M, πV , V )

)
, where(M, o, g, t) is a globally

hyperbolic spacetime and(V,M, πV, V ) is a vector bundle overM .

• A morphism between two objects
(
(Mi, oi, gi, ti), (Vi,Mi, πiV, Vi)

)
, i = 1, 2, in VeBuGlobHyp is a

vector bundle map
(
f : V1 → V2, f : M1 →M2

)
, such thatf |x : V1|x → V2|f(x) is a vector space

isomorphism, for allx ∈ M1, andf : M1 → M2 is an orientation and time-orientation preserving
isometric embedding withf [M1] ⊆M2 causally compatible and open.

Lemma 2.8. There is a covariant functorAd : PrBuGlobHyp → VeBuGlobHyp. It is specified on objects
by Ad(Ξ) =

(
(M, o, g, t), (ad(P ),M, πg, g)

)
and on morphisms byAd(F ) = (Fad(P ), f), with Fad(P )

given in (2.3).

Proof. Let Ξ be an object inPrBuGlobHyp, thenAd(Ξ) =
(
(M, o, g, t), (ad(P ),M, πg, g)

)
is an object

in VeBuGlobHyp. Let F be a morphism inPrBuGlobHyp, thenAd(F ) = (Fad(P ), f) is a morphism in
VeBuGlobHyp, since the push-forwardφ∗ of the isometryφ is a vector space isomorphism.

For the identityidΞ =
(
idP : P → P, idG : G → G

)
we obtainidP = idM , φ∗ = idg and hence

by (2.3) it holds Ad(idΞ) = (idad(P ), idM ). For two morphismsF : Ξ1 → Ξ2 andF ′ : Ξ2 → Ξ3

in PrBuGlobHyp we obtainAd(F ′ ◦ F ) =
(
(F ′ ◦ F )ad(P ), (f

′ ◦ f)
)
=

(
F ′
ad(P ) ◦ Fad(P ), f

′ ◦ f
)
=

Ad(F ′) ◦ Ad(F ).

Remark 2.9. We can also associate functorially to any objectΞ in PrBuGlobHyp a vector bundle as
in VeBuGlobHyp equipped with the fibre metric (2.2) and to any morphismF in PrBuGlobHyp a vector
bundle map as inVeBuGlobHyp which preserves the fibre metrics. We refrain from introducing yet another
notation for a category of vector bundles with fibre metrics and remember this fact when necessary.

2.3 Principal connections

Connections on principal bundles constitute the fundamental degrees of freedom in gauge theories of Yang-
Mills type. In this subsection we will review the relevant definitions and properties following [KN96].

Definition 2.10. LetM be a manifold,G a Lie group and(P, r) a principalG-bundle overM . A connec-
tion form on (P, r) is ag-valued one-formω ∈ Ω1(P, g) satisfying:

(i) ω(Xξ
p) = ξ, for all ξ ∈ g andp ∈ P , whereXξ

p ∈ TpP is the fundamental vector atp corresponding
to ξ.
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(ii) r∗g(ω) = adg−1(ω), for all g ∈ G.

We denote the set of all connection forms byCon(P ).

Remark 2.11. Due to [KN96, Chapter II, Theorem 2.1] there exists a connection form, i.e.Con(P ) 6= ∅.

Definition 2.12. LetΩk(P, g) be the vector space ofg-valuedk-forms,k = 0, . . . ,dim(P ).

(i) We callη ∈ Ωk(P, g) G-equivariant, if r∗g(η) = adg−1(η), for all g ∈ G.

(ii) We call η ∈ Ωk(P, g) horizontal, if η(Y1, . . . , Yk) = 0 whenever at least oneYi ∈ TpP is vertical,
i.e.π∗(Yi) = 0.

The vector space ofG-equivariant and horizontalg-valuedk-forms is denoted byΩkhor(P, g)
eqv.

Proposition 2.13. LetM be a manifold,G an Abelian Lie group and(P, r) a principalG-bundle overM .
Then there exists a linear isomorphism betweenΩkhor(P, g)

eqv andΩk(M, g), for all k = 0, . . . ,dim(M).

Proof. Let η ∈ Ωkhor(P, g)
eqv be arbitrary. We define an elementη ∈ Ωk(M, g) by, for allX1, . . . ,Xk ∈

TxM , x ∈M ,

η(X1, . . . ,Xk) := η(Y1, . . . , Yk) , (2.5)

whereY1, . . . , Yk ∈ TpP are tangent vectors atp ∈ π−1[{x}], such thatπ∗(Yi) = Xi, for all i. Since
η is horizontal,η does not depend on the choice of suchYi. (We can in particular setYi = Xi

↑ω
p as the

horizontal lift ofXi with respect to some connection.) Due toG-equivariance the construction does not
depend on the choice ofp ∈ π−1[{x}].

Let nowη ∈ Ωk(M, g) be arbitrary and consider the pull-backη := π∗(η) ∈ Ωk(P, g). This element
isG-equivariant, since, for allg ∈ G, r∗g(η) = (π ◦ rg)

∗(η) = π∗(η) = η. It is also horizontal, since for
all Y1, . . . , Yk ∈ TpP with at least one vector vertical (this vector is annihilated byπ∗) we have

η(Y1, . . . , Yk) = η
(
π∗(Y1), . . . , π∗(Yk)

)
= 0 . (2.6)

These two identifications provide the desired vector space isomorphism.

Lemma 2.14. LetM be a manifold,G an Abelian Lie group and(P, r) a principalG-bundle overM . Let
us define the map

Φ : Con(P )× Ω1(M, g) → Con(P ) , (ω, η) 7→ Φ(ω, η) = ω + η . (2.7)

Then
(
Con(P ),Ω1(M, g),Φ

)
is an affine space.

Proof. The one-formω + η ∈ Ω1(P, g) is an element inCon(P ), sinceη is horizontal andG-equivariant.
The action (2.7) is free and transitive.

Definition 2.15. Let M be a manifold,G a Lie group and(P, r) a principalG-bundle overM . The
curvature is given by the following map

F : Con(P ) → Ω2
hor(P, g)

eqv , ω 7→ F(ω) = dω +
1

2
[ω, ω]g , (2.8)

whered is the exterior differential and[·, ·]g denotes the Lie bracket ong. In caseG is Abelian, the
curvature reads, for allω ∈ Con(P ), F(ω) = dω, since the Lie bracket is trivial.

Remark 2.16. Let G be an Abelian Lie group. Applying Proposition2.13we can consider equivalently
the curvature as a map

F : Con(P ) → Ω2(M, g) , ω 7→ F(ω) = F(ω) = dω . (2.9)

As a consequence of the (Abelian) Bianchi identitydF(ω) = ddω = 0, for all ω ∈ Con(P ), we obtain
thatF(ω) ∈ Ω2(M, g) is closed, for allω ∈ Con(P ).
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Lemma 2.17. LetM be a manifold,G an Abelian Lie group and(P, r) a principalG-bundle overM . The
mapF : Con(P ) → Ω2(M, g) is an affine map with linear partFV : Ω1(M, g) → Ω2(M, g) , η 7→ dη.

Proof. Let ω ∈ Con(P ) andη ∈ Ω1(M, g) be arbitrary, then

F(ω + η) = dω + dη = F(ω) + dπ∗(η) = F(ω) + π∗(dη) = F(ω) + dη . (2.10)

2.4 The Atiyah sequence

We present the Atiyah sequence only for Abelian principal bundles and refer to [Ati57] for the general case.
Let us consider the tangent bundle

(
TP,P, πTP ,R

dim(P )
)

overP . On the total spaceTP there is a right
G-action in terms of the push-forward of tangent vectors

r∗ : TP ×G→ TP , (Y, g) 7→ rg ∗(Y ) . (2.11)

For anyY ∈ TpP we haverg ∗(Y ) ∈ Tp gP and henceπTP ◦ rg ∗ = rg ◦ πTP , for all g ∈ G. In
other words,πTP : TP → P is G-equivariant. As a consequence, we can define the quotient bundle(
TP/G,P/G, π ◦ πTP ,R

dim(P )
)
, which is a vector bundle overM = P/G. We denote the projection of

this vector bundle byπTP/G := π ◦ πTP .

The push-forward ofπ : P → M gives a vector bundle map from the tangent bundle overP to the
tangent bundle

(
TM,M, πTM ,R

dim(M)
)

overM , i.e. the following diagram commutes:

TP

πTP

��

π∗
// TM

πTM

��

P
π

//M

(2.12)

Sinceπ ◦ rg = π, for all g ∈ G, and thus alsoπ∗ ◦ rg ∗ = (π ◦ rg)∗ = π∗, for all g ∈ G, we can perform
the quotient byG and obtain the vector bundle map (denoted with a slight abuseof notation by the same
symbol):

TP/G

πTP/G

��

π∗
// TM

πTM

��

M
idM

//M

(2.13)

There is also a vector bundle map from the adjoint bundle (remember thatad(P ) = M × g sinceG is
Abelian, cf. Lemma2.6)

(
M × g,M,pr1, g

)
to

(
TP/G,M, πTP/G,R

dim(P )
)
:

M × g

pr1
��

ι
// TP/G

πTP/G

��

M
idM

//M

(2.14)

The mapι is defined by, for all(x, ξ) ∈M×g, ι(x, ξ) :=
[
Xξ
p

]
, whereXξ

p ∈ TpP is the fundamental vector
corresponding toξ andp ∈ π−1[{x}] is arbitrary. Indeed, the mapι is well-defined, since for any other

p′ ∈ π−1[{x}] there exists ag ∈ G, such thatp′ = p g and hence
[
Xξ
p′

]
=

[
Xξ
p g

]
=

[
rg ∗(X

adg(ξ)
p )

]
=[

rg ∗(X
ξ
p)
]
=

[
Xξ
p

]
, where we have again used thatG is Abelian.

Consider now also the trivial vector bundle
(
M × {0},M,pr1, {0}

)
and the following two vector

bundle maps

M × {0}

pr1
��

α
//M × g

pr1
��

M
idM

//M

(2.15a)
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with α(x, 0) = (x, 0), for all x ∈M , and

TM

πTM

��

β
//M × {0}

pr1
��

M
idM

//M

(2.15b)

with β(X) = (πTM (X), 0), for allX ∈ TM .

Composing (2.15a), (2.14), (2.13) and (2.15b) we obtain the following sequence of vector bundle maps
(we can drop the base space maps since they are all given byidM )

M × {0}
α

//M × g
ι

// TP/G
π∗

// TM
β

//M × {0} . (2.16)

This is theAtiyah sequence[Ati57]. For completeness, we review the following

Proposition 2.18. The Atiyah sequence (2.16) is a short exact sequence.

Proof. First, we have to show that the composition of two subsequentmaps is the trivial map, i.e. the vector
bundle map which restricted to all fibres is0. For ι ◦ α this property holds true due to linearity. Let now
(x, ξ) ∈ M × g, thenπ∗(ι(x, ξ)) = π∗(X

ξ
p) = 0, sinceXξ

p is by construction a vertical vector. Forβ ◦ π∗
this property holds trivially.

Next, we have to prove exactness at every step: Let(x, ξ) ∈ M × g be such thatι(x, ξ) = [Xξ
p ] = 0.

This implies thatXξ
p = 0 and sinceX•

p is a vector space isomorphism betweeng and vertical vectors
at p ∈ P we find ξ = 0. Let now [Y ] ∈ TP/G|x be such thatπ∗([Y ]) = 0. This implies that any
representativeY ∈ TpP (wherep ∈ π−1[{x}]) is vertical and due to the aforementioned isomorphism
there exists aξ ∈ g, such thatι(x, ξ) = [Xξ

p ] = [Y ]. For the last step letX ∈ TxM be such that
β(X) = (x, 0). This condition is satisfied for allX. Using a local trivialization ofP we can liftX ∈ TxM
to a vectorX̂ ∈ TpP (wherep ∈ π−1[{x}]), such thatπ∗(X̂) = X. The equivalence class[X̂] ∈ TP/G|x
is the element which proves exactness at this step.

Similar to Lemma2.8, one can show that all vector bundles appearing in the Atiyahsequence (2.16) are
assigned by a covariant functor fromPrBuGlobHyp toVeBuGlobHyp. We do not repeat all the steps in this
proof and just give an explicit expression for the induced maps: LetF =

(
f : P1 → P2, φ : G1 → G2

)

be a morphism between two objectsΞi =
(
(Mi, oi, gi, ti), (Gi, hi), (Pi, ri)

)
, i = 1, 2, in PrBuGlobHyp.

Then the induced vector bundle maps (coveringf ) are given by

FM×{0} :M1 × {0} →M2 × {0} , (x, 0) 7→ (f(x), 0) , (2.17a)

FM×g :M1 × g1 →M2 × g2 , (x, ξ) 7→ (f(x), φ∗(ξ)) , (2.17b)

FTP/G : TP1/G1 → TP2/G2 , [Y ] 7→ [f∗(Y )] , (2.17c)

FTM : TM1 → TM2 , X 7→ f
∗
(X) . (2.17d)

Notice further that forαi, ιi, πi ∗, βi denoting the vector bundle maps in the Atiyah sequence (2.16) for the
objectΞi in PrBuGlobHyp, i = 1, 2, we obtain the commuting diagram:

M1 × {0}

FM×{0}

��

α1
//M1 × g1

FM×g

��

ι1
// TP1/G1

FTP/G

��

π1 ∗
// TM1

FTM

��

β1
//M1 × {0}

FM×{0}

��

M2 × {0}
α2

//M2 × g2
ι2

// TP2/G2
π2 ∗

// TM2
β2

//M2 × {0}

(2.18)
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2.5 The bundle of connections

We show that the affine space of connections
(
Con(P ),Ω1(M, g),Φ

)
constructed in Lemma2.14 is iso-

morphic to the affine space of sections of an affine bundle overM .

Consider the bundle
(
Hom(TM,TP/G),M, πHom(TM,TP/G),HomR(R

dim(M),Rdim(P ))
)

of homo-
morphisms, that is a vector bundle. Sections of this bundle are in bijective correspondence with vector
bundle maps

(
λ : TM → TP/G, idM :M →M

)
. We say that such a vector bundle map is asplitting of

the Atiyah sequence(2.16), if π∗ ◦ λ = idTM . These splittings can be described equivalently by sections
of a subbundle ofHom(TM,TP/G).

Definition 2.19. Thebundle of connections
(
C(P ),M, πC(P ), A

)
is the subbundle of the homomorphism

bundle
(
Hom(TM,TP/G),M, πHom(TM,TP/G),HomR(R

dim(M),Rdim(P ))
)

specified by the submani-
fold C(P ) :=

{
λ ∈ Hom(TM,TP/G) : π∗ ◦ λ = idTM

}
.

Remark 2.20. The typical fibreA is the set of all linear mapsL ∈ HomR(R
dim(M),Rdim(P )) satisfying

π̃∗ ◦ L = id
Rdim(M) , whereπ̃∗ ∈ HomR(R

dim(P ),Rdim(M)) is given in a basis{ei ∈ R
dim(M) : i =

1, . . . ,dim(M)} and{Ea ∈ R
dim(P ) : a = 1, . . . ,dim(P )} by

π̃∗(Ea) =

{
ei , for a = i ∈ {1, . . . ,dim(M)} ,

0 , else.
(2.19)

Notice thatA is an affine space modeled onHomR(R
dim(M),Rdim(P )−dim(M)), which is the typical fibre

of the homomorphism bundleHom(TM,M × g).

We define affine bundles following [KMS93, Chapter 6.22] and [BDS12].

Definition 2.21. An affine bundle is a triple
(
M, (A,M, πA, A), (V,M, πV, V )

)
, whereM is a manifold,

(A,M, πA, A) is a fibre bundle overM and(V,M, πV, V ) is a vector bundle overM , such that

(i) for all x ∈M , the fibreA|x is an affine space modeled onV|x,

(ii) the typical fibreA is an affine space modeled on the typical fibreV ,

(iii) for all x ∈ M , there exists a local bundle chart(U,ψ) of (A,M, πA, A) and a local vector bundle
chart(U,ψV) of (V,M, πV, V ), such that, for ally ∈ U , ψ|y : A|y → A is an affine space isomor-
phism with linear partψ|yV = ψV|y : V|y → V . We call the triple(U,ψ, ψV) a local affine bundle
chart.

Proposition 2.22. LetM be a manifold,G an Abelian Lie group and(P, r) a principal G-bundle over
M . The bundle of connections

(
C(P ),M, πC(P ), A

)
is an affine bundle modeled on

(
Hom(TM,M ×

g),M, πHom(TM,M×g),HomR(R
dim(M),Rdim(g))

)
.

Proof. Using the vector bundle embeddingι (see (2.16)) we can considerHom(TM,M × g) as a vector
subbundle of the homomorphism bundleHom(TM,TP/G). By definition, the bundle of connections is
also a subbundle ofHom(TM,TP/G). The vector space structure on the fibres ofHom(TM,TP/G)
induces an affine space structure on the fibres ofC(P ) with underlying vector space given by the fibres of
Hom(TM,M × g). By Remark2.20, the typical fibreA is an affine space modeled on the typical fibre
HomR(R

dim(M),Rdim(g)) of Hom(TM,M × g). The local vector bundle charts ofHom(TM,TP/G)
induce the required local affine bundle charts.

By [BDS12, Lemma 2.20], the set of sectionsΓ∞(M, C(P )) of the bundle of connections is an
affine space modeled on theC∞(M)-moduleΓ∞(M,Hom(TM,M × g)). The latter is isomorphic (as a
C∞(M)-module) to theg-valued one-forms onM , i.e.Ω1(M, g). Hence,

(
Γ∞(M, C(P )),Ω1(M, g), Φ̃

)

is an affine space, with actioñΦ : Γ∞(M, C(P )) × Ω1(M, g) → Γ∞(M, C(P )) given by, for allλ ∈
Γ∞(M, C(P )), η ∈ Ω1(M, g) andX ∈ TxM , x ∈M ,

(
Φ̃(λ, η)

)
(X) := λ(X) + ι

(
x, η(X)

)
. (2.20)
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Proposition 2.23.
(
Γ∞(M, C(P )),Ω1(M, g), Φ̃

)
and

(
Con(P ),Ω1(M, g),Φ

)
(cf. Lemma2.14) are iso-

morphic as affine spaces.

Proof. Let ω ∈ Con(P ) be arbitrary. We define an elementλω ∈ Γ∞(M, C(P )) by, for allX ∈ TxM ,
x ∈M ,

λω(X) := [X↑ω
p ] , (2.21)

wherep ∈ π−1[{x}] andX↑ω
p ∈ TpP denotes the horizontal lift atp with respect toω. By definition we

have thatπ∗
(
λω(X)

)
= X. The equivalence class[X↑ω

p ] is independent on the choice ofp, since for any

otherp′ ∈ π−1[{x}] there exists ag ∈ G, such thatp′ = p g and henceX↑ω
p′ = X↑ω

p g = rg ∗(X
↑ω
p ). The

last equality follows from theG-equivariance of the horizontal subspaces,π∗(rg ∗(X
↑ω
p )) = X and the

uniqueness of the horizontal lift.

Let nowλ ∈ Γ∞(M, C(P )) andY ∈ TpP with p ∈ π−1[{x}], x ∈ M , be arbitrary. By the splitting
lemma, the element[Y ] ∈ TP/G|x can be decomposed uniquely as[Y ] = ι(x, ξ)+λ(X) = [Xξ

p ]+λ(X),
whereξ ∈ g andX ∈ TxM . For the fixed elementp ∈ π−1[{x}], there exist unique representatives
Xξ
p ∈ TpP of [Xξ

p ] andX↑
p ∈ TpP of λ(X), such thatY = Xξ

p +X↑
p . We defineωλ ∈ Ω1(P, g) by setting

ωλ(Y ) = ωλ(X
ξ
p +X↑

p ) = ξ . (2.22)

Condition (i) of Definition2.10 is satisfied. Furthermore,ωλ is G-equivariant (sinceG is Abelian this
meansG-invariant), for allY ∈ TpP ,

(
r∗g(ωλ)

)
(Y ) = ωλ

(
rg ∗(Y )

)
= ωλ(X

ξ
p g +X↑

p g) = ξ = ωλ(Y ) . (2.23)

This shows thatωλ ∈ Con(P ). The maps defined above provide a bijection betweenCon(P ) and
Γ∞(M, C(P )).

We now show that they are also affine space isomorphisms. Letω ∈ Con(P ), η ∈ Ω1(M, g) and
considerω′ := Φ(ω, η) = ω + η ∈ Con(P ). The corresponding elementλω′ ∈ Γ∞(M, C(P )) is defined

by, for allX ∈ TxM , λω′(X) = [X
↑ω′
p ], with p ∈ π−1[{x}] arbitrary. Using thatX↑ω′

p = X↑ω
p +Xξ

p for
someξ ∈ g, we find

0 = ω′
(
X

↑ω′
p

)
= ω(X

↑ω′
p ) + η(X

↑ω′
p ) = ω(X↑ω

p +Xξ
p) + η(X) = ξ + η(X) , (2.24)

henceξ = −η(X). We obtain

λΦ(ω,η)(X) = [X
↑ω′
p ] = [X↑ω

p +Xξ
p ] = λω(X) + [Xξ

p ]

= λω(X) + ι(x, ξ) = λω(X)− ι(x, η(X))

=
(
Φ̃(λω,−η)

)
(X) , (2.25)

which shows that the isomorphismλ• : Con(P ) → Γ∞(M, C(P )) , ω 7→ λω is an affine space isomor-
phism with linear partΩ1(M, g) → Ω1(M, g) , η 7→ −η.

Corollary 2.24. The map (denoted with a slight abuse of notation by the same symbol as the map in Lemma
2.17)

F : Γ∞(M, C(P )) → Ω2(M, g) , λ 7→ F(λ) := F(ωλ) (2.26)

is an affine differential operator in the sense of [BDS12, Section 3] with linear partFV : Ω1(M, g) →
Ω2(M, g) , η 7→ −dη.

Proof. Combining Proposition2.23 and Lemma2.17 we obtain, for allλ ∈ Γ∞(M, C(P )) and η ∈
Ω1(M, g),

F
(
Φ̃(λ, η)

)
= F(ω

Φ̃(λ,η)
) = F(Φ(ωλ,−η)) = F(ωλ)− dη = F(λ)− dη . (2.27)
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2.6 Morphisms and gauge transformations of connections

In this subsection we study in detail how morphisms inPrBuGlobHyp act on the bundle of connections.
This will eventually lead to a functor fromPrBuGlobHyp to a categoryAfBuGlobHyp of affine bundles.
Finally, we focus on a special class of morphisms, namely that of gauge transformations.

We have seen in (2.17) that all vector bundles in the Atiyah sequence are obtainedby covariant func-
tors fromPrBuGlobHyp to VeBuGlobHyp. Let us also consider the homomorphism bundles entering
the bundle of connections, i.e.

(
Hom(TM,TP/G),M, πHom(TM,TP/G),HomR(R

dim(M),Rdim(P ))
)

and(
Hom(TM,M × g),M, πHom(TM,M×g),HomR(R

dim(M),Rdim(g))
)
. Given two objectsΞi, i = 1, 2, and

a morphismF : Ξ1 → Ξ2 in PrBuGlobHyp we can induce from (2.17) the vector bundle maps (covering
f :M1 →M2)

FHom(TM,TP/G) : Hom(TM1, TP1/G1) → Hom(TM2, TP2/G2) ,

λ 7→ FTP/G ◦ λ ◦ F−1
TM , (2.28a)

FHom(TM,M×g) : Hom(TM1,M1 × g1) → Hom(TM2,M2 × g2) ,

η 7→ FM×g ◦ η ◦ F
−1
TM . (2.28b)

Explicitly, (2.28a) mapsλ ∈ Hom(TM1, TP1/G1)|x toFHom(TM,TP/G)(λ) = FTP/G|x ◦ λ ◦ FTM |−1
x ∈

Hom(TM2, TP2/G2)|f(x), which is well-defined sinceFTM |x is a vector space isomorphism. Restricting
the vector bundle maps (2.28a) and (2.28b) to fibres provides vector space isomorphisms, since by the
hypotheses of Definition2.4 alsoFTP/G|x andFM×g|x are vector space isomorphisms, for allx ∈ M1.
As a consequence, these homomorphism bundles are obtained by covariant functors fromPrBuGlobHyp
to VeBuGlobHyp.

Also the bundle of connections of Proposition2.22is obtained functorially.

Definition 2.25. The categoryAfBuGlobHyp consists of the following objects and morphisms:

• An object inAfBuGlobHyp is a triple
(
(M, o, g, t), (A,M, πA , A), (V,M, πV , V )

)
, where(M, o, g, t)

is a globally hyperbolic spacetime and(A,M, πA, A) is an affine bundle overM modeled on the vec-
tor bundle(V,M, πV, V ).

• A morphism between two objects
(
(Mi, oi, gi, ti), (Ai,Mi, πiA, Ai), (Vi,Mi, πiV, Vi)

)
, i = 1, 2, in

AfBuGlobHyp is a fibre bundle map
(
f : A1 → A2, f :M1 →M2

)
, such thatf |x : A1|x → A2|f(x)

is an affine space isomorphism, for allx ∈ M1, andf : M1 → M2 is an orientation and time-
orientation preserving isometric embedding withf [M1] ⊆M2 causally compatible and open.

Remark 2.26. Every morphism(f, f) in AfBuGlobHyp determines a unique vector bundle map between
the underlying vector bundles (that is a morphism inVeBuGlobHyp) by taking fibre-wise the linear part.
We call this vector bundle map with a slight abuse of notationthe linear part of(f, f) and denote it by
(fV , f).

Proposition 2.27. There is a covariant functorC : PrBuGlobHyp → AfBuGlobHyp. It associates to any
objectΞ in PrBuGlobHyp the bundle of connections (cf. Proposition2.22). To any morphismF : Ξ1 → Ξ2

in PrBuGlobHyp the functor associates the restriction of the vector bundlemap (2.28a) to the bundles of
connections. The linear part is (2.28b)

Proof. The nontrivial step is to show that (2.28a) restricts to a morphism between the bundles of connec-
tions. We define the induced fibre bundle map (coveringf )

FC(P ) : C(P1) → Hom(TM2, TP2/G2) ,

λ 7→ FTP/G ◦ λ ◦ F−1
TM (2.29)
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and obtain, for allλ ∈ C(P1),

π2∗ ◦ FC(P )(λ) = π2∗ ◦ FTP/G ◦ λ ◦ F−1
TM = FTM ◦ π1∗ ◦ λ ◦ F−1

TM

= FTM ◦ F−1
TM = idTM2 , (2.30)

where we used in the second equality (2.18) and in the third equality thatλ is a splitting of the Atiyah
sequence. This implies thatFC(P ) : C(P1) → C(P2) is a fibre bundle map coveringf .

It remains to show that the restrictionsFC(P )|x : C(P1)|x → C(P2)|f(x) are affine space isomorphisms,
for all x ∈M1. We obtain, for allλ ∈ C(P1)|x andη ∈ Hom(TM1,M1 × g1)|x,

FC(P )

(
λ+ ι1 ◦ η

)
= FTP/G ◦ (λ+ ι1 ◦ η) ◦ F

−1
TM = FC(P )(λ) + ι2 ◦ FM×g ◦ η ◦ F

−1
TM

= FC(P )(λ) + ι2 ◦ FHom(TM,M×g)(η) , (2.31)

where in the second equality we have used again (2.18) and in the last one (2.28b). Fibre-wise invertibility
follows from the fibre-wise invertibility of (2.28a) and (2.28b).

Remark 2.28. A morphismF : Ξ1 → Ξ2 in PrBuGlobHyp acts via pull-back on sections of the bundle
of connections,F ∗ : Γ∞(M2, C(P2)) → Γ∞(M1, C(P1)) , λ 7→ F ∗(λ) = F−1

C(P ) ◦ λ ◦ f . A short
calculation shows compatibility with the affine space structure (2.20), for all λ ∈ Γ∞(M2, C(P2)) and
η ∈ Ω1(M2, g2),

F ∗
(
Φ̃2(λ, η)

)
= Φ̃1

(
F ∗(λ), f ∗(φ−1

∗ (η))
)
, (2.32)

wheref∗ is the pull-back of differential forms alongf : M1 → M2 andφ−1
∗ (η) ∈ Ωk(M2, g1) is defined

by, for allX1, . . . ,Xk ∈ TxM2, x ∈M2,
(
φ−1
∗ (η)

)
(X1, . . . ,Xk) := φ−1

∗

(
η(X1, . . . ,Xk)

)
.

We now study in detail a special, however very important, class of morphisms.

Definition 2.29. LetM be a manifold,G a Lie group and(P, r) a principalG-bundle overM . A gauge
transformation is aG-equivariant diffeomorphismf : P → P , such thatf = idM . We denote by
Gau(P ) the group of all gauge transformations of(P, r), where the group operation is given by the usual
composition of morphisms.

Notice that wheneverΞ =
(
(M, o, g, t), (G,h), (P, r)

)
is an object inPrBuGlobHyp, a gauge transfor-

mationf ∈ Gau(P ) is an automorphismF = (f, idG) in the same category.

Lemma 2.30. LetM be a manifold,G an Abelian Lie group and(P, r) a principal G-bundle overM .
Then there is a group isomorphism betweenGau(P ) andC∞(M,G), where the latter group is equipped
with the point-wise group operation.

Proof. Let f ∈ Gau(P ) be arbitrary. Then there exists a uniquef̃ ∈ C∞(P,G), such thatf(p) = p f̃(p),
for all p ∈ P . Sincef isG-equivariant andG is Abelian we obtain that̃f isG-invariant, i.e.f̃(p g) = f̃(p),
for all g ∈ G and p ∈ P . Hence, it canonically induces a uniquêf ∈ C∞(M,G) on the quotient
M = P/G. Vice versa, for anŷf ∈ C∞(M,G) we define an elementf ∈ Gau(P ) by f(p) = p f̂(π(p)),
for all p ∈ P . This bijection is a group isomorphism, since for allf1, f2 ∈ Gau(P ) andp ∈ P ,

(
f1 ◦ f2

)
(p) = f1

(
p f̂2(π(p))

)
= f1(p) f̂2(π(p))

= p f̂1(π(p)) f̂2(π(p)) = p (f̂1 f̂2)(π(p)) . (2.33)

By Remark2.28we obtain that a gauge transformationf ∈ Gau(P ) acts onλ ∈ Γ∞(M, C(P )) via

f∗(λ) = f−1
TP/G ◦ λ , (2.34)
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where we have used thatfTM = idTM and f = idM for f ∈ Gau(P ). Notice that, for allλ ∈

Γ∞(M, C(P )) andη ∈ Ω1(M, g), f∗
(
Φ̃(λ, η)

)
= Φ̃

(
f∗(λ), η

)
, i.e. gauge transformations have trivial

linear parts.

The next proposition provides a characterization of the action of gauge transformations onΓ∞(M, C(P ))
in terms of the Abelian group actioñΦ of elements inΩ1(M, g).

Proposition 2.31. LetM be a manifold,G an Abelian Lie group and(P, r) a principalG-bundle overM .
For anyf ∈ Gau(P ) andλ ∈ Γ∞(M, C(P )) the following identity holds true

f∗(λ) = Φ̃
(
λ, f̂−1 ∗(µG)

)
, (2.35)

whereµG ∈ Ω1(G, g) is the Maurer-Cartan form onG andf̂ ∈ C∞(M,G) is obtained fromf via Lemma
2.30.

Proof. LetX ∈ TxM , x ∈ M , be arbitrary. Let us fix anyp ∈ π−1[{x}] and pick from the equivalence
classλ(X) ∈ TP/G|x the unique elementY ∈ TpP . We have by definitionλ(X) = [Y ] and furthermore
it holds true thatπ∗(Y ) = X, sinceλ is a splitting of the Atiyah sequence. From (2.17) and (2.34) we
obtain

(
f∗(λ)

)
(X) =

[
f−1
∗ (Y )

]
. In order to computef−1

∗ (Y ) ∈ Tf−1(p)P let us definef̂ ∈ C∞(M,G)
according to Lemma2.30and introduce the mapκp : G → P , g 7→ p g. We obtain by usingf−1(p) =

p f̂−1(π(p)) = p f̂−1(x),

f−1
∗ (Y ) = r

f̂−1(x)∗
(Y ) +

(
κp ∗ ◦ f̂

−1
∗ ◦ π∗

)
(Y )

= r
f̂−1(x)∗

(Y ) + κp ∗
(
f̂−1
∗ (X)

)
= r

f̂−1(x)∗
(Y ) +X

f̂−1 ∗(µG)(X)
f−1(p)

, (2.36)

where the second term after the last equality denotes the fundamental vector atf−1(p) corresponding to
f̂−1 ∗(µG)(X) ∈ g. It follows that

(
f∗(λ)

)
(X) = [r

f̂−1(x)∗
(Y ) +X

f̂−1 ∗(µG)(X)
f−1(p)

]

= λ(X) + ι
(
x, f̂−1 ∗(µG)(X)

)
=

(
Φ̃(λ, f̂−1 ∗(µG))

)
(X) , (2.37)

which concludes the proof sinceX ∈ TxM was arbitrary.

3 The phase space for an object

Let Ξ =
(
(M, o, g, t), (G,h), (P, r)

)
be an object inPrBuGlobHyp,

(
C(P ),M, πC(P ), A

)
the associated

bundle of connections andΓ∞(M, C(P )) its sections. We denote the vector dual bundle (see [BDS12,
Definition 2.15]) by

(
C(P )†,M, π†C(P ), A

†
)

and its compactly supported sections byΓ∞
0 (M, C(P )†). The

aim of this section is to construct a gauge invariant phase space for dynamical principal connections onΞ.

Maxwell’s equations are described in our setting by the affine differential operator

MW := δ ◦ F : Γ∞(M, C(P )) → Ω1(M, g) , λ 7→ MW(λ) = δF(λ) , (3.1a)

whereδ is the codifferential andF is the curvature affine differential operator, see Corollary 2.24. The
linear part ofMW is given by (cf. Corollary2.24)

MWV : Ω1(M, g) → Ω1(M, g) , η 7→ MWV (η) = δFV (η) = −δdη . (3.1b)

Due to [BDS12, Theorem 3.5], the affine differential operatorMW is formally adjoinable to a differ-
ential operatorMW∗ : Ω1(M, g∗) → Γ∞(M, C(P )†), with g∗ denoting the dual of the Lie algebrag.
Explicitly, MW∗ is determined (up to the ambiguities to be discussed below) by the condition, for all
λ ∈ Γ∞(M, C(P )) andη ∈ Ω1

0(M, g∗),

〈η,MW(λ)〉 :=

∫

M
η ∧ ∗

(
MW(λ)

)
=

∫

M
vol

(
MW∗(η)

)
(λ) , (3.2)
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where∗ denotes the Hodge operator andvol the volume form. We will always suppress the duality pairing
betweeng∗ andg in order to simplify the notation.

As it is proven in [BDS12, Theorem 3.5], the formal adjoint differential operatorMW∗ : Ω1
0(M, g∗) →

Γ∞
0 (M, C(P )†) is not unique. Uniqueness is restored if we quotient out the trivial elements1

Triv :=
{
a1 ∈ Γ∞

0 (M, C(P )†) : a ∈ C∞
0 (M) satisfies

∫

M
vol a = 0

}
, (3.3)

i.e. if we consider the operatorMW∗ : Ω1
0(M, g∗) → Γ∞

0 (M, C(P )†)/Triv. By 1 ∈ Γ∞(M, C(P )†)
we denote the canonical section which associates to everyx ∈ M the normalized constant affine map in
the fibreC(P )†|x. The quotient byTriv does not influence the linear part ofMW∗(η): Indeed, for all
η ∈ Ω1

0(M, g∗), λ ∈ Γ∞(M, C(P )) andη′ ∈ Ω1(M, g),
∫

M
vol

(
MW∗(η)

)(
Φ̃(λ, η′)

)
=

〈
η,MW

(
Φ̃(λ, η′)

)〉

=
〈
η,MW(λ)− δdη′

〉

=

∫

M
vol

(
MW∗(η)

)
(λ) +

〈
−δdη, η′

〉
(3.4)

implies that the linear part isMW∗(η)V = −δdη, for all η ∈ Ω1
0(M, g∗).

The next step is to restrict to those elements inΓ∞
0 (M, C(P )†)/Triv that describe gauge invariant

observables. It is enlightening to introduce the vector space of classical affine observables{Oϕ : ϕ ∈
Γ∞
0 (M, C(P )†)/Triv}, whereOϕ is the functional on the configuration spaceΓ∞(M, C(P )) defined by

Oϕ : Γ∞(M, C(P )) → R , λ 7→ Oϕ(λ) =

∫

M
vol ϕ

(
λ
)
. (3.5)

Let f̂−1 ∈ C∞(M,G) ≃ Gau(P ) be an element in the gauge group (cf. Lemma2.30). As we have
shown in Proposition2.31, the gauge transformations onΓ∞(M, C(P )) are given byλ 7→ Φ̃

(
λ, f̂∗(µG)

)
.

Demanding invariance ofOϕ under gauge transformations, i.e.Oϕ

(
Φ̃
(
λ, f̂∗(µG)

))
= Oϕ(λ) for all λ ∈

Γ∞(M, C(P )) andf̂ ∈ C∞(M,G), leads to the following condition for the linear partϕV ∈ Ω1
0(M, g∗)

of ϕ ∈ Γ∞
0 (M, C(P )†)/Triv, for all f̂ ∈ C∞(M,G),

〈
ϕV , f̂

∗(µG)
〉
= 0 . (3.6)

This motivates us to define the following vector space

E inv :=
{
ϕ ∈ Γ∞

0 (M, C(P )†)/Triv :
〈
ϕV , f̂

∗(µG)
〉
= 0 , ∀f̂ ∈ C∞(M,G)

}
, (3.7)

which serves as a starting point to construct the phase space.

Lemma 3.1. a) For all ϕ ∈ E inv the linear partϕV ∈ Ω1
0(M, g∗) is coclosed, i.e.δϕV = 0.

b) All ϕ ∈ Γ∞
0 (M, C(P )†)/Triv satisfyingϕV = δη for someη ∈ Ω2

0(M, g∗) are elements inE inv.

Proof. Proof of a): AsG is by hypothesis a connected Abelian Lie group it is isomorphic to T
k × R

l,
see e.g. [Ada69, Theorem 2.19]. Denoting byxi, i = 1, . . . , l, Cartesian coordinates onRl and byφj ,
j = 1, . . . , k, angles onTk, the Maurer-Cartan form readsµG =

∑k
j=1 dφj ⊗R t

j +
∑l

i=1 dxi ⊗R t
k+i,

wheredφj denotes the dual1-form of the vector field∂φj (we follow the usual abuse of notation and denote
these forms bydφj, even though they are not exact!).

Let χ ∈ C∞(M, g) and consider the element of the gauge group specified byf̂χ := exp ◦χ ∈
C∞(M,G), whereexp : g → G denotes the exponential map. The pull-back of the Maurer-Cartan

1By trivial we mean that the corresponding classical affine observables (3.5), i.e. functionals on the configuration space
Γ∞(M, C(P )), vanish.
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form then readŝf∗χ(µG) = dχ. Letϕ ∈ E inv be arbitrary. Due to (3.7) the linear partϕV of ϕ satisfies, for
all χ ∈ C∞(M, g),

0 =
〈
ϕV , f̂

∗
χ(µG)

〉
= 〈ϕV ,dχ〉 = 〈δϕV , χ〉 , (3.8)

which impliesδϕV = 0.

Proof of b): For allf̂ ∈ C∞(M,G),
〈
ϕV , f̂

∗(µG)
〉
=

〈
δη, f̂∗(µG)

〉
=

〈
η,df̂∗(µG)

〉
=

〈
η, f̂∗(dµG)

〉
= 0 , (3.9)

since the Maurer-Cartan form of Abelian Lie groups is closed.

Corollary 3.2. Let us define the vector spaces

Emin :=
{
ϕ ∈ Γ∞

0 (M, C(P )†)/Triv : ϕV ∈ δΩ2
0(M, g∗)

}
, (3.10a)

Emax :=
{
ϕ ∈ Γ∞

0 (M, C(P )†)/Triv : ϕV ∈ Ω1
0,δ(M, g∗)

}
. (3.10b)

Then the following inclusions of vector spaces hold true

Emin ⊆ E inv ⊆ Emax . (3.11)

Remark 3.3. This corollary provides us with a lower and upper bound on thevector spaceE inv. Notice
that in caseM has a trivial first de Rham cohomology groupH1

dR(M, g) = {0} (which implies that
the dual cohomology group is trivialH1

0dR∗(M, g∗) := Ω1
0,δ(M, g∗)/δΩ2

0(M, g∗) = {0}), the lower and

upper bounds coincide, i.e.Emin = E inv = Emax. In general, the explicit characterization ofE inv is rather
complicated and will be postponed to Section4.

The equation of motionMW(λ) = 0 is implemented at a dual level onE inv by considering the quotient
vector spaceE inv/MW∗

[
Ω1
0(M, g∗)

]
. To construct a presymplectic structure on this space let usconsider

the Hodge-d’Alembert operators�(k) := δ ◦ d + d ◦ δ : Ωk(M, g∗) → Ωk(M, g∗), that are normally
hyperbolic operators. The corresponding unique retarded/advanced Green’s operators are denoted byG±

(k) :

Ωk0(M, g∗) → Ωk(M, g∗) and the causal propagators are defined byG(k) := G+
(k) −G−

(k) : Ω
k
0(M, g∗) →

Ωk(M, g∗). We notice the relations

�(k) ◦ d = d ◦�(k−1) , �(k) ◦ δ = δ ◦�(k+1) , (3.12a)

which imply

G±
(k) ◦ d = d ◦G±

(k−1) , G±
(k) ◦ δ = δ ◦G±

(k+1) . (3.12b)

TheG-invariant pseudo-Riemannian metrich on the Lie groupG determines anad-invariant inner product
(possibly indefinite) on the Lie algebrag and hence a vector space isomorphism (denoted with a slight
abuse of notation by the same symbol)h : g → g∗. We denote byh−1 : g∗ → g the inverse vector space
isomorphism. Using also the pairing〈 , 〉 we define for allη, η′ ∈ Ωk(M, g∗) with compact overlapping
support the non-degenerate (indefinite) inner product

〈
η, η′

〉
h
:=

〈
η, h−1(η′)

〉
. (3.13)

We notice that�(k) is formally self-adjoint with respect to〈 , 〉h and henceG(k) is formally skew-adjoint
with respect to〈 , 〉h for all elements inΩk0(M, g∗) (that is the domain ofG(k)).

Proposition 3.4. Let Ξ =
(
(M, o, g, t), (G,h), (P, r)

)
be an object inPrBuGlobHyp. Then the vector

spaceE := E inv/MW∗
[
Ω1
0(M, g∗)

]
can be equipped with the presymplectic structure

τ : E × E → R , ([ϕ], [ψ]) 7→ τ([ϕ], [ψ]) =
〈
ϕV , G(1)(ψV )

〉
h
. (3.14)

In other words,
(
E , τ

)
is a presymplectic vector space.
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Proof. We have to proof thatτ is well-defined, i.e. that for everyϕ = MW∗(η), η ∈ Ω1
0(M, g∗), we have〈

ϕV , G(1)(ψV )
〉
h
= 0 and

〈
ψV , G(1)(ϕV )

〉
h
= 0 for the linear partsψV of all elementsψ ∈ E inv. Lemma

3.1implies thatδψV = 0. The first property holds true:
〈
ϕV , G(1)(ψV )

〉
h
=

〈
MW∗(η)V , G(1)(ψV )

〉
h
= −

〈
δdη,G(1)(ψV )

〉
h

= −
〈
η, δdG(1)(ψV )

〉
h
= −

〈
η, (�(1) − dδ)

(
G(1)(ψV )

)〉
h

=
〈
η,dG(0)(δψV )

〉
h
= 0 . (3.15)

The second property follows analogously, sinceG(1) is formally skew-adjoint with respect to〈 , 〉h. From
the latter property it also follows thatτ is antisymmetric.

Remark 3.5. The presymplectic structure (3.14) can be derived from a Lagrangian form by generalizing
the method of Peierls [Pei52] to gauge theories. This generalization has already been studied in [Mar93]
and it was put on mathematically solid grounds recently in [SDH12] for the vector potential ofU(1)-
connections. Since in our approach the configuration spaceΓ∞(M, C(P )) is different, we have to adapt
the relevant arguments to our setting: Let us consider the Lagrangian formL[λ] := −1

2h
(
F(λ)

)
∧∗

(
F(λ)

)

and its perturbation by an elementϕ ∈ E inv, i.e.Lϕ[λ] := L[λ] + volϕ(λ). The Euler-Lagrange equa-
tion corresponding toLϕ is given byMW(λ) + h−1(ϕV ) = 0, whereϕV ∈ Ω1

0(M, g∗) is the linear
part of ϕ. Let us take anyλ ∈ Γ∞(M, C(P )) satisfyingMW(λ) = 0. The goal is to construct the
retarded/advanced effect ofϕ on this solution. LetΣ± ⊂ M be two Cauchy surfaces (withΣ+ be-
ing in the future ofΣ−) such thatsupp(ϕV ) ⊆ J−

M

(
Σ+

)
∩ J+

M

(
Σ−

)
(this means thatϕV has support

in the spacetime region betweenΣ+ andΣ−). We are looking for aλ±ϕ ∈ Γ∞(M, C(P )) satisfying

the equation of motionMW(λ±ϕ ) + h−1(ϕV ) = 0 andλ±ϕ |J∓
M (Σ∓) = Φ̃

(
λ, f̂∗±(µG)

)
|J∓

M (Σ∓) for some

f̂± ∈ C∞(M,G). The latter condition states thatλ±ϕ agrees up to a gauge transformation withλ in the
past/future ofΣ∓. SinceΓ∞(M, C(P )) is an affine space overΩ1(M, g) we find a uniqueη±ϕ ∈ Ω1(M, g)

such thatλ±ϕ = Φ̃(λ, η±ϕ ). The equations of motion forλ andλ±ϕ then imply−δdη±ϕ + h−1(ϕV ) = 0

and the asymptotic condition reads
(
η±ϕ − f̂∗±(µG)

)∣∣
J∓
M (Σ∓)

= 0 for somef̂± ∈ C∞(M,G). Since any

η±ϕ ∈ Ω1(M, g) is gauge equivalent to a coclosed one-form, we can assume without loss of generality that
η±ϕ satisfiesδη±ϕ = 0, and hence the equation of motion reads�(1)η

±
ϕ = h−1(ϕV ). For the support condi-

tion η±ϕ |J∓
M (Σ∓) = 0 (that is contained in the asymptotic condition above) the unique solution of this equa-

tion is η±ϕ = G±
(1)

(
h−1(ϕV )

)
= h−1

(
G±

(1)(ϕV )
)
. All solutions of the equation−δdη±ϕ + h−1(ϕV ) = 0

subject to the asymptotic condition
(
η±ϕ − f̂∗±(µG)

)∣∣
J∓
M (Σ∓)

= 0, for somef̂± ∈ C∞(M,G), are ob-

tained by gauge transformations ofη±ϕ = h−1
(
G±

(1)(ϕV )
)
. Let nowψ ∈ E inv and consider the gauge

invariant functionalOψ as in (3.5). The retarded/advanced effect ofϕ ∈ E inv on Oψ is defined by

E±
ϕ

(
Oψ

)
(λ) := Oψ(λ

±
ϕ ) − Oψ(λ) =

〈
ψV , η

±
ϕ

〉
=

〈
ψV , h

−1
(
G±

(1)(ϕV )
)〉

=
〈
ψV , G

±
(1)(ϕV )

〉
h
. No-

tice that this expression is well-defined sinceOψ is gauge invariant. The presymplectic structure (3.14) is
given by the difference of the retarded and advanced effect,i.e. τ([ψ], [ϕ]) = E+

ϕ

(
Oψ

)
(λ)−E−

ϕ

(
Oψ

)
(λ),

which agrees with the idea of Peierls [Pei52].

We come to the characterization of the radicalN ⊆ E of the presymplectic structureτ . An element
[ψ] ∈ E is inN if and only if, for all [ϕ] ∈ E , τ

(
[ϕ], [ψ]

)
= 0. In this section we will only provide a lower

and upper estimate for the vector spaceN . The explicit characterization will be content of Section4.

Lemma 3.6. a) Let[ψ] ∈ N be arbitrary. Then any representativeψ ∈ E inv is such thatψV = δα for
someα ∈ Ω2

0,d(M, g∗).

b) Letψ ∈ E inv be such thatψV = δdγ with γ ∈ Ω1
tc(M, g∗) anddγ ∈ Ω2

0(M, g∗). Then[ψ] ∈ N .
The subscripttc denotes forms of timelike compact support.

Proof. Proof of a): By hypothesis[ψ] satisfies, for all[ϕ] ∈ E ,

τ
(
[ϕ], [ψ]

)
=

〈
ϕV , G(1)(ψV )

〉
h
= 0 . (3.16)
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By Corollary3.2we have thatEmin ⊆ E inv and thus it is necessary for[ψ] to fulfill, for all η ∈ Ω2
0(M, g∗),

0 =
〈
δη,G(1)(ψV )

〉
h
=

〈
η,G(2)(dψV )

〉
h
. (3.17)

This implies thatG(2)(dψV ) = 0 and hence due to the fact thatG(2) is the causal propagator of a normally
hyperbolic operator we obtaindψV = �(2)(α) for someα ∈ Ω2

0(M, g∗). Applying d to this equation
shows thatdα = 0, i.e.α ∈ Ω2

0,d(M, g∗). Applying δ and using thatδψV = 0 (cf. Lemma3.1) we find
�(1)(ψV ) = �(1)(δα). This impliesψV = δα and completes the proof.

Proof of b): Let nowψ ∈ E inv be as specified above. Then we obtain, for all[ϕ] ∈ E ,

τ
(
[ϕ], [ψ]

)
=

〈
ϕV , G(1)(δdγ)

〉
h
=

〈
ϕV , δdG(1)(γ)

〉
h

=
〈
ϕV , (�(1) − dδ)

(
G(1)(γ)

)〉
h
= −

〈
ϕV ,dδG(1)(γ)

〉
h

= −
〈
δϕV , δG(1)(γ)

〉
h
= 0 , (3.18)

where in the second equality we have used that the domain ofG(1) can be extended toΩ1
tc(M, g∗) [SDH12]

and in the last equality thatδϕV = 0.

Corollary 3.7. Let us define the vector spaces

Nmin :=
{
ψ ∈ E inv : ψV ∈ δ

(
Ω2
0(M, g∗) ∩ dΩ1

tc(M, g∗)
)}/

MW∗
[
Ω1
0(M, g∗)

]
, (3.19a)

Nmax :=
{
ψ ∈ E inv : ψV ∈ δΩ2

0,d(M, g∗)
}/

MW∗
[
Ω1
0(M, g∗)

]
. (3.19b)

Then the following inclusions of vector spaces hold true

Nmin ⊆ N ⊆ Nmax ⊆ Emin ⊆ E ⊆ Emax . (3.20)

Remark 3.8. The radicalN of the theory under consideration is in general different from that of affine
matter field theories, see [BDS12, Proposition 4.4]. Even though the constant affine observables[a1], with
a ∈ C∞

0 (M), are contained inN , in general they do not exhaust all elements. The lower boundon N
given in Corollary3.7coincides with the radical obtained in [SDH12] (up to the constant affine observables
which are not present in this paper since it does not exploit the complete geometric structure of the bundle
of connections).

Remark 3.9. If M has compact Cauchy surfaces the vector spaceNmin is trivial. That this is not gener-
ically the case is shown by the following explicit example: Let us consider the case in whichG = R

(implying g∗ = R) andM is diffeomorphic toR2 × S
m−2, wherem > 2 andSm−2 denotes them− 2-

sphere (we suppress this diffeomorphism in the following).Any Cauchy surfaceΣ ⊆M is diffeomorphic
to R × S

m−2. SinceH1
0 dR(R) = R is nontrivial, we can find anα ∈ Ω1

0,d(R) that is not exact. Let us
introduce Cartesian coordinates(t, x) on theR2 factor ofM . We denote byαt ∈ Ω1

0,d(M) the pull-back
of α along the projection to the time directiont and byαx ∈ Ω1

0,d(M) the pull-back ofα along the pro-
jection to the space directionx. We defineη := αt ∧ αx. The support property ofα and the compatibility
betweend and the pull-backs entail thatη ∈ Ω2

0,d(M). Furthermore, sinceH1
dR(M) = {0}, there exists

a β ∈ C∞(M) such thatαx = −dβ, which impliesη = d(β αt), whereβ αt ∈ Ω1
tc(M). We now show

thatη /∈ dΩ1
0(M): Let νSm−2 be the normalized volume form onSm−2 and letpr : M → S

m−2 be the
projection fromM to S

m−2. Notice that the integral
∫
M η ∧ pr∗(νSm−2) =

( ∫
R
α
)2

6= 0, sinceα is not
exact. If there would exist aγ ∈ Ω1

0(M), such thatη = dγ, then by Stokes’ theorem the integral van-
ishes, which is a contradiction. Hence,η = d(β αt), with β αt ∈ Ω1

tc(M), defines a nontrivial element in
H2

0 dR(M). Furthermore,δη is a representative of a nontrivial class inNmin: Indeed, suppose that there
existsγ ∈ Ω1

0(M) such thatδη = δdγ. Using thatη is closed and of compact support, this equation entails
�(2)(η) = �(2)(dγ) which yields the contradictionη = dγ, since�(2) is a normally hyperbolic operator.
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4 Explicit characterization of E inv andN

So far we have obtained for the vector spacesE inv andN only upper and lower bounds, see Corollary3.2
and Corollary3.7. The goal of this section is to provide an explicit characterization ofE inv andN . For this
we have to understand more explicitly how the gauge groupGau(P ) ≃ C∞(M,G) acts onΓ∞(M, C(P )).
Due to Proposition2.31this amounts to characterizing the Abelian subgroup

{
f̂∗(µG) : f̂ ∈ C∞(M,G)

}
⊆ Ω1(M, g) . (4.1)

In the proof of Lemma3.1 we have shown that, for everyχ ∈ C∞(M, g), the mapf̂χ := exp ◦χ ∈

C∞(M,G) leads tof̂∗χ(µG) = dχ. Furthermore, since the exterior differential commutes with the pull-

back f̂∗ andµG is closed, we have that̂f∗(µG) ∈ Ω1
d(M, g). This implies the inclusions of Abelian

groups

dC∞(M, g) ⊆
{
f̂∗(µG) : f̂ ∈ C∞(M,G)

}
⊆ Ω1

d(M, g) (4.2)

and taking the quotient bydC∞(M, g) we are led to consider the Abelian subgroup

AG :=
{
f̂∗(µG) : f̂ ∈ C∞(M,G)

}
/dC∞(M, g) ⊆ H1

dR(M, g) . (4.3)

Lemma 4.1. Let us consider the following equivalence relation on the gauge groupC∞(M,G)

ĝ ∼ ĥ :⇔ ∃χ ∈ C∞(M, g) such that ĝ = ĥ f̂χ , (4.4)

wheref̂χ = exp ◦χ ∈ C∞(M,G). ThenC∞(M,G)/∼ is an Abelian group and the following map is an
isomorphism of Abelian groups

C∞(M,G)/∼ → AG , [f̂ ] 7→ [f̂∗(µG)] . (4.5)

Proof. C∞(M,G)/∼ is an Abelian group with group operation given by[f̂ ] [ĝ] := [f̂ ĝ]. The map (4.5) is
obviously a map of Abelian groups and it is well-defined, since for f̂ f̂χ we have(f̂ f̂χ)∗(µG) = f̂∗(µG)+

dχ. Surjectivity holds by definition ofAG and injectivity is shown as follows: Let[f̂ ] ∈ C∞(M,G)/∼ be
such that[f̂∗(µG)] = 0. This implies that for any representativêf the pull-back is exact,̂f∗(µG) = dχ for
someχ ∈ C∞(M, g). Considering the representativêf f̂−χ of the same class, we can set without loss of
generality χ = 0, i.e. f̂∗(µG) = 0. This implies, for allX ∈ TM , 0 =

(
f̂∗(µG)

)
(X) = µG

(
f̂∗(X)

)
and

since the Maurer-Cartan form is non-degenerate we obtain, for all X ∈ TM , f̂∗(X) = 0. It follows that
f̂ :M → G is the constant map and hence[f̂ ] is the identity of the groupC∞(M,G)/∼.

Remark 4.2. Due to this lemma the Abelian groupAG characterizes exactly the gauge transformations
which are not of exponential formexp ◦χ, for someχ ∈ C∞(M, g).

Since any connected Abelian Lie group is isomorphic toT
k×R

l, the mapf̂ ∈ C∞(M,G) is given by a
k+ l-tuple of maps

(
f̂1, . . . , f̂k+l

)
, wheref̂i ∈ C∞(M,T), for i = 1, . . . , k, andf̂i ∈ C∞(M,R), for i =

k+ 1, . . . , k+ l. The Abelian groupC∞(M,G)/∼ factorizes into the direct product
(
C∞(M,T)/∼

)k
×(

C∞(M,R)/∼
)l

, where∼ denotes respectively the equivalence relation of Lemma4.1 for G = T and
G = R. Furthermore, the Lie algebrag of G is given by the direct sum ofk copies of the Lie algebra
iR of T and l copies of the Lie algebraR of R, i.e. g = (iR)⊕k ⊕ R

⊕l . This allow for a splitting of
the cohomology group into a direct sumH1

dR(M, g) = H1
dR(M, iR)⊕k ⊕ H1

dR(M,R)⊕l . The Abelian
groupAG is thus given by a direct sum of Abelian groupsAG = A⊕k

T
⊕ A⊕l

R
(remember that the direct

product and direct sum of groups over a finite index set yield the same group). In this way the problem of
characterizingAG is reduced to the problem of characterizingAT andAR.

Proposition 4.3. AR = {0}.
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Proof. Since the Maurer-Cartan formµR = dx is exact (x is a Cartesian coordinate function onG = R),
for any f̂ ∈ C∞(M,G) the one-formf̂∗(µR) = df̂∗(x) is also exact. This impliesAR = {0}.

To characterizeAT we require techniques from̌Cech cohomology which we are going to review now,
see [BT82, §10] for more details. LetA be a presheaf of Abelian groups onM andU := {Uα}α∈I
a finite good cover, i.e.I is finite and all non-empty intersectionsUα1...αn := Uα1 ∩ · · · ∩ Uαn are
diffeomorphic toRdim(M). The existence of a finite good cover is part of our assumptions onM . A
p-cochain{ηα0...αp}α0<···<αp ∈ Cp(U ,A) is a collection of elementsηα0...αp ∈ A(Uα0...αp), for all
α0 < α1 < · · · < αp. For not having to keep track of the index orderings we followthe usual antisymme-
try convention to defineηα0...αp for all α0, α1, . . . , αp. TheČech differentiaľδ : Cp(U ,A) → Cp+1(U ,A)
is given by, for all{ηα0...αp} ∈ Cp(U ,A),

(δ̌η)α0...αp+1 =

p+1∑

i=0

(−1)i ηα0...α̂i...αp+1 , (4.6)

where on the right hand side the restriction ofηα0...α̂i...αp+1 to Uα0...αp+1 is suppressed. The cohomology
of the complex

C0(U ,A)
δ̌

// C1(U ,A)
δ̌

// C2(U ,A)
δ̌

// · · · (4.7)

is denoted byȞ∗(U ,A) and called thěCech cohomologyof the coverU with values inA.

For our purposes we shall require only the firstČech cohomology group̌H1(U ,A) for the constant
presheavesA = iR andA = 2πiZ. In these cases, on account of [BT82, Theorem 8.9 and Theorem 15.8],
Ȟ1(U ,A) does not depend on the choice of the good coverU . Furthermore, due toZ →֒ R there exists a
canonical injection of Abelian groups

Ȟ1(U , 2πiZ) → Ȟ1(U , iR) , [{ηαβ}] 7→ [{ηαβ}] , (4.8)

which we are going to suppress in the following. By [BT82, Theorem 8.9] there exists for any good
coverU an isomorphismH1

dR(M, iR) ≃ Ȟ1(U , iR). We also require an explicit expression for this
isomorphism: Let[η] ∈ H1

dR(M, iR) be arbitrary and take any representativeη ∈ Ω1
d(M, iR). Restricting

η to the open subsetsUα of the good cover,η|Uα ∈ Ω1
d(Uα, iR), there existχα ∈ C∞(Uα, iR), such

that η|Uα = dχα. Notice thatχα is not unique, since we can add arbitrary constant functionscα ∈ iR
on Uα, i.e. η|Uα = d(χα + cα) = dχα. On double intersectionsUαβ we have to satisfy the condition
dχα|Uαβ

= dχβ|Uαβ
, which implies thatηαβ := χα − χβ = const ∈ iR on Uαβ. It is easy to see

that (δ̌η)αβγ = 0 and hence[{ηαβ}] defines an element iňH1(U , iR). This element does not depend
on the choice ofχα, since forχ′

α = χα + cα with cα = const ∈ iR, we find thatη′αβ = χ′
α − χ′

β =

ηαβ + cα− cβ = ηαβ +(δ̌c)αβ . Furthermore, this element does not depend on the choice of representative
in the class[η] ∈ H1

dR(M, iR), since forη′ = η + dζ, with ζ ∈ C∞(M, iR), χ′
α = χα + ζ|Uα and hence

onUαβ , η′αβ = χ′
α − χ′

β = χα − χβ + ζ|Uαβ
− ζ|Uαβ

= ηαβ . For constructing the inverse of this map let

us take a partition of unity{ψα}α∈I subordinated to the good cover{Uα}α∈I . Let [{ηαβ}] ∈ Ȟ1(U , iR)
be arbitrary and take some representative{ηαβ}. Let us defineχα :=

∑
β∈I ηαβψβ ∈ C∞(Uα, iR) and

consider the local one-formsdχα ∈ Ω1
d(Uα, iR). On the double intersectionsUαβ we findχα − χβ =∑

γ∈I(ηαγ − ηβγ)ψγ = ηαβ
∑

γ∈I ψγ = ηαβ , where in the second equality we have used that(δ̌η)αβγ =
ηβγ − ηαγ + ηαβ = 0. It follows thatdχα|Uαβ

= dχβ|Uαβ
and hence the collection of local formsdχα

defines a global closed one-formη ∈ Ω1
d(M, iR) and an element[η] ∈ H1

dR(M, iR). The latter element
does not depend on the choice of representative in[{ηαβ}], since for{η′αβ} = {ηαβ + cα − cβ} we obtain
χ′
α =

∑
β∈I η

′
αβψβ = χα + cα −

∑
β∈I cβγβ = χα + cα + ζ|Uα , whereζ ∈ C∞(M, iR). This implies

thatdχ′
α = dχα+dζ|Uα and henceη′ = η+dζ. The two maps presented above are one the inverse of the

other and thus they provide the desired isomorphism.

Proposition 4.4. AT ≃ Ȟ1(U , 2πiZ).
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Proof. Consider an arbitrary element[f̂∗(µT)] ∈ AT ⊆ H1
dR(M, iR) and a representativêf ∈ C∞(M,T).

Let us restrictf̂ to the open subsetsUα of the good cover,f̂ |Uα ∈ C∞(Uα,T). Then f̂∗(µT)|Uα =
f̂ |∗Uα

(µT) = dχα are exact local one-forms, withχα ∈ C∞(Uα, iR). In the proof of Lemma4.1we have

shown that this implieŝf |Uα = exp ◦(χα + cα), for somecα ∈ iR. Redefiningχα by χα + cα we can
set without loss of generalitycα = 0. Sincef̂ is a global function we have to satisfy the consistency
conditions in the double intersectionŝf |Uαβ

= exp ◦χα|Uαβ
= exp ◦χβ|Uαβ

. This implies that onUαβ,

ηαβ := χα − χβ = const ∈ 2πiZ. Hence,[f̂∗(µT)] ∈ AT defines an element[{ηαβ}] ∈ Ȟ1(U , 2πiZ) ⊆

Ȟ1(U , iR). This element is independent on the representativef̂ we choose.

Let us now take an arbitrary element[{ηαβ}] ∈ Ȟ1(U , 2πiZ) ⊆ Ȟ1(U , iR) and a representative
{ηαβ}. TheČech-de Rham isomorphism provides us with local functionsχα :=

∑
β∈I ηαβψβ ∈ C∞(Uα, iR).

Let us define also the local functionŝfα := exp ◦χα ∈ C∞(Uα,T). On double intersections we have
f̂α|Uαβ

= exp ◦χα|Uαβ
= exp ◦(χβ + ηαβ)|Uαβ

= exp ◦χβ|Uαβ
= f̂β|Uαβ

, sinceηαβ ∈ 2πiZ. Thus, we

can construct a global function̂f ∈ C∞(M,T) and define an element[f̂∗(µT)] ∈ AT ⊆ H1
dR(M, iR).

This element does not depend on the choice of representative{ηαβ}. The two maps are one the inverse of
the other and provide the desired isomorphism.

Corollary 4.5. AG ≃ Ȟ1(U , 2πiZ)⊕k .

For providing an explicit characterization ofE inv we use that by assumptionM is of finite type withU
denoting a finite good cover. Following the arguments of [Voi07, Chapter 7.1.1] we obtain an isomorphism

Ȟ1(U , 2πiZ) ⊗ R ≃ Ȟ1(U , iR) . (4.9)

In the generic case whenM is not of finite type, this isomorphism receives correctionsfrom theExt and
Tor functors, see the universal coefficient theorems [BT82, §15]. Since most (if not all) physically relevant
globally hyperbolic spacetimes are of finite type (in particularM = R

m ×K with K compact is of finite
type), we are restricting ourselves to this case and therebyavoid the characterization of theExt andTor
parts.

Theorem 4.6. LetΞ =
(
(M, o, g, t), (G,h), (P, r)

)
be any object inPrBuGlobHyp (G ≃ T

k ×R
l). Then

the gauge invariant subspaceE inv (3.7) is given by

E inv =
{
ϕ ∈ Γ∞

0 (M, C(P )†)/Triv : ϕV ∈ δΩ2
0(M, iR)⊕k ⊕ Ω1

0,δ(M,R)⊕l
}
. (4.10)

Proof. By definition, E inv is the vector subspace ofΓ∞
0 (M, C(P )†)/Triv, such that the linear parts an-

nihilate {f̂∗(µG) : f̂ ∈ C∞(M,G)}. Due to Corollary3.2 we have thatE inv ⊆ Emax = {ϕ ∈
Γ∞
0 (M, C(P )†)/Triv : ϕV ∈ Ω1

0,δ(M, g∗)} and hence we can pair the linear parts of elementsϕ ∈ E inv

with cohomology classes[η] ∈ H1
dR(M, g), 〈ϕV , [η]〉 =

∫
M ϕV ∧ ∗(η). The gauge invariance condition

amounts to〈ϕV , AG〉 = {0}, for all ϕ ∈ E inv, and by Corollary4.5this is equivalent to
〈
ϕV , Ȟ

1(U , 2πiZ)⊕k
〉
= {0} . (4.11)

SinceH1
dR(M, iR) ≃ Ȟ1(U , iR) ≃ Ȟ1(U , 2πiZ) ⊗ R and since the map〈ϕV , 〉 : H1

dR(M, g) → R is
linear, (4.11) implies that, for allϕ ∈ E inv,

〈
ϕV ,H

1
dR(M, iR)⊕k

〉
= {0} . (4.12)

As a consequence of Poincaré duality,ϕV ∈ δΩ2
0(M, iR)⊕k ⊕ Ω1

0,δ(M,R)⊕l which completes the proof.

Remark 4.7. Notice that ifG ≃ T
k × R

l contains a nontrivial compact factor (i.e.k > 0), the vector
space of gauge invariant classical affine functionals{Oϕ : ϕ ∈ E inv} (cf. (3.5)) does not separate all gauge
equivalence classes of connections: Given two connectionsλ1, λ2 ∈ Γ∞(M, C(P )) with the same curva-
ture, then there existsη ∈ Ω1

d(M, g) such thatλ2 = Φ̃(λ1, η). Let us assume that[η] ∈ H1
dR(M, iR)⊕k ⊆
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H1
dR(M, g), but[η] 6∈ AG such thatλ1 andλ2 are not gauge equivalent (this exists e.g. forM ≃ R

m−1×T).
Then by (4.12) we obtain, for allϕ ∈ E inv, Oϕ(λ2) = Oϕ(λ1) + 〈ϕV , η〉 = Oϕ(λ1). The origin of this
pathology is the fact thatAG is only an Abelian group and not a vector space (cf. Corollary4.5). Performing
the quotient of the configuration spaceΓ∞(M, C(P )) by the gauge transformations that are of exponential
form (that are all fork = 0) we obtain again an affine space. However, performing the quotient of the
resulting affine space by the Abelian groupAG we obtain no affine space anymore (compare this with the
quotientR/Z ≃ T). The gauge invariant classical affine functionals{Oϕ : ϕ ∈ E inv} do not take into
account the nontrivial topology of the full gauge invariantconfiguration space. For this reason one should
enlarge the algebra of gauge invariant observables constructed in this paper to include additional elements
which can separate all gauge equivalence classes of connections. A natural candidate are Wilson loops,
but, being too singular objects localized on curves, they cannot be added easily to the present formalism
used in algebraic quantum field theory. We hope to come back tothis issue in our future investigations.

To conclude this section we characterize the radicalN of the presymplectic vector space
(
E , τ

)
of

Proposition3.4.

Theorem 4.8. LetΞ =
(
(M, o, g, t), (G,h), (P, r)

)
be any object inPrBuGlobHyp (G ≃ T

k ×R
l). Then

the radicalN of
(
E , τ

)
is given by

N =
{
ψ ∈ E inv : h−1(ψV ) ∈ δΩ2

0,d(M, iR)⊕k ⊕ δ
(
Ω2
0(M,R) ∩ dΩ1

tc(M,R)
)⊕l

}
/MW∗

[
Ω1
0(M, g∗)

]
.

(4.13)

Proof. Let [ψ] be an element of the vector space on the right hand side of (4.13). Any representativeψ is
such thath−1(ψV ) = δη + δdζ for someη ∈ Ω2

0,d(M, iR)⊕k andζ ∈ Ω1
tc(M,R)⊕l . By Theorem4.6any

ϕ ∈ E inv is such thatϕV = δα+β for someα ∈ Ω2
0(M, iR)⊕k andβ ∈ Ω1

0,δ(M,R)⊕l . As a consequence,

τ([ϕ], [ψ]) =
〈
ϕV , G(1)

(
h−1(ψV )

)〉
=

〈
δα,G(1)(δη)

〉
+

〈
β,G(1)(δdζ)

〉

=
〈
α,dδG(2)(η)

〉
+
〈
β, δdG(1)(ζ)

〉
= −

〈
α, δdG(2)(η)

〉
−
〈
β,dδG(1)(ζ)

〉
= 0 , (4.14)

hence the vector space on the right hand side of (4.13) is contained in the radicalN . To show that it is
equal to the radical letψ ∈ E inv be any element satisfying, for allϕ ∈ E inv, τ([ϕ], [ψ]) = 0. Using again
the decompositionϕV = δα + β for someα ∈ Ω2

0(M, iR)⊕k andβ ∈ Ω1
0,δ(M,R)⊕l , as well as the

decompositionh−1(ψV ) = δη + δǫ, whereη ∈ Ω2
0,d(M, iR)⊕k andǫ ∈ Ω2

0,d(M,R)⊕l (which is possible
due to Corollary3.7), this condition yields

0 = τ([ϕ], [ψ]) =
〈
δα,G(1)(δη)

〉
+

〈
β,G(1)(δǫ)

〉
=

〈
β,G(1)(δǫ)

〉
. (4.15)

By (4.15) and Poincaré duality there exists aγ ∈ C∞(M,R)⊕l , such thatG(1)(δǫ) = dγ. Applying the
codifferential to this equation we find thatγ satisfies the wave equationδdγ = �(0)(γ) = 0, hence by
[SDH12] there exists aθ ∈ C∞

tc (M,R)⊕l such thatγ = G(0)(θ). Plugging this into the equation above
yieldsG(1)(δǫ) = dγ = G(1)(dθ), which impliesδǫ = dθ+�(1)(ζ) for someζ ∈ Ω1

tc(M,R)⊕l . Applying
d and using thatǫ is closed we obtainǫ = dζ, which shows that any element in the radical is contained in
the vector space on the right hand side of (4.13).

5 The phase space functor andCCR-quantization

In this section we show that the association of the presymplectic vector space
(
E , τ

)
in Proposition3.4

to objectsΞ =
(
(M, o, g, t), (G,h), (P, r)

)
in PrBuGlobHyp is functorial. We are going to construct a

covariant functorPhSp : PrBuGlobHyp → PreSymp, where the latter category is that of presymplectic
vector spaces with compatible morphisms, that are however not assumed to be injective (see the definition
below). We will then derive some important properties of thefunctor.

Definition 5.1. The categoryPreSymp consists of the following objects and morphisms:
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• An object inPreSymp is a tuple
(
E , τ

)
, whereE is a (possibly infinite dimensional) vector space

overR andτ : E × E → R is an antisymmetric bilinear map (a presymplectic structure).

• A morphism between two objects
(
E1, τ1

)
and

(
E2, τ2

)
in PreSymp is a linear mapL : E1 → E2 (not

necessarily injective) , which preserves the presymplectic structures, i.e.τ2(L(v), L(w)) = τ1(v,w),
for all v,w ∈ E1.

Before constructing the phase space functorPhSp we require two lemmas characterizing the com-
patibility of Maxwell’s affine differential operatorMW, the Hodge-d’Alembert operators�(k) and their
Green’s operatorsG±

(k) with morphisms inPrBuGlobHyp.

Lemma 5.2. LetΞi, i = 1, 2, be two objects andF : Ξ1 → Ξ2 a morphism inPrBuGlobHyp. Then the
following diagram commutes:

Γ∞(M2, C(P2))

F ∗

��

MW2
// Ω1(M2, g2)

f∗◦φ−1
∗

��

Γ∞(M1, C(P1))
MW1

// Ω1(M1, g1)

(5.1)

F ∗ is defined in Remark2.28, f∗ is the usual pull-back along the induced mapf : M1 → M2 and
φ−1
∗ : g2 → g1 is the inverse of the push-forward ofφ : G1 → G2.

Proof. Let λ ∈ Γ∞(M2, C(P2)) be arbitrary and letωλ ∈ Con(P2) be the associated connection form
(cf. Proposition2.23). ThenωF ∗(λ) = f∗

(
φ−1
∗ (ωλ)

)
∈ Con(P1), where on the right hand sidef∗ denotes

the usual pull-back of forms alongf : P1 → P2. For the curvaturesFi : Con(Pi) → Ω2
hor(Pi, gi)

eqv we
obtain, for allλ ∈ Γ∞(M2, C(P2)),

F1

(
ωF ∗(λ)

)
= d1ωF ∗(λ) = d1f

∗
(
φ−1
∗ (ωλ)

)
= f∗

(
φ−1
∗ (d2ωλ)

)
= f∗

(
φ−1
∗ (F2(ωλ))

)
. (5.2)

This implies for the associated curvature affine differential operatorsF i : Γ
∞(Mi, C(Pi)) → Ω2(Mi, gi),

F1 ◦ F
∗ = f∗ ◦ φ−1

∗ ◦ F2 . (5.3)

Using that by hypothesisf : M1 → M2 is an isometric and orientation preserving embedding, we obtain
for the codifferentialsδ1◦f∗ = f∗◦δ2 and, hence, for the Maxwell operatorsMW1◦F

∗ = f∗◦φ−1
∗ ◦MW2,

which shows the commutativity of the diagram (5.1).

Lemma 5.3. LetΞi, i = 1, 2, be two objects andF : Ξ1 → Ξ2 a morphism inPrBuGlobHyp.

a) The following diagram commutes for allk:

Ωk(M2, g
∗
2)

f∗◦φ∗

��

�2 (k)
// Ωk(M2, g

∗
2)

f∗◦φ∗

��

Ωk(M1, g
∗
1)

�1 (k)
// Ωk(M1, g

∗
1)

(5.4)

φ∗ : g∗2 → g∗1 is the pull-back ofφ : G1 → G2.

b) The Green’s operators satisfyG±
1 (k) = f∗ ◦ φ∗ ◦ G±

2 (k) ◦ f∗ ◦ φ
−1 ∗, wheref

∗
denotes the push-

forward of compactly supported forms alongf :M1 →M2 andφ−1 ∗ : g∗1 → g∗2 is the pull-back of
φ−1 : G2 → G1.

Proof. Notice that the operators�i (k) act as the identity ong∗i . The commutative diagram (5.4) is then a
consequence off∗◦d2 = d1◦f

∗, which holds for any smooth mapf :M1 →M2, and off∗◦δ2 = δ1◦f
∗,

which holds sincef is an isometric and orientation preserving embedding.
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To prove b) first notice thatf
∗

(
f∗(η)

)
= η, for all η ∈ Ωk0(f [M1], g

∗
2) ⊆ Ωk0(M2, g

∗
2), and that

f∗
(
f
∗
(η)

)
= η, for all η ∈ Ωk0(M1, g

∗
1). Let us defineG̃±

1 (k) := f∗ ◦ φ∗ ◦ G±
2 (k) ◦ f∗ ◦ φ

−1 ∗. We show

thatG̃±
1 (k) are retarded/advanced Green’s operators for�1 (k) and thus by uniqueness it follows the claim

G̃±
1 (k) = G±

1 (k). Due to the diagram (5.4) and the above properties off
∗

andf∗ we obtain

�1 (k) ◦ G̃
±
1 (k) = �1 (k) ◦ f

∗ ◦ φ∗ ◦G±
2 (k) ◦ f∗ ◦ φ

−1 ∗

= f∗ ◦ φ∗ ◦�2 (k) ◦G
±
2 (k) ◦ f∗ ◦ φ

−1 ∗ = idΩk
0(M1,g∗1)

(5.5a)

and onΩk0(M1, g
∗
1)

G̃±
1 (k) ◦�1 (k) = f∗ ◦ φ∗ ◦G±

2 (k) ◦ f∗ ◦ φ
−1∗ ◦�1 (k)

= f∗ ◦ φ∗ ◦G±
2 (k) ◦�2 (k) ◦ f∗ ◦ φ

−1 ∗ = idΩk
0(M1,g∗1)

. (5.5b)

Thus,G̃±
1 (k) are Green’s operators for�1 (k). They are retarded/advanced Green’s operators, since for all

η ∈ Ωk0(M1, g
∗
1),

supp
(
G̃±

1 (k)(η)
)
⊆ f−1

[
J±
M2

(
f [supp(η)]

)]
= J±

M1

(
supp(η)

)
, (5.6)

where in the second step we have used thatf [M1] ⊆M2 is by hypothesis causally compatible.

Definition 5.4. Let Ξi, i = 1, 2, be two objects andF : Ξ1 → Ξ2 a morphism inPrBuGlobHyp. Fur-
thermore, letF ∗ : Γ∞(M2, C(P2)) → Γ∞(M1, C(P1)) be the affine map constructed in Remark2.28.
We define the linear mapF∗ : Γ∞

0 (M1, C(P1)
†)/Triv1 → Γ∞

0 (M2, C(P2)
†)/Triv2 by duality, for all

ϕ ∈ Γ∞
0 (M1, C(P1)

†)/Triv1 andλ ∈ Γ∞(M2, C(P2)),
∫

M2

vol2
(
F∗(ϕ)

)
(λ) =

∫

M1

vol1 ϕ
(
F ∗(λ)

)
. (5.7)

Theorem 5.5. There is a covariant functorPhSp : PrBuGlobHyp → PreSymp. It associates to any
objectΞ in PrBuGlobHyp the objectPhSp(Ξ) =

(
E , τ

)
in PreSymp which has been constructed in

Proposition3.4. Given a morphismF : Ξ1 → Ξ2 between two objectsΞi, i = 1, 2, in PrBuGlobHyp the
functor associates a morphism inPreSymp as follows

PhSp(F ) : PhSp(Ξ1) → PhSp(Ξ2) , [ϕ] 7→ [F∗(ϕ)] , (5.8)

where the linear mapF∗ is given in Definition5.4.

Proof. First, we show thatF∗ mapsE inv
1 to E inv

2 . Letϕ ∈ E inv
1 be arbitrary, i.e. for all̂f ∈ C∞(M1, G1),〈

ϕV , f̂
∗(µG1)

〉
1
= 0. By Remark2.28 and Definition5.4 we obtainF∗(ϕ)V = f

∗

(
φ−1 ∗(ϕV )

)
and

hence, for allf̂ ∈ C∞(M2, G2),
〈
F∗(ϕ)V , f̂

∗(µG2)
〉
2
=

〈
ϕV , f

∗
(
f̂∗(φ−1

∗ (µG2))
)〉

1
=

〈
ϕV , (φ

−1 ◦ f̂ ◦ f)∗(µG1)
)〉

1
= 0 . (5.9)

In the second equality we have used thatφ∗
(
φ−1
∗ (µG2)

)
= µG1, whereφ∗ is the pull-back of forms along

φ : G1 → G2.

Next, we prove that (5.8) is well-defined, that is, for allη ∈ Ω1
0(M1, g

∗
1) we haveF∗

(
MW∗

1(η)
)
∈

MW∗
2

[
Ω1
0(M2, g

∗
2)
]
. This property is a consequence of the following short calculation, for allλ ∈ Γ∞(M2, C(P2)),

∫

M2

vol2

(
F∗

(
MW∗

1(η)
))

(λ) =
〈
η,MW1

(
F ∗(λ)

)〉
1
=

〈
η, f∗

(
φ−1
∗ (MW2(λ))

)〉
1

=
〈
f
∗
(φ−1 ∗(η)),MW2(λ)

〉
2
=

∫

M2

vol2

(
MW∗

2

(
f
∗
(φ−1 ∗(η))

))
(λ) , (5.10)
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where in the second equality we have used Lemma5.2.

It remains to be shown that the linear mapPhSp(F ) in (5.8) preserves the presymplectic structures.
Let us take two arbitrary[ϕ], [ψ] ∈ E1. Then

τ2
(
[F∗(ϕ)], [F∗(ψ)]

)
=

〈
F∗(ϕ)V , G2 (1)

(
F∗(ψ)V

)〉
h2
. (5.11)

Using again thatF∗(ϕ)V = f
∗

(
φ−1 ∗(ϕV )) (and similar forψ) yields

τ2
(
[F∗(ϕ)], [F∗(ψ)]

)
=

〈
f
∗
(φ−1 ∗(ϕV )), G2 (1)

(
f
∗
(φ−1 ∗(ψV ))

)〉
h2

=
〈
ϕV ,

(
f∗ ◦ φ∗ ◦G2 (1) ◦ f∗ ◦ φ

−1 ∗
)
(ψV )

〉
h1

=
〈
ϕV , G1 (1)(ψV )

〉
h1

= τ1([ϕ], [ψ]) . (5.12)

In the second equality we used thatφ is an isometry and in the third equality Lemma5.3b).

Remark 5.6. The covariant functorPhSp : PrBuGlobHyp → PreSymp does not satisfy the locality
property stating that for any morphismF : Ξ1 → Ξ2 in PrBuGlobHyp the morphismPhSp(F ) is injective.
We will show this failure by giving a simple example in the full subcategoryPrBuGlobHypU(1) where
G = U(1) ≃ T is fixed and we refer to Section7 for a possible solution of this problem. LetΞ2 be an
object inPrBuGlobHypU(1) such that(M2, o2, g2, t2) is them-dimensional Minkowski spacetime (m > 2).
Let us denote byΞ1 the object inPrBuGlobHypU(1) that is obtained by restricting all data ofΞ2 to the
causally compatible and globally hyperbolic open subsetM1 := M2 \ JM2({0}), where{0} is the set of
a single point in Minkowski spacetime (cf. [BGP07, Lemma A.5.11]). Notice thatM1 is diffeomorphic to
R
2 × Sm−2, whereSm−2 is them−2-sphere. The canonical embedding (via the identity)F : Ξ1 → Ξ2 is

a morphism inPrBuGlobHypU(1). Let us take any nonexact element inη ∈ Ω2
0,d(M1, g

∗), that exists since

by Poincaré dualityHm−2
dR (M1, g) ≃ H2

0dR(M1, g
∗) andHm−2

dR (M1, g) ≃ g ≃ iR sinceM1 is homotopy
equivalent toSm−2. Applying the formal adjoint of the curvature affine differential operator we obtain a
nontrivial element

[
F1

∗(η)
]
∈ PhSp(Ξ1) (this element is contained in the radicalN1, cf. Theorem4.8).

Under the morphismPhSp(F ) we obtain by using (5.3)

PhSp(F )
([
F1

∗(η)
])

=
[
F∗

(
F1

∗(η)
)]

=
[
F2

∗
(
f
∗
(φ−1 ∗(η)

)]

=
[
F2

∗(dξ)
]
=

[
MW∗

2(ξ)
]
= 0 . (5.13)

In the third equality we have used thatf
∗

(
φ−1 ∗(η)

)
∈ Ω2

0,d(M2, g
∗) is exact sinceM2 is the Minkowski

spacetime. By Remark3.9the same conclusion holds true forG = R and hence for genericG ≃ T
k ×R

l.

Theorem 5.7. The covariant functorPhSp : PrBuGlobHyp → PreSymp satisfies the classical causality
property:

LetΞj, j = 1, 2, 3, be three objects and letFi : Ξi → Ξ3, i = 1, 2, be two morphisms inPrBuGlobHyp,
such thatf1[M1] andf2[M2] are causally disjoint inM3. Thenτ3 acts trivially among the vector subspaces
PhSp(F1)

[
PhSp(Ξ1)

]
andPhSp(F2)

[
PhSp(Ξ2)

]
of PhSp(Ξ3). That is, for all [ϕ] ∈ PhSp(Ξ1)

and [ψ] ∈ PhSp(Ξ2),

τ3
(
PhSp(F1)([ϕ]),PhSp(F2)([ψ])

)
= 0 . (5.14)

Proof. From (5.8) and (3.14) it follows that

τ3
(
PhSp(F1)([ϕ]),PhSp(F2)([ψ])

)
=

〈
f1∗

(
φ−1 ∗
1 (ϕV )

)
, G3 (1)

(
f2∗

(
φ−1 ∗
2 (ψV )

))〉
h3

= 0 , (5.15)

since the supportssupp
(
f1∗

(
φ−1 ∗
1 (ϕV )

))
⊆ f1[M1] andsupp

(
G3 (1)

(
f2∗

(
φ−1 ∗
2 (ψV )

)))
⊆ JM3(f2[M2])

are by hypothesis disjoint.
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Theorem 5.8. The covariant functorPhSp : PrBuGlobHyp → PreSymp satisfies the classical time-slice
axiom:

LetΞi, i = 1, 2, be two objects andF : Ξ1 → Ξ2 a morphism inPrBuGlobHyp, such thatf [M1] ⊆M2

contains a Cauchy surface ofM2. Then

PhSp(F ) : PhSp(Ξ1) → PhSp(Ξ2) (5.16)

is an isomorphism.

Proof. Let us defineΞ2|f [M1] :=
(
(f [M1], o2|f [M1], g2|f [M1], t2|f [M1]), (G2, h2), (P2|f [M1], r2)

)
, where

P2|f [M1] denotes the restriction of the principalG2-bundle(P2, r2) overM2 to f [M1] ⊆ M2. Notice that
Ξ2|f [M1] is an object inPrBuGlobHyp and by definition of the morphisms in this category,F : Ξ1 →

Ξ2|f [M1] is an isomorphism. As a consequence of functoriality, we obtain an isomorphism inPreSymp

PhSp(F ) : PhSp(Ξ1) → PhSp(Ξ2|f [M1]) . (5.17)

Hence, the proof would follow if we could show that in the hypotheses of this theorem the canonical map
PhSp(Ξ2|f [M1]) → PhSp(Ξ2) , [ϕ] 7→ [ϕ] is an isomorphism.

Let us first prove injectivity of the canonical map: Let[ϕ] ∈ PhSp(Ξ2|f [M1]) be such that when
interpreted via the canonical map as an element inPhSp(Ξ2) we have[ϕ] = 0. As a consequence,[ϕ] ∈
PhSp(Ξ2|f [M1]) has to be in the radicalN2|f [M1] and by Corollary3.7 there exists for any representative

ϕ an η ∈ Ω2
0,d(f [M1], g

∗
2) such thatϕV = δ2η. Notice that due to the quotient in Corollary3.7 the

equivalence class[ϕ] only depends on the cohomology class[η] ∈ H2
0 dR(f [M1], g

∗
2). By a theorem of

Bernal and Sánchez [BS05] and the hypothesis thatf [M1] contains a Cauchy surface ofM2 we have
that f [M1] andM2 are homotopy equivalent (notice also thatdim(f [M1]) = dim(M2)). By Poincaré

duality [η] specifies a unique element inHdim(M2)−2
dR (f [M1], g2), which by homotopy invariance of the

de Rham cohomology groups and a further instance of Poincar´e duality specifies a unique element in
H2

0 dR(M2, g
∗
2). Using the fact that[ϕ] = 0 when regarded inPhSp(Ξ2) then implies that[η] is the trivial

element, i.e.η = d2ζ for someζ ∈ Ω1
0(f [M1], g

∗
2). Thus, we can find a representativeϕ of the class

[ϕ] ∈ PhSp(Ξ2|f [M1]) such thatϕV = 0, i.e.ϕ = a12 with a ∈ C∞
0 (f [M1]). Since[ϕ] lies in the kernel

of the canonical map we obtain0 =
∫
M2

vol2 a =
∫
f [M1]

vol2 a and thus[ϕ] = 0 in PhSp(Ξ2|f [M1]).

We now prove surjectivity of the canonical map: Let[ϕ] ∈ PhSp(Ξ2) be arbitrary and letϕ be any
representative. By hypothesis, there is a Cauchy surfaceΣ2 in M2 that is contained inf [M1]. Then
Σ1 := f−1[Σ2] is a Cauchy surface inM1, sincef : M1 → f [M1] is an isometry. Let us choose two
other Cauchy surfacesΣ±

1 with Σ±
1 ∩ Σ1 = ∅ in the future/past ofΣ1 and let us denote byΣ±

2 := f [Σ±
1 ]

their images, which are Cauchy surfaces inM2 sincef [M1] is causally compatible. Letχ+ ∈ C∞(M2)

be any function such thatχ+ ≡ 1 on J+
M2

(Σ+
2 ) andχ+ ≡ 0 on J−

M2
(Σ−

2 ). We defineχ− ∈ C∞(M2) by
χ+ + χ− ≡ 1 onM2. Thenη := χ+G−

(1)(ϕV ) + χ−G+
(1)(ϕV ) ∈ Ω1

0(M2, g
∗
2) is of compact support and

the linear part ofϕ′ := ϕ+MW∗
2(η), given byϕ′

V = ϕV − δ2d2η, vanishes outside off [M1] (remember
that by Lemma3.1δ2ϕV = 0). The constant affine part ofϕ′ can be treated as in [BDS12, Theorem 5.6]
by adding a suitable element ofTriv2 to ϕ′, which leads to a representativeϕ′′ of the same class[ϕ] that
has compact support inf [M1]. The class[ϕ′′] ∈ PhSp(Ξ2|f [M1]) proves surjectivity of the canonical
map.

We quantize our theory by using theCCR-functor, which we are going to briefly review to be self-
contained.

Definition 5.9. The category∗Alg consists of the following objects and morphisms:

• An object in∗Alg is a unital∗-algebraA overC.
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• A morphism between two objectsAi, i = 1, 2, in ∗Alg is a unital∗-algebra homomorphismκ :
A1 → A2 (not necessarily injective).

TheCCR-functor is the covariant functorCCR : PreSymp → ∗Alg which associates to any object
(E , τ) the unital∗-algebraCCR(E , τ) = T (E)/I(E , τ). T (E) is the complex tensor algebra overE and
I(E , τ) is the two-sided ideal generated by the elementsv ⊗C w − w ⊗C v − i τ(v,w)1, for all v,w ∈ E .
To any morphismL : (E1, τ1) → (E2, τ2) in PreSymp the functor associates the morphismCCR(L) in
∗Alg which is defined on the tensor algebra byCCR(L)

(
v1 ⊗C · · · ⊗C vk

)
= L(v1) ⊗C · · · ⊗C L(vk),

for all k ≥ 1 andv1, . . . , vk ∈ E1. SinceL preserves the presymplectic structures, this unital∗-algebra
homomorphism canonically induces to the quotients.

Using the same arguments as in [BDS12, Theorem 6.3] it follows immediately from Theorem5.7and
Theorem5.8 the following

Theorem 5.10.The covariant functorA := CCR ◦PhSp : PrBuGlobHyp → ∗Alg satisfies:

(i) The quantum causality property:

Let Ξj, j = 1, 2, 3, be three objects and letFi : Ξi → Ξ3, i = 1, 2, be two morphisms in
PrBuGlobHyp, such thatf1[M1] and f2[M2] are causally disjoint inM3. ThenA(F1)

[
A(Ξ1)

]

andA(F2)
[
A(Ξ2)

]
commute as subalgebras ofA(Ξ3).

(ii) The quantum time-slice axiom:

LetΞi, i = 1, 2, be two objects andF : Ξ1 → Ξ2 a morphism inPrBuGlobHyp, such thatf [M1] ⊆
M2 contains a Cauchy surface ofM2. Then

A(F ) : A(Ξ1) → A(Ξ2) (5.18)

is an isomorphism.

6 Generally covariant topological quantum fields

According to [BFV03], a locally covariant quantum field is a natural transformation from a covariant
functor describing test sections to the covariant functorA. In this section we introduce the concept of
generally covariant topological quantum fields, that are natural transformations from a covariant functor
describing topological information to the functorA, and construct two examples which can be interpreted
as magnetic and electric charge. We have added the attribute‘generally covariant’ in ‘generally covariant
topological quantum field’ in order to distinguish it from the usual notion of topological quantum field
theory [Ati89]. For simplifying the discussion we restrict ourselves in this section to the full subcategory
PrBuGlobHypU(1), where the structure group is fixed toG = U(1) ≃ T. The covariant functorA of
Theorem5.10is also restricted, i.e.A : PrBuGlobHypU(1) → ∗Alg.

Definition 6.1. The categoryVec consists of the following objects and morphisms:

• An object inVec is a (possibly infinite dimensional) vector spaceV overR.

• A morphism between two objectsVi, i = 1, 2, in Vec is a linear mapL : V1 → V2 (not necessarily
injective).

ComposingA : PrBuGlobHypU(1) → ∗Alg with the forgetful functor from from∗Alg to Vec we can
considerA as a covariant functor fromPrBuGlobHypU(1) toVec (with a slight abuse of notation we denote
this covariant functor again byA). The other covariant functors fromPrBuGlobHypU(1) toVec which enter
our construction of generally covariant topological quantum fields are those of smooth singular homology
with coefficients in the real vector spaceg∗ = iR (since the smooth and continuous singular homology
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are isomorphic, the smooth singular homology only containstopological information). For being self-
contained we review briefly the relevant concepts: LetM be a manifold of finite type. A smooth singular
p-simplex,p ∈ N

0, is a smooth mapσ : ∆p → M , where∆p is the standardp-simplex inRp. The
real vector space generated by finite linear combinations ofsmooth singularp-simplices is denoted by
Sp(M, g∗) and its elements

∑
finite aj σj , aj ∈ g∗, are called smooth singularp-chains with coefficients in

g∗ = iR. We will suppress the subscript finite in the following for a better readability. For allp > 0 there
is a boundary operator∂p : Sp(M, g∗) → Sp−1(M, g∗) satisfying∂p ◦ ∂p+1 = 0. The homology of the
complex

· · ·
∂p+2

// Sp+1(M, g∗)
∂p+1

// Sp(M, g∗)
∂p

// Sp−1(M, g∗)
∂p−1

// · · · (6.1)

is denoted byH∗(M, g∗) and called thesingular homologywith coefficients ing∗ = iR. Explicitly, the
p-th singular homology group is the real vector spaceHp(M, g∗) = Ker(∂p)/Im(∂p+1).

Let nowΞ =
(
(M, o, g, t), (G,h), (P, r)

)
be an object inPrBuGlobHypU(1). The association of the

p-th singular homology group ofM is a covariant functorHp : PrBuGlobHypU(1) → Vec: To any object
Ξ in PrBuGlobHypU(1) the functor associatesHp(Ξ) = Hp(M, g∗). To any morphismF =

(
f : P1 →

P2, φ : G→ G
)
: Ξ1 → Ξ2 in PrBuGlobHypU(1) the functor associates

Hp(F ) : Hp(Ξ1) → Hp(Ξ2) ,
[∑

aj σj

]
7→

[∑
φ−1 ∗(aj) (f ◦ σj)

]
. (6.2)

The singular cohomology is defined by duality,H∗(M, g) := HomR(H∗(M, g∗),R). Furthermore, by de
Rham’s theorem there exists a vector space isomorphismJ : Hp

dR(M, g) → Hp(M, g) , [η] 7→ J ([η]),
whereJ ([η]) is the linear functional onHp(M, g∗) defined by, for all

∑
aj σj,

J ([η])
([∑

aj σj

])
=

∑
aj

∫

∆p

σ∗j (η) , (6.3)

whereσ∗j is the pull-back ofσj : ∆p → M and the duality pairing betweeng∗ andg is suppressed. By
Poincaré duality there also exists a vector space isomorphism K : Hp(M, g∗) → Hp

0 dR∗(M, g∗) (by the
subscriptdR∗ we denote the cohomology groups of the codifferentialδ) specified by, for all

[∑
aj σj

]
∈

Hp(M, g∗) and[η] ∈ Hp
dR(M, g),

〈
K
([∑

aj σj

])
, [η]

〉
= J ([η])

([∑
aj σj

])
. (6.4)

The pairing〈 , 〉 : Hp
0 dR∗(M, g∗) ×Hp

dR(M, g) → R on the left hand side is that induced by the pairing
〈ζ, η〉 =

∫
M ζ ∧ ∗(η) of p-formsζ ∈ Ωp0(M, g∗) andη ∈ Ωp(M, g).

We now can construct our first example of a generally covariant topological quantum field, which by
Remark6.3below should be interpreted as magnetic charge (Euler class).

Theorem 6.2. Consider the two covariant functorsH2,A : PrBuGlobHypU(1) → Vec. We associate to
any objectΞ in PrBuGlobHypU(1) the morphism inVec

Ψmag
Ξ : H2(Ξ) → A(Ξ) ,

[∑
aj σj

]
7→

[
F∗

(
K
([∑

aj σj

]))]
, (6.5)

whereF∗ : Ω2
0(M, g∗) → Γ∞

0 (M, C(P )†)/Triv is the formal adjoint of the curvature affine differential
operator (cf. Corollary2.24). The collectionΨmag = {Ψmag

Ξ } is a natural transformation fromH2 to A.

Proof. The map (6.5) is well-defined due the dual of the (Abelian) Bianchi identity d◦F = 0. Furthermore,
since any representative of the classK

([∑
aj σj

])
is coclosed, the linear part ofF∗

(
K
([∑

aj σj
]))

vanishes. Hence,F∗
(
K
([∑

aj σj
]))

∈ E inv is a representative of an element inN and the image of (6.5)
is contained inE ⊆ A(Ξ).
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Let F : Ξ1 → Ξ2 be a morphism inPrBuGlobHypU(1). As a consequence of the dual of (5.3) and
f
∗
◦φ−1 ∗ ◦K1 = K2 ◦H2(F ), which descends from (6.4), we obtain that the following diagram commutes:

H2(Ξ1)

H2(F )
��

Ψmag
Ξ1

// A(Ξ1)

A(F )
��

H2(Ξ2)
Ψmag

Ξ2
// A(Ξ2)

(6.6)

This proves thatΨmag = {Ψmag
Ξ } is a natural transformation.

Remark 6.3. The interpretation of the natural transformationΨmag is as follows: The classical affine
functional (3.5) corresponding toF∗

(
K
([∑

aj σj
]))

yields when evaluating on anyλ ∈ Γ∞(M, C(P ))

OF∗(K([
∑
aj σj ]))(λ) =

〈
K
([∑

aj σj

])
,F(λ)

〉
=

∑
aj

∫

∆2

σ∗j
(
F(λ)

)
. (6.7)

Via this identification the elements in the image of the mapΨmag
Ξ determine the cohomology class[F(λ)] ∈

H2
dR(M, g) and hence the Euler class of the principalU(1)-bundle. In physics[F(λ)] is called the mag-

netic charge. This is a purely topological information, which explains our notation generally covariant
topological quantum field. AfterCCR-quantization, we should interpret the image of the map (6.5) as
magnetic charge observables, which can be assigned coherently to all objects inPrBuGlobHypU(1) since
Ψmag is a natural transformation. We note that the image of the map(6.5) lies in the center of the algebra
A(Ξ), hence magnetic charge observables are not subject to Heisenberg’s uncertainty relation and can be
measured without quantum fluctuations.

Motivated by [SDH12] we will now construct a generally covariant topological quantum field, which
by Remark6.5 below should be interpreted as electric charge. For this we require a covariant functor
which associates to any objectΞ in PrBuGlobHypU(1) the singular homology groupHdim(M)−2(M, g∗) ≃

H
dim(M)−2
0 dR∗ (M, g∗). This functor exists since the set of morphisms{F : Ξ1 → Ξ2} is only nonempty

between objectsΞ1 andΞ2 whereM1 andM2 have the same dimension (cf. Definition2.4). We shall
denote this covariant functor byH−2 : PrBuGlobHyp

U(1) → Vec.

Theorem 6.4. Consider the two covariant functorsH−2,A : PrBuGlobHypU(1) → Vec. We associate to
any objectΞ in PrBuGlobHypU(1) the morphism inVec

Ψel
Ξ : H−2(Ξ) → A(Ξ) ,

[∑
aj σj

]
7→

[
F∗

(
∗
(
K
([∑

aj σj

])))]
. (6.8)

The collectionΨel = {Ψel
Ξ} is a natural transformation fromH−2 to A.

Proof. The map (6.8) is well-defined, since for allχ ∈ Ω
dim(M)−1
0 (M, g∗), F∗

(
∗(δχ)

)
= MW∗(∗(χ))

yields the trivial class inE ⊆ A(Ξ). For anyη ∈ Ω
dim(M)−2
0,δ (M, g∗) the linear part ofF∗

(
∗(η)

)
is

F∗
(
∗(η)

)
V
= δ ∗(η), with ∗(η) ∈ Ω2

0,d(M, g∗). Hence,F∗
(
∗
(
K
([∑

aj σj
])))

∈ E inv is a representative
of an element inN and the image of (6.8) is contained inE ⊆ A(Ξ).

Let F : Ξ1 → Ξ2 be a morphism inPrBuGlobHypU(1). Using thatf
∗
◦ φ−1 ∗ ◦ ∗1 = ∗2 ◦ f∗ ◦ φ

−1 ∗

and the same arguments as in the proof of Theorem6.2we obtain that the following diagram commutes:

H−2(Ξ1)

H−2(F )
��

Ψel
Ξ1

// A(Ξ1)

A(F )
��

H−2(Ξ2)
Ψel

Ξ2
// A(Ξ2)

(6.9)

This proves thatΨel = {Ψel
Ξ} is a natural transformation.
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Remark 6.5. Following Remark6.3 we can interpretΨel as a coherent assignment of electric charge
observables: The classical affine functional (3.5) corresponding toF∗

(
∗
(
K
([∑

aj σj
])))

yields when
evaluating on any solutionλ ∈ Γ∞(M, C(P )) of the equation of motionMW(λ) = 0,

OF∗(∗(K([
∑
aj σj ])))(λ) =

〈
K
([∑

aj σj

])
, ∗
(
F(λ)

)〉
=

∑
aj

∫

∆dim(M)−2

σ∗j
(
∗
(
F(λ)

))
. (6.10)

Via this identification the elements in the image of the mapΨel
Ξ determine the cohomology class

[
∗(F (λ))

]
∈

H
dim(M)−2
dR (M, g) that, via Gauss’ law, is the electric charge. Also in this case the image of the map (6.8)

lies in the center of the algebraA(Ξ), meaning that electric charge observables in the quantum theory are
not subject to Heisenberg’s uncertainty relation and can bemeasured without quantum fluctuations.

7 The charge-zero functor and the locality property

In the previous section we have identified electric and magnetic charge observables in the algebraA(Ξ) =
CCR

(
PhSp(Ξ)

)
for any objectΞ in PrBuGlobHypU(1). While magnetic charge observables are certainly

very welcome in our framework since they can measure the topology of the principal bundle, electric
charges play a different role. By construction, the covariant functorA : PrBuGlobHypU(1) → ∗Alg

models quantized principalU(1)-connections without the presence of any charged fields. As aconse-
quence, all electric charge measurements should yield zero.2 We are going to implement this physi-
cal feature into our framework by performing a different quotient in the presymplectic vector spaces(
E , τ

)
of Proposition3.4. It is then rather straightforward to show that there is a covariant functor

PhSp0 : PrBuGlobHypU(1) → PreSymp, the charge-zero phase space functor, which associates these
presymplectic vector spaces to objects inPrBuGlobHypU(1). Interestingly, the functorPhSp0 satisfies, in
addition to the classical causality property and the classical time-slice axiom, the locality property stating
that for any morphismF in PrBuGlobHypU(1) the morphismPhSp0(F ) in PreSymp is injective. Due to
Remark5.6this is not the case for the functorPhSp constructed in Section5. Composing the charge-zero
phase space functor with theCCR-functor we obtain a covariant functorA0 that satisfies all axioms of
locally covariant quantum field theory, i.e. the quantum causality property, the quantum time-slice axiom
and injectivity ofA0(F ) for any morphismF in PrBuGlobHypU(1).

Let Ξ =
(
(M, o, g, t), (G,h), (P, r)

)
be an object inPrBuGlobHypU(1) andE inv the gauge invariant

vector space characterized in Theorem4.6. Notice that the vector subspaceF∗
[
Ω2
0,d(M, g∗)

]
⊆ E inv

containsMW∗
[
Ω1
0(M, g∗)

]
as a vector subspace as well as the electric charge observables of Theorem6.4.

Hence, by considering the quotientE0 := E inv/F∗
[
Ω2
0,d(M, g∗)

]
we implement the equation of motion

and identify all electric charges with zero.

Lemma 7.1. LetΞ be an object inPrBuGlobHyp.

a) ThenE0 := E inv/F∗
[
Ω2
0,d(M, g∗)

]
can be equipped with the presymplectic structure

τ0 : E0 × E0 → R ,
(
[ϕ], [ψ]

)
7→ τ0

(
[ϕ], [ψ]

)
=

〈
ϕV , G(1)(ψV )

〉
h
. (7.1)

In other words,
(
E0, τ0

)
is a presymplectic vector space.

b) The radicalN 0 of
(
E0, τ0

)
is

N 0 =
[{
ϕ ∈ E inv : ϕV = 0

}]
. (7.2)

Proof. This is a direct consequence of Theorem4.8.

Similar to Theorem5.5we obtain that the association of these presymplectic vector spaces is functorial.

2 We are very grateful to Jochen Zahn and Thomas-Paul Hack for comments which have led to this insight.
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Theorem 7.2. There is a covariant functorPhSp0 : PrBuGlobHypU(1) → PreSymp. It associates to any
objectΞ in PrBuGlobHypU(1) the objectPhSp0(Ξ) =

(
E0, τ0

)
in PreSymp which has been constructed

in Lemma7.1. Given a morphismF : Ξ1 → Ξ2 between two objectsΞi, i = 1, 2, in PrBuGlobHypU(1) the
functor associates a morphism inPreSymp as follows

PhSp0(F ) : PhSp0(Ξ1) → PhSp0(Ξ2) , [ϕ] 7→ [F∗(ϕ)] , (7.3)

where the linear mapF∗ is given in Definition5.4.

Proof. The proof follows by similar arguments as in the proof of Theorem5.5.

By slightly modifying the proofs of Theorem5.7and Theorem5.8it is easy to show that the covariant
functorPhSp0 : PrBuGlobHypU(1) → PreSymp satisfies the classical causality property and the classical
time-slice axiom. In addition, we have have the following

Theorem 7.3. The covariant functorPhSp0 : PrBuGlobHypU(1) → PreSymp satisfies the locality prop-
erty:

LetF : Ξ1 → Ξ2 be any morphism inPrBuGlobHypU(1), thenPhSp0(F ) is injective.

Proof. Notice that any element[ϕ] ∈ PhSp0(Ξ1) that satisfies[F∗(ϕ)] = 0 is necessarily contained
in the radicalN 0

1 ⊆ PhSp0(Ξ1). Let us now assume that[ϕ] ∈ N 0
1 is such that[F∗(ϕ)] = 0. By

Lemma7.1 b) there exists a representativeϕ ∈ Γ∞
0 (M1, C(P1)

†) of [ϕ] that is of the formϕ = a11
with a ∈ C∞

0 (M1). The push-forward alongF of this representative is thenF∗(a11) = f
∗
(a)12, where

f
∗
(a) ∈ C∞

0 (M2) is the push-forward alongf : M1 → M2. Since by hypothesis[F∗(ϕ)] = 0, the
representativef

∗
(a)12 is equivalent to an element inTriv2, i.e. for someη ∈ Ω2

0,d(M2, g
∗) and b ∈

C∞
0 (M2) satisfying

∫
M2

vol2 b = 0, we havef
∗
(a)12 = b12 + F2

∗(η). Comparing the linear parts of
both sides of the equality we obtainδ2η = 0, i.e. η ∈ Ω2

0,d(M2, g
∗) is both closed and coclosed. As a

consequence,�2 (2)(η) = 0, which due to normal hyperbolicity implies thatη = 0. We findf
∗
(a) = b

and in particular0 =
∫
M2

vol2 f∗(a) =
∫
M1

vol1 a. Thus,[ϕ] = [a11] = 0 sincea11 ∈ Triv1.

Let us denote byPreSympinj the subcategory ofPreSymp where all morphisms are injective. We
have shown above the existence of the covariant functorPhSp0 : PrBuGlobHypU(1) → PreSympinj.
Since theCCR-functor restricts to a covariant functorCCR : PreSympinj → ∗Alginj, where we have used
the obvious notation for the subcategory of∗Alg with injective morphisms, we obtain by composition a
covariant functorA0 : PrBuGlobHypU(1) → ∗Alginj. The classical causality property and the classical
time-slice axiom extend via theCCR-functor to the quantum case, see e.g. [BDS12, Theorem 6.3]. The
main result of this section can be summarized as follows:

Theorem 7.4. The covariant functorA0 := CCR ◦ PhSp0 : PrBuGlobHypU(1) → ∗Alginj is a locally
covariant quantum field theory, i.e.A0 satisfies the quantum causality property, the quantum time-slice
axiom and the locality property.
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