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Abstract

We present a mathematical analysis of planar motion of energetic electrons moving
through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell
field in the X-Ray FEL regime. Our starting point is the 6D Lorentz system, which
allows planar motions, and we examine this dynamical system as the wave length λ of
the traveling wave varies. By scalings and transformations the 6D system is reduced,
without approximation, to a 2D system in a form for a rigorous asymptotic analysis using
the Method of Averaging (MoA), a long time perturbation theory. The two dependent
variables are a scaled energy deviation and a generalization of the so-called ponderomotive
phase. As λ varies the system passes through resonant and nonresonant (NR) zones and
we develop NR and near-to-resonant (NtoR) MoA normal form approximations. The
NtoR normal forms contain a parameter which measures the distance from a resonance.
For a special initial condition, for the planar motion and on resonance, the NtoR normal
form reduces to the well known FEL pendulum system. We then state and prove NR
and NtoR first-order averaging theorems which give explicit error bounds for the normal
form approximations. We prove the theorems in great detail, giving the interested reader
a tutorial on mathematically rigorous perturbation theory in a context where the proofs
are easily understood. The proofs are novel in that they do not use a near identity
transformation and they use a system of differential inequalities. The NR case is an
example of quasiperiodic averaging where the small divisor problem enters in the simplest
possible way. To our knowledge the planar problem has not been analyzed with the
generality we aspire to here nor has the standard FEL pendulum system been derived
with associated error bounds as we do here. We briefly discuss the low gain theory in
light of our NtoR normal form. Our mathematical treatment of the noncollective FEL
beam dynamics problem in the framework of dynamical systems theory sets the stage for
our mathematical investigation of the collective high gain regime.
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1 Introduction

We present a normal form analysis of the three-degree-of-freedom Lorentz force system of six
ODE’s (ordinary differential equations) governing the planar (x, y = 0, z) motion of relativistic
electrons moving through a planar dipole undulator along the z-axis perturbed by a traveling
wave radiation field along the z direction. We are interested in the parameter range for an
X-Ray FEL.

Our normal form analysis is based on the Method of Averaging (MoA) at first order. The
method has four steps. The first step is to put the ODE’s into a standard form. The second
step is to identify the normal form approximations. The third step is the derivation of error
bounds relating the exact and normal form solutions. The final step is the transformation
back to the original variables of the Lorentz force system. In the first step new variables
are typically introduced using scalings and transformations. In this process we discover that
the exact problem can be formulated, without approximation, in terms of two ODE’s for the
normalized energy deviation and a generalized ponderomotive phase. Important in this process
is the identification of an appropriate small dimensionless parameter, often denoted by ε, so
that the system can be written as u̇ = εf(u, t) + O(ε2). In the present context this is the most
complicated step. The normal form approximation is obtained by dropping the O(ε2) term and
replacing f by its t−average. The third step is often the most difficult, however here the system
in standard form is fairly simple and we use this opportunity to give very detailed proofs of two
averaging theorems, partly as a tutorial on the methods of proof, rather than applying general
theorems from the literature. The latter allows us to obtain quite explicit error bounds which
are likely near optimal.

An electron, as a member of an electron bunch, will enter the undulator with a given angle
in the y = 0 plane and a given Lorentz factor. Here the normalized angle will be given by
∆Px0 and the Lorentz factor will be written γ = γc(1 + η) where γc is a characteristic value
of γ for the electron bunch, e.g. the mean, and η is the so-called normalized energy deviation.
We will replace η by χ via the relation η = εχ, where a posteriori ε will be a measure of the
spread of η values which lead to an FEL pendulum type behavior. We let Bu, ku denote the
undulator field strength and wave number and let Er, νkr denote the Maxwell field strength
and wave number of the fixed traveling wave radiation field. Thus our basic parameters are
eight, namely ∆Px0, γc, ε, Bu, ku, Er, kr, ν. We will study the electron response to the radiation
field as ν = O(1) varies. The choice of the parameter kr will be discussed below.

For an X-Ray FEL, ε is small, γc is large and the undulator parameter,

K :=
eBu

mcku

= .934λu[cm]Bu[T ] , (1.1)

is O(1). Also kr = O(kuγ
2
c ) and we define the O(1) constant Kr by

Kr :=
kr

kuγ2
c

. (1.2)

In §2.3 we will fix Kr (and thus kr) by setting

Kr = 2[1 +
1

2
K2 + K2(∆Px0)

2]−1 . (1.3)

For those familiar with FEL theory, kr is, for ∆Px0 = 0, the usual so-called resonant wave
number (See e.g., [1]). The dependence of Kr on ∆Px0 will be a consequence of our analysis.
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For the LCLS (Linac Coherent Light Source) λu = 3cm, mc2γc = 15GeV and Bu = 1.32T so
that K = 3.70 (see http://www-ssrl.slac.stanford.edu/lcls/lcls_parms.html).

Mathematically then, we are interested in an asymptotic analysis of the electron motion
for ε small and γc large as ν varies. In particular we are interested in the (ε, γc) regime that
gives rise to the pendulum type behavior important for the functioning of an X-Ray FEL. We
find that in order to obtain this behavior, in the MoA at first-order, there must be a relation
between ε and γc. Introducing the normalized field strength

E :=
Er

cBu

, (1.4)

we show a pendulum type behavior emerges when ε = O(
√
E/γc) for γc ≫ 1. Without loss of

generality we will take the order constant to be 1, and choose

ε =
√
E 1

γc
. (1.5)

We also show that, for ε small, the system associated with (1.5) has a resonance structure, such
that as ν varies the system goes through a sequence of nonresonant (NR) and near-to-resonant
(NtoR) zones. The associated NtoR approximating normal forms are pendulum like and reduce
to the standard FEL pendulum system for ∆Px0 = 0 and ν an odd integer. This behavior is
not present for ε ≪ 1/γc or ε ≫ 1/γc and so we refer to (1.5) as a distinguished case. This
turns out to be a very simple example of the concept of a “distinguished limit” in the singular
perturbation literature. This can be seen in action in the context of our equations (2.56) and
(2.57).

In summary, for the distinguished case of (1.5), our basic nondimensional parameters are
K, ∆Px0, E , ε, ν. For ε small we will obtain a sequence of nonresonant (NR) and near-to-resonant
(NtoR) normal form approximations as ν varies. The NtoR normal forms can be understood
in terms of the simple pendulum system and reduce to the usual FEL pendulum equations for
∆Px0 = 0 and ν an odd integer (See Sections 3.4.2 and 3.4.3). The NtoR normal form allows
us to study the effect of ν being slightly off resonance. This completes the first two steps in the
MoA. In the third step we prove two theorems which give error bounds, relating the exact and
normal form solutions, which go to zero as ε → 0+. Our goal is to present a mathematically
rigorous analysis that is self contained.

Standard derivations of the FEL pendulum equations can be found in [2],[3],[4],[5]. They
differ from our approach in that they start from the ODE for the normalized energy deviation,
η, and use physical reasoning to introduce approximations leading to the FEL pendulum normal
form for ∆Px0 = 0. In contrast, our starting point is the three-degree-of-freedom Lorentz force
ODE’s which are clearly more general and we make no approximation in going to the standard
form for the MoA. Thus our only approximation is in going from the averaging standard form
to the normal form approximations. Furthermore we obtain error bounds which do not appear
to be possible in the standard derivations and these bounds are covered by our averaging
theorems. Our definition of resonance is intimately linked to the derivation of our averaging
normal forms, whereas in the standard derivations resonance is introduced in the context of
maximizing energy exchange. We emphasize that we obtain more than the pendulum normal
form; we also obtain the more general NtoR normal form as well as the NR normal forms.

We do not intend to minimize the importance of the standard derivations, the physical
derivations are certainly important and as is often the case show great physical insight. Here we
want to show what can be done in a mathematically rigorous way in the context of dynamical
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systems theory, but in that we have been guided by and are indebted to the work of e.g.,
[2],[3],[4],[5].

For ODE’s, the MoA is the most robust of the longtime perturbation theories which include
e.g., Lindstedt series [6], multiple scales [6], renormalization group methods [7] and Hamiltonian
perturbation theory [8]. For example, Hamiltonian perturbation theory has the advantage that
one is transforming a scalar function, however the MoA is more robust in that transformations
and scalings are not restricted to canonical transformations. Central to the MoA, and in
contrast to those just mentioned, is the derivation of error bounds. We emphasize these are
true bounds and not just estimates. The MoA is a mature subject and there are several
good books, see [6, 9, 10] for example as well as the Scholarpedia articles [11, 12]. We refer
to the MoA approximation as a normal form. Generally, a normal form of a mathematical
object is a simplified form of the object obtained with the aid of, for example, scalings and
transformations such that the essential features of the object are preserved. Here we not only
preserve the essential features of the exact ODE’s but bound the errors in the approximation
with a bound proportional to the small parameter ε. See [11] for the use of normal form in a
similar context.

This paper has a pedagogical aspect, giving the reader, who may not be familiar with
modern long time perturbation theory, an introduction in a context where the proofs are easily
understood. In addition, we hope that both newcomers to the field and mathematical scientists
will find this a good introduction to the noncollective case of an FEL. We also hope that experts
will find something of interest. The reader does not need to be familiar with averaging theory
as we give complete proofs including detailed error bounds. Furthermore we obtain better
results as our theorems are tuned to the problem at hand. In addition, to our knowledge,
the treatment of the undulator problem in the mathematically rigorous and self-contained way
that we do here has not been done before. Our mathematical analysis is not deep, using only
undergraduate mathematics as commonly taught in advanced calculus courses, however it is
complicated and somewhat intricate in spots. Finally, for us, it sets the stage for our more
serious goal of a deep mathematical understanding of the collective high gain FEL theory.

We proceed as follows. In §2 we start with the three-degree-of-freedom Lorentz equations
with a general traveling wave field in (2.7)-(2.10) and then introduce z as the independent
variable. The system has planar solutions where 0 = y = py and using a conservation law
we arrive at a system of two ODE’s (2.33),(2.34) for the energy deviation and a precursor to
a generalization of the so-called ponderomotive phase. By scalings and transformations we
discover the distinguished case of (1.5) which then leads to a standard form for the method of
averaging in (2.62),(2.63). The two dependent variables are now a scaled energy deviation and
a generalization of the so-called ponderomotive phase.

In §3 we present our main results. We begin by introducing the monochromatic traveling
wave field, the case of main physical interest. The system is carefully defined in §3.1. In §3.2
we define nonresonant, ∆-nonresonant, resonant, and near-to-resonant ν in the MoA context.
We emphasize that as ν varies the system passes through resonant and nonresonant zones. The
NR case, its first-order averaging normal form and associated solutions are presented in §3.3
along with a proposition giving an appropriate domain for the associated vector field. §3.3 sets
the stage for the more interesting NtoR case of §3.4. The NtoR system is carefully defined
along with a proposition giving an appropriate domain for the associated vector field. The
first-order averaging normal form is derived and solutions written in terms of solutions of the
simple pendulum system. It is unlikely that all ν values are covered accurately by our normal
forms, however we are able to argue in §3.4.4 that there is a sense in which the NR case emerges
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from the NtoR case. The third and fourth steps of the MoA are performed in §3.5 and §3.6.
In fact, the statements of our first-order averaging theorems, which give an order ε bound on
the error for long times, i.e., intervals of O(1/ε), are presented in §3.5 and applied to the phase
space variables in §3.6. By taking special initial conditions (∆Px0 = 0) we recover the result of
standard approaches which focus on the energy transfer equations alone and do not consider the
phase space variables. Finally in §3.7 we use our results in a low gain calculation and compare
the result with [2].

The proofs of the two averaging theorems are presented in §4 and they are based on an idea
of Besjes (see [13, 14, 15]) which leads to proofs without using a near-identity transformation,
as in usual treatments of, e.g., [6, 9, 10]. The NR case is an example of quasiperiodic averaging
with a rigorous treatment of a small divisor problem in what is surely the simplest setting.
The NtoR case is an example of periodic averaging. A novelty of our approach is that we use
a system of differential inequalities, rather than the usual Gronwall inequality, to obtain better
error bounds.

The appendices contain calculations needed in the main text. Appendix A provides proper-
ties of the Bessel expansion of the function jj which is introduced in Section 3.2. In Appendices
B,C we study the next-to-leading order terms g1, g2 used in Theorem 1 and in Appendices D,E
we study the next-to-leading order terms gR

1 , gR
2 used in Theorem 2. Appendix F gives an out-

line of a rigorous approach to regular perturbation theory which could be made into a theorem
at the level of our averaging theorems. It is applied in §3.4.4. Appendix G provides some for-
mulas used in Section 3.7. In Appendix H we discuss E = Er/cBu in the high gain regime and
obtain a crude upper bound estimate of it. Finally, in Appendix I we show that the solution of
the system of differential inequalities that is used in the proof of both averaging theorems (as
well as in Appendix F) is indeed a solution.

2 General Planar Undulator model

2.1 Lorentz force equations

Using SI units, the Lorentz equations for motion of a relativistic electron in an electromagnetic
field, (E,B), are

ṙ = v(p) , (2.1)

ṗ = −e(E + v(p) ×B), (2.2)

with ˙= d/dt and where

v(p) =
p

mγ
, (2.3)

is the velocity, γ is the Lorentz factor defined by

γ2 = 1 + p · p/m2c2 , (2.4)

and m and −e are the electron mass and charge respectively. We introduce Cartesian coordi-
nates as follows:

r = xex + yey + zez , (2.5)

p = pxex + pyey + pzez , (2.6)
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where ex, ey, ez are the standard unit vectors. Using (2.1)-(2.6) the system in Cartesian coor-
dinates is

ẋ =
px

mγ
, ẏ =

py

mγ
, ż =

pz

mγ
, (2.7)

ṗx = −e[Ex + vyBz − vzBy] , (2.8)

ṗy = −e[Ey + vzBx − vxBz] , (2.9)

ṗz = −e[Ez + vxBy − vyBx] . (2.10)

We denote the undulator magnetic field by Bu and the radiation field by (Er,Br) whence

E = Er , B = Br + Bu . (2.11)

A simple planar undulator model magnetic field which satisfies the Maxwell equations, ∇·Bu =
0 and ∇×Bu = 0, as in [3], is

Bu = −Bu[cosh(kuy) sin(kuz)ey + sinh(kuy) cos(kuz)ez] , (2.12)

where Bu > 0. Since ∇ × Bu = 0 there is a scalar potential φ such that Bu = ∇φ. To
satisfy ∇ · Bu = 0, φ must satisfy Laplace’s equation. The field (2.12) is easily constructed by
separation of variables and requiring periodicity in z with period λu and then taking the first
eigen-mode (See, e.g., [16, p. 145]). The scalar field is φ = −(Bu/ku) sinh(kuy) sin(kuz).

The traveling wave radiation field we choose is also a Maxwell field and is given by

Er = Erh(α̌)ex , Br =
1

c
(ez × Er) =

Er

c
h(α̌)ey , (2.13)

where Er is a constant, h is a real valued function on R and

α̌(z, t) = kr(z − ct) , (2.14)

and kr is the parameter mentioned in the Introduction.
Our primary emphasis is on the standard monochromatic example where

H(α̌) = (1/ν) sin(να̌) , h(α̌) = H ′(α̌) = cos(να̌) , (2.15)

and ν ≥ 1/2 thus h(α̌(z, t)) = cos(νkr(z − ct)). Note that the prime ′ always indicates a
derivative. Thus from §3 onwards we will use (2.15). However it is easy to carry through the
first part of the analysis with general H and we do want to make a comment on the more
general case. In this monochromatic case kr will be defined by (1.2),(1.3) and the ν will allow
for a variable wave number for the traveling wave; it will be shown that ν = 1 gives the
primary resonance with the concomitant pendulum normal form. The extension to a sum of
monochromatic waves is trivial and won’t be discussed.

Using (2.3),(2.12),(2.13) one can write (2.8)-(2.10) as

ṗx = −e[
pz

mγ
Bu cosh(kuy) sin(kuz) − py

mγ
Bu sinh(kuy) cos(kuz)

+Er(1 − pz

mγc
)h(α̌(z, t))] , (2.16)

ṗy = −e
px

mγ
Bu sinh(kuy) cos(kuz) , (2.17)
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ṗz = −e[− px

mγ
Bu cosh(kuy) sin(kuz) + Er

px

mγc
h(α̌(z, t))] . (2.18)

It is easy to check that (2.7),(2.16)-(2.18) is a Hamiltonian system with Hamiltonian H:

H = c
√

(Pc + eA(r, t))2 + m2c2 = mc2γ , (2.19)

where the canonical momentum vector Pc is related to p by p = Pc + eA and the vector
potential A is given by

A(y, z, t) = [
Bu

ku
cosh(kuy) cos(kuz) +

Er

krc
H(α̌(z, t))]ex . (2.20)

Since A is independent of x the x-component, Pc,x, of the canonical momentum vector Pc is
conserved, i.e.,

px − eAx(y, z, t) , (2.21)

is constant along solutions of (2.7),(2.16)-(2.18) as is easily confirmed directly. We will not
make explicit use of the Hamiltonian structure in the following. The MoA does not rely on a
Hamiltonian structure and this frees us from having to deal only with canonical transformations
as we proceed to put (2.7),(2.16)-(2.18) in an averaging standard form.

2.2 Motion in y = 0 plane with z as the independent variable

It is common to take the distance z along the undulator as the independent variable, rather than
the time t. In fact after unsuccessfully trying to stay with t we decided to follow the common
procedure. With the usual abuse of notation, we write, from now on x(z), y(z), px(z), py(z), pz(z)
instead of x(t(z)), y(t(z)), px(t(z)), py(t(z)), pz(t(z)) whence the ODE’s (2.7),(2.16)-(2.18) be-
come

dx

dz
=

px

pz

,
dy

dz
=

py

pz

,
dt

dz
=

mγ

pz

, (2.22)

dpx

dz
= −e

c
[cBu cosh(kuy) sin(kuz) − py

pz
cBu sinh(kuy) cos(kuz)

+Er(
mγc

pz
− 1)h(α̌(z, t))] , (2.23)

dpy

dz
= −e

c

px

pz

cBu sinh(kuy) cos(kuz) , (2.24)

dpz

dz
= −e

c
[−px

pz
cBu cosh(kuy) sin(kuz) + Er

px

pz
h(α̌(z, t))] . (2.25)

The initial conditions at z = 0 will be denoted by a subscript 0, e.g., t(0) = t0. Clearly t0 is
the arrival time of an electron at the entrance, z = 0, of the undulator.

Here and in the rest of the paper we consider the initial value problem (IVP) with y0 = py0 =
0. It follows, with no approximation, that y(z) = py(z) = 0 for all z and the six ODE’s (2.22)-
(2.25) reduce to four. The righthand sides (rhs’s) of (2.22)-(2.25) are independent of x and so we
do not need to consider the x equation until §3.6. It is standard, and also quite convenient, to
replace pz by the energy variable γ. With γ(z) defined in terms of px(z) and pz(z) by (2.4) and
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using (2.23) and (2.25), we obtain γ′ = (pxp
′
x + pzp

′
z)/m

2c2γ = −(eEr/mc2)(px/pz)h(α̌(z, t)).
Finally, we take α̌ as a dependent variable in place of t and we define

α(z) := α̌(z, t(z)) = kr(z − ct(z)) . (2.26)

Later it will be seen that α is a precursor to a generalization of the so-called ponderomotive
phase which emerges naturally as we put the ODE’s in a standard form for averaging.

With the above four changes the ODE’s for t, px, pz in (2.22),(2.23),(2.25) become

dα

dz
= kr(1 − mγc

pz

) , (2.27)

dpx

dz
= −e

c
[cBu sin(kuz) + Er(

mγc

pz
− 1)h(α)] , (2.28)

dγ

dz
= − eEr

mc2

px

pz

h(α) , (2.29)

where the initial conditions are α(0) = α0 := −krct0, px(0) =: px0, γ(0) =: γ0. Here pz must be
replaced by

pz =
√

m2c2(γ2 − 1) − p2
x , (2.30)

and it is easy to see that (2.27)-(2.29) are then self contained. From now on we restrict pz to
be positive:

pz > 0 . (2.31)

Note that, by (2.27), α is a strictly decreasing function whence, as one expects, z < c(t(z)−t0).
It is also easy to check that

px

mcK
− cos(kuz) − Er

cBu

ku

kr
H(α) , (2.32)

is conserved along solutions of (2.27)-(2.29). This conservation law is identical to (2.21) with
y = 0. Recall that K was defined by (1.1).

In summary, the solution of the IVP for (2.22)-(2.25) with y0 = py0 = 0, which entails
y = py = 0, is given in terms of the solution of (2.27),(2.29), i.e., of

dα

dz
= kr(1 − mγc

pz
) , α(0) = α0 , (2.33)

dγ

dz
= − eEr

mc2

px

pz
h(α) , γ(0) = γ0 , (2.34)

with

px = px0 + mcK

(
cos(kuz) − 1 +

Er

cBu

ku

kr
[H(α) − H(α0)]

)
, (2.35)

and pz in (2.30). To complete the solution of (2.22)-(2.25) it suffices to note that t(z) is
determined from (2.26) in terms of α(z) and x(z) is determined from (2.22) by integration.
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2.3 Standard form for Method of Averaging

We begin by introducing the normalized energy deviation η and its O(1) counterpart χ via

γ = γc(1 + η) = γc(1 + εχ) , (2.36)

as mentioned in the Introduction. Here γc is a characteristic value of γ, e.g., its mean and ε
is a characteristic spread of η so that χ becomes the new O(1) dependent variable replacing γ
in (2.33),(2.34). We are interested in an asymptotic analysis for γc large and η small as in an
X-Ray FEL. Here we determine a relation between ε and γc which leads to a standard form for
the MoA and which will contain the FEL pendulum system at first order in the case of (2.15).

As a first step we introduce new variables, in addition to χ, as follows. From the conservation
law in (2.32) we anticipate that the order of magnitude of px will be mcK. In addition βz :=
pz/mcγ will be near 1 and so pz ≈ mcγ. Thus we define dimensionless momenta by

px = mcKPx , pz = mcγPz . (2.37)

Of course, by (2.31),

Pz > 0 . (2.38)

A natural scaling for z is

z = ζ/ku , (2.39)

so that the undulator period is 2π in ζ .
Abbreviating

θaux(ζ) := α(ζ/ku) , (2.40)

and with (1.2) the system (2.33),(2.34) becomes

θ′aux = Krγ
2
c (1 − 1

Pz
) , (2.41)

χ′ = −K2 E
εγ2

c

1

1 + εχ

Px

Pz
h(θaux) , (2.42)

where ′ = d/dζ and E is defined in (1.4). The initial conditions are θaux(0, ε) = θ0 := α0,
χ(0, ε) = χ0. Moreover Pz must be replaced, due to (2.30), by

Pz =

√
1 − 1

γ2
(1 + K2P 2

x ) with γ = γc(1 + εχ) , (2.43)

and Px must be replaced, due to (2.35), by

Px = cos ζ + ∆Px0 +
E

Krγ2
c

[H(θaux) − H(θ0)] , (2.44)

where

∆Px0 := Px0 − 1 , Px0 := Px(0) =
px0

mcK
. (2.45)
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Since pz > 0 we have 0 < Pz < 1. We note that most derivations of the FEL pendulum take
∆Px0 = 0, see [2, 3, 4, 5].

To expand Pz we need

1 + K2P 2
x = 1 + K2(cos ζ + ∆Px0)

2

+
2K2E
Krγ2

c

(cos ζ + ∆Px0)(H(θaux) − H(θ0)) +
K2E2

K2
r γ

4
c

(H(θaux) − H(θ0))
2 ,

(2.46)

and it is convenient to define

q(ζ) := 1 + K2(cos ζ + ∆Px0)
2 = q̄ + 2K2∆Px0 cos ζ +

K2

2
cos 2ζ , (2.47)

q̄ := 1 +
1

2
K2 + K2(∆Px0)

2 . (2.48)

Clearly q̄ is the average of q(ζ) over ζ . Now Px is O(1) so, by (2.43),

1

Pz

= 1 +
1 + K2P 2

x

2γ2
c (1 + εχ)2

+ O(
1

γ4
c

)

= 1 +
q(ζ)

2γ2
c

(1 − 2εχ + O(ε2)) + O(
1

γ4
c

)

= 1 +
q(ζ)

2γ2
c

(1 − 2εχ) + O(
1

γ4
c

) + O(
ε2

γ2
c

) . (2.49)

Thus using (2.44) and (2.49), eq.’s (2.41) and (2.42) become

θ′aux = −Krq(ζ)

2
+ εKrq(ζ)χ + O(

1

γ2
c

) + O(ε2) , (2.50)

χ′ = −K2 E
εγ2

c

(cos ζ + ∆Px0)h(θaux) + O(1/γ2
c ) + O(1/εγ4

c ) . (2.51)

To transform (2.50),(2.51) into a standard form for the MoA we need to introduce dependent
variables that are slowly varying. We anticipate that χ will be slowly varying, i.e., E

εγ2
c

will be

small. To remove the O(1) in (2.50) we define

θ := θaux + Q(ζ) , (2.52)

where

Q(ζ) := ζ + Υ0 sin ζ + Υ1 sin 2ζ , (2.53)

Υ0 :=
2K2∆Px0

q̄
, Υ1 :=

K2

4q̄
. (2.54)

Note that Υ0 and Υ1 depend only on K and ∆Px0 and that

Q′(ζ) =
Krq(ζ)

2
. (2.55)

Thus the system (2.50),(2.51) becomes

θ′ = εKrq(ζ)χ + O(1/γ2
c ) + O(ε2) , (2.56)
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χ′ = −K2 E
εγ2

c

(cos ζ + ∆Px0)h(θ − Q(ζ)) + O(1/γ2
c ) + O(1/εγ4

c ) . (2.57)

The initial conditions are θ(0, ε) = θ0, χ(0, ε) = χ0. To obtain a system where θ and χ interact
with each other in first-order averaging we must balance the O(ε) term in (2.56) with the
O(E/εγ2

c ) in (2.57). In this spirit we relate ε and γc by choosing

ε =
E

εγ2
c

, (2.58)

and so we obtain (1.5). It is this balance that will lead to the FEL pendulum equations in §3.
This is the distinguished case mentioned in the Introduction and the system (2.56),(2.57) can
be written

θ′ = εKrq(ζ)χ + O(ε2) , (2.59)

χ′ = −εK2(cos ζ + ∆Px0)h(θ − Q(ζ)) + O(ε2) , (2.60)

which are now in standard form. Up to this point Kr has not been fixed but now it is convenient
to take

Kr = 2/q̄ , (2.61)

which we do from now on. Using (2.48), (2.61) is identical to (1.3). Furthermore in the
monochromatic case of (2.15) and §3, we will see that, with (2.61), the primary resonance
appears at ν = 1.

With (2.61) the ODE’s (2.59), (2.60) become

θ′ = ε
2q(ζ)

q̄
χ + O(ε2) , (2.62)

χ′ = −εK2(cos ζ + ∆Px0)h(θ − Q(ζ)) + O(ε2) . (2.63)

We now relate θ to the so-called ponderomotive phase. We have, from (2.26),(2.40), (2.52)
and (2.53),

θ(ζ, ε) =
kr

ku
(ζ − kuct(ζ/ku)) + [ζ + Υ0 sin ζ + Υ1 sin 2ζ ] . (2.64)

Using (2.39) and (2.64) we obtain

θ(kuz, ε) = kr(z − ct(z)) + kuz + Υ0 sin kuz + Υ1 sin(2kuz) . (2.65)

For ∆Px0 = 0 the variable θ is the so-called ponderomotive phase, i.e.,

θ(kuz, ε) = (ku + kr)z − krct(z) + Υ1 sin(2kuz) , (2.66)

where, for ∆Px0 = 0,

Υ1 =
krK

2

8kuγ2
c

=
KrK

2

8
=

K2

4q̄
=

K2

4 + 2K2
. (2.67)

Thus in our context the ponderomotive phase arises naturally in the process of finding the
distinguished relation between ε and γc and transforming to slowly varying coordinates. In
standard treatments it is introduced heuristically to maximize energy transfer.
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To make the O(ε2) terms in (2.62),(2.63) explicit we first rewrite (2.41),(2.42) in terms of
ε, K and E as

θ′aux =
2E
q̄ε2

(1 − 1

Pz
) , (2.68)

χ′ = −K2ε
1

1 + εχ

Px

Pz
h(θaux) , (2.69)

where

P 2
z = 1 − ε2

E (1 + εχ)−2(1 + K2P 2
x ) , (2.70)

Px = cos ζ + ∆Px0 +
ε2q̄

2
[H(θaux) − H(θ0)] . (2.71)

The initial conditions are θaux(0, ε) = θ0, χ(0, ε) = χ0. Under (2.52),(2.61), the system becomes
(2.68),(2.69) becomes

θ′ =
2E
ε2q̄

(1 − 1

Pz

) +
q(ζ)

q̄
, (2.72)

χ′ = −εK2 1

1 + εχ

Px

Pz
h(θ − Q(ζ)) , (2.73)

where

Px = cos ζ + ∆Px0 +
ε2q̄

2
[H(θ − Q(ζ)) − H(θ0)] . (2.74)

The O(ε2) terms in (2.62),(2.63) can now be determined by comparison with (2.72),(2.73). We
will do this in the monochromatic case of §3.
Remarks:

(1) Note that, by (1.4),(1.5), γc =
√
E/ε, in particular γc > 0 and, by (2.36),

γ = γc(1 + εχ) =
√
E(

1

ε
+ χ) . (2.75)

Since, by (2.31), we have the restriction γ > 1 we also have, by (2.75),

1 + εχ > 0 . (2.76)

Because, by (2.38), Pz > 0, Eq. (2.70) gives ε√
E

√
1 + K2P 2

x < |1 + εχ| and (2.76) gives

χ > −1

ε
+

1√
E
√

1 + K2P 2
x . (2.77)

Note that (2.77) defines our maximal domain of points (θ, χ, ζ), in particular it entails
(2.38),(2.76). We will in §3.1 further restrict this domain.

Of course always γ ≥ 1 and, in fact, in applications γc, γ ≫ 1. However for our purposes
it is convenient to base our work on the maximal domain (2.77).

(2) The transformation to the slowly varying θ in (2.52) works nicely because ζ (equivalently
z) is the independent variable. If we had stayed with t as the independent variable this
step wouldn’t work.
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(3) Equations (2.62),(2.63) are in the standard form for the MoA. However we did not prove
that the O(ε2) are actually bounded by an ε-independent constant times ε2. In the
monochromatic case in §3 we will show that the two O(ε2) terms are truly bounded by
Cε2 on an appropriate domain for appropriate constants C.

(4) For the results of this paper the normalized field strength E cannot be too big (or ε won’t
be small) and it cannot be too small or another distinguished case will come into play.
Of course for a seeded FEL, E will be set by the seeding field. In Appendix H we present
two very crude bounds that have some relevance to the beginning stages of a High Gain
FEL. Here we simply note that for E = 1000, ε is approximately 0.001.

In an early approach to this problem we built a normal form analysis assuming E small,
so that the radiation field was a small perturbation of the undulator motion. We thus
considered E as a small parameter in addition to 1/γc. This led to another distinguished
case, which also had a resonant structure but with a different pendulum type behavior.
Later we realized that E is not necessarily small for cases of interest and we were led to
the current case of (1.5).

(5) As will become clear in §3 the normal form for (2.62) is θ′ = ε2χ. The normal form of
(2.63) depends on h. In the monochromatic case h(θ − Q(ζ)) = cos(ν[θ − Q(ζ)]) and
the nonresonant, resonant and near-to-resonant structure will appear as ν varies. In
particular the primary resonance will appear at ν = 1. However it is curious that if

h(α) =

∫ ∞

−∞
h̃(ξ) exp(−iξα)dξ , (2.78)

with h̃(ξ) smooth and localized near ξ = ±1 the resonance effect is washed out in first-
order averaging. We will explore this briefly in §5. We are studying the consequence of
this in the collective case.

3 Special Planar Undulator Model and averaging theo-

rems

We have the planar undulator in a standard form for the MoA in (2.62),(2.63) where the
O(ε2) terms can be determined from (2.72),(2.73). We now specialize to a monochromatic
radiation traveling wave, write the system in Fourier form, discuss resonance as a normal form
phenomenon, develop the NR and NtoR normal forms and state two theorems giving precise
bounds on the normal form approximations. Thus from now on the radiation field in (2.13) is
monochromatic, i.e., h, H have the form (2.15) with ν ≥ 1/2.

3.1 The basic ODE’s for the monochromatic radiation field

In this section we introduce the notation which will allow us to state and prove our three
propositions and two theorems. With (2.15),(2.70), (2.74) we show the dependencies of Px and
Pz on (θ, χ, ζ, ε, ν) by the replacement

Px = Πx , Pz = Πz , (3.1)
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where

Πx(θ, ζ, ε, ν) := cos ζ + ∆Px0 +
ε2q̄

2ν
[sin(ν[θ − Q(ζ)]) − sin(νθ0)] , (3.2)

Πz(θ, χ, ζ, ε, ν) :=

√
1 − ε2

E (1 + εχ)−2(1 + K2Π2
x(θ, ζ, ε, ν) . (3.3)

Note that, by (2.77),(3.1),

χ > −1

ε
+

1√
E
√

1 + K2Π2
x(θ, ζ, ε, ν) . (3.4)

From now on, we restrict ε to a finite interval (0, ε0]. We are of course interested in ε small,
i.e., 0 < ε ≪ 1, and so, without loss of generality, we take

0 < ε ≤ ε0 , 0 < ε0 ≤ 1 . (3.5)

Using (3.4),(3.5) we define the open set D(ε, ν), for 0 < ε ≤ ε0, ν ≥ 1/2, by

D(ε, ν) := {(θ, χ, ζ) ∈ R
3 : χ > −1

ε
+

1√
E
√

1 + K2Π2
x(θ, ζ, ε, ν)} , (3.6)

which is our maximal domain in extended phase space. Accordingly we define the domain of
Πx to be {(θ, ζ, ε, ν) ∈ R

4 : 0 < ε ≤ ε0, ν ≥ 1/2} and the domain of Πz to be {(θ, χ, ζ, ε, ν) ∈
(D(ε, ν) × R

2) : 0 < ε ≤ ε0, , ν ≥ 1/2}. It is easy to check that on the domain of Πz the
argument of the square root in (3.3) is positive and, for (θ, χ, ζ) ∈ D(ε, ν), we have (2.76) and

0 < Πz(θ, χ, ζ, ε, ν) < 1 . (3.7)

Moreover with (2.15) the ODE’s (2.72),(2.73) become

θ′ =
2E
ε2q̄

(1 − 1

Πz(θ, χ, ζ, ε, ν)
) +

q(ζ)

q̄
, (3.8)

χ′ = −εK2 1

1 + εχ

Πx(θ, ζ, ε, ν)

Πz(θ, χ, ζ, ε, ν)
cos(ν[θ − Q(ζ)]) , (3.9)

where q and Q are defined in (2.47),(2.53). Of course the initial conditions are θ(0, ε) =
θ0, χ(0, ε) = χ0.

As suggested by (2.62), (2.63) we now write (3.8),(3.9) as

θ′ = εf1(χ, ζ) + ε2g1(θ, χ, ζ ; ε, ν) , (3.10)

χ′ = εf2(θ, ζ ; ν) + ε2g2(θ, χ, ζ ; ε, ν) , (3.11)

where f1, f2 are given by

f1(χ, ζ) :=
2q(ζ)χ

q̄
, (3.12)

f2(θ, ζ ; ν) := −K2(cos ζ + ∆Px0) cos(ν[θ − Q(ζ)]) , (3.13)

so that g1, g2 are given by

ε2g1(θ, χ, ζ ; ε, ν) :=
2E
ε2q̄

(1 − 1

Πz(θ, χ, ζ, ε, ν)
) +

q(ζ)

q̄
(1 − 2εχ) , (3.14)
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ε2g2(θ, χ, ζ ; ε, ν) := εK2 cos(ν[θ − Q(ζ)])[cos ζ + ∆Px0

− 1

1 + εχ

Πx(θ, ζ, ε, ν)

Πz(θ, χ, ζ, ε, ν)
] . (3.15)

The ODE’s (3.8),(3.9) and their equivalent form, (3.10),(3.11), will be the subject of Theorem
1, i.e., the averaging theorem for the NR case (see also Definition 1 in §3.2). They will also be
the basis for the NtoR case.

We need an appropriate domain for the vector field in (3.10),(3.11) when it comes to av-
eraging theorems. There are two types of singularities in (3.10),(3.11). The first involves the
ε dependence of g1, g2 as ε → 0+. On the surface it appears that the first term on the rhs
of (3.14) is O(1/ε2), however it is O(1). In fact, when combined with the second term the
rhs is O(ε2) so that g1 is O(1). Similarly, g2 appears to be O(1/ε), however again there is a
cancellation so that g2 = O(1). This should not come as a surprise since the construction of the
distinguished case (see the remarks before (2.59)) Proposition 1 makes this precise by finding
the limits of g1, g2 as ε → 0+. Thus the ε = 0 singularity is removable. There are also singu-
larities for Πz = 0, εχ = −1 which are not removable. This is reflected in the fact that even
though f1, f2 are nice, g1, g2 have these singularities. However these singularities are excluded
from our maximal domain D(ε, ν) (see (2.76),(3.7)) and so the vector field in (3.10),(3.11) is
of class C∞ on D(ε, ν) for 0 < ε ≤ ε0 ≤ 1, ν ≥ 1/2. Nevertheless since D(ε, ν) is dependent
on ε it is inconvenient to use it in an averaging theorem. Thus we now restrict D(ε, ν) to an
ε-independent domain W (ε0) × R.

To motivate W we note that, by (3.2) and since ν ≥ 1/2,

|Πx(θ, ζ, ε, ν)| ≤ Πx,ub(ε) , (3.16)

where

Πx,ub(ε) := 1 + |∆Px0| + 2ε2q̄ . (3.17)

Clearly, by (3.16),(3.17),

−1

ε
+

1√
E
√

1 + K2Π2
x(θ, ζ, ε, ν) ≤ −1

ε
+

1√
E

√
1 + K2Π2

x,ub(ε)

≤ − 1

ε0

+
1√
E

√
1 + K2Π2

x,ub(ε0) , (3.18)

whence, by (3.6), we can “shrink” the maximal domain D(ε, ν) to the ε-independent domain
W (ε0) × R where

W (ε) := R × (χlb(ε),∞) , (3.19)

with

χlb(ε) := −1

ε
+

1√
E

√
1 + K2Π2

x,ub(ε) . (3.20)

3.2 Resonant, nonresonant, ∆-nonresonant, near-to-resonant

Now that the structure of the gi have been characterized at the level needed for the averaging
theorems, we discuss the structure of the fi defined in (3.12),(3.13). Clearly f1 is 2π periodic
in ζ . We write, by (2.53),(3.13),

f2(θ, ζ ; ν) = −K2(cos ζ + ∆Px0) cos

(
νθ − νζ − νΥ0 sin ζ − νΥ1 sin 2ζ

)
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=: f̌2(θ, ζ, νζ ; ν) , (3.21)

where f̌2(θ, ζ1, ζ2; ν) := −K2(cos ζ1 + ∆Px0)

× cos

(
νθ − ζ2 − νΥ0 sin ζ1 − νΥ1 sin 2ζ1

)
. Since f̌2(θ, ζ1, ζ2; ν) is of class C∞ in (ζ1, ζ2) and

2π-periodic in ζ1 and ζ2 we conclude from (3.21) that f2 is a quasiperiodic function of ζ with
two base frequencies 1 and ν (for the definition of quasiperiodic functions, see, e.g., [9]). To
make the resonant structure explicit we write f2 as

f2(θ, ζ ; ν) = −K2

2
exp(iν(θ − ζ))jj(ζ ; ν, ∆Px0) + cc , (3.22)

where

jj(ζ ; ν, ∆Px0) := (cos ζ + ∆Px0) exp(−iν[Υ0 sin ζ + Υ1 sin 2ζ ]) , (3.23)

is 2π-periodic in ζ . The Fourier series of jj is

jj(ζ ; ν, ∆Px0) ∼
∑

n∈Z

ĵj(n; ν, ∆Px0)e
inζ , (3.24)

with

ĵj(n; ν, ∆Px0) :=
1

2π

∫

[0,2π]

dζjj(ζ ; ν, ∆Px0) e−inζ , (3.25)

and Z being the set of integers. Since jj(·; ν, ∆Px0) is a 2π-periodic C∞ function its Fourier
series (3.24) is absolutely convergent, i.e.,∑

n∈Z
|ĵj(n; ν, ∆Px0)| < ∞ whence ∼ in (3.24) can replaced by =. The f2 in Eq. (3.11) can

now be written

f2(θ, ζ ; ν) = −K2

2
eiνθ

∑

n∈Z

ĵj(n; ν, ∆Px0)e
i(n−ν)ζ + cc , (3.26)

which clearly shows the resonant structure in that the ζ average of f2 is zero for ν 6= integer.
In Appendix A we find

ĵj(n; ν, ∆Px0) =
1

2
J (n, 1, ν, Υ0, Υ1) +

1

2
J (n,−1, ν, Υ0, Υ1)

+∆Px0J (n, 0, ν, Υ0, Υ1) , (3.27)

where

J (n, m, ν, Υ0, Υ1) :=
∑

l∈Z

Jm−n−2l(νΥ0)Jl(νΥ1) , (3.28)

and Jk is the k-th-order Bessel function of the first kind. Note that
jj(−ζ ; ν, ∆Px0) = jj(ζ ; ν, ∆Px0)

∗ which implies ĵj(n; ν, ∆Px0) is real. This is confirmed in the
explicit form of (3.27),(3.28) since the Jk are real valued.

The time average of f1 in (3.12) is clearly

f̄1(χ) := lim
T→∞

[
1

T

∫ T

0

f1(χ, ζ)dζ ] = 2χ . (3.29)
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Since the series in (3.26) converges uniformly in ζ and since exp(i(n − ν)ζ) = δn,ν , the time
average of the quasiperiodic f2 is

f̄2(θ; ν) := lim
T→∞

[
1

T

∫ T

0

f2(θ, ζ ; ν)dζ ]

=

{
0 if ν 6∈ N

−K2ĵj(k; k, ∆Px0) cos(kθ) if ν = k ∈ N ,
(3.30)

where N denotes the set of positive integers and where we have used the fact that ĵj is real. This
forms the basis of our definitions of resonant, nonresonant and near-to-resonant frequencies ν.

Definition 1. (Resonant, nonresonant, ∆-nonresonant, near-to-resonant)
Let ν ≥ 1/2. We say ν is nonresonant (NR) if ν 6∈ N and resonant otherwise. We also say
that ν is ∆-nonresonant (∆-NR) when ν ∈ [k + ∆, k + 1 − ∆] with ∆ ∈ (0, 0.5) and k ∈ N.
Note that ν is NR if it is ∆-NR. We say that ν is near-to-resonant (NtoR) if ν = k + εa where
k ∈ N, a ∈ [−1/2, 1/2]. Recall 0 < ε ≤ ε0 ≤ 1 and that we take N to denote the set of positive
integers. 2

Remark:
In our various estimates we need to keep ν away from zero but want to include ν = 1 since it
is the primary resonance. Thus we require ν ≥ 1/2 and since ε ≤ 1 we require |a| ≤ 1/2.

It follows from the Fourier form of (3.26) that it is only possible to have a nontrivial normal
form, i.e., f̄2 6= 0, if ν is an integer. Thus ν = 1 is the primary resonance as discussed in
the Introduction, justifying the choice of Kr in (1.3) and (2.61). The resonant normal form at
ν = k is of the pendulum form with

θ′ = ε2χ , χ′ = −εK2ĵj(k; k, ∆Px0) cos(kθ) . (3.31)

From Appendix A we have, for ∆Px0 = 0,

ĵj(k; k, 0) =

{
1
2
(−1)n[Jn(xn) − Jn+1(xn)] if k = 2n + 1

0 if k even ,
(3.32)

where xn := (2n + 1)Υ1 and n = 0, 1, ... with Υ1 defined in (2.54). Thus, for ∆Px0 = 0, (3.31)
gives the standard FEL pendulum system (see also [2],[4],[5],[17]):

θ′ = ε2χ , χ′ = −εK2ĵj(k; k, 0) cos(kθ) . (3.33)

For a general quasiperiodic function with base frequencies 1 and ν it is possible to have a
nontrivial normal form for every rational ν and thus ν would be defined to be resonant if it
were rational.

Since f̄1(χ) is independent of ν it plays no role in Definition 1. Clearly f̄2(θ; ν) = 0 if ν is
NR. We state our NR theorem in Theorem 1 for the ∆-NR case. In fact because of a small
divisor problem the theorem will require ν to stay away from neighborhoods of resonances in
order to get an o(1) error bound as ε → 0+. We will obtain an O(ε1−β) bound for β ∈ (0, 1]
depending on the distance from the resonance by letting ∆ = O(εβ). In the resonant case we
will explore an O(ε) neighborhood of the resonance. This will allow us to at least partially fill
the gap between the ∆-NR νs in the NR theorem and the νs in the NtoR theorem. The way
this occurs will be seen in the error analysis in the proofs of Theorems 1 and 2.
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3.3 The nonresonant case and its normal form

The exact ODE’s in the NR case are (3.10),(3.11). Clearly they are the same in the ∆-NR
subcase. By definition, the NR normal form, i.e., the normal form with ν NR, is obtained
from (3.10),(3.11) by dropping the O(ε2) terms and averaging the rhs over ζ holding θ, χ fixed
whence, by (3.29),(3.30),

v′
1 = εf̄1(v2) = ε2v2 , (3.34)

v′
2 = εf̄2(v1; ν) = 0 , (3.35)

with the same initial conditions as in the exact ODE’s, i.e., v1(0, ε) = θ0, v2(0, ε) = χ0 and
solution

v1(ζ, ε) = 2χ0εζ + θ0 , v2(ζ, ε) = χ0 . (3.36)

The solutions of (3.34),(3.35) with ε = 1 play an important role in the statement and proof of
Theorem 1 and we refer to

v(·, 1) = (v1(·, 1), v2(·, 1)) , (3.37)

as the guiding solution at (θ0, χ0). Note that the v in (3.37) should not be confused with the
velocity vector v in (2.3).

Our basic result in the NR case will be that |θ(ζ)−v1(ζ, ε)| and |χ(ζ)−v2(ζ, ε)| are O(ε/∆)
in the ∆-NR subcase. If ∆ = O(1) then the error is O(ε). Putting ∆ into the order symbol
allows one to discuss ∆ small, e.g., as a function of ε. The precise statement is given in §3.5.1
and its proof is given in §4.1.

Proposition 1. Let 0 < ε ≤ ε0 ≤ 1 and let ν ≥ 1/2. Then

W (ε0) × R ⊂ W (ε) × R ⊂ D(ε, ν) . (3.38)

Moreover g1(·; ε, ν), g2(·; ε, ν) are C∞ functions on W (ε0) × R. Furthermore, for (θ, χ, ζ) ∈
W (ε0) × R,

lim
ε→0+

[g1(θ, χ, ζ ; ε, ν)] = −q(ζ)

4q̄
(
3q(ζ)

E + 12χ2)

−K2

2ν

(
sin(ν[θ − Q(ζ)]) − sin(νθ0)

)
(cos ζ + ∆Px0) , (3.39)

lim
ε→0+

[g2(θ, χ, ζ ; ε, ν)] = K2χ cos(ν[θ − Q(ζ)])(cos ζ + ∆Px0) . (3.40)

Remark:
Proposition 1 entails that the vector field on the rhs of (3.10),(3.11) is a C∞ function on
W (ε0) × R (whence the vector field on the rhs of (3.8),(3.9) is a C∞ function on W (ε0) × R,
too). Proposition 1 will allow us to use, in Theorem 1, the domain W (ε0) × R. Furthermore
the domain is large enough to contain the χ of physical interest (see Proposition 3 in §3.5.3).

Proof of Proposition 1: Let (θ, χ, ζ) ∈ W (ε) × R. Then, by (3.16),(3.19),(3.20),

χ > −1

ε
+

1√
E
√

1 + K2Π2
x(θ, ζ, ε, ν) ,
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whence, by (3.6), (θ, χ, ζ) ∈ D(ε, ν) which proves the second inclusion in (3.38). The first
inclusion in (3.38) follows from (3.19) and from the fact that, by (3.20), χlb(ε) is increasing
with ε. Moreover, by the remarks after (3.15), g1(·; ε, ν), g2(·; ε, ν) are C∞ functions on D(ε, ν)
whence, by (3.38), they are C∞ functions on W (ε0) × R. Finally, (3.39),(3.40) are proven in
Appendix B (see (B.8),(B.13)). 2

3.4 The Near-to-Resonant case and its normal form

3.4.1 The Near-to-Resonant system

According to Definition 1 we have, in the NtoR case,

ν = k + εa, (3.41)

where k ∈ N and a ∈ [−1/2, 1/2] is a measure of the distance of ν from k. The O(ε) neighbor-
hood of k is natural in first-order averaging. If |ν − k| is too small then the normal form will
be close to the resonant normal form and if |ν − k| is too big, then ν will be in the NR regime.
Eq. (3.41) clearly includes the resonant case for a = 0. We start from (3.10),(3.11),(3.13) use
(3.41) and obtain

θ′ = εf1(χ, ζ) + ε2g1(θ, χ, ζ ; ε, k + εa) , (3.42)

χ′ = εf2(θ, ζ ; k + εa) + ε2g2(θ, χ, ζ ; ε, k + εa) , (3.43)

with initial conditions θ(0, ε) = θ0, χ(0, ε) = χ0.
By the remarks after (3.15), the vector field in (3.42),(3.43) is of class C∞ on the maximal

domain D(ε, k + εa). Since f1 in (3.42) is independent of ε the normal form associated with it
will be the same as in the NR case. We now need to study the ε dependence of f2 in (3.43).
From (3.22),

f2(θ, ζ ; k + εa) = −K2

2
exp(i(k + εa)(θ − ζ))jj(ζ ; k + εa, ∆Px0) + cc

= −K2

2
exp(i[kθ − εaζ ]) exp(−ikζ)jj(ζ ; k, ∆Px0)

× exp(iεa[θ − Υ0 sin ζ − Υ1 sin 2ζ ]) + cc , (3.44)

where we have used from (3.23) that

jj(ζ ; k + εa, ∆Px0) = (cos ζ + ∆Px0) exp(−i(k + εa)[Υ0 sin ζ + Υ1 sin 2ζ ])

= jj(ζ ; k, ∆Px0) exp(−iεa[Υ0 sin ζ + Υ1 sin 2ζ ]) . (3.45)

For a = 0 the resonant normal form of (3.30) is obtained in (3.44). For a 6= 0 (3.44) displays
two ε dependencies. The first is the εaζ one which cannot be expanded since it is O(1) for
ζ = O(1/ε) the upper range of our averaging theorem. The second is the εa factor in the final
exponential which can be expanded and makes an O(1) contribution to g2 in (3.43) for all ζ .
Therefore we rewrite f2 as

f2(θ, ζ ; k + εa) = fR
2 (θ, εζ, ζ ; k, a) + O(ε) , (3.46)

where

fR
2 (θ, τ, ζ ; k, a) := −K2

2
exp(i[kθ − aτ ]) exp(−ikζ)jj(ζ ; k, ∆Px0) + cc
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= −K2

2
exp(i[kθ − aτ ])

∑

n∈Z

ĵj(n; k, ∆Px0)e
iζ[n−k] + cc . (3.47)

We can now write the basic system for the MoA, in this NtoR case. From (3.42)-(3.47) we
obtain

θ′ = εfR
1 (χ, ζ) + ε2gR

1 (θ, χ, ζ, ε, k, a) , (3.48)

χ′ = εfR
2 (θ, εζ, ζ ; k, a) + ε2gR

2 (θ, χ, ζ, ε, k, a) , (3.49)

where

fR
1 (χ, ζ) := f1(χ, ζ) =

2q(ζ)χ

q̄
, (3.50)

gR
1 (θ, χ, ζ, ε, k, a) := g1(θ, χ, ζ ; ε, k + εa) , (3.51)

gR
2 (θ, χ, ζ, ε, k, a) := g2(θ, χ, ζ ; ε, k + εa)

+
1

ε
[f2(θ, ζ ; k + εa) − fR

2 (θ, εζ, ζ ; k, a)] , (3.52)

and where gR
2 can be rewritten as follows. By (3.21) we have

f2(θ, ζ ; k + εa) = −K2(cos ζ + ∆Px0)

cos

(
(k + εa)[θ − ζ − Υ0 sin ζ − Υ1 sin 2ζ ]

)
,

(3.53)

and, by (3.23),(3.47),

fR
2 (θ, εζ, ζ ; k, a) = −K2

2
exp(i[kθ − εaζ ]) exp(−ikζ)(cos ζ + ∆Px0)

× exp(−ik[Υ0 sin ζ + Υ1 sin 2ζ ]) + cc

= −K2(cos ζ + ∆Px0) cos

(
k[θ − ζ − Υ0 sin ζ − Υ1 sin 2ζ ] − εaζ

)
.

(3.54)

Using (3.53),(3.54) we can write (3.52) as

gR
2 (θ, χ, ζ, ε, k, a) = g2(θ, χ, ζ ; ε, k + εa)

−K2

ε
(cos ζ + ∆Px0)

(
cos

(
(k + εa)[θ − ζ − Υ0 sin ζ − Υ1 sin 2ζ ]

)

− cos

(
k[θ − ζ − Υ0 sin ζ − Υ1 sin 2ζ ] − εaζ

))
, (3.55)

which will be useful in obtaining bounds for gR
2 in Appendix E.

The following proposition is the analogue of Proposition 1 for the NtoR case.

Proposition 2. Let 0 < ε ≤ ε0 ≤ 1 and let a ∈ [−1/2, 1/2], k ∈ N. Then gR
1 (·; ε, k, a), gR

2 (·; ε, k, a)
are C∞ functions on W (ε0) × R. Furthermore for (θ, χ, ζ) ∈ W (ε0) × R

lim
ε→0+

[gR
1 (θ, χ, ζ, ε, k, a)] = −q(ζ)

4q̄
(
3

E q(ζ) + 12χ2)
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−K2

2k

(
sin(k[θ − Q(ζ)]) − sin(kθ0)

)
(cos ζ + ∆Px0) , (3.56)

lim
ε→0+

[gR
2 (θ, χ, ζ, ε, k, a)] = χK2 cos(k[θ − Q(ζ)])(cos ζ + ∆Px0)

+K2a(θ − Υ0 sin ζ − Υ1 sin 2ζ)

× sin(k[θ − ζ − Υ0 sin ζ − Υ1 sin 2ζ ])(cos ζ + ∆Px0) . (3.57)

Remark: Proposition 2 entails that the vector field on the rhs of (3.48),(3.49) is a C∞ function
on W (ε0) × R. Proposition 2 will allow us to use, in Theorem 2, the domain W (ε0) × R.

Proof of Proposition 2: The C∞ property of gR
1 (·; ε, k, a), gR

2 (·; ε, k, a) follows from Proposition
1 and (3.51),(3.52). Moreover (3.56),(3.57) are proven in Appendix D (see (D.2),(D.11)). 2

3.4.2 The NtoR normal form

The NtoR normal form ODE’s are obtained from (3.48),(3.49) by dropping the O(ε2) terms and
averaging the rhs over ζ holding the slowly varying quantities θ, χ, εaζ fixed. We thus obtain
from (3.47),(3.48),(3.49), (3.50) that

v′
1 = εf̄R

1 (v2) = 2εv2 , (3.58)

v′
2 = εf̄R

2 (v1, εζ ; k) = −εK0(k) cos(kv1 − εaζ) , (3.59)

where

K0(k) := K2ĵj(k; k, ∆Px0) , (3.60)

and the same initial conditions as in the exact ODE’s, i.e., v1(0, ε) = θ0, v2(0, ε) = χ0. For
a = 0, eq.’s (3.58),(3.59) become the resonant normal form (3.31). For ∆Px0 = a = 0, eq.’s
(3.58),(3.59) are the standard FEL pendulum equations, given by (3.32),(3.33). In the special
case when K0(k) = 0 the ODE’s (3.58),(3.59) are the same as NR equations (3.34),(3.35) and
so this case needs no further comment. Note that the special case K0(k) = 0 occurs, e.g., when
∆Px0 = 0 and k even (see the remark after (A.11)).

The ultimate justification for the normal form (3.58),(3.59) comes from the averaging the-
orem itself. However, if we replace εζ in (3.49) by τ and add the equation τ ′ = ε then this,
together with (3.48),(3.49), is in a standard form for “periodic averaging” (=averaging over a
periodic function) and the normal form (3.58),(3.59) is obtained by averaging over ζ holding
θ, χ, τ fixed. In this θ, χ, τ formulation standard periodic averaging theorems apply for the 3D
system of θ, χ, τ , see, e.g., [6, 13] and Section 3.3 in [10]. We will however prove an averaging
theorem directly tuned to (3.48),(3.49) both to show the reader a proof in a simple context and
in the process we obtain nearly optimal error bounds which are stronger than in those standard
theorems.

3.4.3 Structure of the NtoR normal form solutions

Here we write the solution of the IVP for the normal form system (3.58),(3.59) in terms of
solutions of the simple pendulum system and discuss their behavior. Therefore in this Section
we exclude the simple subcase where K0 = 0. Let v = (v1, v2), then it is easy to see that

v(ζ, ε) = v(εζ, 1) . (3.61)
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We first make the transformation v(τ, 1) → v̂(τ) via

v̂(τ) =

(
v̂1(τ)
v̂2(τ)

)
:=

(
kv1(τ, 1) − aτ

v2(τ, 1)

)
, (3.62)

which gives

dv̂1

dτ
= 2kv̂2 − a , v̂1(0) = kθ0 , (3.63)

dv̂2

dτ
= −K0(k) cos v̂1 , v̂2(0) = χ0 . (3.64)

Thus we have scaled away the ε and made the transformed system autonomous. Solution
properties of (3.63),(3.64) are easily understood in terms of its phase plane portrait (PPP).
However it is more convenient to transform it to the simple pendulum system

X ′ = Y, Y ′ = − sin X , (3.65)

X(0; Z0) =: X0 , Y (0; Z0) =: Y0 , Z0 :=

(
X0

Y0

)
. (3.66)

The required transformation is

v̂1(τ) = X(Ωτ ; Z0) − sgn(K0)
π

2
, (3.67)

v̂2(τ) =
ΩY (Ωτ ; Z0) + a

2k
, (3.68)

where

Ω = Ω(k) :=
√

2k|K0(k)| . (3.69)

From (3.61),(3.62) (3.67) and (3.68), the solutions of (3.58),(3.59) are represented by

v1(ζ, ε) =
X(Ωεζ ; Z0) − sgn(K0)

π
2

+ εaζ

k
, (3.70)

v2(ζ, ε) =
ΩY (Ωεζ ; Z0) + a

2k
, (3.71)

where

Z0(θ0, χ0, k, a) =

(
X0(θ0, k)

Y0(χ0, k, a)

)
=

(
kθ0 + sgn(K0(k))π

2

(2kχ0 − a)/Ω(k)

)
. (3.72)

We now discuss the solution properties of (3.58),(3.59) in terms of the simple pendulum
PPP, [18], for (3.65) using (3.70) and (3.71). The equilibria of (3.65) are at (X, Y ) = (πl, 0)
with integer l.

The systems obtained by linearizing about these equilibria are centers for l even and saddle
points for l odd. From the theory of Almost Linear Systems (see, e.g., [19]), it follows that the
equilibria are centers and saddle points for the nonlinear system. A conservation law for the
simple pendulum system is easily derived by first noting that the direction field is given by

dY

dX
= −sin X

Y
. (3.73)
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This equation is separable and has solutions given implicitly by 1
2
Y 2 +1− cos X = const. Thus

EPen(X, Y ) :=
1

2
Y 2 + U(X) , U(X) = 1 − cos X (3.74)

is a constant of the motion which is easily checked directly. Incidentally EPen is also a Hamil-
tonian for the ODE’s (3.58),(3.59) but this plays no role here. The PPP is easily constructed
from the so-called potential plane which is simply a plot of the potential U(X) vs. X, see
[20]. The PPP shows that the solutions of the simple pendulum system has four types of
behavior, the equilibria mentioned above, libration, rotation and separatrix motion. These
can be characterized in terms of EPen. Clearly, EPen is nonnegative, the centers correspond
to EPen(X, Y ) = 0 and the saddle points and separatrices to EPen(X, Y ) = 2. The motion
is libration for 0 < EPen(X, Y ) < 2, rotation for EPen(X, Y ) > 2 and separatrix motion for
EPen(X, Y ) = 2 with Y 6= 0. In the libration case the solutions are periodic, which is easy to
show, and the period as a function of amplitude, [21], is given by

T (A) = 2
√

2

∫ A

0

dt

[cos t − cos A]1/2
, (0 < A < π) (3.75)

where T (A) is the period associated with the initial conditions X0 = A, Y0 = 0. It is easy to
show that limA→0 T (A) = 2π.

We denote by Bn the n-th pendulum bucket which is defined by

Bn := {(X, Y ) ∈ R
2 : EPen(X, Y ) < 2, |X − 2πn| < π} , (3.76)

with n ∈ Z. Note that, by (3.72),(3.74),

EPen(Z0(θ0, χ0, k, a)) = ER(θ0, χ0, k, a) :=
1

2
[
2kχ0 − a

Ω(k)
]2

+1 + sgn(K0) sin(kθ0) . (3.77)

Note also that, by (3.70),(3.71),(3.72),

|v1(ζ, ε) − θ0| =
∣∣∣
X(Ωεζ ; Z0) − X0 + εaζ

k

∣∣∣ ≤ |X(Ωεζ ; Z0) − X0| + ε|a|ζ
k

,

(3.78)

|v2(ζ, ε) − χ0| =
Ω

2k
|Y (Ωεζ ; Z0) − Y0| , (3.79)

|v2(ζ, ε)| ≤ Ω|Y (Ωεζ ; Z0)| + |a|
2k

. (3.80)

We can now discuss the four cases of equilibria, libration, rotation and separatrix motion.
In each case, using (3.78),(3.79), (3.80), we will find dmin

1 , dmin
2 , χ∞ ≥ 0 such that, for all ζ ≥ 0,

|v1(ζ, ε) − θ0| ≤ dmin
1 (θ0, χ0, εζ, k, a) , |v2(ζ, ε) − χ0| ≤ dmin

2 (θ0, χ0, k, a) ,

(3.81)

|v2(ζ, ε)| ≤ χ∞(θ0, χ0, k, a) , (3.82)

and we will at the same time observe that dmin
1 (θ0, χ0, τ, k, a) is increasing w.r.t. τ .
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(I) Equilibria regime: Y0 = 0 and either EPen(X0, Y0) = 0 or 2.

Clearly X0 = πl where l ∈ Z and, by (3.72),

(
kθ0 + sgn(K0(k))π

2

(2kχ0 − a)/Ω(k)

)
= Z0(θ0, χ0, k, a) =

(
X
Y

)
=

(
πl
0

)
, (3.83)

so that θ0 = (πl − sgn(K0(k))π
2
)/k and χ0 = a/2k. Thus, by (3.70),(3.71),

v1(ζ, ε) = θ0 +
εaζ

k
, (3.84)

v2(ζ, ε) = χ0 . (3.85)

Clearly, by direct substitution, these are solutions of (3.58),(3.59). Incidentally these
solutions are stable for l even and unstable for l odd.

Clearly, due to (3.81),(3.82),(3.84), (3.85), we can choose

dmin
1 (θ0, χ0, εζ, k, a) :=

ε|a|ζ
k

, dmin
2 (θ0, χ0, k, a) := 0 , (3.86)

χ∞(θ0, χ0, k, a) := |χ0| . (3.87)

(II) Libration regime: 0 < EPen(X0, Y0) < 2.

In this case Z0(θ0, χ0, k, a) ∈ Bn(θ0,k) where the integer n = n(θ0, k) is determined by the
condition |X0(θ0, k) − 2πn(θ0, k)| < π. From (3.70),(3.71) we see that

v(ζ, ε) = vper(ζ, ε) + vlin(εζ) , (3.88)

and it is easy to show that the periodic part has amplitude determined by the max and
min values of X and Y and the linear growth term is

vlin(εζ) =

(
εaζ/k

0

)
. (3.89)

The maximum values Xmax and Ymax of X and Y satisfy, by (3.74),

EPen(Z0) =
1

2
Y 2

0 + 1 − cos X0 =
1

2
Y 2

max = 1 − cos Xmax , (3.90)

whence

Xmax(θ0, χ0, k, a) = 2πn(θ0, k) + arccos(cosX0 −
1

2
Y 2

0 ) ,

= 2πn(θ0, k) + arccos

(
1 − ER(θ0, χ0, k, a)

)
,

Ymax(θ0, χ0, k, a) :=
√

2EPen(Z0(θ0, χ0, k, a))

=
√

2ER(θ0, χ0, k, a) ,

(3.91)

and the minimum values Xmin and Ymin of X and Y are given by

Xmin := 4πn − Xmax , Ymin := −Ymax . (3.92)
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Here arccos is the principle branch of the inverse cos mapping [−1, 1] → [0, π].

We now determine dmin
1 , dmin

2 and χ∞. It follows from (3.78),(3.79),(3.80), (3.81),(3.82),(3.91),(3.92)
that

|v1(ζ, ε) − θ0| ≤
|X(Ωεζ ; Z0) − X0| + ε|a|ζ

k

≤ 2Xmax(θ0, χ0, k, a) − 4πn(θ0, k) + ε|a|ζ
k

=

2 arccos

(
1 − ER(θ0, χ0, k, a)

)
+ ε|a|ζ

k
=: dmin

1 (θ0, χ0, εζ, k, a) ,

(3.93)

|v2(ζ, ε) − χ0| =
Ω

2k
|Y (Ωεζ ; Z0) − Y0| ≤

Ω

k
Ymax(θ0, χ0, k, a)

=
Ω(k)

k

√
2ER(θ0, χ0, k, a) =: dmin

2 (θ0, χ0, k, a) , (3.94)

|v2(ζ, ε)| ≤ Ω|Y (Ωεζ ; Z0)| + |a|
2k

≤ ΩYmax(θ0, χ0, k, a) + |a|
2k

=
Ω(k)

√
2ER(θ0, χ0, k, a) + |a|

2k
=: χ∞(θ0, χ0, k, a) . (3.95)

(III) Separatrix regime: Y0 6= 0 and EPen(X0, Y0) = 2.

In this case (X, Y ) ∈ Bn(θ0,k) where the integer n = n(θ0, k) is determined such that
|X0(θ0, k) − 2πn(θ0, k)| < π. Clearly

|X − X0| ≤ 2π , |Y − Y0| ≤
√

2EPen(X0, Y0) = 2 , |Y | ≤ 2 .

(3.96)

For Y0 > 0, (X(t), Y (t)) → ((2n + 1)π, 0) as t → ∞ and, for Y0 < 0, (X(t), Y (t)) →
((2n − 1)π, 0) as t → ∞. Thus for large ζ

v(εζ) ≈ 1

k

(
(2n ± 1)π − sgn(K0(k))π

2
+ εaζ

a/2

)
, (3.97)

which is the odd l solution in case I.

We now determine dmin
1 , dmin

2 and χ∞. By (3.78),(3.79),(3.80), (3.81),
(3.82),(3.96)

|v1(ζ, ε) − θ0| ≤
|X(Ωεζ ; Z0) − X0| + ε|a|ζ

k

≤ 2π + ε|a|ζ
k

=: dmin
1 (θ0, χ0, εζ, k, a) , (3.98)

|v2(ζ, ε) − χ0| =
Ω

2k
|Y (Ωεζ ; Z0) − Y0| ≤

Ω(k)

k
=: dmin

2 (θ0, χ0, k, a) , (3.99)

|v2(ζ, ε)| ≤ Ω|Y (Ωεζ ; Z0)| + |a|
2k

≤ 2Ω(k) + |a|
2k

=: χ∞(θ0, χ0, k, a) . (3.100)
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(IV) Rotation regime: EPen(X0, Y0) > 2.

For Y0 > 0, X is increasing and Y is periodic such that

√
2
√

EPen(X0, Y0) − 2 ≤ Y ≤
√

2
√

EPen(X0, Y0) , (3.101)

and for Y0 < 0, X is decreasing and Y is periodic such that

−
√

2
√

EPen(X0, Y0) ≤ Y ≤ −
√

2
√

EPen(X0, Y0) − 2 . (3.102)

Clearly v2(·, ε) is periodic. We now determine dmin
1 , dmin

2 and χ∞. It follows from
(3.101),(3.102) that for any choice of Y0

|Y − Y0| ≤
√

2
√

ER(θ0, χ0, k, a) −
√

2
√

ER(θ0, χ0, k, a) − 2 , (3.103)

|Y | ≤
√

2ER(θ0, χ0, k, a) . (3.104)

It follows from (3.79),(3.80),(3.103), (3.104) that

|v2(ζ, ε)− χ0| =
Ω

2k
|Y (Ωεζ ; Z0) − Y0|

≤ Ω

2k

(√
2
√

ER(θ0, χ0, k, a) −
√

2
√

ER(θ0, χ0, k, a) − 2

)

=: dmin
2 (θ0, χ0, k, a) , (3.105)

|v2(ζ, ε)| ≤ Ω|Y (Ωεζ ; Z0)| + |a|
2k

≤ Ω(k)
√

2ER(θ0, χ0, k, a) + |a|
2k

=: χ∞(θ0, χ0, k, a) . (3.106)

It follows from (3.65),(3.104) that

|X(Ωεζ ; Z0) − X0| = |
∫ Ωεζ

0

X ′(s)ds| = |
∫ Ωεζ

0

Y (s)ds|

≤
∫ Ωεζ

0

|Y (s)|ds ≤
√

2

∫ Ωεζ

0

√
EPen(X(s), Y (s))ds

=
√

2Ωεζ
√
EPen(X0, Y0) =

√
2Ωεζ

√
ER(θ0, χ0, k, a) , (3.107)

whence, by (3.78),

|v1(ζ, ε)− θ0| ≤
|X(Ωεζ ; Z0) − X0| + ε|a|ζ

k

≤
√

2Ω(k)εζ
√
ER(θ0, χ0, k, a) + ε|a|ζ

k
=: dmin

1 (θ0, χ0, εζ, k, a) . (3.108)

Clearly the simple pendulum system is central to our NtoR normal form approximation.
Every student who has taken a course in ODE’s or Classical Mechanics has studied the pen-
dulum equation at some level. However, not every reader of this paper may know the general
settings of the equation. So, as an aside, we thought some might be interested in knowing how
it fits in a broader context. First, the pendulum equation is a special case of the nonlinear
oscillator ẍ + g(x) = 0 and second, the nonlinear oscillator is an important subclass of the
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class of second-order autonomous systems ẋ = f(x, y), ẏ = g(x, y). The nonlinear oscillator
is discussed in many texts, and here we mention [19] and [22]. Its PPP is easily constructed
from the potential plane as mentioned above and in [20]. After the class of linear systems,
the class of second-order autonomous systems has the most well developed theory [23]. Here
the qualitative behavior is completely captured in the PPP’s. What’s missing from a PPP is
the time it takes to go from one point on an orbit to another, but this is easily determined
using a good ODE solver. The limiting behavior of all solutions bounded in forward time is
given by the celebrated Poincaré-Bendixson theorem and as a consequence existence of periodic
solutions can be inferred and the possibility of chaotic behavior is eliminated. It also follows
that a closed orbit in the phase plane corresponds to a periodic solution.

3.4.4 NR limit far away from the pendulum buckets

Even though for small ε there will be gaps in ν between the ∆-NR and NtoR cases, as we will
discuss in the context of Theorems 1,2, we show here that far away from the pendulum buckets
the NR normal form emerges. While not a rigorous argument since we do not quantify “large”
it is a consistency check. As in Section 3.4.3 we exclude the simple subcase where K0 = 0.

For Z0 far away from the pendulum buckets in the sense that |Y0| = |2kχ0 − a|/Ω ≫ 2, we
are in the rotation regime. Letting X(s̃) = X̂(s), Y (s̃) = Y0Ŷ (s), s = Y0s̃, (3.65),(3.66) become

dX̂

ds
= Ŷ ,

dŶ

ds
= −ǫ sin X̂ , X̂(0) = X0 , Ŷ (0) = Y0 = 1 , (3.109)

where ǫ = 1/Y 2
0 . A regular perturbation expansion yields X̂(s) = s+X0+O(ǫ), Ŷ (s) = 1+O(ǫ)

as we show in Appendix F therefore X(s̃) = Y0s̃ + X0 + O(1/Y 2
0 ), Y (s̃) = Y0 + O(1/Y0) and

thus from (3.70),(3.71),(3.72)

v1(ζ, ε) =
Y0Ωεζ + X0 + O(1/Y 2

0 ) − sgn(K0(k))π/2 + εaζ

k

= θ0 +
Y0Ω + a

k
εζ + O(1/Y 2

0 ) = 2χ0εζ + θ0 + O(1/Y 2
0 ) , (3.110)

v2(ζ, ε) =
ΩY0 + a

2k
+ O(1/Y0) = χ0 + O(1/Y0) , (3.111)

consistent with (3.36).

3.5 Averaging theorems

Recall that we have gone from our basic Lorentz system, (2.22)-(2.25), to (3.10),(3.11) with
no approximations. We have also derived two related normal forms for ν ≥ 1/2 in the NR
(§3.3) and NtoR (§3.4) cases. Here we state theorems which conclude that the solutions of
these normal form systems yield good approximations to the solutions of (2.22)-(2.25) in the
appropriate ν domains.

Our NR theorem in §3.5.1 will cover the ∆-NR case, i.e., closed subintervals [k+∆, k+1−∆]
of (k, k + 1), where k = 0, 1, ..., 0 < ∆ < 0.5, and we will obtain error bounds of O(ε/∆) (Here
∆ can be small as mentioned in §3.2 and §3.3). Our NtoR theorem in §3.5.2 will cover the case
where ν = k + εa which includes the resonant ν = k case and we will obtain error bounds of
O(ε).
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3.5.1 ∆-nonresonant case: ν ∈ [k + ∆, k + 1 − ∆] (Quasiperiodic Averaging)

The exact ODE’s to be analyzed are (3.10),(3.11) with the initial conditions θ(0, ε) = θ0, χ(0, ε) =
χ0 and where f1, f2 are defined by (3.12),(3.13) and where ĵj(n; ν, ∆Px0) is defined by (3.25)
and g1, g2 by (3.14),(3.15). The normal form ODE’s are (3.34),(3.35) with initial conditions
v1(0, ε) = θ0, v2(0, ε) = χ0 and solution (3.36). Note that vi(ζ, ε) = vi(εζ, 1).

We are now ready to state the NR theorem which roughly concludes that |θ(ζ, ε)− 2χ0εζ −
θ0| = O(ε/∆) and |χ(ζ, ε) − χ0| = O(ε/∆) for 0 ≤ ζ ≤ O(1/ε) with ε sufficiently small. To
make the statement of the theorem concise, we now set up the theorem in nine steps.

(1) (Basic parameters)
Let 0 < ε ≤ ε0 ≤ 1, fix 0 < ∆ < 0.5 and let ν ∈ [k+∆, k+1−∆] where k is a nonnegative
integer.

(2) (Initial data)
Choose θ0, χ0 such that (θ0, χ0) ∈ (R × [−χM , χM ]) where χM > 0 is chosen such that
−χM > χlb(ε0) where χlb is defined by (3.20). Clearly (R × [−χM , χM ]) ⊂ W (ε0) where
W (ε0) is defined by (3.19). Note also that, by (3.36), the corresponding guiding solution
v(ζ, 1) = (2χ0ζ + θ0, χ0) belongs to (R × [−χM , χM ]) for all ζ ∈ [0,∞).

(3) (Guiding solution)
Choose T > 0 and define the compact (=closed and bounded) subset

S := {v(τ, 1) : τ ∈ [0, T ]} = {(2χ0τ + θ0, χ0) : τ ∈ [0, T ]} (3.112)

of (R × [−χM , χM ]) ⊂ W (ε0). Recall that v(ζ, ε) = v(εζ, 1).

(4) (Rectangle around initial value (θ0, χ0): the basic domain for averaging theorem)
Let Ŵ (θ0, χ0, d1, d2) be the following open rectangle around S where

Ŵ (θ0, χ0, d1, d2) := (θ0 − d1, θ0 + d1) × (χ0 − d2, χ0 + d2) , (3.113)

where

2|χ0|T < d1 , 0 < d2 < χ0 − χlb(ε0) . (3.114)

Note that the closure, Ŵ (θ0, χ0, d1, d2) = [θ0−d1, θ0+d1]×[χ0−d2, χ0+d2], of Ŵ (θ0, χ0, d1, d2)
is compact and that, by (3.19),(3.112), (3.113),(3.114), (θ0, χ0) ∈ S ⊂ Ŵ (θ0, χ0, d1, d2) ⊂
Ŵ (θ0, χ0, d1, d2) ⊂ W (ε0). Thus, by Proposition 1 in §3.3, the vector field of the ODE’s
(3.10),(3.11) is C∞ on Ŵ (θ0, χ0, d1, d2) × R.

(5) (Restriction on ε0)
Choose ε0 so small that χlb(ε0) < −χM − d2. Note that this is made possible since, by
(3.20),

χlb(ε0) ≤ − 1

ε0

+
1√
E

√
1 + K2Π2

x,ub(1) ,

whence χlb(ε0) < −χM − d2 if

ε0 <

(
1√
E

√
1 + K2Π2

x,ub(1) + χM + d2

)−1

. (3.115)

Since the RHS of (3.115) is positive ε0 can indeed be chosen sufficiently small.
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(6) (Exact solution in rectangle)
Since the vector fields in (3.10),(3.11) are C∞, solutions in Ŵ (θ0, χ0, d1, d2) with initial
condition θ(0, ε) = θ0, χ(0, ε) = χ0 exist uniquely in Ŵ (θ0, χ0, d1, d2) on a maximum
forward interval of existence [0, β(ε)). Here d1, d2 satisfy (3.114). Either β(ε) = ∞ or
the solution approaches the boundary of Ŵ as ζ → β(ε)−. See Chapter 1 of [24] for a
discussion of existence, uniqueness and continuation to a maximum forward interval of
existence.

For convenience we define I(ε, T ) := [0, T/ε] ∩ [0, β(ε)).

(7) (Lipschitz constants for f1, f2 on rectangle)
Let L1, L2 be defined by

L1 :=
2

q̄
maxζ∈[0,2π] |q(ζ)| = 2[1 +

2K2

q̄
|∆Px0| +

K2

2q̄
] , (3.116)

L2 := νK2(1 + |∆Px0|) . (3.117)

It follows by (3.12),(3.13), (3.116),(3.117) and for θ1, θ2, χ1, χ2, ζ ∈ R, that

|f1(χ2, ζ) − f1(χ1, ζ)| ≤ 2|q(ζ)|
q̄

|χ2 − χ1| ≤ L1|χ2 − χ1| , (3.118)

|f2(θ2, ζ ; ν) − f2(θ1, ζ ; ν)|
= K2| cos ζ + ∆Px0| | cos(ν[θ2 − Q(ζ)]) − cos(ν[θ1 − Q(ζ)])|
≤ K2(1 + |∆Px0|) |ν[θ2 − Q(ζ)] − ν[θ1 − Q(ζ)]|
= νK2(1 + |∆Px0|) |θ2 − θ1| = L2|θ2 − θ1| , (3.119)

where we have also used the fact that | cosx− cos y| ≤ |x− y|. Thus L1, L2 are Lipschitz
constants for f1, f2 on Ŵ (θ0, χ0, d1, d2) respectively (in fact even on R

2).

(8) (Bounds for g1, g2 on rectangle)
Appendix C gives a very detailed derivation of quite explicit minimal bounds for g1 and
g2. There we show, for (θ, χ, ζ) in Ŵ (θ0, χ0, d1, d2) × R,

|gi(θ, χ, ζ, ε, ν)| ≤ Ci(χ0, ε0, ν, d2) , (3.120)

where i = 1, 2 and d1, d2 satisfy (3.114) and where the finite C1 and C2 are defined by
(C.27),(C.30).

(9) (Besjes terms)
Let B1, B2 be defined by

B1(ζ) := |
∫ ζ

0

f̃1(v2(s, ε), s) ds| = |
∫ ζ

0

f̃1(χ0, s) ds| ,

B2(ζ) := |
∫ ζ

0

f̃2(v1(s, ε), s; ν)ds| = |
∫ ζ

0

f̃2(2χ0εs + θ0, s; ν)ds| ,

(3.121)

where

f̃1(v2, s) := f1(v2, s) − f̄1(v2) = 2(
q(s)

q̄
− 1)v2 ,
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f̃2(v1, s; ν) := f2(v1, s; ν) − f̄2(v1; ν) = f2(v1, s; ν) .

(3.122)

In (3.121) we have used (3.36). We will also need B1,∞, B2,∞ defined by

Bi,∞(ζ) := sup
s∈[0,ζ)

Bi(s) , (3.123)

for i = 1, 2.

We refer to B1, B2 as “Besjes terms” and their importance will be seen both in the bounds
presented in Theorem 1 and in the proof of the theorem where they eliminate the need
for a near identity transformation (for the latter, see [6, 9, 10, 11, 12]).

With this setup we can now state the NR approximation theorem.

Theorem 1. (Averaging theorem in ∆-NR case: ν ∈ [k+∆, k+1−∆], k = 0, 1, ..., 0 < ∆ < 0.5)

With the setup given by items 1-9 of the above preamble we obtain, for ζ ∈ I(ε, T ), that

|θ(ζ, ε)− 2χ0εζ − θ0| = O(ε/∆) , |χ(ζ, ε)− χ0| = O(ε/∆) . (3.124)

More precisely

|θ(ζ, ε) − 2χ0εζ − θ0| ≤ ε

(
[B1,∞(T/ε) + C1T ] cosh(T

√
L1L2)

+[B2,∞(T/ε) + C2T ]

√
L1

L2

sinh(T
√

L1L2)

)
, (3.125)

|χ(ζ, ε) − χ0| ≤ ε

(
[B1,∞(T/ε) + C1T ]

√
L2

L1
sinh(T

√
L1L2)

+[B2,∞(T/ε) + C2T ] cosh(T
√

L1L2)

)
. (3.126)

Moreover

B1,∞(T/ε) ≤ B̌1 , B2,∞(T/ε) ≤ B̌2(T, ∆) , (3.127)

where i = 1, 2 and the B̌1, B̌2(T, ∆) ∈ [0,∞) are finite, ε-independent and are defined in terms
of our basic parameters and initial conditions by

B̌1 :=
2K2|χ0|

q̄
(2|∆Px0| +

1

4
) , (3.128)

B̌2(T, ∆) :=
1

∆
B̌21(T ) + B̌22(T ) , (3.129)

B̌21(T ) := 2K2[1 + (k + 1)|χ0|T ]

(
|ĵj(k; ν, ∆Px0)| + |ĵj(k + 1; ν, ∆Px0)|

)
,

(3.130)

B̌22(T ) := 2K2

(
1 + (k + 1)|χ0|T

) ∑

n∈(Z\{k,k+1})
|ĵj(n; ν, ∆Px0)| . (3.131)

Furthermore, for ε0 sufficiently small, (θ(ζ, ε), χ(ζ, ε)) stays away from the boundary of the
rectangle Ŵ (θ0, χ0, d1, d2) for ζ ∈ I(ε, T ). Thus the ODE continuation theorem (see [24, Section
1.2]) gives β(ε) > T/ε, hence I(ε, T ) = [0, T/ε].

The proof of Theorem 1 is presented in §4.1. Note that the symbol O(ε/∆) conveys that
the error contains the factor 1

∆
.
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3.5.2 NtoR case: ν = k + εa (Periodic Averaging)

The NtoR case was defined in §3.2. The exact ODE’s to be analyzed in this case were derived
in §3.4 and are given by (3.48),(3.49) with initial conditions θ(0, ε) = θ0, χ(0, ε) = χ0 and where
gR
1 , gR

2 are defined by (3.51),(3.52) and fR
1 , fR

2 by (3.47),(3.50). The normal form ODE’s are
(3.58),(3.59) with initial conditions v1(0, ε) = θ0, v2(0, ε) = χ0 solved by (3.70),(3.71). where
X, Y satisfy the standard pendulum equations (3.65) with the initial conditions (3.72).

The setup for the theorem is as follows.

(1) (Basic parameters)
Let 0 < ε ≤ ε0 ≤ 1, a ∈ [−1/2, 1/2] and k be a positive integer.

(2) (Initial data)
Choose θ0, χ0 such that (θ0, χ0) ∈ (R × [−χM , χM ]) where χM > 0 is chosen such that
−χM > χlb(ε0). Clearly (R × [−χM , χM ]) ⊂ W (ε0).

(3) (Guiding solution)
Choose T > 0 and define the compact subset SR := {v(τ, 1) : τ ∈ [0, T ]} of W (ε0) where
v = (v1, v2) with v1, v2 given by (3.70),(3.71). Note that SR ⊂ W (ε0) holds for arbitrary
T > 0 if

χlb(ε0) < χ0 − dmin
2 (θ0, χ0, k, a) (3.132)

since |v2(τ, 1) − χ0| ≤ dmin
2 (θ0, χ0, k, a) where dmin

2 is defined in §3.4.3.

(4) (Rectangle around initial value (θ0, χ0): the basic domain for averaging theorem)
Define an open rectangle ŴR(θ0, χ0, d1, d2) around SR by

ŴR(θ0, χ0, d1, d2) := (θ0 − d1, θ0 + d1) × (χ0 − d2, χ0 + d2) , (3.133)

where d1, d2 satisfy

0 ≤ dmin
1 (θ0, χ0, T, k, a) < d1 , (3.134)

0 ≤ dmin
2 (θ0, χ0, k, a) < d2 < χ0 − χlb(ε0) , (3.135)

with dmin
1 , dmin

2 defined in §3.4.3. Note that (3.135) entails (3.132). Note also that, by
(3.81),(3.134), (3.135),

|v1(τ, 1) − θ0| ≤ dmin
1 (θ0, χ0, τ, k, a) ≤ dmin

1 (θ0, χ0, T, k, a) < d1 ,

|v2(τ, 1) − χ0| ≤ dmin
2 (θ0, χ0, k, a) < d2 ,

(3.136)

where we also used that dmin
1 (θ0, χ0, τ, k, a) is increasing w.r.t. τ . It follows from (3.133),(3.136)

that (θ0, χ0) ∈ SR ⊂ ŴR(θ0, χ0, d1, d2) and, by (3.19),(3.132) that ŴR(θ0, χ0, d1, d2) ⊂
W (ε0). Thus, by Proposition 2 in §3.4, the vector field of the ODE’s (3.48),(3.49)

is of class C∞ on ŴR(θ0, χ0, d1, d2) × R. Note that the closure, ŴR(θ0, χ0, d1, d2) =
[θ0 − d1, θ0 + d1] × [χ0 − d2, χ0 + d2], of ŴR(θ0, χ0, d1, d2) is compact.

(5) (Restriction on ε0)
Choose ε0 so small that χlb(ε0) < −χM − d2. Recall from item 5 of the preamble to
Theorem 1 that such a choice is always possible.
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(6) (Exact solution in rectangle)
Since the vector fields in (3.48),(3.49) are C∞, solutions in Ŵ (θ0, χ0, d1, d2) with initial
condition θ(0, ε) = θ0, χ(0, ε) = χ0 exist uniquely on a maximum forward interval of
existence [0, β(ε)). Here d1, d2 satisfy (3.134),(3.135). Either β(ε) = ∞ or the solution
approaches the boundary of Ŵ as ζ → β(ε)−. See Chapter 1 of [24] for a discussion of
existence, uniqueness and continuation to a maximum forward interval of existence.

It is convenient to introduce I(ε, T ) := [0, T/ε] ∩ [0, β(ε)).

(7) (Lipschitz constants for fR
1 , fR

2 on rectangle)
Let LR

1 , LR
2 be defined by

LR
1 := L1 = 2[1 +

2K2

q̄
|∆Px0| +

K2

2q̄
] , (3.137)

LR
2 := K2k(1 + |∆Px0|) , (3.138)

where we have also used (3.116) and where d1, d2 satisfy (3.134),(3.135). It follows by
(3.50),(3.54), (3.118),(3.137),(3.138) and, for θ1, θ2, χ1, χ2, ζ ∈ R,

|fR
1 (χ2, ζ) − fR

1 (χ1, ζ)| = |f1(χ2, ζ)− f1(χ1, ζ)|
≤ L1|χ2 − χ1| = LR

1 |χ2 − χ1| , (3.139)

|fR
2 (θ2, εζ, ζ ; k, a)− fR

2 (θ1, εζ, ζ ; k, a)|

= K2| cos ζ + ∆Px0|
∣∣∣ cos

(
k[θ2 − ζ − Υ0 sin ζ − Υ1 sin 2ζ ] − εaζ

)

− cos

(
k[θ1 − ζ − Υ0 sin ζ − Υ1 sin 2ζ ] − εaζ

)∣∣∣

≤ kK2(1 + |∆Px0|)|θ2 − θ1| = LR
2 |θ2 − θ1| , (3.140)

where we have also used the fact that | cosx− cos y| ≤ |x− y|. Thus LR
1 , LR

2 are Lipschitz
constants for fR

1 , fR
2 on ŴR(θ0, χ0, d1, d2) (in fact even on R

2).

(8) (Bounds for gR
1 , gR

2 on rectangle)
Appendix E gives a very detailed derivation of quite explicit minimal bounds for gR

1 and
gR
2 . There we show that, for (θ, χ, ζ) ∈ ŴR(θ0, χ0, d1, d2) × R,

|gR
1 (θ, χ, ζ, ε, k, a)| ≤ CR

1 (χ0, ε0, d2) ,

|gR
2 (θ, χ, ζ, ε, k, a)| ≤ CR

2 (θ0, χ0, ε0, a, d1, d2) ,

(3.141)

where i = 1, 2 and d1, d2 satisfy (3.134),(3.135) and where the finite CR
1 and CR

2 are
defined by (E.5),(E.14).

(9) (Besjes terms)
Let BR

1 , BR
2 be defined by

BR
1 (ζ) := |

∫ ζ

0

f̃R
1 (v2(s, ε), s) ds| ,

BR
2 (ζ) := |

∫ ζ

0

f̃R
2 (v1(s, ε), εs, s; k, a)ds| ,
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(3.142)

where

f̃R
1 (χ, s) := fR

1 (χ, s) − f̄R
1 (χ) ,

f̃R
2 (θ, εs, s; k, a) := fR

2 (θ, εs, s; k, a) − f̄R
2 (θ, εs; k) .

(3.143)

We will also need BR
1,∞, BR

2,∞ defined by

BR
i,∞(ζ) := sup

s∈[0,ζ)

BR
i (s) , (3.144)

where i = 1, 2.

We refer to BR
1 , BR

2 as “Besjes terms” and their importance will be seen both in the
bounds presented in Theorem 2 and in the proof of the theorem where they eliminate the
need for a near identity transformation.

With this setup we can now state the NtoR approximation theorem.

Theorem 2. (Averaging theorem in NtoR case: ν = k + εa, 0 < ε ≤ ε0, k ∈ N, |a| ≤ 0.5)

With the setup given by items 1-9 of the above preamble we obtain, for ζ ∈ I(ε, T ), that

|θ(ζ, ε)− v1(ζ, ε)| = O(ε) , |χ(ζ, ε)− v2(ζ, ε)| = O(ε) .

More precisely

|θ(ζ) − v1(ζ, ε)| ≤ ε

(
[BR

1,∞(T/ε) + CR
1 T ] cosh(T

√
LR

1 LR
2 )

+[BR
2,∞(T/ε) + CR

2 T ]

√
LR

1

LR
2

sinh(T
√

LR
1 LR

2 )

)
, (3.145)

|χ(ζ) − v2(ζ, ε)| ≤ ε

(
[BR

1,∞(T/ε) + CR
1 T ]

√
LR

2

LR
1

sinh(T
√

LR
1 LR

2 )

+[BR
2,∞(T/ε) + CR

2 T ] cosh(T
√

LR
1 LR

2 )

)
. (3.146)

Moreover

BR
i,∞(T/ε) ≤ B̌R

i (T ) , (3.147)

where i = 1, 2 and B̌R
i (T ) ∈ [0,∞) are independent of ε and defined by

B̌R
1 (T ) :=

2K2

q̄
[2|∆Px0| +

1

4
]

(
χ∞(θ0, χ0, k, a)

+K2T |ĵj(k; k, ∆Px0)|
)

, (3.148)

B̌R
2 (T ) := K2

(
2 + T [|a| + 2kχ∞(θ0, χ0, k, a)]

)

36



×
∑

n∈Z\{k}

|ĵj(n; k, ∆Px0)|
|n − k| . (3.149)

Furthermore, there exists an 0 < ε0 ≤ 1 such that for 0 < ε ≤ ε0, (θ(ζ, ε), χ(ζ, ε)) stays
away from the boundary of the rectangle ŴR(θ0, χ0, d1, d2) for ζ ∈ I(ε, T ). Thus the ODE
continuation theorem (see [24, Section 1.2]) gives β(ε) > T/ε, hence I(ε, T ) = [0, T/ε].

The proof of Theorem 2 is presented in §4.2.

3.5.3 Remarks on the averaging theorems

(1) We have now explored the θ, χ dynamics as a function of ν in the ∆-NR case and ν = k+εa
in the NtoR case. However asymptotically there are gaps for ν ∈ (k+εa, k+∆) when ε is
small. For ∆ = O(ε) the NR normal form breaks down because the error is O(1), however
we can come close to the NtoR neighborhood by letting ∆ = O(εβ) with β near 1 however
the error in the NR normal form does deteriorate to O(ε1−β). It could be interesting to
explore the dynamics in these gaps.

(2) Important for the functioning of the FEL is knowledge of the fraction of the bunch that
occupies a bucket. From the analysis in §3.4.3 this occurs for ICs in the libration case,
i.e., 0 < EPen(Z0) < 2 where Z0 is given in (3.66). One can thus determine the set of
(θ0, χ0) for which Z0 occupies the pendulum buckets. For more details on the pendulum
motion and its impact on the low gain theory see §3.7.

(3) Mathematically we want to make sure the buckets are covered by our domain W (ε0)×R

for physically reasonable χ0. From (3.71) the range of the v2-values in the buckets for the
NtoR normal form is the interval (−Ω

k
+ a

2k
, Ω

k
+ a

2k
). Now a ≥ −1/2 so, for every k, the

smallest v2 in a bucket is −Ω
k
− 1

4k
whence, since k ≥ 1, the very smallest v2 in a bucket

is −Ω − 1/4. Thus requiring

χb := −Ω − 1

4
< 0 , (3.150)

entails that χb is smaller than any χ-value inside the buckets and smaller than any χ-
value on the separatrix. It is plausible to restrict the physically interesting χ-values to
be greater than, say 3χb. The condition that (θ, 3χb) ∈ W (ε0) entails that the buckets
are covered by W (ε0) and that ε0 satisfies the constraint 3χb > χlb(ε0). The following
proposition is a corollary to Propositions 1,2.

Proposition 3. Let 0 < ε ≤ ε0 where 0 < ε0 ≤ 1 and ν ∈ [1/2,∞). Let also ∆γ be a
positive constant and let

ε0 <
√
E
(

∆γ +
√

1 + K2Π2
x,ub(1)

)−1

. (3.151)

If χ ∈ R satisfies the condition:

1 ≤ γc − ∆γ ≤ γc(1 + εχ) ≤ γc + ∆γ , (3.152)

then

χ > χlb(ε0) . (3.153)

In other words if ε0 satisfies (3.151) then the γ values in [γc − ∆γ, γc + ∆γ] are covered
by W (ε0).
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The proposition guarantees, by choosing a sufficiently small ε0, that the domain W (ε0)×R

is large enough to contain the physical relevant values of θ, χ, ζ .

Proof of Proposition 3: Let χ ∈ R satisfy (3.152). Then, by (1.5), χ ∈ [− 1√
E∆γ, 1√

E∆γ]

whence, by (3.17),(3.20),(3.151),

χlb(ε0) = − 1

ε0

+
1√
E

√
1 + K2Π2

x,ub(ε0)

≤ − 1

ε0
+

1√
E

√
1 + K2Π2

x,ub(1) < − 1√
E

∆γ ≤ χ ,

which entails (3.153). 2

Note that the condition: 1 ≤ γc −∆γ in (3.152) is not used in the proof of Proposition 3
but serves to guarantee that χ satisfies the physical condition: γ ≥ 1, i.e., 1 ≤ γc(1+ εχ).

(4) In applications of Theorems 1,2, T should be chosen so that z ∈ [0, T/εku] is the domain
of interest, e.g., so that T/(εku) is the length of the undulator.

(5) In many discussions of this nature, researchers often just assert the existence of bounds,
for example by using the well known fact that a continuous function on a compact set
is bounded, or bounds are obtained which are crude. Here we wanted to do more. By
using, in the proofs of Theorems 1 and 2, a system of differential inequalities instead of the
Gronwall inequality we have been able to use two Lipschitz constants in each proof instead
of their maximum and in a similar manner can treat the two Besjes’ terms independently
as well as the components of g and gR. Furthermore, we believe the Besjes bounds and
the bounds on g1, g2, g

R
1 , gR

2 are nearly optimal.

We also note that there are only 3 restrictions on the size of ε0 and thus ε. The first is
that we require ε0 ≤ 1. But this is only a matter of convenience and is really no restriction
at all since the averaging theorems are only useful for ε small. The second restriction is
in item 5 of the preambles to the two theorems, however as indicated there this is not a
significant restriction. Thus the only real restriction is keeping the solution away from
the boundary of Ŵ , ŴR in order to obtain I(ε, T ) = [0, T/ε]. This is an optimization
problem; by making Ŵ , ŴR larger, ε can be larger, however this is compensated to some
extent in the Lipschitz constants as well as the bounds on g1, g2, g

R
1 , gR

2 which would
become larger. Nonetheless, the situation is quite good in comparison to say KAM or
Nekhoroshev theorems (see e.g., [8]), where the restrictions on ε are quite severe and it is
with great effort that the restrictions on ε have been improved in some applications, e.g.,
solar system problems.

(6) We here clarify the contributions of ĵj to the error bounds of Theorems 1 and 2 by
finding simple upper bounds for B̌21(T ), B̌R

1 (T ), B̌22(T ) and B̌R
2 (T ). First of all we note

from (3.23) and (3.25) that

|ĵj(n; ν, ∆Px0)| ≤ 1 + |∆Px0| , (3.154)

where ν ≥ 1/2. Clearly (3.154) gives upper bounds for B̌21(T ), B̌R
1 (T ) in (3.130),(3.148).

Secondly, we obtain from the Cauchy-Schwarz inequality that

∑

06=n∈Z

|ĵj(n; ν, ∆Px0)| =
∑

06=n∈Z

1

|n| |n| |ĵj(n; ν, ∆Px0)|
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≤
( ∑

06=n∈Z

n2|ĵj(n; ν, ∆Px0)|2
)1/2( ∑

06=n∈Z

1

n2

)1/2

=
π√
3

( ∑

06=n∈Z

n2|ĵj(n; ν, ∆Px0)|2
)1/2

, (3.155)

where the finiteness of the rhs follows from the fact that the function jj(·; ν, ∆Px0) is of
class C∞. Since jj(·; ν, ∆Px0) is also 2π-periodic we can apply Parseval’s theorem to get

1

2π

∫

[0,2π]

dζ | d

dζ
jj(ζ ; ν, ∆Px0)|2 =

∑

06=n∈Z

n2|ĵj(n; ν, ∆Px0)|2 .

(3.156)

It also follows from (3.23) that

d

dζ
jj(ζ ; ν, ∆Px0) = − exp(−iν[Υ0 sin ζ + Υ1 sin 2ζ ])

(
sin ζ

+iν(cos ζ + ∆Px0)[Υ0 cos ζ + 2Υ1 cos 2ζ ]

)
,

whence

| d

dζ
jj(ζ ; ν, ∆Px0)|2 ≤ 1 + ν2(1 + |∆Px0|)2[|Υ0| + 2Υ1]

2 ,

so that, by (3.155),(3.156),

∑

06=n∈Z

|ĵj(n; ν, ∆Px0)| ≤
π√
3

(
1 + ν2(1 + |∆Px0|)2[|Υ0| + 2Υ1]

2

)1/2

,

(3.157)

which entails, by (3.154),

∑

n∈(Z\{k,k+1})
|ĵj(n; ν, ∆Px0)| ≤ 1 + |∆Px0| +

∑

06=n∈Z

|ĵj(n; ν, ∆Px0)|

≤ 1 + |∆Px0| +
π√
3

(
1 + ν2(1 + |∆Px0|)2[|Υ0| + 2Υ1]

2

)1/2
)

.

(3.158)

Clearly (3.158) gives an upper bound for B̌22(T ) in (3.131). Moreover, by (3.154),(3.157),

∑

n∈Z\{k}

|ĵj(n; k, ∆Px0)|
|n − k| ≤ |ĵj(0; k, ∆Px0)| +

∑

06=n∈Z

|ĵj(n; k, ∆Px0)|

≤ 1 + |∆Px0| +
π√
3

(
1 + ν2(1 + |∆Px0|)2[|Υ0| + 2Υ1]

2

)1/2

,

which gives an upper bound for B̌R
2 (T ) in (3.149).
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3.6 Approximation for the phase space variables in (2.22)-(2.25)

Here we discuss the approximate solutions of (2.22)-(2.25) and (2.29) in terms of the normal
form approximations given in (3.36),(3.70),(3.71), namely

θNF (τ) :=






2χ0τ + θ0 NR case(
X(Ωτ ; Z0) − sgn(K0(k))π/2 + aτ

)
/k NtoR case ,

(3.159)

and

χNF (τ) :=






χ0 NR case(
ΩY (Ωτ ; Z0) + a

)
/2k NtoR case ,

(3.160)

where K0 is given in (3.60) and Ω in (3.69). Recall from Theorems 1 and 2 that

θ(ζ, ε) = θNF (εζ) + O(ε) , (3.161)

χ(ζ, ε) = χNF (εζ) + O(ε) , (3.162)

for ζ ∈ I(ε, T ). From (1.2),(2.53),(2.61),(2.64)

θ(ζ, ε) =
2E
ε2q̄

(
ζ − kuct(ζ/ku)

)
+ Q(ζ) , (3.163)

and from (2.36)

γ(ζ/ku) = γc(1 + εχ(ζ, ε)) . (3.164)

Now we can determine the approximate solution of (2.22)-(2.25) and (2.29). From (3.161),(3.163)
the arrival time, t(z), of a particle at z is given by

t(z) =
z

c
− ε2q̄

2Ekuc

(
θNF (εkuz) − Q(kuz) + O(ε)

)
. (3.165)

Furthermore from (1.5),(3.162),(3.164) the energy in (2.29) is given by

γ(z) =
√
E(

1

ε
+ χNF (εkuz) + O(ε)) , (3.166)

and is clearly slowly varying. From (2.37),(3.1),(3.2) we have

px(z) = mcK[cos(kuz) + ∆Px0 + O(ε2)] . (3.167)

It is tedious but straightforward to derive from (1.5),(2.37),(3.1),(3.2), (3.166)

pz(z) = mc
√
E
(

1

ε
+ χNF (εkuz) + O(ε)

)
. (3.168)

Finally we can now determine x(z). From (2.22),(3.167) and (3.168)

d

dz
x(z) =

px(z)

pz(z)
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=

(
mcK[cos(kuz) + ∆Px0 + O(ε2)]

)
/

(
mc

√
E
(

1

ε
+ χNF (εkuz) + O(ε)

))

= ε
(K/

√
E)[cos(kuz) + ∆Px0 + O(ε2)]

1 + εχNF (εkuz) + O(ε2)

=
εK√
E

(
cos(kuz) + ∆Px0 + O(ε2)

)(
1 − εχNF (εkuz) + O(ε2)

)

=
εK√
E

[cos(kuz) + ∆Px0][1 − εχNF (εkuz)] + O(ε3) . (3.169)

Integrating (3.169) gives

x(z) = x(0)

+
εK√
E

(
sin(kuz)

ku
+ z∆Px0 − ε

∫ z

0

[cos(kus) + ∆Px0]χNF (εkus)ds

)

+O(ε3z) . (3.170)

For ε sufficiently small, I(ε, T ) = [0, T/ε] and then (3.165)-(3.168) and (3.170) hold for
0 ≤ kuz ≤ T/ε.

3.7 Low Gain Calculation in the NtoR regime

Low gain theories in [2, 3, 4] are done in the context of the pendulum equations, i.e., (3.58),(3.59)
with a = 0, ∆Px0 = 0, and k = 1. Here we will not make those assumptions and we define the
gain by

G(ζ, ε) := ε(v2(ζ, ε)− χ0)θ0
= ε(v2(εζ, 1) − χ0)θ0

, (3.171)

where v2 is given in (3.71) and ( )θ0
denotes the average over θ0. This is consistent with [2, 3, 4].

The gain G could be calculated numerically using a quadrature formula and an ODE solver,
however standard treatments calculate it perturbatively using a regular (and thus short time)
perturbation expansion. We could do a regular perturbation expansion in (3.58),(3.59) by
letting vi =

∑4
k=0 εkAik + O(ε5) and using Grownwall techniques to make the O(ε5) error

rigorous (see [25, p.594] for an example of a regular perturbation theorem at first order and its
proof). However at the fourth order needed here this would be quite cumbersome. Because of
the special scaling structure in (3.58),(3.59) as given in (3.61) we can use a Taylor expansion.
For ε = 1 we get from (3.58),(3.59)

v′
1(·, 1) = 2v2(·, 1) , v1(0, 1) = θ0 ,

v′
2(·, 1) = −K0(k) cos(kv1(·, 1) − aτ) , v2(0, 1) = χ0 ,

(3.172)

and we expand v2(·, 1) about τ = 0 so that

v2(τ, 1) = χ0 +
4∑

k=1

1

k!
v

(k)
2 (0, 1)τk +

τ 5

4!

∫ 1

0

(1 − t)4v
(5)
2 (tτ, 1)dt . (3.173)

From (G.6) in Appendix G we have

v′
2(0, 1) = −K0(k) cos(kθ0) ,
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v′′
2(0, 1) = K0(k)(2kχ0 − a) sin(kθ0) ,

v′′′
2 (0, 1) = K0(k)

(
−kK0(k) sin(2kθ0) + [2kχ0 − a]2 cos(kθ0)

)
,

v′′′′
2 (0, 1) = K0(k)

(
2kK0(k)(2kχ0 − a)[sin2(kθ0) − 3 cos2(kθ0)]

−[2kχ0 − a]3 sin(kθ0)

)
. (3.174)

It follows from (3.173),(3.174) that the average over θ0 leads to

(v2(τ, 1) − χ0)θ0
=

τ 4

4!
v′′′′
2 (0, 1)θ0

+ O(τ 5) = −τ 4

12
kK2

0 (k)[2kχ0 − a] + O(τ 5) ,

(3.175)

which gives, by (3.171),

G(ζ, ε) = ε(v2(εζ, 1)− χ0)θ0
= −ε5ζ4

12
kK2

0 (k)[2kχ0 − a] + O(ε6) . (3.176)

This shows the effect of a and k on the gain.
We now compare our gain formula in (3.176) with the corresponding calculation in [2], where

a = 0, ∆Px0 = 0, and k = 1. From our NtoR normal form system (3.58),(3.59) and letting
θ = v1 and η = εv2 we obtain the IVP

θ′ = 2η , θ(0) = θ0 , (3.177)

η′ = −ǫ cos θ , η(0) = εχ0 =: η0 , (3.178)

where ǫ = ε2K0(1). The procedure in [2] is a regular perturbation expansion in ǫ that does not
assume that η0 is small. Proceeding as they do, we write

θ(ζ, ǫ) = θ0(ζ) + ǫθ1(ζ) + ǫ2θ2(ζ) + O(ǫ3) , (3.179)

η(ζ, ǫ) = η0(ζ) + ǫη1(ζ) + ǫ2η2(ζ) + O(ǫ3) . (3.180)

We find

η0(ζ) = η0 , (3.181)

θ0(ζ) = 2η0ζ + θ0 , (3.182)

η1(ζ) =
1

2η0

[sin θ0 − sin(2η0ζ + θ0)] , (3.183)

θ1(ζ) =
1

η0
{ζ sin θ0 +

1

2η0
[cos(2η0ζ + θ0) − cos θ0]} , (3.184)

η2(ζ) =
1

η0

∫ ζ

0

dt sin(2η0t + θ0){t sin θ0

+
1

2η0
[cos(2η0t + θ0) − cos θ0]} . (3.185)

It follows that η1(ζ)θ0
= 0 and

η2(ζ)θ0
=

1

2η0

∫ ζ

0

(t cos 2η0t −
1

2η0

sin 2η0t)dt . (3.186)
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We can rewrite (3.186) as

η2(ζ)θ0
=

ζ3

4

d

dτ

(sin τ

τ

)2
, τ := η0ζ , (3.187)

and the gain becomes

G(ζ, ε) = ǫ2η2(ζ)θ0
= ε4K2

0 (1)
1

4
ζ3 d

dτ

(sin τ

τ

)2
, (3.188)

consistent with [2]. For η0 small, which is required by our averaging approximation (since
η0 = εχ0 and χ0 = O(1)), we obtain from (3.186) that

η2(ζ)θ0
=

1

2η0

∫ ζ

0

[−4

3
η2

0t
3 + O(η0t)

4]dt ≈ −1

6
η0ζ

4 . (3.189)

It follows from (3.188),(3.189) that

G(ζ, ε) ≈ −ǫ2 1

6
η0ζ

4 = −ε5ζ4

6
K2

0(1)χ0 , (3.190)

as in (3.176) with a = 0 and k = 1.
Thus we see that (3.176) is consistent with the standard gain formula for τ = η0ζ small.

The O(ε6) error in (3.176) can be made precise by estimating the remainder term in (3.173).
However, we cannot justify the gain formula either in (3.176) or in (3.188) in the context of our
Lorentz system in (2.22) - (2.25), because our NtoR normal form approximation only gives an
approximation to O(ε). Thus a justification of the gain formulas, based on our Lorentz system,
would need to come from elsewhere, e.g., a numerical calculation based on (3.8) and (3.9).

4 Proof of averaging theorems

In §4.1 we prove the NR theorem, Theorem 1 of §3.5.1, and in §4.2 we prove the NtoR theorem,
Theorem 2 of §3.5.2.

4.1 Proof of Theorem 1 (Averaging theorem in ∆-NR case)

Here we compare solutions of the exact IVP (3.10),(3.11):

θ′ = εf1(χ, ζ) + ε2g1(θ, χ, ζ ; ε, ν) , θ(0, ε) = θ0 , (4.1)

χ′ = εf2(θ, ζ ; ν) + ε2g2(θ, χ, ζ ; ε, ν) , χ(0, ε) = χ0 , (4.2)

where

f1(χ, ζ) =
2q(ζ)χ

q̄
, (4.3)

f2(θ, ζ ; ν) = −K2(cos ζ + ∆Px0) cos(ν[θ − Q(ζ)])

= −K2

2
eiνθ

∑

n∈Z

ĵj(n; ν, ∆Px0)e
i(n−ν)ζ + cc , (4.4)

with the normal form IVP of (3.34),(3.35):

v′
1 = εf̄1(v2) , v1(0, ε) = θ0 , (4.5)
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v′
2 = εf̄2(v1; ν) , v2(0, ε) = χ0 , (4.6)

where

f̄1(v2) = 2v2 , f̄2(v1; ν) = 0 , (4.7)

for ν ∈ [k + ∆, k + 1 − ∆].
Subtracting and integrating, we obtain from (3.122), (4.1),(4.2),(4.5),(4.6) that

θ(ζ, ε)− v1(ζ, ε) = ε

∫ ζ

0

[
f1(χ(s, ε), s)− f1(v2(s, ε), s)

+f1(v2(s, ε), s) − f̄1(v2(s, ε)) + εg1(θ(s, ε), χ(s, ε), s; ε, ν)
]
ds

= ε

∫ ζ

0

[
f1(χ(s, ε), s) − f1(v2(s, ε), s)

+f̃1(χ0, s) + εg1(θ(s, ε), χ(s, ε), s; ε, ν)
]
ds , (4.8)

and

χ(ζ, ε) − v2(ζ, ε) = ε

∫ ζ

0

[
f2(θ(s, ε), s; ν) − f2(v1(s, ε), s; ν)

+f2(v1(s, ε), s; ν) + εg2(θ(s, ε), χ(s, ε), s; ε, ν)
]
ds

= ε

∫ ζ

0

[
f2(θ(s, ε), s; ν) − f2(v1(s, ε), s; ν)

+f̃2(v1(s, ε), s; ν) + εg2(θ(s, ε), χ(s, ε), s; ε, ν)
]
ds , (4.9)

for ζ ∈ I(ε, T ) = [0, T/ε] ∩ [0, β(ε)). Important for our analysis below is that the points
(θ(ζ, ε), χ(s, ε)) and (v1(s, ε), v2(s, ε)) belong to the rectangle Ŵ (θ0, χ0, d1, d2) for ζ ∈ I(ε, T ).
Note that we have added and subtracted f1(v2(s, ε), s) in (4.8) and f2(v1(s, ε), s; ν) in (4.9), an
idea introduced by Besjes [15] (see also [13]).

Taking absolute values, applying the Lipschitz condition on Ŵ (θ0, χ0, d1, d2) and defining

e1(s) := |θ(s, ε) − v1(s, ε)| , (4.10)

e2(s) := |χ(s, ε) − v2(s, ε)| , (4.11)

gives, by (3.116),(3.117),(3.120), (3.121),(3.123), (4.8),(4.9) for ζ ∈ I(ε, T ),

0 ≤ e1(ζ) ≤ ε[L1

∫ ζ

0

e2(s)ds + |
∫ ζ

0

f̃1(χ0, s)ds|

+ε

∫ ζ

0

|g1(θ(s, ε), χ(s, ε), s; ε, ν)|] ≤ ε[L1

∫ ζ

0

e2(s)ds + B1(ζ) + TC1]

≤ ε[L1

∫ ζ

0

e2(s)ds + B1,∞(T/ε) + TC1] =: R1(ζ) , (4.12)

0 ≤ e2(ζ) ≤ ε[L2

∫ ζ

0

e1(s)ds + |
∫ ζ

0

f̃2(2χ0εs + θ0, s; ν)ds|

+ε

∫ ζ

0

|g2(θ(s, ε), χ(s, ε), s; ε, ν)|] ≤ ε[L2

∫ ζ

0

e1(s)ds + B2(ζ) + TC2]

44



≤ ε[L2

∫ ζ

0

e1(s)ds + B2,∞(T/ε) + TC2] =: R2(ζ) , (4.13)

where we also used that I(ε, T ) ⊂ [0, T/ε] and where we have introduced the Ri as in the proof
of the Gronwall inequality for a single integral inequality (the Gronwall inequality is discussed
in many ODE books, see, e.g., [24, p.36] and [26, p.310 and 317]). ζ ∈ I(ε, T ).

Recall that L1, L2, C1, C2, B1, B2 are defined in items 7,8 and 9 of the preamble to the
theorem. For convenience we have suppressed the ε dependence of e1 and e2.

Before we proceed with the proof, several comments are in order.

1. We refer to the terms B1(ζ), B2(ζ) in (3.121) as Besjes terms since they were introduced
by him in order to prove an averaging theorem without a near identity transformation; a
simplification. Standard proofs use the near identity transformation (see e.g., [6, 9, 10]).

One may fear that the Besjes terms could grow as large as O(1/ε) for ζ ∈ [0, T/ε], i.e., that
Bi,∞(T/ε) = O(1/ε). However this doesn’t happen here since, by (3.127), B̌1, B̌2(T, ∆)
are upper bounds for Bi,∞(T/ε) and are ε independent. Two facts are mainly responsible
for this: (a) the fact that for fixed v1 and v2 the integrands have zero mean, i.e., the
quantities in (3.122) have zero mean in s, and (b) the fact that v1(s, ε) and v2(s, ε) are
slowly varying.

2. We maintain the system form in (4.12),(4.13). We could add these two inequalities and
obtain an error estimate using a Gronwall inequality. That is, let L∞ = max(L1, L2),
B∞ = B1,∞ + B2,∞, C∞ = C1 + C2, then adding gives

0 ≤ e∞(ζ) ≤ ε[L∞

∫ ζ

0

e∞(s)ds + B∞(T/ε) + C∞T ] , (4.14)

where e∞ = e1 + e2. The Gronwall inequality gives
e∞(ζ) ≤ ε[B∞(T/ε) + C∞T ] exp(εL∞ζ). However our system approach gives better
bounds.

3. We have a draft of a general paper on quasiperiodic averaging which uses the Besjes
idea and deals with the small divisor problem (See [14]). However the proof we are
presenting here is simple, the small divisor problem is trivial and the error bounds are
quite explicit. Thus we feel it is good to give complete proofs here rather than appealing
to a more general theory. Also it serves the pedagogical purpose of showing how an
averaging theorem is proved in a simple context; here the context of (3.10), (3.11) and
(3.48), (3.49). We have incorporated the Besjes idea in much of our previous averaging
work, see [13, 25, 27, 28, 29].

We now proceed with the proof. It follows from (4.12),(4.13) that

R′
1 = εL1e2(ζ) ≤ εL1R2(ζ) , R1(0) = ε[B1,∞(T/ε) + C1T ] , (4.15)

R′
2 = εL2e1(ζ) ≤ εL2R1(ζ) , R2(0) = ε[B2,∞(T/ε) + C2T ] , (4.16)

whence, by Appendix I for ζ ∈ I(ε, T ),

R1(ζ) ≤ εw1(εζ) , R2(ζ) ≤ εw2(εζ) , (4.17)

where

w′
1 = L1w2 , w1(0) = B1,∞(T/ε) + C1T , (4.18)
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w′
2 = L2w1 , w2(0) = B2,∞(T/ε) + C2T . (4.19)

Note that in Appendix I we use the fact that R1, R2 are of class C1.
Solving (4.18),(4.19) we find

(
w1(s)
w2(s)

)

=



 cosh(s
√

L1L2)
√

L1

L2

sinh(s
√

L1L2)√
L2

L1

sinh(s
√

L1L2) cosh(s
√

L1L2)




(

B1,∞(T/ε) + C1T
B2,∞(T/ε) + C2T

)
,

(4.20)

whence, by (4.12),(4.13),(4.17),

e1(ζ) ≤ εw1(εζ) ≤ εw1(T ) = ε

(
[B1,∞(T/ε) + C1T ] cosh(T

√
L1L2)

+[B2,∞(T/ε) + C2T ]

√
L1

L2
sinh(T

√
L1L2)

)
, (4.21)

e2(ζ) ≤ εw2(εζ) ≤ εw2(T ) = ε

(
[B1,∞(T/ε) + C1T ]

√
L2

L1
sinh(T

√
L1L2)

+[B2,∞(T/ε) + C2T ] cosh(T
√

L1L2)

)
, (4.22)

for ζ ∈ I(ε, T ), where, at the second inequalities, we have used the fact that w1 and w2 are
increasing (the latter follows from (4.18),(4.19),(4.20)). We thus have proven (3.125),(3.126) in
Theorem 1.

We note that B̌1 and B̌2,1(T ) are finite. Also, since the Fourier series of jj(·; ν, ∆Px0)
is absolutely convergent, we conclude from (3.131) that B̌22(T ) is finite whence, by (3.129),
B̌2(T, ∆) is finite.

By restricting ε0, and thus ε in (4.21),(4.22), we can keep (θ(ζ, ε), χ(ζ, ε)) away from the
boundary of Ŵ (θ0, χ0, d1, d2) for ζ ∈ I(ε, T ). In this case T/ε must be less than β(ε) thus
I(ε, T ) = [0, T/ε].

To complete the proof we have to show (3.127) which is the heart of the proof. Thus we
have to estimate B1, B2. From (2.47),(3.36),(3.122) we obtain

f̃1(v2(s, ε), s) = 2
q(s) − q̄

q̄
v2(s, ε) =

2K2

q̄
[2∆Px0 cos s +

1

2
cos(2s)]χ0 ,

and thus, by (3.121),(3.128),

B1(ζ) =
2K2

q̄
|
∫ ζ

0

[2∆Px0 cos s +
1

2
cos(2s)]χ0 ds|

=
2K2|χ0|

q̄
|2∆Px0 sin ζ +

1

4
sin(2ζ)| ≤ 2K2|χ0|

q̄
(2|∆Px0| +

1

4
)

= B̌ , (4.23)

so that, by (3.123), B1,∞(T/ε) ≤ B̌1. From (3.36),(3.122),(4.4) we obtain

f̃2(v1(s, ε), s; ν) = −K2

2
eiν[2εχ0s+θ0]

∑

n∈Z

ĵj(n; ν, ∆Px0)e
i(n−ν)s + cc ,
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whence, by (3.121) and for ζ ∈ R,

B2(ζ) =
K2

2
|
∫ ζ

0

eiν[2εχ0s+θ0]
∑

n∈Z

ĵj(n; ν, ∆Px0)e
i(n−ν)sds + cc|

=
K2

2
|
∑

n∈Z

ĵj(n; ν, ∆Px0)

∫ ζ

0

eiν[2εχ0s+θ0]ei(n−ν)sds + cc|

≤ K2
∑

n∈Z

|ĵj(n; ν, ∆Px0)| |
∫ ζ

0

ei2ενχ0sei(n−ν)sds| , (4.24)

where in the second equality we used the fact that the Fourier series of jj(·; ν, ∆Px0) is uniformly
convergent. Integrating by parts gives, for 0 ≤ ζ ≤ T/ε,

|
∫ ζ

0

ei2ενχ0sei(n−ν)sds| = |e
i(n−ν+2ενχ0)ζ − 1 − i2ενχ0

∫ ζ

0
ei(n−ν+2ενχ0)sds

i(n − ν)
|

≤ 2 + 2εν|χ0|ζ
|n − ν| ≤ 2 + 2(k + 1)|χ0|T

|n − ν| ,

whence, by (4.24), for 0 ≤ ζ ≤ T/ε,

B2(ζ) ≤ 2K2[1 + (k + 1)|χ0|T ]
∑

n∈Z

| ĵj(n; ν, ∆Px0)

n − ν
| . (4.25)

The n− ν in the denominator is the so-called small divisor problem in this context. It is easily
resolved in this ∆-NR case. In fact, for ν ∆-NR, i.e., k + ∆ ≤ ν ≤ k + 1 − ∆, we have

∑

n∈Z

| ĵj(n; ν, ∆Px0)

n − ν
| =

|ĵj(k; ν, ∆Px0)|
|k − ν|

+
|ĵj(k + 1; ν, ∆Px0)|

|k + 1 − ν| +
∑

n∈(Z\{k,k+1})

|ĵj(n; ν, ∆Px0)|
|n − ν| ≤ |ĵj(k; ν, ∆Px0)|

∆

+
|ĵj(k + 1; ν, ∆Px0)|

∆
+

∑

n∈(Z\{k,k+1})
|ĵj(n; ν, ∆Px0)| ,

whence, by (3.129), (3.130),(3.131),(4.25),

B2(ζ) ≤ 2K2{1 + (k + 1)|χ0|T}{|ĵj(k; ν, ∆Px0)| + |ĵj(k + 1; ν, ∆Px0)|
∆

+
∑

n∈(Z\{k,k+1})
|ĵj(n; ν, ∆Px0)|} =

1

∆
B̌21(T ) + B̌22(T ) = B̌2(T, ∆) ,

(4.26)

so that, by (3.123), B2,∞(T/ε) ≤ B̌2(T, ∆).
This completes the proof.
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4.2 Proof of Theorem 2 (Averaging theorem in NtoR case where
ν = k + εa)

The proof goes analogously to the proof of Theorem 1 in §4.1 and so we omit some details.
Thus we begin by comparing solutions of the exact IVP (3.48),(3.49)

θ′ = εfR
1 (χ, ζ) + ε2gR

1 (θ, χ, ζ, ε, k, a) , θ(0, ε) = θ0 , (4.27)

χ′ = εfR
2 (θ, εζ, ζ ; k, a) + ε2gR

2 (θ, χ, ζ, ε, k, a) , χ(0, ε) = χ0 , (4.28)

where, by (3.47),(3.50),(3.54),

fR
1 (χ, ζ) =

2q(ζ)χ

q̄
, (4.29)

fR
2 (θ, εζ, ζ ; k, a) = −K2

2
exp(i[kθ − aεζ ])

∑

n∈Z

ĵj(n; k, ∆Px0)e
iζ[n−k] + cc ,

(4.30)

with the normal form IVP of (3.58),(3.59)

v′
1 = εf̄R

1 (v2) , v1(0, ε) = θ0 , (4.31)

v′
2 = εf̄R

2 (v1, εζ ; k) , v2(0, ε) = χ0 , (4.32)

where

f̄R
1 (v2) = 2v2 , (4.33)

f̄R
2 (v1, εζ ; k) = −K2

2
exp(i[kv1 − aεζ ])ĵj(k; k, ∆Px0) + cc . (4.34)

Subtracting and integrating, we obtain from (3.143), (4.27),(4.28),(4.31),(4.32) that

θ(ζ) − v1(ζ, ε) = ε

∫ ζ

0

[
fR

1 (χ(s), s) − fR
1 (v2(s, ε), s)

+fR
1 (v2(s, ε), s) − f̄R

1 (v2(s, ε)) + εgR
1 (θ(s), χ(s), s, ε, k, a)

]
ds

= ε

∫ ζ

0

[
fR

1 (χ(s), s) − fR
1 (v2(s, ε), s)

+f̃R
1 (v2(s, ε), s) + εgR

1 (θ(s), χ(s), s, ε, k, a)
]
ds ,

(4.35)

and

χ(ζ) − v2(ζ, ε) = ε

∫ ζ

0

[
fR

2 (θ(s), εs, s; k, a) − fR
2 (v1(s, ε), εs, s; k, a)

+fR
2 (v1(s, ε), εs, s; k, a)− f̄R

2 (v1(s, ε), εs; k) + εgR
2 (θ(s), χ(s), s, ε, k, a)

]
ds

= ε

∫ ζ

0

[
fR

2 (θ(s), εs, s; k, a) − fR
2 (v1(s, ε), εs, s; k, a)

+f̃R
2 (v1(s, ε), εs, s; k, a) + εgR

2 (θ(s), χ(s), s, ε, k, a)
]
ds ,

(4.36)
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for ζ ∈ I(ε, T ) = [0, T/ε] ∩ [0, β(ε)). Taking absolute values, applying the Lipschitz condition
and defining

e1(s) := |θ(s) − v1(s, ε)| , (4.37)

e2(s) := |χ(s) − v2(s, ε)| , (4.38)

gives, by (3.139),(3.140),(3.141), (3.142),(3.144),(4.35),(4.36) for ζ ∈ I(ε, T ),

0 ≤ e1(ζ) ≤ ε[LR
1

∫ ζ

0

e2(s)ds + |
∫ ζ

0

f̃R
1 (v2(s, ε), s)ds|

+ε

∫ ζ

0

|gR
1 (θ(s), χ(s), s, ε, k, a)|ds] ≤ ε[LR

1

∫ ζ

0

e2(s)ds + BR
1 (ζ) + TCR

1 ]

≤ ε[LR
1

∫ ζ

0

e2(s)ds + BR
1,∞(T/ε) + TCR

1 ] , (4.39)

0 ≤ e2(ζ) ≤ ε[LR
2

∫ ζ

0

e1(s)ds + |
∫ ζ

0

f̃R
2 (v1(s, ε), εs, s; k, a)ds|

+ε

∫ ζ

0

|gR
2 (θ(s), χ(s), s, ε, k, a)|ds] ≤ ε[LR

2

∫ ζ

0

e1(s)ds + BR
2 (ζ) + TCR

2 ]

≤ ε[LR
2

∫ ζ

0

e1(s)ds + BR
2,∞(T/ε) + TCR

2 ] , (4.40)

where we also used that I(ε, T ) ⊂ [0, T/ε]. Recall that LR
i , CR

i , BR
i are defined in items 7,8 and

9 of the preamble to the theorem.
We are now in the same situation as in the proof of Theorem 1 since replacing Li, Ci, Bi in

(4.12),(4.13) by LR
i , CR

i , BR
i results in (4.39),(4.40). Since, as shown in the proof of Theorem

1, (4.12),(4.13) entail (4.21),(4.22) we thus conclude here that (4.39),(4.40) entail:

e1(ζ) ≤ ε

(
[BR

1,∞(T/ε) + C1T ] cosh(T
√

LR
1 LR

2 )

+[BR
2,∞(T/ε) + C2T ]

√
LR

1

LR
2

sinh(T
√

LR
1 LR

2 )

)
, (4.41)

e2(ζ) ≤ ε

(
[BR

1,∞(T/ε) + C1T ]

√
LR

2

LR
1

sinh(T
√

LR
1 LR

2 )

+[BR
2,∞(T/ε) + C2T ] cosh(T

√
LR

1 LR
2 )

)
, (4.42)

for ζ ∈ I(ε, T ). We thus have proven (3.145),(3.146).
Clearly, by (3.148), B̌R

1 (T ) is finite. Also, since jj(·; ν, ∆Px0) is a C∞ function, the series
on the rhs of (3.149) converges whence B̌R

2 (T ) is also finite.
By restricting ε0, and thus ε in (4.41),(4.42), we can keep (θ(ζ, ε), χ(ζ, ε)) away from the

boundary of Ŵ (θ0, χ0, d1, d2) for ζ ∈ I(ε, T ). In this case T/ε must be less than β(ε) thus
I(ε, T ) = [0, T/ε].

To complete the proof we have to show (3.147). Thus we have to estimate BR
1 , BR

2 and
beginning with BR

1 we conclude from (2.47),(3.143),(4.29), (4.33) that, for ζ ∈ R,

f̃R
1 (v2(s, ε), s) = 2

q(s) − q̄

q̄
v2(s, ε)
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=
2K2

q̄
[2∆Px0 cos s +

1

2
cos(2s)]v2(s, ε) ,

whence, by (3.82), (3.142),(3.148), (4.32),(4.34) for 0 ≤ ζ ≤ T/ε,

BR
1 (ζ) =

2K2

q̄

∣∣∣
∫ ζ

0

[2∆Px0 cos s +
1

2
cos(2s)]v2(s, ε) ds

∣∣∣

=
2K2

q̄

∣∣∣[2∆Px0 sin ζ +
1

4
sin(2ζ)]v2(ζ, ε)

−
∫ ζ

0

[2∆Px0 sin s +
1

4
sin(2s)]

dv2

ds
(s, ε)ds

∣∣∣

=
2K2

q̄

∣∣∣[2∆Px0 sin ζ +
1

4
sin(2ζ)]v2(ζ, ε)

+εK2ĵj(k; k, ∆Px0)

∫ ζ

0

[2∆Px0 sin s +
1

4
sin(2s)] cos

(
kv1(s, ε) − εas

)
ds
∣∣∣

≤ 2K2

q̄

(
[2|∆Px0| +

1

4
]|v2(ζ, ε)|

+εK2
∣∣ĵj(k; k, ∆Px0)

∣∣[2|∆Px0| +
1

4
]ζ

)

≤ 2K2

q̄
[2|∆Px0| +

1

4
]

(
|v2(ζ, ε)|+ K2εζ |ĵj(k; k, ∆Px0)|

)

≤ 2K2

q̄
[2|∆Px0| +

1

4
]

(
χ∞(θ0, χ0, k, a)

+K2T
∣∣ĵj(k; k, ∆Px0)

∣∣
)

= B̌R
1 (T ) , (4.43)

so that, by (3.144), BR
1,∞(T/ε) ≤ B̌R

1 (T ) which proves (3.147) for i = 1. The key step here is
the integration by parts at the second equality which makes explicit the slowly varying nature
of v2 by pulling out the explicit ε after the third equality.

To prove (3.147) for i = 2 we conclude from (3.143),(4.30), (4.34) that, for ζ ∈ R,

f̃R
2 (v1(s, ε), εs, s; k, a) = −K2

2
ei[kv1(s,ε)−εas]

∑

n∈Z\{k}
ĵj(n; k, ∆Px0)e

i(n−k)s + cc ,

whence, by (3.142) for ζ ∈ R,

BR
2 (ζ) =

K2

2

∣∣∣
∫ ζ

0

ei[kv1(s,ε)−εas]
∑

n∈Z\{k}
ĵj(n; k, ∆Px0)e

i(n−k)sds + cc
∣∣∣

≤ K2
∑

n∈Z\{k}

∣∣ĵj(n; k, ∆Px0)
∣∣ ∣∣
∫ ζ

0

ei[kv1(s,ε)−εas]ei(n−k)sds
∣∣ , (4.44)

where in the inequality we used the fact that the Fourier series of jj(·; k, ∆Px0) is uniformly
convergent. Integrating by parts gives, by (3.82), (4.31),(4.33) for 0 ≤ ζ ≤ T/ε,

|
∫ ζ

0

ei[kv1(s,ε)−εas]ei(n−k)sds| =
∣∣∣

1

i(n − k)

[
ei[kv1(ζ,ε)−εaζ]ei(n−k)ζ − eikθ0
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−
∫ ζ

0

i(k
dv1

ds
(s, ε) − εa)ei[kv1(s,ε)−εas]ei(n−k)sds

]∣∣∣

≤ 1

|n − k|

[
2 +

∫ ζ

0

(k|dv1

ds
(s, ε)| + ε|a|)ds

]

≤ 1

|n − k|

[
2 + ε

∫ ζ

0

(2k|v2(s, ε)| + |a|)ds

]

≤ 1

|n − k|

(
2 + εζ

[
|a| + 2kχ∞(θ0, χ0, k, a)

])

≤ 1

|n − k|

(
2 + T

[
|a| + 2kχ∞(θ0, χ0, k, a)

])
,

whence, by (3.149),(4.44) for 0 ≤ ζ ≤ T/ε,

BR
2 (ζ) ≤ K2

(
2 + T [|a| + 2kχ∞(θ0, χ0, k, a)]

)

×
∑

n∈Z\{k}

|ĵj(n; k, ∆Px0)|
|n − k| = B̌R

2 (T ) , (4.45)

so that, by (3.144), BR
2,∞(T/ε) ≤ B̌R

2 (T ). This completes the proof.

5 Summary and future work

We started with the 6D Lorentz equations for a planar undulator in (2.7),(2.16)-(2.18) with time
as the independent variable. In §2.2 we introduced z as the independent variable and considered
the IVP at z = 0 with y0 = py0 = 0. Solutions of this system are completely determined by the
solutions of our basic 2D system (2.33),(2.34) for α and γ. This basic 2D system is the starting
point for the rest of the paper and the first step is to transform it into a form for first-order
averaging; the subject of §2.3. We introduce ζ = kuz as the new independent variable, and χ
as a new dependent variable by γ = γc(1 + εχ). Here we are thinking of electrons as part of an
electron bunch with γc as a characteristic value of γ and ε as a measure of the energy spread
so that χ is an O(1) variable. We thus arrive at the system for (θaux, χ) given in (2.41),(2.42)
and we are interested, in this FEL application, in an asymptotic analysis for ε and 1/γc small.
Expanding the vector field for (2.41),(2.42) gives (2.50),(2.51). Here θaux is not slowly varying
and we thus introduce the generalized ponderomotive phase, θ, in (2.52) which leads to the
slowly varying form of (2.56),(2.57). Most importantly, we discover that in order for θ and χ
to interact at first order we must have ε = O(1/γc) and without loss of generality we take (1.5)
as a result of (2.58). Finally we obtain (2.62),(2.63) which is in a standard form for the MoA.
Consequently this will lead to a pendulum type behavior which is central to the operation of
an FEL.

The MoA can be applied to (2.62),(2.63) after an appropriate h is defined and the rest of
the paper, in Sections 3,4, focuses on the monochromatic case of (2.15).

Before continuing with the summary we note that in the collective case there is a contin-
uous range of frequencies and so it is natural to ask, “what happens in the noncollective case
considered in this paper if there is a continuous range of frequencies?”. Here h can be modeled
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as in (2.78), i.e.,

h(α) =

∫ ∞

−∞
h̃(ξ) exp(−iξα)dξ . (5.1)

In the nonsmooth monochromatic case h̃(ξ) = [δ(ξ − ν) + δ(ξ + ν)]/2 and (5.1) gives h(α) =
cos(να) as in the monochromatic case of (2.15), and, as we have discussed in §3, there are
resonances for integer ν. However we have found that in the smooth case the average of
(cos ζ + ∆Px0)h(θ − Q(ζ)) is zero and so the averaging normal form for (2.62),(2.63) is just
the NR normal form of §3.3. Thus a smooth h̃(ξ), localized near the ν = 1 monochromatic
resonance, washes out the effect of that resonance in the first-order averaging normal form. This
does not mean that there is no resonant behavior near ν = 1 because it may not be possible to
prove an averaging theorem. We are pursuing this. Furthermore even if an averaging theorem
can be proven there might still be an effect in second-order averaging.

In §3 we begin by determining the O(ε2) terms of (2.62),(2.63) using (2.72),(2.73). Thus we
obtain (3.10)-(3.15) as our basic system for θ, χ. Proposition 1 gives a domain, W (ε0) × R, on
which g1, g2 are well defined as well as their limits as ε → 0+. In particular the vector field in
(3.10),(3.11) is well defined on W (ε0) × R.

Eq.’s (3.10),(3.11) are in a standard form for the MoA and for each ν the normal form is
obtained by dropping the O(ε2) terms and averaging f1, f2 over ζ . However the average of f2 is
not clear from (3.13) and it is convenient to expand it in a Fourier series which is given in (3.26)-
(3.28). The average is then easily obtained in (3.30) and leads to the definition of NR, ∆-NR,
resonant and NtoR ν. The NR normal form equations are θ′ = ε2χ and χ′ = 0 and the resonant
normal form equations are given by (3.31). The NR case is stated precisely in §3.3. Instead of
focusing on the resonant case of (3.31) we consider in §3.4 the more general NtoR case where
we study the dynamics in neighborhoods of the ν = k resonances. If the neighborhood is too
small then the resonant normal form of (3.31) will be dominant thus the natural neighborhood
to study with first-order averaging is O(ε) and this is the content of §3.4. Replacing ν by
k + εa, our basic equations (3.10),(3.11) are rewritten in (3.42),(3.43). The function f2 in
(3.43) has two ε dependencies one of which contributes to the O(ε2) term and we are led to
the basic NtoR system (3.48)-(3.52). Proposition 2 is analogous to Proposition 1 by giving us
the domain W (ε0) × R on which gR

1 , gR
2 are well behaved as well as their limits as ε → 0+. In

particular the vector field in (3.48),(3.49) is well defined on W (ε0) × R. In §3.4.2 the NtoR
normal form is presented in (3.58),(3.59). The solution structure is conveniently illuminated,
in terms of the simple pendulum system, in §3.4.3. The simple pendulum exhibits four types of
behavior and these are exploited to discuss the structure of solutions of (3.58),(3.59) in these
four cases.

At this stage we have normal forms for ν ∈ [k + ∆, k + 1 − ∆] and ν = k + εa. However
there may be gaps between the dynamics covered by the ∆-NR normal form and that of the
NtoR normal form. So it is comforting to note that there is a link between the two dynamical
behaviors in that the NtoR normal form is approximated by the NR normal form far away from
the pendulum buckets as discussed in §3.4.4.

In §3.5 we state the two averaging theorems which relate the ∆-NR and NtoR normal form
approximations to the corresponding exact systems. Each theorem has a detailed preamble
which sets up a compact statement of the theorem. The theorems establish the main results
of the paper. Namely that the normal form solutions give an O(ε) approximation to the exact
solutions on long time, O(1/ε), intervals. In the ∆-NR case, the ν interval can be made larger
by making ∆ smaller but this is at the expense of increasing the error as discussed in Remark
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(1) of §3.5.3.
The results of the theorems are applied in §3.6, where the normal form approximations are

used to derive the approximate solutions of the Lorentz equations with z as the independent
variable. In §3.7 we discuss the small gain theory for ν = k + εa based on our NtoR normal
form and compare it with the standard theory for k = 1, a = 0. We do point out however,
that we have not justified the low gain theory in the context of our NtoR averaging theorem as
we mention at the end of §3.7.

Finally the proofs are given in §4. It can be seen that the proofs themselves are quite simple.
The proofs are somewhat novel in that they do not use a near identity transformation, due to the
Besjes approach, and they use a system of differential inequalities in the calculation of the error
bounds, rather than a Gronwall type inequality, which leads to better error bounds. Therefore
a solution of the system of differential inequalities is presented and verified in Appendix I. The
first theorem, which is stated for the ∆-NR case, is an example of a quasiperiodic averaging
theorem with its concomitant small divisor problem. It’s inherently interesting in that the small
divisor problem arises in what must be the simplest possible way. We develop the general theory
of quasiperiodic averaging in [14]. The second theorem, which is stated for the NtoR case, is
an example of periodic averaging which has a vast literature, however as mentioned above our
approach here is novel. While the proofs of Theorems 1 and 2 are simple the whole application
of the MoA is not. There was considerable work to put the problem into the standard form and
considerable effort to calculate the bounds on g1, g2 in Appendix C and gR

1 , gR
2 in Appendix E

as well as their ε = 0 limits in Appendixes B and D.
We now comment on future work. First of all it would be interesting to include the y

dynamics using (2.12) as we do, but not assuming the zero initial conditions in y, thus treating
the full 3D dynamics.

Secondly, it would be interesting to study the helical undulator as we have done here for
the planar undulator, i.e., via first-order averaging.

Thirdly, the work here sets the stage for a second-order averaging study of the NR case in
(3.10),(3.11) using (3.39),(3.40) and the NtoR case in (3.48),(3.49) using (3.56),(3.57). In both
cases we have systems of the form

dU

dt
= εF (U, t) + ε2G(U, t) + O(ε3) , (5.2)

with approximating normal form given by

dV

dt
= εF̄ (V ) + ε2Ĝ(V ) , (5.3)

where F̄ is the t-average of F and Ĝ is a linear combination of the t-average of G and terms
depending on F (See [25, Section 5, p.610] for a construction of the normal form, i.e., Ĝ, and an
associated theorem and proof). Such a study would include a computation of the averages from
(3.39),(3.40) and (3.56),(3.57) and then a phase plane analysis of this second order normal form
system including a comparison with our first-order normal form system. In addition averaging
theorems could be proven which we anticipate will give an O(ε2) error on [0, T/ε] as in [25].
Furthermore, it would be interesting to see what happens in the NR case, e.g., is the energy
deviation χ still conserved. We note that generically second-order averaging gives a better error
estimate but the interval of validity remains the same (See [25] for situations where the time
interval can be extended). Finally it would be interesting to know if, in the NtoR case, there
is a breakdown in the integrability of the NtoR normal form due to separatrix splitting, [30],
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with the concomitant chaotic behavior. This is a delicate issue, which cannot be studied with
second-order averaging, since (5.3) is a second order autonomous system and as such it cannot
exhibit chaos as pointed out at the end of §3.4.3. This work could be a possible future project,
however it does not appear to be interesting from the application point of view since collective
effects are surely more important than noncollective effects at second order.

Fourthly, we are therefore eager to move on to the collective case based in part on our
understanding here. As a first step we are studying the consequence of (H.1)-(H.6). We have
not seen this form of the solution of the 1D wave equation in the FEL literature although the
first equality in (H.3) is derived in many elementary PDE books. In addition, we are pursuing
the issue raised in the paragraph containing Eq. (5.1), concerning a smooth h̃.
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Table of notation
a (3.41)
B1, B2 (3.121)
BR

1 , BR
2 (3.142)

D(ε, ν) (3.6)
E (1.4)
f1, f2 (3.12), (3.13)
fR

1 , fR
2 (3.47), (3.50)

g1, g2 (3.14), (3.15)
gR
1 , gR

2 (3.51), (3.52)
h, H (2.15)

jj, ĵj (3.23), (3.25)
K (1.1)
Kr (1.3)
K0 (3.60)
MoA Method of Averaging
NR (nonresonant) Definition 1 (§3.2)
NtoR (near − to − resonant) Definition 1 (§3.2)
N Set of positive integers
Px, Pz (2.37)
q, q̄, Q (2.47), (2.48), (2.53)

W (ε), Ŵ , ŴR (3.19), (3.113), (3.133)
Z Set of integers
α̌, α (2.14), (2.26)
γc (2.36)
∆ Definition 1 (§3.2)
∆ − NR (∆ − nonresonant) Definition 1 (§3.2)
∆Px0 (2.45)
ε (1.5)
ζ (2.39)
η (2.36)
θaux, θ (2.40), (2.52)
Πx, Πz, Πx,ub, Πz,lb (3.2), (3.3), (3.17), (C.15)
Υ0, Υ1 (2.54)
χ, χlb(ε) (2.36), (3.20)
Ω (3.69)

Appendix

A The Bessel expansion

Here we derive the Bessel expansion (3.27) of jj(·; ν, ∆Px0). In fact by (3.23)

jj(ζ ; ν, ∆Px0) = (cos ζ + ∆Px0) exp(−iνΥ0 sin ζ) exp(−iνΥ1 sin 2ζ)

=
1

2
jj1(ζ) +

1

2
jj−1(ζ) + ∆Px0jj0(ζ) , (A.1)
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where

jjm(ζ) := exp(imζ) exp(−iν[Υ0 sin ζ + Υ1 sin 2ζ ]) . (A.2)

Now

exp(ix sin θ) =
∑

n∈Z

Jn(x) exp(inθ) , J−n(x) = (−1)nJn(x) , (A.3)

whence, by (A.2),

jjm(ζ) = eimζe−iνΥ0 sin ζe−iνΥ1 sin 2ζ

= eimζ [
∑

k∈Z

Jk(νΥ1)e
−i2kζ] [

∑

l∈Z

Jl(νΥ0)e
−ilζ ]

=
∑

k,l∈Z

Jl(νΥ0)Jk(νΥ1)e
i(m−l−2k)ζ

=
∑

n∈Z

(∑

k∈Z

Jm−n−2k(νΥ0)Jk(νΥ1)

)
einζ . (A.4)

Let

J (n, m, ν, Υ0, Υ1) :=
∑

k∈Z

Jm−n−2k(νΥ0)Jk(νΥ1) , (A.5)

then, by (A.4),

jjm(ζ) =
∑

n∈Z

J (n, m, ν, Υ0, Υ1)e
inζ , (A.6)

and thus, by (A.1),

jj(ζ ; ν, ∆Px0) =
∑

n∈Z

(
1

2
J (n, 1, ν, Υ0, Υ1) +

1

2
J (n,−1, ν, Υ0, Υ1)

+∆Px0J (n, 0, ν, Υ0, Υ1)

)
einζ , (A.7)

whence, by (3.25),

ĵj(n; ν, ∆Px0) =
1

2
J (n, 1, ν, Υ0, Υ1) +

1

2
J (n,−1, ν, Υ0, Υ1)

+∆Px0J (n, 0, ν, Υ0, Υ1) , (A.8)

so that indeed (3.27) holds.
It is useful for the discussion after Definition 1 to have the following special case. We have,

by (A.8),

ĵj(k; k, 0) =
1

2
[J (k, 1, k, 0, Υ1) + J (k,−1, k, 0, Υ1)] , (A.9)

where

J (k, 1, k, 0, Υ1) =
∑

k′∈Z

J1−k−2k′(0)Jk′(kΥ1)
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=

{
J(1−k)/2(kΥ1) if k odd
0 if k even ,

(A.10)

J (k,−1, k, 0, Υ1) =
∑

k′∈Z

J−1−k−2k′(0)Jk′(kΥ1)

=

{
J−(1+k)/2(kΥ1) if k odd
0 if k even .

(A.11)

Thus from (A.9) ĵj(k; k, 0) = 0 for k even and, for k = 2n + 1 with n ∈ Z,

ĵj(2n + 1; 2n + 1, 0) =
1

2
[J−n((2n + 1)Υ1) + J−(n+1)((2n + 1)Υ1)]

=
1

2
(−1)n[Jn((2n + 1)Υ1) − Jn+1((2n + 1)Υ1)] . (A.12)

B Limit of g1, g2

Let ε ∈ (0, ε0] with ε0 ∈ (0, 1], let ν ∈ [1/2,∞) and let (θ, χ, ζ) ∈ W (ε0) × R. In this appendix
we will prove the properties (B.5), (B.8),(B.12),(B.13) of g1 and g2. The properties (B.8),(B.13)
are used in the proof of Proposition 1. Furthermore the properties (B.5),(B.12) will be used in
Appendix C. Since all assumptions of this appendix are also satisfied in Appendix B, we can
apply the results of Appendix B.

We first consider g1. Note that, by (2.47),(3.2),

1 + K2Π2
x(θ, ζ, ε, ν) = q(ζ)

+
ε2K2q̄

2ν

(
sin(ν[θ − Q(ζ)]) − sin(νθ0)

)(
2(cos ζ + ∆Px0)

+
ε2q̄

2ν
(sin(ν[θ − Q(ζ)]) − sin(νθ0))

)
. (B.1)

We obtain from (3.14) that

ε2g1(θ, χ, ζ ; ε, ν) =
2E
ε2q̄

(1 − 1

Πz(θ, χ, ζ, ε, ν)
) +

q(ζ)

q̄
(1 − 2εχ) ,

whence

1

2E q̄Πz(Πz + 1)ε4g1 = Π2
z − 1 +

1

2E qΠz(Πz + 1)ε2(1 − 2εχ)

=
1

(1 + εχ)2

(
−ε2

E (q + ε2κ1) +
1

2E qΠz(Πz + 1)ε2(1 + εχ)2(1 − 2εχ)

)
,

(B.2)

where we used from (3.3),(B.1) the fact that

Π2
z(θ, χ, ζ, ε, ν)− 1 = − ε2

E(1 + εχ)2

(
q(ζ) + ε2κ1(θ, ζ, ε, ν)

)
, (B.3)

with

κ1(θ, ζ, ε, ν) :=
K2q̄

2ν

(
sin(ν[θ − Q(ζ)]) − sin(νθ0)

)(
2(cos ζ + ∆Px0)
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+
ε2q̄

2ν
(sin(ν[θ − Q(ζ)]) − sin(νθ0))

)
. (B.4)

Clearly, by (B.2),(B.3),

1

2E q̄Πz(Πz + 1)ε4g1

= − ε2q

E(1 + εχ)2

(
1 − 1

2
Πz(Πz + 1)(1 − 3ε2χ2 − 2ε3χ3)

)
− ε4κ1

E(1 + εχ)2

= − ε2q

E(1 + εχ)2

(
−1

2
(Πz − 1)(Πz + 2) +

1

2
Πz(Πz + 1)(3ε2χ2 + 2ε3χ3)

)

− ε4κ1

E(1 + εχ)2
,

whence

1

2E q̄Πz(Πz + 1)2ε4g1

= − ε2q

2E(1 + εχ)2

(
−(Π2

z − 1)(Πz + 2) + ε2Πz(Πz + 1)2(3χ2 + 2εχ3)

)

− ε4κ1

E(1 + εχ)2
= − ε2q

2E(1 + εχ)4

(
ε2

E (q + ε2κ1)(Πz + 2)

+ε2Πz(Πz + 1)2(3χ2 + 2εχ3)(1 + εχ)2

)
− ε4κ1

E(1 + εχ)2

= − ε2q

2E(1 + εχ)4

(
ε2

E q(Πz + 2) + ε2Πz(Πz + 1)2(3χ2 + 2εχ3)(1 + εχ)2

)

−ε6q(Πz + 2)κ1

2E2(1 + εχ)4
− ε4κ1

E(1 + εχ)2

= − ε2q

2E(1 + εχ)4

(
ε2

E q(Πz + 2) + ε2Πz(Πz + 1)2(3χ2 + 2εχ3)(1 + εχ)2

)

− ε4κ1

2E(1 + εχ)4

(
2(1 + εχ)2 +

ε2

E q(Πz + 2)

)
,

so that

q̄Πz(Πz + 1)2g1

= − q

(1 + εχ)4

(
q

E (Πz + 2) + Πz(Πz + 1)2(3χ2 + 2εχ3)(1 + εχ)2

)

− κ1

(1 + εχ)4

(
2(1 + εχ)2 +

ε2q

E (Πz + 2)

)
,

i.e.,

g1(θ, χ, ζ ; ε, ν) = − q

q̄Πz(Πz + 1)2(1 + εχ)4

(
q

E (Πz + 2)

+Πz(Πz + 1)2(3χ2 + 2εχ3)(1 + εχ)2

)
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− κ1

q̄Πz(Πz + 1)2(1 + εχ)4

(
2(1 + εχ)2 +

ε2q

E (Πz + 2)

)
. (B.5)

Clearly, by (3.3),(B.4),

lim
ε→0+

[Πz(θ, χ, ζ, ε, ν)] = 1 , (B.6)

lim
ε→0+

[κ1(χ, ζ, ε, ν)] =
K2q̄

ν

(
sin(ν[θ − Q(ζ)]) − sin(νθ0)

)
(cos ζ + ∆Px0) ,

(B.7)

whence, by (B.5),

lim
ε→0+

[g1(θ, χ, ζ ; ε, ν)] = −q(ζ)

4q̄
(
3

E q(ζ) + 12χ2)

−K2

2ν

(
sin(ν[θ − Q(ζ)]) − sin(νθ0)

)
(cos ζ + ∆Px0) . (B.8)

We now consider g2 and we obtain from (3.15) that

ε2g2(θ, χ, ζ ; ε, ν) = εK2 cos(ν[θ − Q(ζ)])

(
cos ζ + ∆Px0

− 1

1 + εχ

Πx(θ, ζ, ε, ν)

Πz(θ, χ, ζ, ε, ν)

)
,

whence

Πz(1 + εχ)εg2 = K2 cos(ν[θ − Q(ζ)])

(
(1 + εχ)Πz(cos ζ + ∆Px0) − Πx

)

= K2 cos(ν[θ − Q(ζ)])

(
(cos ζ + ∆Px0)[(1 + εχ)Πz − 1] − ε2κ2

)
, (B.9)

where we used from (3.2) the fact that

Πx(θ, ζ, ε, ν) = cos ζ + ∆Px0 + ε2κ2(θ, ζ, ν) , (B.10)

with

κ2(θ, ζ, ν) :=
q̄

2ν
[sin(ν[θ − Q(ζ)]) − sin(νθ0)] . (B.11)

Clearly, by (B.9),

Πz(1 + εχ)εg2 = K2 cos(ν[θ − Q(ζ)])

(
(cos ζ + ∆Px0)[Πz − 1 + εχΠz] − ε2κ2

)
,

whence, by (B.3),

(Πz + 1)Πz(1 + εχ)εg2

= K2 cos(ν[θ − Q(ζ)])

(
(cos ζ + ∆Px0)[Π

2
z − 1 + εχΠz(Πz + 1)]

59



−ε2κ2(Πz + 1)

)

= K2 cos(ν[θ − Q(ζ)])

(
(cos ζ + ∆Px0)[−

ε2

E(1 + εχ)2
(q + ε2κ1)

+εχΠz(Πz + 1)] − ε2κ2(Πz + 1)

)
,

so that

Πz(Πz + 1)(1 + εχ)3εg2

= K2 cos(ν[θ − Q(ζ)])

(
(cos ζ + ∆Px0)[−

ε2

E (q + ε2κ1)

+εχΠz(Πz + 1)(1 + εχ)2] − ε2κ2(Πz + 1)(1 + εχ)2

)
,

which entails that

Πz(Πz + 1)(1 + εχ)3g2

= K2 cos(ν[θ − Q(ζ)])

(
(cos ζ + ∆Px0)[−

ε

E (q + ε2κ1)

+χΠz(Πz + 1)(1 + εχ)2] − εκ2(Πz + 1)(1 + εχ)2

)
,

i.e.,

g2(θ, χ, ζ ; ε, ν) =
K2 cos(ν[θ − Q(ζ)])

Πz(Πz + 1)(1 + εχ)3

(
(cos ζ + ∆Px0)[−

ε

E (q(ζ) + ε2κ1)

+χΠz(Πz + 1)(1 + εχ)2] − εκ2(Πz + 1)(1 + εχ)2

)
. (B.12)

Clearly, by (B.6),(B.12),

lim
ε→0+

[g2(θ, χ, ζ ; ε, ν)] = χK2 cos(ν[θ − Q(ζ)])(cos ζ + ∆Px0) . (B.13)

C Bounds on g1, g2

Let ε ∈ (0, ε0] with ε0 ∈ (0, 1], let ν ∈ [1/2,∞) and let (θ0, χ0) ∈ W (ε0). Let also

χlb(ε0) < −χM , (C.1)

where χM is the positive constant from Theorem 1 (see item 2 of the setup list for Theorem 1).
We also assume that

(θ, χ, ζ) ∈ R × (χ0 − d2, χ0 + d2) × R , (C.2)

where

0 < d2 < χ0 − χlb(ε0) . (C.3)
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Note that, by (3.19),(3.38),(C.2),(C.3),

(θ, χ, ζ) ∈
(

R × (χ0 − d2, χ0 + d2) × R

)
⊂
(

W (ε0) × R

)
⊂ D(ε, ν) . (C.4)

In this appendix we will prove the properties (C.27),(C.30) of g1 and g2. We thus show in this
appendix that the properties (C.27),(C.30) hold in the situation of Theorem 1 (see item 8 of
the setup of Theorem 1). Moreover the properties (C.27),(C.30) will be used in Appendix E.

We first consider g1 and we obtain from (B.5)

|g1| =
∣∣∣− q

q̄Πz(Πz + 1)2(1 + εχ)4

(
q

E (Πz + 2)

+Πz(Πz + 1)2(3χ2 + 2εχ3)(1 + εχ)2

)

− κ1

q̄Πz(Πz + 1)2(1 + εχ)4

(
2(1 + εχ)2 +

ε2q

E (Πz + 2)

)∣∣∣ . (C.5)

It follows from (2.47),(2.48),(3.6), (3.7),(C.4) that

q > 0 , q̄ > 0 , 1 + εχ > 0 , 0 < Πz < 1 ,

3χ2 + 2εχ3 = χ2 + 2χ2(1 + εχ) ≥ 0 ,

(C.6)

whence, by (C.5),

|g1| ≤
q

q̄Πz(Πz + 1)2(1 + εχ)4

(
q

E (Πz + 2)

+Πz(Πz + 1)2(3χ2 + 2εχ3)(1 + εχ)2

)

+
|κ1|

q̄Πz(Πz + 1)2(1 + εχ)4

(
2(1 + εχ)2 +

ε2q

E (Πz + 2)

)

=
q

q̄(1 + εχ)2

(
q(Πz + 2)

EΠz(Πz + 1)2(1 + εχ)2
+ 3χ2 + 2εχ3

)

+
|κ1|

q̄Πz(Πz + 1)2(1 + εχ)2

(
2 +

ε2q(Πz + 2)

E(1 + εχ)2

)
. (C.7)

Note also that, by (3.3), (3.16),

Π2
z(θ, χ, ζ, ε, ν) = 1 − ε2

E
1 + K2Π2

x(θ, ζ, ε, ν)

(1 + εχ)2

≥ 1 − ε2

E
1 + K2Π2

x,ub(ε)

(1 + εχ)2
. (C.8)

Moreover ε2/(1 + εχ)2 and 1 + K2Π2
x,ub(ε, ν) are increasing w.r.t. ε whence, by (C.8),

Π2
z(θ, χ, ζ, ε, ν) ≥ 1 − ε2

0

E
1 + K2Π2

x,ub(ε0)

(1 + ε0χ)2
. (C.9)
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Since 0 < ε ≤ ε0 we have, by (C.2),

1 + εχ > 1 + ε(χ0 − d2) ≥ 1 + inf
ε∈(0,ε0]

(ε(χ0 − d2)) = 1 + min(0, ε0(χ0 − d2))

=: κ3(χ0, ε0, d2) . (C.10)

Note that, by (3.20), (C.3),

1 + ε0(χ0 − d2) > 1 + ε0χlb(ε0) > 0 , (C.11)

whence, by (C.10),

κ3(χ0, ε0, d2) > 0 , (C.12)

so that, for n ∈ N and by (C.10),

1

(1 + εχ)n
<

1

κn
3 (χ0, ε0, d2)

. (C.13)

It follows from (C.9),(C.13),

Π2
z(θ, χ, ζ, ε, ν) > Π̌z,lb(ε0) , (C.14)

where

Π̌z,lb(ε) := 1 − ε2
1 + K2Π2

x,ub(ε)

Eκ2
3(χ0, ε, d2)

. (C.15)

To show that Π̌z,lb(ε0) > 0 we compute, by using (3.20),

ε2
0

1 + K2Π2
x,ub(ε0)

Eκ2
3(χ0, ε0, d2)

=

(
1 + ε0χlb(ε0)

κ3(χ0, ε0, d2)

)2

. (C.16)

If χ0 ≤ 0 then, by (C.10),(C.11),

κ3(χ0, ε0, d2) = 1 + ε0(χ0 − d2) > 1 + ε0χlb(ε0) > 0 , (C.17)

whence

0 <
1 + ε0χlb(ε0)

κ3(χ0, ε0, d2)
< 1 , (C.18)

so that, by (C.16),

ε2
0

1 + K2Π2
x,ub(ε0)

Eκ2
3(χ0, ε0, d2)

< 1 . (C.19)

If χ0 > 0 then, by (3.20),(C.1),(C.10),

κ3(χ0, ε0, d2) = 1 > 1 − ε0χM > 1 + ε0χlb(ε0) > 0 , (C.20)

whence again (C.18) holds which entails (C.19) by (C.16). Having thus proven (C.19) we
conclude from (C.15) that

Π̌z,lb(ε0) > 0 , (C.21)
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whence, by (C.6),(C.14),

Πz(θ, χ, ζ, ε, ν) > Πz,lb(ε0) , (C.22)

where

Πz,lb(ε) :=

√
Π̌z,lb(ε) =

√

1 − ε2
1 + K2Π2

x,ub(ε)

Eκ2
3(χ0, ε, d2)

. (C.23)

Of course since Πz, Πz,lb > 0 we conclude from (C.22) that

1

Πz(θ, χ, ζ, ε, ν)
<

1

Πz,lb(ε0)
. (C.24)

Inserting (C.6),(C.13),(C.24) into (C.7) yields to

|g1| ≤
q

q̄κ2
3(χ0, ε0, d2)

(
3q

EΠz,lb(ε0)κ2
3(χ0, ε0, d2)

+ 3χ2 + 2ε0|χ|3
)

+
|κ1|

q̄Πz,lb(ε0)κ
2
3(χ0, ε0, d2)

(
2 +

3ε2
0q

Eκ2
3(χ0, ε0, d2)

)
. (C.25)

Furthermore, by (2.47), (B.4), (C.2),(C.6),

|χ| = |χ − χ0 + χ0| ≤ |χ − χ0| + |χ0| < d2 + |χ0| ,

|κ1(θ, ζ, ε, ν)| ≤ K2q̄

ν

(
2 + 2|∆Px0| +

ε2q̄

ν

)
≤ K2q̄

ν

(
2 + 2|∆Px0| +

ε2
0q̄

ν

)
,

q(ζ) ≤ 1 + K2(1 + |∆Px0|)2 =: qub .

(C.26)

Inserting (C.26) into (C.25) yields to

|g1(θ, χ, ζ ; ε, ν)| ≤ qub

q̄κ2
3(χ0, ε0, d2)

×
(

3qub

EΠz,lb(ε0)κ2
3(χ0, ε0, d2)

+ 3(d2 + |χ0|)2 + 2ε0(d2 + |χ0|)3

)

+
K2

νΠz,lb(ε0)κ2
3(χ0, ε0, d2)

(
2 + 2|∆Px0| +

ε2
0q̄

ν

)(
2 +

3ε2
0qub

Eκ2
3(χ0, ε0, d2)

)

=: C1(χ0, ε0, ν, d2) . (C.27)

We now consider g2 and we obtain from (B.12),(C.6)

|g2| ≤
K2

Πz(Πz + 1)(1 + εχ)3

(
(1 + |∆Px0|)[

ε0

E (q + ε2
0|κ1|)

+|χ|Πz(Πz + 1)(1 + εχ)2] + ε0|κ2|(Πz + 1)(1 + εχ)2

)

= K2

(
ε0(1 + |∆Px0|)

EΠz(Πz + 1)(1 + εχ)3
(q + ε2

0|κ1|) +
|χ|(1 + |∆Px0|)

1 + εχ
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+
ε0|κ2|

Πz(1 + εχ)

)
. (C.28)

Note that, by (B.11),(C.6),

|κ2(θ, ζ, ν)| ≤ q̄

ν
. (C.29)

Inserting (C.6),(C.13),(C.24), (C.26),(C.29) into (C.28) yields to

|g2(θ, χ, ζ ; ε, ν)|

≤ K2

(
ε0(1 + |∆Px0|)

EΠz,lb(ε0)κ3
3(χ0, ε0, d2)

(
qub + ε2

0

K2q̄

ν
(2 + 2|∆Px0| +

ε2
0q̄

ν
)

)

+
(d2 + |χ0|)(1 + |∆Px0|)

κ3(χ0, ε0, d2)
+

ε0q̄

νΠz,lb(ε0)κ3(χ0, ε0, d2)

)

=: C2(χ0, ε0, ν, d2) , (C.30)

where κ3, Πz,lb, qub are given by (C.10),(C.23),(C.26). With (C.27),(C.30) we have shown that
g1(·, ν) and g2(·, ν) are bounded for ν ≥ 1/2 for the points

(θ, χ, ζ, ε) ∈ R × (χ0 − d2, χ0 + d2) × R × (0, ε0] . (C.31)

D Limit of gR
1 , gR

2

Let ε ∈ (0, ε0] with ε0 ∈ (0, 1] and k ∈ N, a ∈ [−1/2, 1/2] and let (θ, χ, ζ) ∈ W (ε0) × R. In
this appendix we will prove the properties (D.1),(D.2),(D.3),(D.5), (D.7),(D.11) of gR

1 and gR
2 .

The properties (D.2),(D.11) are used in the proof of Proposition 2. Furthermore the properties
(D.1),(D.3),(D.5), (D.7) will be used in Appendix E. Since all assumptions of this appendix
are also satisfied in Appendix B, we can apply the results of Appendix B.

We first consider g1 and we obtain from (3.51), (B.5) that

gR
1 (θ, χ, ζ, ε, k, a) = g1(θ, χ, ζ ; ε, k + εa)

= − q

q̄Πz(Πz + 1)2(1 + εχ)4

(
q

E (Πz + 2)

+Πz(Πz + 1)2(3χ2 + 2εχ3)(1 + εχ)2

)

− κ1

q̄Πz(Πz + 1)2(1 + εχ)4

(
2(1 + εχ)2 +

ε2q

E (Πz + 2)

)
, (D.1)

where Πz = Πz(θ, χ, ζ, ε, k + εa) and κ1 = κ1(θ, ζ, ε, k + εa) whence, by (B.5),(B.8),

lim
ε→0+

[gR
1 (θ, χ, ζ ; ε, k, a)] = lim

ε→0+
[g1(θ, χ, ζ ; ε, k)] = −q(ζ)

4q̄
(
3

E q(ζ) + 12χ2)

−K2

2k

(
sin(k[θ − Q(ζ)]) − sin(kθ0)

)
(cos ζ + ∆Px0) . (D.2)

We now consider gR
2 and we conclude from (3.55) that

gR
2 (θ, χ, ζ, ε, k, a) = gR

2,1(θ, χ, ζ ; ε, k, a) + gR
2,2(θ, χ, ζ ; ε, k, a) , (D.3)
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where

gR
2,1(θ, χ, ζ ; ε, k, a) := g2(θ, χ, ζ ; ε, k + εa) , (D.4)

gR
2,2(θ, χ, ζ ; ε, k, a) := −K2

ε
(cos ζ + ∆Px0)

(
cos(κ4 + κ5) − cos(κ4)

)

= −K2

ε
(cos ζ + ∆Px0)

(
cos(κ4)[cos(κ5) − 1] − sin(κ4) sin(κ5)

)

= −K2

ε
(cos ζ + ∆Px0)

(
−2 cos(κ4) sin2(κ5/2)

−2 cos(κ5/2) sin(κ5/2) sin(κ4)

)

=
2K2

ε
(cos ζ + ∆Px0) sin(κ5/2)

(
cos(κ4) sin(κ5/2) + cos(κ5/2) sin(κ4)

)
,

(D.5)

with

κ4(θ, ζ, ε, k, a) := k(θ − ζ − Υ0 sin ζ − Υ1 sin 2ζ) − εaζ ,

κ5(θ, ζ, ε, a) := εa(θ − Υ0 sin ζ − Υ1 sin 2ζ) .

(D.6)

We obtain from (B.12),(D.4)

gR
2,1(θ, χ, ζ ; ε, k, a) = g2(θ, χ, ζ ; ε, k + εa)

=
K2

Πz(Πz + 1)(1 + εχ)3
cos(ν[θ − Q(ζ)])

(
(cos ζ + ∆Px0)[−

ε

E (q + ε2κ1)

+χΠz(Πz + 1)(1 + εχ)2] − εκ2(Πz + 1)(1 + εχ)2

)
, (D.7)

where Πz = Πz(θ, χ, ζ, ε, k + εa) and κ2 = κ2(θ, ζ, k + εa) whence, by (B.12),(B.13),

lim
ε→0+

[gR
2,1(θ, χ, ζ ; ε, k, a)] = lim

ε→0+
[g2(θ, χ, ζ ; ε, k)]

= χK2 cos(k[θ − Q(ζ)])(cos ζ + ∆Px0) . (D.8)

Clearly, by (D.6),

lim
ε→0+

[
sin(κ5(θ, ζ, ε, a)/2)

ε
] =

a

2
(θ − Υ0 sin ζ − Υ1 sin 2ζ) ,

lim
ε→0+

[κ5(θ, ζ, ε, a)] = 0 ,

lim
ε→0+

[κ4(θ, ζ, ε, k, a)] = k(θ − ζ − Υ0 sin ζ − Υ1 sin 2ζ) ,

(D.9)

whence, by (D.5),

lim
ε→0+

[gR
2,2(θ, χ, ζ ; ε, k, a)] = K2a(θ − Υ0 sin ζ − Υ1 sin 2ζ)
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× sin(k[θ − ζ − Υ0 sin ζ − Υ1 sin 2ζ ])(cos ζ + ∆Px0) , (D.10)

so that, by (D.3),(D.8),

lim
ε→0+

[gR
2 (θ, χ, ζ, ε, k, a)] = χK2 cos(k[θ − Q(ζ)])(cos ζ + ∆Px0)

+K2a(θ − Υ0 sin ζ − Υ1 sin 2ζ)

× sin(k[θ − ζ − Υ0 sin ζ − Υ1 sin 2ζ ])(cos ζ + ∆Px0) . (D.11)

E Bounds on gR
1 , gR

2

Let ε ∈ (0, ε0] with ε0 ∈ (0, 1] and let k ∈ N, a ∈ [−1/2, 1/2]. Let also (θ0, χ0) ∈ W (ε0).
Moreover let χlb(ε0) satisfy the restriction (C.1) where χM is the positive constant from Theorem
2 (see item 2 of the setup list for Theorem 2). Furthermore we assume that

(θ, χ, ζ) ∈ (θ0 − d1, θ0 + d1) × (χ0 − d2, χ0 + d2) × R , (E.1)

where χ0, d1, d2 satisfy

0 < d1 , 0 < d2 < χ0 − χlb(ε0) . (E.2)

In this appendix we will prove the properties (E.6),(E.14) of gR
1 and gR

2 . We thus show in this
appendix that the properties (E.6),(E.14) hold in the situation of Theorem 2 (see item 8 of the
setup of Theorem 2). Since all assumptions of this appendix are also satisfied in Appendix C
and Appendix D, we can apply the results of those appendices.

We first consider gR
1 and we obtain from (3.51) that

|gR
1 (θ, χ, ζ, ε, k, a)| = |g1(θ, χ, ζ ; ε, k + εa)| , (E.3)

whence, by (C.27),

|gR
1 (θ, χ, ζ, ε, k, a)| ≤ C1(χ0, ε0, k + εa, d2) , (E.4)

where C1 is given by (C.27). Note that, by (C.27), C1(χ0, ε0, ν, d2) is decreasing w.r.t. ν whence

C1(χ0, ε0, k + εa, d2) ≤ C1(χ0, ε0, 1/2, d2) =: CR
1 (χ0, ε0, d2) , (E.5)

so that, by (E.4),

|gR
1 (θ, χ, ζ, ε, k, a)| ≤ CR

1 (χ0, ε0, d2) , (E.6)

where CR
1 is given by (E.5).

We now consider gR
2 and we obtain from (D.3) that

|gR
2 (θ, χ, ζ, ε, k, a)| ≤ |gR

2,1(θ, χ, ζ ; ε, k, a)|+ |gR
2,2(θ, χ, ζ ; ε, k, a)| . (E.7)

Note that, by (C.30),(D.4),

|gR
2,1(θ, χ, ζ ; ε, k, a)| = |g2(θ, χ, ζ ; ε, k + εa)| ≤ C2(χ0, ε0, k + εa, d2) , (E.8)

where C2 is given by (C.30). Note that, by (C.30), C2(χ0, ε0, ν, d2) is decreasing w.r.t. ν whence

C2(χ0, ε0, k + εa, d2) ≤ C2(χ0, ε0, 1/2, d2) =: CR
2,1(χ0, ε0, d2) , (E.9)
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so that, by (E.8),

|gR
2,1(θ, χ, ζ, ε, k, a)| ≤ CR

2,1(χ0, ε0, d2) , (E.10)

where CR
2,1 is given by (E.9). We also have, by (D.5),

|gR
2,2(θ, χ, ζ ; ε, k, a)|

=
∣∣∣
2K2

ε
(cos ζ + ∆Px0) sin(κ5/2)

(
cos(κ4) sin(κ5/2) + cos(κ5/2) sin(κ4)

)∣∣∣

≤ 4K2

ε
| sin(κ5/2)|(1 + |∆Px0|) . (E.11)

Of course, by (D.6),(E.1),

| sin(κ5/2(θ, ζ, ε, a))|
ε

=
1

ε
| sin(

εa

2
[θ − Υ0 sin ζ − Υ1 sin 2ζ ])|

≤ |a|
2

∣∣∣θ − Υ0 sin ζ − Υ1 sin 2ζ
∣∣∣ ≤ |a|

2
(|θ| + |Υ0| + |Υ1|)

≤ |a|
2

(|θ0| + d1 + |Υ0| + |Υ1|) , (E.12)

whence, by (E.11),

|gR
2,2(θ, χ, ζ ; ε, k, a)| ≤ 2K2|a|(1 + |∆Px0|)(|θ0| + d1 + |Υ0| + |Υ1|)

=: CR
2,2(θ0, a, d1) . (E.13)

We conclude from (E.7),(E.10),(E.13) that

|gR
2 (θ, χ, ζ, ε, k, a)| ≤ CR

2,1(χ0, ε0, d2) + CR
2,2(θ0, a, d1)

=: CR
2 (θ0, χ0, ε0, a, d1, d2) , (E.14)

where CR
2,1 is given by (E.9) and CR

2,2 is given by (E.13).
With (E.6),(E.14) we have shown that gR

1 (·, k, a) and gR
2 (·, k, a) are bounded for k ∈ N, |a| ≤

1/2 for the points

(θ, χ, ζ, ε) ∈ (θ0 − d1, θ0 + d1) × (χ0 − d2, χ0 + d2) × R × (0, ε0] . (E.15)

F Error bounds in a regular perturbation problem

Here we outline a derivation of error bounds in a regular perturbation problem of relevance for
§3.4.4. This could be made into a theorem and proof at the level of §3.5 and §4 but we leave
this to the interested reader (see [25, §2] for a detailed discussion of regular perturbation theory
relevant here, complete with a theorem and proof). We write the IVP in (3.109) as

x′
1 = x2 , x1(0) = ξ , (F.1)

x′
2 = −ǫ sin x1 , x2(0) = 1 . (F.2)

Then the zeroth-order approximation is

u′
1 = u2 , u1(0) = ξ , (F.3)
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u′
2 = 0 , u2(0) = 1 , (F.4)

with solutions

u1(s) = s + ξ , u2(s) = 1 . (F.5)

Subtracting and integrating we obtain

e1 := |x1(s) − u1(s)| ≤
∫ s

0

|x2(τ) − u2(τ)|dτ , (F.6)

e2 := |x2(s) − u2(s)| = ǫ|
∫ s

0

[sin(x1(τ)) − sin(u1(τ)) + sin(τ + ξ)]dτ |

≤ ǫ

∫ s

0

|x1(τ) − u1(τ)|dτ + ǫ| − cos(s + ξ) + cos(ξ)|

≤ ǫ

∫ s

0

|x1(τ) − u1(τ)|dτ + 2ǫ . (F.7)

Introducing R1 and R2 as in §4, we have

e1(s) ≤
∫ s

0

e2(τ)dτ =: R1(s) , (F.8)

e2(s) ≤ ǫ

∫ s

0

e1(τ)dτ + 2ǫ =: R2(s) . (F.9)

Differentiating gives the differential inequalities

R′
1 = e2 ≤ R2 , R1(0) = 0 , (F.10)

R′
2 = ǫe1 ≤ ǫR1 , R2(0) = 2ǫ . (F.11)

Let

w′
1 = w2 , w1(0) = 0 , (F.12)

w′
2 = ǫw1 , w2(0) = 2ǫ . (F.13)

Then

w1 =
√

ǫ2 sinh(
√

ǫs) , (F.14)

w2 = ǫ2 cosh(
√

ǫs) . (F.15)

Now as shown in Appendix I, R1(s) ≤ w1(s) and R2(s) ≤ w2(s) whence if 0 ≤ s ≤ T ,

e1(s) ≤
√

ǫ2 sinh(
√

ǫs) ≤
√

ǫ2 sinh(
√

ǫT ) = O(ǫ) , (F.16)

e2(s) ≤ ǫ2 cosh(
√

ǫs) ≤ ǫ2 cosh(
√

ǫT ) = O(ǫ) . (F.17)

In the context of §3.4.4 with ǫ = 1/Y 2
0 , ξ = X0, x1 = X̂, x2 = Ŷ we obtain from (F.16),(F.17)

that X̂(s) = s+X0+O(1/Y 2
0 ), Ŷ (s) = 1+O(1/Y 2

0 ) whence X(t) = Y0t+X0+O(1/Y 2
0 ), Y (t) =

Y0(1 + O(1/Y0)).
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G Derivatives for Low Gain Problem

We here derive (G.6) which is needed in §3.7. By (3.172) we have

v′
1(·, 1) = 2v2(·, 1) , v1(0, 1) = θ0 , v′

2(τ, 1) = −K0(k) cos(kv1(τ, 1) − aτ)

= −K0(k)

2
exp(u(τ)) + cc , v2(0, 1) = χ0 , (G.1)

where

u(τ) := i[kv1(τ, 1) − aτ ] . (G.2)

It follows from (G.1) that

v′′
2 (τ, 1) = K0(k)(kv′

1(τ, 1) − a) sin(kv1(τ, 1) − aτ)

= K0(k)(2kv2(τ, 1) − a) sin(kv1(τ, 1) − aτ) = −K0(k)

2
exp(u(τ))u′(τ) + cc ,

v′′′
2 (·, 1) = −K0(k)

2
exp(u)[u′′ + (u′)2] + cc ,

v′′′′
2 (·, 1) = −K0(k)

2
exp(u)[u′′′ + 3u′u′′ + (u′)3] + cc ,

(G.3)

and from (G.1),(G.2), (G.3) that

u′(τ) = i[kv′
1(·, 1) − a] = i[2kv2(·, 1) − a] ,

u′′(τ) = i2kv′
2(τ, 1) = −i2kK0(k) cos(kv1(τ, 1) − aτ) ,

u′′′(τ) = i2kv′′
2(τ, 1) = i2kK0(k)(2kv2(τ, 1) − a) sin(kv1(τ, 1) − aτ) .

(G.4)

We conclude from (G.1),(G.2), (G.4) that

u(0) = ikv1(0, 1) = ikθ0 ,

u′(0) = i[2kv2(0, 1) − a] = i[2kχ0 − a] ,

u′′(0) = −i2kK0(k) cos(kv1(0, 1)) = −i2kK0(k) cos(kθ0) ,

u′′′(0) = i2kK0(k)(2kv2(0, 1) − a) sin(kv1(0, 1))

= i2kK0(k)(2kχ0 − a) sin(kθ0) ,

(G.5)

whence, by (G.1),(G.3),

v′
2(0, 1) = −K0(k) cos(kv1(0, 1)) = −K0(k) cos(kθ0) ,

v′′
2(0, 1) = K0(k)(2kv2(0, 1) − a) sin(kv1(0, 1)) = K0(k)(2kχ0 − a) sin(kθ0) ,

v′′′
2 (0, 1) = −K0(k)

2
exp(u(0))[u′′(0) + (u′(0))2] + cc

= −K0(k)

2
exp(ikθ0)

(
−i2kK0(k) cos(kθ0) − [2kχ0 − a]2

)
+ cc

= −K0(k)

(
2kK0(k) sin(kθ0) cos(kθ0) − [2kχ0 − a]2 cos(kθ0)

)
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= K0(k)

(
−kK0(k) sin(2kθ0) + [2kχ0 − a]2 cos(kθ0)

)
,

v′′′′
2 (0, 1) = −K0(k)

2
exp(u(0))[u′′′(0) + 3u′(0)u′′(0) + (u′(0))3] + cc

= −K0(k)

2
exp(ikθ0)

(
i2kK0(k)(2kχ0 − a) sin(kθ0)

+6kK0(k)[2kχ0 − a] cos(kθ0) − i[2kχ0 − a]3
)

+ cc

= −K0(k)

2

(
−4kK0(k)(2kχ0 − a) sin2(kθ0)

+12kK0(k)[2kχ0 − a] cos2(kθ0) + 2[2kχ0 − a]3 sin(kθ0)

)

= K0(k)

(
2kK0(k)(2kχ0 − a) sin2(kθ0)

−6kK0(k)[2kχ0 − a] cos2(kθ0) − [2kχ0 − a]3 sin(kθ0)

)
.

(G.6)

H Calculation of Er/cBu in high gain regime

In this appendix we aim to estimate the magnitude of the electric field. The basic field equation
is

(
∂2

∂t2
− c2 ∂2

∂z2
)Ex(z, t) = −cZvac

∂j

∂t
(z, t) , (H.1)

where Zvac = 1/cǫ0 is the free space impedance and

j(z, t) := −ecK

Σ⊥
cos(kuz)

N∑

n=1

1

γn(t)
δ(z − zn(t))

≈ −ecKN

γcΣ⊥
cos(kuz)

1

N

N∑

n=1

δ(z − zn(t)) , (H.2)

with Σ⊥ being the transverse emittance, see [2] and [31]. We proceed in two ways. In the first
we solve (H.1) and (H.2) directly and in the second we use Fourier tranforms.

The unique solution of the homogeneous IVP at t = 0 is

Ex(z, t) = −Zvac

2

∫ t

0

ds

∫ z+ct−cs

z−ct+cs

dy
∂j

∂s
(y, s)

= −Zvac

2
[U−(z, t) + U+(z, t)] , (H.3)

where

U−(z, t) :=

∫ z

z−ct

dy[j(y, t +
1

c
(y − z)) − j(y, 0)] , (H.4)
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U+(z, t) :=

∫ z+ct

z

dy[j(y, t− 1

c
(y − z)) − j(y, 0)] . (H.5)

The first equality in (H.3) is often obtained using Duhamel’s principle and d’Alembert’s formula
and the second equality is obtained after changing the order of integration. To obtain our
estimate we consider zn(t) = βcct + zn(0) which is quite crude (but may suffice for a rough
estimate) and where the nonnegative βc is determined by β2

c = (γ2
c − 1)/γ2

c . We obtain [32]
U+ ≪ U− and

U−(z, t) ≈ −2ecKγcN

Σ⊥

1

N

N∑

n=1

In(z, t) cos(2kuγ
2
c [z − ct − zn(0)]) , (H.6)

where

In(z, t) :=

{
1 if zn(t) < z < zn(0) + ct
0 if otherwise .

(H.7)

So if all the particles contributed at z, which they don’t, then U−(z, t) = O(2ecKγcN
Σ⊥

) and

Er1 = ZvacecKγcN
Σ⊥

would be a typical value of the field Ex at (z, t).

We now give a second estimate, Er2, of Er. Following [31] which is based on [2] we Fourier
transform (H.1) by defining

Êx(z, ω) :=
1

2π

∫ ∞

−∞
dsEx(z,

z

c
− s

ckr

) exp(−iωs) . (H.8)

The Fourier inversion theorem gives

Ex(z, t) =

∫ ∞

−∞
dωÊx(z, ω) exp(iωkr[z − ct]) . (H.9)

We define ĵ(z, ω) in the same way as Êx(z, ω) whence, in the slowly varying approximation,
(H.1) reduces to

∂Êx

∂z
(z, ω) = −Zvac

2
ĵ(z, ω) , (H.10)

and from (H.2) we obtain

ĵ(z, ω) = − ecKNkr

2πβcγcΣ⊥
ǰ(z, ω) , (H.11)

where

ǰ(z, ω) := cos(kuz) exp(−iωkrz)
1

N

N∑

n=1

exp(iωckrTn(z)) . (H.12)

Here the function Tn is the inverse of the function zn. To obtain our estimate we note that |ǰ|
is bounded by 1 and replace it by 1 which is quite crude but may suffice for a rough estimate.
Inserting this into (H.10) and integrating we obtain

Êx(z, ω) = O

(
Zvac

2

ecKNkr

2πβcγcΣ⊥

1

ku
kuz

)
, (H.13)
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and, for kuz = O(1),

Êx = O(Er2) , Er2 :=
Zvac

4π

ecKN

Σ⊥

kr

kuβcγ2
c

γc . (H.14)

We now have, recalling that K = 3.7 in LCLS,

Er1

Er2
= 4π

kuγ
2
c

kr
= 4π/Kr = 2π(1 +

K2

2
) ≈ 2π(1 + (3.7)2/2) ≈ 49 , (H.15)

and we calculate Er2/cBu. From (H.14)

Er2

cBu
=

Zvacc

4π

eK

cBu

kr

kuγ2
c

γc
N

Σ⊥
. (H.16)

Now K/cBu = e/mc2ku and kr/kuγ
2
c = 2(1 + K2/2)−1 therefore

Er2

cBu
=

Zvacc

4π

e2

mc2

1

ku

2

(1 + K2/2)
γc

N

Σ⊥
= re

1

ku

2

(1 + K2/2)
γc

N

Σ⊥
, (H.17)

where re denotes the classical electron radius. Furthermore

re ≈ 2.82 · 10−15m ,
1

ku
=

3cm

2π
,

2

(1 + K2/2)
≈ 0.255 , γc = 104 ,

and so

Er2

cBu
≈ 0.034 · 10−12m2 N

Σ⊥
≈ 34 ,

Er1

cBu
=

Er2

cBu

Er1

Er2
≈ 34 · 49 ≈ 1700 ,

for N = 109 and Σ⊥ = 1mm2.

I IVP for a system of differential inequalities

Here we present and verify a solution of the IVP for a system of differential inequalities which
is used in §4.1,§4.2 and Appendix F. Consider the IVP for

R′
1(ζ) ≤ a1R2(ζ) , (I.1)

R′
2(ζ) ≤ a2R1(ζ) , (I.2)

where a1, a2 > 0 and R1, R2 are of class C1. We want to show, for ζ ≥ 0, that

R1(ζ) ≤ r1(ζ) , R2(ζ) ≤ r2(ζ) , (I.3)

where

r′1 = a1r2 , r1(0) = R1(0) , (I.4)

r′2 = a2r1 , r2(0) = R2(0) . (I.5)

We do this in two ways. First we define r̂j(ζ) := Rj(ζ) − rj(ζ) for j = 1, 2, ζ ≥ 0 whence, by
(I.1),(I.2),(I.4),
(I.5),

r̂′1(ζ) ≤ a1r̂2(ζ) , r̂′2(ζ) ≤ a2r̂1(ζ) , r̂1(0) = r̂2(0) = 0 . (I.6)
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Clearly we have to show that, for j = 1, 2, ζ ≥ 0,

r̂j(ζ) ≤ 0 . (I.7)

It follows from (I.6) that

r̂′1(ζ) ≤ a1

∫ ζ

0

dsr̂′2(s) ≤ a1a2

∫ ζ

0

dsr̂1(s) ,

r̂′2(ζ) ≤ a2

∫ ζ

0

dsr̂′1(s) ≤ a1a2

∫ ζ

0

dsr̂2(s) ,

i.e.,

r̂′j(ζ) ≤ a2
0

∫ ζ

0

dsr̂j(s) , (I.8)

where a0 :=
√

a1a2. It follows from (I.8) and by partial integration that

exp(−a0ζ)r̂j(ζ) + a0

∫ ζ

0

ds exp(−a0s)r̂j(s) =

∫ ζ

0

ds exp(−a0s)r̂
′
j(s)

≤ a2
0

∫ ζ

0

ds exp(−a0s)

∫ s

0

ds̃r̂j(s̃)

= −a0 exp(−a0ζ)

∫ ζ

0

dsr̂j(s) + a0

∫ ζ

0

ds exp(−a0s)r̂j(s) , (I.9)

which entails

r̂j(ζ) ≤ −a0

∫ ζ

0

dsr̂j(s) . (I.10)

Abbreviating

řj(ζ) :=

∫ ζ/a0

0

dsr̂j(s) , (I.11)

we obtain from (I.10)

ř′j(ζ) =
1

a0
r̂j(ζ/a0) ≤ −

∫ ζ/a0

0

dsr̂j(s) = −řj(ζ) , (I.12)

whence

0 ≥ exp(ζ)[řj(ζ) + ř′j(ζ)] = [exp(ζ)řj(ζ)]′ , (I.13)

so that exp(ζ)řj(ζ) is decreasing w.r.t. ζ which entails, by (I.11), that

0 = exp(0)řj(0) ≥ exp(ζ)řj(ζ) , (I.14)

i.e.,

řj(ζ) ≤ 0 . (I.15)
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We conclude from (I.8),(I.11),(I.15) that

r̂′j(ζ) ≤ a2
0

∫ ζ

0

dsr̂j(s) = řj(a0ζ) ≤ 0 , (I.16)

whence r̂j(ζ) is decreasing w.r.t. ζ so that (I.7) follows from (I.6).
The result in (I.3) is a special case of a much more general theorem on pages 112-113 of

[26]. That proof simplifies in the special case here and we present it for the interested reader.
The proof proceeds by cleverly introducing a comparison function h. Here

h(ζ) =

(
h1(ζ)
h2(ζ)

)
:= a4 exp(2a3ζ)

(
1
1

)
, (I.17)

where a3 := max(a1, a2), a4 > 0. Then

h′
1 = 2a3h1 = 2a3h2 > a1h2 , (I.18)

h′
2 = 2a3h2 = 2a3h1 > a2h1 , (I.19)

and we have, by (I.6),

r̂′1 − a1r̂2 ≤ 0 < h′
1 − a1h2 , (I.20)

r̂′2 − a2r̂1 ≤ 0 < h′
2 − a2h1 . (I.21)

We now show that, for j = 1, 2, ζ ≥ 0,

r̂j(ζ) ≤ hj(ζ) . (I.22)

Suppose that (I.22) is wrong then there exists a smallest ζ0 > 0 such that an index j0 exists
with

r̂j0(ζ0) = hj0(ζ0) , (I.23)

where we used that, by (I.6),(I.17) and for j = 1, 2,

r̂j(0) = 0 < a4 = hj(0) . (I.24)

Clearly, for j = 1, 2, 0 ≤ ζ < ζ0,

r̂j(ζ) < hj(ζ) . (I.25)

Without loss of generality we take j0 = 1 whence, for 0 ≤ ζ ≤ ζ0,

r̂2(ζ) ≤ h2(ζ) . (I.26)

It follows from (I.25) that at the first intersection

r̂′1(ζ0) ≥ h′
1(ζ0) . (I.27)

But by (I.20),(I.26)

r̂′1(ζ0) − h′
1(ζ0) < a1(r̂2(ζ0) − h2(ζ0)) ≤ 0 , (I.28)

which is a contradiction.
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