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We extend our recent derivation of the time evolution equations for the energy content of magnetic
fields and turbulent motions for incompressible, homogeneous, and isotropic turbulence to include
the case of non-vanishing helicity. These equations are subsequently numerically integrated in order
to predict the present day primordial magnetic field strength and correlation length, depending on
its initial helicity and magnetic energy density. We find that all prior analytic predictions for helical
magnetic fields, such as the epoch when they become maximally helical and their subsequent growth
of correlation length L ∼ a1/3 and decrease of magnetic field strength B ∼ a−1/3 with scale factor a
are well confirmed by the simulations. An initially fully helical primordial magnetic field is a factor
4 × 104 stronger at the present epoch then its non-helical counterpart when generated during the
electroweak epoch.

PACS numbers: 95.30.Qd, 98.62.En, 98.80.Cq

I. INTRODUCTION

The time evolution of primordial magnetic fields from
very early times to the present is a subject of continuing
research (for reviews see [1–4]). It has become of par-
ticular importance after the recent observational claim
[5] that a large fraction of the Universe may be filled by
a magnetic field. A volume filling cosmic magnetic field
is a natural prediction when magnetogenesis occurred in
the early Universe. It is thus of interest to have as pre-
cise as possible predictions on the evolution and possible
magnitude of such fields.
There has already been much effort put into this in-

vestigation [6–13]. However, there is an important funda-
mental difficulty which needs to be overcome, in particu-
lar current numerical simulations do not reach the reso-
lution required in order to reliably study magnetic fields
over the large range of length scales and immense cosmic
expansion factor between the early epoch of magnetoge-
nesis and the recombination or present epoch. After all,
the Universe changes in size by a factor of 1012 between
the electroweak and the recombination epoch while the
respective dynamical time scales differ by a factor of 1024.
Only a small fraction of the initial magnetic energy sur-
vives dissipation, how much exactly may though depend
on the large scale tail of the magnetic field spectrum as
has been seen to be the case for non-helical fields. Such
tails are extremely difficult to deduce from numerical sim-
ulations.
Though fairly detailed analytic estimates for the evo-

lution of primordial magnetic fields exist [10–12], it may
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be of interest to verify them by more sophisticated meth-
ods. One such method is a closure theory of magnetohy-
drodynamics which has been recently applied by us [14]
to non-helical magnetic fields, with the important result
that the field strength tail dependence on the scale L
of B(L) ∼ L−α/2 where α = 5 (cf. also [15]) seems to
be essentially independent of the initial conditions in in-
compressible MHD. Here the tail is important as it has
a large influence over how much magnetic energy sur-
vives. In this paper we extend the formalism developed
in [14] to include helicity. Helical magnetic fields have
already attracted much prior attention [15–21] as helical
magnetic fields may be much stronger due to an inverse
cascade.

To do so this paper is structured as follows: in Sec. II
we give a short derivation of the time-evolution equa-
tions for a homogeneous and isotropic medium including
all terms which appear due to a non-vanishing magnetic
helicity and apply the findings to the situation in the
early Universe. More details can be found in Appendix
A. In Sec. III we then present our results of the time
evolution of primordial magnetic fields according to our
equations for different initial conditions and finally draw
our conclusions in Sec. IV.

II. TIME EVOLUTION OF THE MAGNETIC
AND KINETIC ENERGY CONTENT IN

HOMOGENEOUS ISOTROPIC
MAGNETOHYDRODYNAMICS

For an incompressible fluid (i.e., ∇ · v = 0) the equa-
tions for the time evolution of the two main observables
of magnetohydrodynamics, the velocity field of the tur-
bulent medium v and the magnetic field B, are given
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by

∂tB =
1

4πσ
∆B+∇× (v ×B) (1)

and

∂tv = − (v · ∇)v +
(∇×B)×B

4πρ
+ fv , (2)

respectively. Here σ is the conductivity (which is as-
sumed to be very large in the following) and ρ the mass
density of the fluid, while fv is some viscous density force.
Note that for most part of the evolution of the early Uni-
verse incompressibility is an excellent assumption due to
the large speed of sound in the relativistic plasma.
Our main interest lies in the average build-up of mag-

netic and kinetic energy density, respectively, as well as
of the magnetic helicity taken over an ensemble of cosmic
realizations (denoted by chevrons 〈〉), i.e.,

〈∂tMq〉 , 〈∂tUq〉 , 〈∂tHq〉 (3)

with Mq being the magnetic spectral energy density de-
fined through

ǫB =
1

8π

∫

d3x

V
B2(x) =

∫

d3k

8π
|B̂(k)|2 ≡ ρ

∫

dkMk ,

(4)
Uq the kinetic spectral energy density given by

ǫK =
ρ

2

∫

d3x

V
v2(x) =

ρ

2

∫

d3k |v̂(k)|2 ≡ ρ

∫

dk Uk

(5)

and Hq the magnetic helicity density, i.e.,

hB =

∫

d3x

V
A(x) · (∇×A(x)) =

∫

d3x

V
A(x) ·B(x)

= i

∫

d3k

{(

k

k2
× B̂(k)

)

· B̂(k)∗
}

≡ ρ

∫

dkHk

(6)

where A is the magnetic vector potential and hB is the
total magnetic helicity density, and where ∇·A = 0, i.e.,
Coulomb gauge, has been assumed.

For all expressions V denotes the volume and we have
assumed cosmic homogeneity and isotropy which implies
that Mk, Uk and Hk are functions only of the magnitude
k of the wave vector k. Furthermore, Parseval’s Theo-
rem has been used in all three cases in order to obtain
a k integral where a hat denotes the Fourier Transform
normalized by V

1
2 (cf. Appendix A of Ref. [14]). With

these assumptions we find

Mq =
q2

2ρ |B̂(q)|2 , (7)

Uq = 2πq2|v̂(q)|2 , (8)

Hq = 4πi
ρ

(

q× B̂(q)
)

· B̂(q)∗ . (9)

By performing the calculations which are presented in Ref. [14] and Appendix A of this paper, we obtain a very
general result for the homogeneous and isotropic case which for (3) is given by

〈∂tMq〉 =
∫ ∞

0

dk

(

∆t

{

− 2

3
q2 〈Mq〉 〈Uk〉 −

4

3
q2 〈Mq〉 〈Mk〉+

1

3

1

(4π)2
q2k2 〈Hq〉 〈Hk〉

+

∫ π

0

dθ

[

1

2

q4

k41

(

q2 + k2 − qk cos θ
)

sin3 θ 〈Mk〉 〈Uk1〉
]

}) (10)

and

〈∂tUq〉 =
∫ ∞

0

dk

(

∆t

{

− 2

3
q2 〈Mk〉 〈Uq〉 −

2

3
q2 〈Uq〉 〈Uk〉+

∫ π

0

dθ

[

1

4

q3k

k41

(

qk sin2 θ + 2k21 cos θ
)

sin θ 〈Mk〉 〈Mk1〉

+
1

4

q4k

k41
(3k − q cos θ) sin3 θ 〈Uk〉 〈Uk1〉+

1

(16π)2
q3k2

k21

(

−2q − q sin2 θ + 2k cos θ
)

sin θ 〈Hk〉 〈Hk1〉
]})

(11)

as well as

〈∂tHq〉 =
∫ ∞

0

dk

(

∆t

{

4

3
k2〈Mq〉〈Hk〉 −

4

3
q2〈Mk〉〈Hq〉 −

2

3
q2〈Uk〉〈Hq〉+

∫ π

0

dθ

[

1

2

q4k2

k41
sin3 θ 〈Uk1〉 〈Hk〉

]})

, (12)

where q, k and k1 are the magnitudes of the wave vec- tors q, k and k1 = q−k, respectively, and θ is the angle
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FIG. 1. Time evolution of magnetic (solid) and kinetic (dashed) spectral energies, as well as of the spectral magnetic helicity
(dotted). Gray lines denote the initial conditions (i.e., at a = 1) while the black lines represent the situation for a = 106. In
the left panel maximal helicity has been assumed while in the right panel the case for vanishing initial helicity is shown for
comparison.

between q and k, i.e., q ·k = q k cos θ. Eqs. (10)-(12) are
a set of well-defined equations since they ensure conser-
vation of energy, momentum, mass, and helicity density
to the lowest non-trivial order in ∆t.

It is important to note here that whereas the ideal
MHD equations conserve energy and helicity, in any real
application to astrophysics and cosmology dissipation
plays an important role. In particular, the early Universe
is described by a large Prandtl number [11], a measure of
the relative importance of kinetic dissipation versus mag-
netic diffusion. Dissipation is thus dominated by shear
viscosity, such that magnetic diffusion can be neglected.
Since energy dissipates by either kinetic or magnetic dis-
sipation, but helicity only by magnetic dissipation, in the
early Universe helicity is essentially conserved whereas
energy is not. To model this in our simulations we intro-
duce a viscosity term into Eq. (11).

In addition it should be pointed out that the result
obtained in [14] is consistent with the equations presented
here as it can be seen that for vanishing initial magnetic
helicity it will be zero for all times and therefore simply
the third term in (10) and the last term in (11) have to
be dropped.

In order to study the time evolution of magnetic fields
in the early Universe we include expansion accounted by
the scale factor a with a0 = 1 at the initial magneto-
gensis epoch. In Section III of Ref. [14], following also
Ref. [11], it was shown that Eqs. (10), (11), and (12)
remain invariant in the expanding Universe when time
derivatives ∂/∂t are replaced by scale factor derivatives
(H0/a) ∂/∂ ln a and physical quantities in the integrands
of Eqs. (10)-(12) are replaced by their comoving ana-
logues. These comoving quantities (marked by a ’c’) are
related to the physical ones by dtc = dt a−1, vc = v,
ρc = ρ a4, kc = ka, M c

q = Mqa
−1, U c

q = Uqa
−1, and

Hc
q = Hqa

−2, whereas H0 is the Hubble constant at the
initial epoch. In the following the index ’c’ is dropped

and all quantities are meant to be the comoving ones
unless noted otherwise.

III. RESULTS

It is now possible to analyze the time development of
both the spectral magnetic and kinetic energy as well
as the spectral helicity by numerically integrating the
cosmic version of Eqs. (10)-(12). In comparison to the
results without helicity [14] it may be seen from Fig. 1
that the absolute value and location of the integral scale
(i.e., the scale at which the peak of the spectral energy
is located) changes dramatically since due to an inverse
cascade large amounts of energy are transferred to small
q. On the other hand, the scaling of the large-scale tail
with the wave number stays the same, i.e., we still have
qMq ∼ q5 and, in addition, we find qHq ∼ q5 as well.
In contrast to the non-helical case, however, the slope
of the large-scale tail is much less important than in the
maximally helical case the evolution of magnetic energy
density and correlation length is determined solely by
the requirement of helicity conservation, and not by the
tail. In the following we present analytical arguments to
explain these results.

A. Large-Scale Magnetic Tail

As in the case for non-helical fields [14] the non-
vanishing term with lowest power in the Taylor expansion
in (q/k) of Eq. (10)-(12) is of fourth order for large scales

such that also for helical fields we have B ∼ L− 5
2 and

v ∼ L− 5
2 on large scales. This result is also confirmed

by simulation as can be seen in Fig. 1. However, in con-
trast to non-helical fields, in the fully helical field case,
equipartition, i.e., Uk ≃ Mk on all scales, does not hold
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FIG. 2. Time evolution of the integral scale (upper left) and the values at the integral scale of the magnetic spectral energy
(upper right), the kinetic spectral energy (lower left), and the total normalized magnetic helicity density hB/ρ =

∫
Hkdk (lower

right) for different values of the initial spectral helicity in fractions of its maximal value, H0,max ≡ 8πM0/k0. Here we assumed
that magnetogenesis has happened at the QCD epoch.

anymore. Rather it is Uk ≃ Mk only on small scales with
Uk << Mk on the integral scale, an effect also observed
in Ref. [11].

B. Evolution of the Integral Scale

As it will be shown in the following, the main effect
of non-vanishing initial helicity is the dramatic change
of the time evolution of the integral scale and the corre-
sponding values of the important quantities.

First, we give a short summary of the time evolution
of the magnetic spectral energy with vanishing initial he-
licity. It has been shown [11, 22] that in this case, if the
spectral energy has a slope proportional to kα−1 (α > 1)

for k < kI , i.e.,

〈Mk〉 ≃ M0

(

k

k0

)α−1

, (13)

where M0 is a normalization constant given by the value
of MI at a0 = 1, we have

kI ≃ k0a
− 2

α+2 (14)

for the time dependent integral scale in the early ra-
diation dominated Universe (i.e. H = H0/a

2), with
k0 = kI(a0) being determined by [22]

k0 ≃ 2πH0

v0
=

(

4π2H2
0

U0

)
1
3

. (15)

where U0 = UI(a0). Since all the initial magnetic field
has been dissipated away for k > kI(a), the magnetic
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FIG. 3. Time evolution of the values of the magnetic and kinetic spectral energies and the helical spectral density at the
integral scale, named MI , UI and HI , respectively. For convenience these quantities have been multiplied by kI (for MI and
UI) and by k2

I/(8π) (for HI). The plots show the situation for different initial values of the helicity H0: maximal helicity, i.e.,
H0 = H0,max (upper left), H0 = 10−2

H0,max (upper right), H0 = 10−4
H0,max (lower right) and no helicity, i.e., H0 = 0 (lower

left). Note that for the case of maximal helicity k2

IHI/(8π) has approximately the same value as kIMI and is therefore not
visible in the plot. Here we assumed that magnetogenesis has happened at the QCD epoch.

field left over at scale factor a is simply given by Eq. (14)
inserted into Eq. (13), such that we find

kIMI ≈ k0M0a
−2 α

α+2 . (16)

If, however, the initial helicity is not vanishing, it can
be seen from Fig. 2 that it only has an influence on the
magnetic and kinetic spectral energies if at the integral
scale it has a value which is close to the maximal spectral
helicity value HI,max given by

HI,max = 8π
MI

kI
. (17)

However, the magnetic spectral energy decays faster than
the spectral helicity in the early Universe and therefore
even by starting with a rather small initial helicity it is
inevitable that after some time it obtains its largest pos-

sible value given by (17). Therefore there are two succes-
sive regimes in the time evolution, the first (referred to
by ’1’ in the following) where the effect of helicity is neg-
ligible and the second (referred to by ’2’) where helicity
has its maximal value and dominates the time evolution.
One can estimate the time it takes for some initial

conditions to evolve to the point where a transition from
regime 1 to regime 2 takes place. Here we will focus
on the magnetic spectral energy as it is the important
observable in our case. We are starting with some initial
conditions where for a0 = 1 we have

kIMI = k0M0,
k2IHI

8π
=

k20H0

8π
= f0k0M0 , (18)

such that f0 = 1 corresponds to maximal initial helicity
and f0 = 0 means no initial helicity at all, i.e., H0 =
f0H0,max . If we now assume that, as seen in Fig. 3, the
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time evolution for both has a power law dependence on
the scale factor a, i.e.,

kIMI ∝ a−µ1 , k2IHI ∝ a−χ1 , (19)

where, as motivated above, µ1 > χ1 > 0, and we can es-
timate the scale factor atr of the transition from regime 1
to regime 2 by solving the condition kIMI = k2IHI/(8π),
i.e.,

k0M0a
−µ1 = f0k0M0a

−χ1 , (20)

for a which gives

atr = f
− 1

µ1−χ1

0 . (21)

From this we can therefore derive a lower bound on f0,
such that for all f0 larger than this lower bound fmin the
field has become maximally helical by recombination at
scale factor arec

fmin ≃ aχ1−µ1
rec . (22)

Here the epoch of recombination is relevant, rather than
the present, since, as shown in Ref. [11], during matter
domination after the epoch of recombination only negligi-
ble further processing of the magnetic fields occurs, pro-
vided the magnetic fields are sufficiently strong. Taking
the values which have been obtained, i.e., µ1 = 2α

α+2
= 10

7

for α = 5 and χ1 ≃ 0.32, for arec = 108 (implying mag-
netogenesis during the QCD epoch at T ∼ 30MeV) we
therefore get fmin ≃ 7 × 10−10. This implies that even
the smallest initial helicities ultimately have an effect on
the time evolution of the fields. Furthermore, also the
integral scale itself changes its dependence on the scale
factor when entering the maximally helical regime 2, i.e.,
kI ∝ a−κ1 in regime 1, where, according to (14), we have
κ1 = 2

α+2
, matching well the numerically found value,

and kI ∝ a−κ2 in regime 2 where we have numerically
obtained κ2 ≃ 0.66 and µ2 ≃ 0.67.
The values κ2 and µ2, as well as χ1, may be deduced

unambiguously by the argument of helicity conservation

hB ≃ LIB
2
I ≃ ρkIHI ≃ hB,0 , (23)

where LI = 2π/kI is the integral scale and we have
assumed that this scale carries the bulk of the helic-
ity. From Eq. (23) and Eq. (14) one finds immediately
χ1 = − 2

α+2
≃ 0.286 for α = 5, to be compared to the

numerically found 0.3. The values of κ2 and µ2 are ob-
tained by considering the turbulent cascading of energy
from the integral scale to the dissipation scale. This pro-
cess will decrease BI and will increase LI . How fast this
can happen is given by the requirement that an eddy
turnover can take place on scale LI at epoch with scale
factor a [11], in particular

v2A
L2
Ia

2
≃ B2

I

ρ

1

L2
Ia

2
≃ H ≃ ρ

a4
. (24)

It needs to be stressed here that the above is a condi-
tion to be formulated with physical quantities as opposed
to comoving ones. Since we have dropped throughout
the index ’c’, i.e., all quantities in the above equations
are comoving, additional powers of the scale factors a

enter through Lph
I = LIa and ρph = ρ/a4 (note that

Bph
I /
√

ρph = BI/
√
ρ). Using these equations we find

LI ≃ L0a
2/3 BI ≃ B0a

−1/3 , (25)

for the evolution of comoving integral scale and magnetic
field, or equivalently

kI ≃ k0a
−2/3 kIMI ≃ k0M0a

−2/3 (26)

such that κ2 = 2/3 and µ2 = 2/3 which are in extremely
good agreement with the numerical simulations. To sum-
marize the time evolution we may write

kI(a) ≃
{

k0a
−κ1 , a ≤ atr

k0a
κ2−κ1
tr a−κ2 , a > atr

(27)

with κ1 = 2
α+2

and κ2 = 2/3 and

kIMI(a) ≃
{

k0M0a
−µ1 , a ≤ atr

k0M0a
µ2−µ1

tr a−µ2 , a > atr
(28)

with µ1 = 2 α
α+2

and µ2 = 2/3, where atr is given by

Eq. (21) with µ1 = 2 α
α+2

and χ1 = 2
α+2

for the initial

conditions given by Eq. (18).

C. Enhancement of the Energy Content and the
Magnitude of the Magnetic Field

With these arguments at hand one can now estimate
the strength of the magnetic field which, compared to
the case without magnetic helicity, is larger. In order to
make a reasonable estimate it is important to take into
account the time evolution of both the integral scale kI
and the corresponding spectral magnetic energy MI in
the two different regimes introduced in Sec. III B, given
by (27) and (28). Using the formula for the magnetic
field from [14],

B(L) = (8πkρMk)
1
2 = (2kMk)

1
2 B0 , (29)

where B0 ≃ (4πρ)
1
2 is the effective magnetic field for the

Alfvén velocity vA ≃ 1, i.e., the speed of light, for the
optimistic case of initial equipartition between radiation
and magnetic energies. This case would correspond to
B0 ≃ 3 × 10−6G. If we now acknowledge the integral
scale to be the coherence scale of the magnetic field, then
for the magnetic field strength at LI = 2π/kI we get

B(LI) = (2kIMI)
1
2 B0. (30)
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FIG. 4. Present day magnetic field strength having survived dissipation during the evolution in the early Universe as a function
of initial Alfvèn velocity vA,0 and helicity H0 = f0H0,max for magnetogenesis occurring during the QCD epoch (left panel)
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Using Eq. (28) we may then finally estimate the magni-
tude of the present day magnetic field depending on its
initial value and the helicity

Btoday

3× 10−6Gauss
≃
{

vA,0a
−5/7
rec , f0 ≤ a

−8/7
rec

vA,0f
1/3
0 a

−1/3
rec , f0 > a

−8/7
rec

(31)

where vA,0 is the initial Alfvén velocity at magnetogen-
esis, i.e., v2A,0 ≃ 2ǫB/ρ, and where we have assumed the
preferred exponent α = 5. The surviving magnetic field

strength is enhanced in the helical case by a
8/21
rec f

1/3
0 over

that in the non-helical case, which amounts to a factor

2.7×103f
1/3
0 and 3.7×104f

1/3
0 for magnetogenesis during

the QCD and electroweak epoch, respectively, highlight-
ing the importance of helicity. The detailed prediction
for the present magnetic field strength as a function of
the initial magnetic field strength and helicity is shown in
Fig. 4 where the QCD and electroweak epochs have been
assumed as the epoch of magnetogenesis, respectively. In
this figure it is assumed that vA/L ≃ H at the magne-
togenesis epoch. If this is not the case, the appropriate
initial conditions to be used in Fig. 4 may be obtained
via

vA,0 ≃ viniA L
α

(α+2)

ini

(

viniA

H

)− α

α+2

(32)

f0 ≃ fini

(

viniA

H

)
−2α+2
α+2

L
2α−2
(α+2)

ini

unless f0 > 1 or vA,0 > viniA . Here viniA , Lini, and fini
quantify the initial total magnetic field strength, coher-
ence length and helicity. Note that α = 5 should be
employed in Eq. (32) as such a large scale magnetic field
tail will quickly develop independent of the initial condi-
tions [14].

IV. CONCLUSIONS

In this paper we have extended our recent deriva-
tion [14] of the evolution of the spectral magnetic and ki-
netic energy densities in homogeneous and isotropic mag-
netohydrodynamics by a closure theory to include helic-
ity. The resulting ordinary differential equations were
subsequently numerically integrated to predict the evo-
lution of helical cosmic magnetic fields from the early
Universe to the present. We find that the energy content
and coherence length of sub-maximally helical magnetic
fields essentially evolve as those of magnetic fields in the
completely non-helical case. Due to the long cosmic ex-
pansion from the early Universe to the present, however,
even magnetic fields with the smallest initial helicities
ultimately become maximally helical before the present
epoch, thereafter decaying slower than non-helical mag-
netic fields due to an inverse cascade. Our simulations
agree well with all prior analytic estimates on the evolu-
tion of helical magnetic fields.
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Appendix A: Derivation of the Master Equations
(10), (11) and (12)

The derivation of these equations follows exactly the
same lines as the one presented in Appendix A of Ref. [14]
for non-helical magnetic fields. In the more general case
presented here magnetic field correlators are assumed to
be

〈

B̂a(k, t)B̂b(k
′, t′)∗

〉

≃ C1δkk′δtt′Mk

(

δab −
kakb
k2

)

+ C3δkk′δtt′iǫabckcHk , (A1)

with the first and second part of the correlator describing the non-helical and helical components of the magnetic
field, respectively.

Appendix B: Alternative form of the Master Equations

We give here an alternative formulation of the master equations (10)-(12) in terms of k1 = q − k which is more
suitable for numerical integration:

〈∂tMq〉 =
∫ ∞

0

dk

(

∆t

{

− 2

3
q2 〈Mq〉 〈Uk〉 −

4

3
q2 〈Mq〉 〈Mk〉+

1

3

1

(4π)2
q2k2 〈Hq〉 〈Hk〉

+

∫ q+k

|q−k|

dk1

[(

− q7

16k3k31
+

q5

16k3k1
+

q5

16kk31
+

q3k

16k31
+

3q3

8kk1
+

q3k1
16k3

− qk3

16k31
+

qk

16k1
+

qk1
16k

− qk31
16k3

)

〈Mk〉 〈Uk1〉
]

})

(B1)

and

〈∂tUq〉 =
∫ ∞

0

dk

(

∆t

{

− 2

3
q2 〈Mk〉 〈Uq〉 −

2

3
q2 〈Uq〉 〈Uk〉

+

∫ q+k

|q−k|

dk1

[

(

− q5

16kk31
+

q3k

8k31
+

3q3

8kk1
− qk3

16k31
+

3qk

8k1
− 5qk1

16k

)

〈Mk〉 〈Mk1〉

+

(

q7

32k3k31
− 7q5

32kk31
− 3q5

32k3k1
+

11q3k

32k31
+

5q3

16kk1
+

3q3k1
32k3

− 5qk3

32k31
+

9qk

32k1
− 3qk1

32k
− qk31

32k3

)

〈Uk〉 〈Uk1〉

+
1

(8π)2

(

q5

16kk1
− 3q3k

8k1
− q3k1

8k
+

5qk3

16k1
− 3qkk1

8
+

qk31
16k

)

〈Hk〉 〈Hk1〉
]})

(B2)

as well as

〈∂tHq〉 =
∫ ∞

0

dk

(

∆t

{

4

3
k2〈Mq〉〈Hk〉 −

4

3
q2〈Mk〉〈Hq〉 −

2

3
q2〈Uk〉〈Hq〉

+

∫ q+k

|q−k|

dk1

[

(

− q5

8kk31
+

q3k

4k31
+

q3

4kk1
− qk3

8k31
+

qk

4k1
− qk1

8k

)

〈Uk1〉〈Hk〉
]})

.

(B3)

We note here that for some terms a substantially shorter expression than that given in Appendix B of Ref. [14] has

been found by realizing that
∫∞

0
dk
∫ q+k

|q−k|
dk1 is equivalent to

∫∞

0
dk1

∫ q+k

|q−k|
dk.
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