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Abstract. Although proposed long ago, the search for internal bremsstrahlung signatures
has only recently been made possible by the excellent energy resolution of ground-based and
satellite-borne gamma-ray instruments. Here, we investigate thoroughly the current status of
internal bremsstrahlung searches in light of the results of direct dark matter searches and in
the framework of minimal mass-degenerate scenarios. The constraints set by Fermi-LAT and
H.E.S.S. extend uninterrupted from tens of GeV up to tens of TeV and are rather insensitive
to the mass degeneracy in the particle physics model. In contrast, direct searches are best in
the moderate to low mass splitting regime, where XENON100 limits overshadow Fermi-LAT
and H.E.S.S. up to TeV masses if dark matter couples to (light) quarks. We examine carefully
the prospects for GAMMA-400, CTA and XENON1T, all planned to come online in the near
future, and find that: (a) CTA and XENON1T are fully complementary, with CTA most
sensitive to multi-TeV masses and mass splittings around 10%, and XENON1T probing best
small mass splittings up to TeV masses; and (b) current constraints from XENON100 already
preclude the observation of any spectral feature with GAMMA-400 in spite of its impressive
energy resolution, unless dark matter does not couple to light quarks. Finally, we point out
that, unlike for direct searches, the possibility of detecting thermal relics in upcoming internal
bremsstrahlung searches requires boost factors larger than ∼10.
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1 Introduction

If dark matter (DM) is constituted by weakly interacting massive particles (WIMPs) thermally
produced in the early universe, the self-annihilations of dark matter particles in the Milky
Way will produce fluxes of antimatter, neutrinos or gamma-rays which could be observed
at the Earth as an excess over the expected astrophysical backgrounds. In many cases,
however, the observation of such an excess cannot be automatically attributed to dark matter
annihilations, due to the limited understanding of the mechanisms involved in producing the
background fluxes. For example, it has been argued that the emission of electron-positron
pairs in pulsar magnetospheres could generate an excess in the positron fraction over the
expected values from secondary production [1–4], and similarly for the hadronic interactions
of cosmic rays undergoing acceleration in supernova remnants, which could produce an excess
in the antiproton-to-proton fraction [5]. A remarkable exception would be the observation
of a sharp gamma-ray spectral feature, which can be produced in dark matter annihilations
[6–12] but not by any (known) astrophysical mechanism (cf. [13] for a possible exception), and
thereby can be searched for very efficiently in the sky without requiring a precise determination
of the background (see e.g. [14–21]).

In this paper we will concentrate on scenarios where the dark matter particle couples to
a light fermion via a Yukawa coupling. As shown in [11], the three-body dark matter anni-
hilation into a fermion-antifermion pair and a photon produces, in a process dubbed internal
bremsstrahlung (IB), a gamma-ray spectrum with a pronounced feature close to the kine-
matic endpoint which resembles a distorted gamma-ray line. Searches for the spectral feature
from internal bremsstrahlung have been conducted in the Fermi-LAT [17] and H.E.S.S. [21]
data allowing to set fairly stringent limits on the annihilation cross section, which in some
scenarios lie just one or two orders of magnitude above the expected value for a thermal relic.
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Future gamma-ray telescopes with enhanced energy resolution (such as GAMMA-400 [22] or
DAMPE [23]) or with larger effective areas (such as H.E.S.S. II [24], MAGIC-II [25], or CTA
[26]) will continue closing in over the next years on the search for the spectral feature of
internal bremsstrahlung.

This dark matter scenario also predicts the generation of an antiproton flux, the scat-
tering of dark matter particles with nuclei and the existence of events with jet(s) and large
amounts of missing energy in high energy proton-proton collisions. Therefore, measurements
of the cosmic antiproton-to-proton fraction, direct dark matter searches and collider experi-
ments provide complementary limits on the parameter space of dark matter scenarios leading
to internal bremsstrahlung, which might even preclude the observation of a gamma-ray fea-
ture in future instruments. Note that, since internal bremsstrahlung is most pronounced
when dark matter interacts with the Standard Model via a light mediator, the corresponding
phenomenology is distinct from the effective theory approach [27, 28] in various respects that
we discuss in detail below. See [29, 30] for some recent works on the interplay of direct and
collider searches with gamma-ray line searches featuring light mediators.

In this paper we aim at studying the complementarity of limits that direct and indi-
rect dark matter searches impose on the parameter space of a toy model producing internal
bremsstrahlung (as well as gamma-ray lines), in order to assess the prospects to observe
gamma-ray spectral features at the future gamma-ray telescopes GAMMA-400 and CTA. We
also briefly discuss the relevance of recent collider searches. The paper is organised as follows.
In section 2 we briefly review some properties of the class of mass-degenerate dark matter
models under consideration. In section 3 we discuss the various experimental searches and
provide some details on our analyses. We discuss current limits and their complementarity
as well as future prospects in section 4, and then present our conclusions in section 5.

2 Particle physics model and internal bremsstrahlung

We consider a minimal extension of the Standard Model (SM) that generates an internal
bremsstrahlung signal and where the dark matter is constituted by a Majorana fermion χ
which interacts with a SM fermion and a scalar η via a Yukawa interaction with coupling
constant f . We assume χ to be a singlet under the SM gauge group while η can be either a
singlet or a triplet under SU(3)c. Then, the Lagrangian is given by:

L = LSM + Lχ + Lη + Lint . (2.1)

Here, LSM is the SM Lagrangian, whereas Lχ and Lη are the parts of the Lagrangian involving
just the new fields χ and η. They are given, respectively, by

Lχ =
1

2
χ̄ci/∂χ− 1

2
mχχ̄

cχ , and

Lη = (Dµη)†(Dµη)−m2
ηη
†η ,

(2.2)

where Dµ denotes the usual covariant derivative.
Lastly, Lint describes the interaction of the dark matter particle with the SM. In order to

avoid flavour changing neutral currents we assign a flavour quantum number to η. Concretely,
we will restrict our discussion to dark matter particles interacting just with the right-handed
u-quarks, b-quarks or muons (the analysis for couplings to left-handed fermions is completely
analogous). Thus the interaction term in the Lagrangian is given by

Lint = −fχ̄ψRη + h.c. , (2.3)
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with ψ = u, b orµ. Furthermore, the model allows the term H†Hη†η, where H denotes the
SM Higgs doublet. For couplings of order one or less this term is not relevant for the direct
nor the indirect dark matter detection, hence we will neglect them in the rest of the paper.

The interactions in this model allow tree-level annihilations into pairs of SM fermions
ψψ̄. The cross section can be expanded in partial waves σv = a + bv2 + O(v4) , the s-wave
contribution being [31]

(σv)s-wave
2-body =

f4Nc

32πm2
χ

m2
ψ

m2
χ

1

(1 + µ)2
, (2.4)

where Nc is a colour factor and µ ≡ (mη/mχ)2 is a parameter that measures the mass splitting
between the dark matter particle χ and the mediator η. The s-wave contribution is helicity-
suppressed, as apparent from Eq. (2.4) by the presence of the factorm2

ψ/m
2
χ, while the p-wave

contribution is also suppressed due to the small relative velocity of the dark matter particles
in the galactic halo, v ∼ 10−3. Therefore, the 2 → 2 annihilation cross section is very small
and higher order processes might become relevant.

Concretely, there are two final states, a priori suppressed, which can become relevant or
even dominant in this class of scenarios. The first final state arises from the annihilation into
a fermion-antifermion pair with the associated emission of a vector boson, ψψ̄V , where V can
either be a photon γ, a gluon g or a weak gauge boson [9–11, 32–42]. Although the 2 → 3
process is suppressed by a phase space factor and by an additional coupling constant, it can
have a larger cross section than the 2 → 2 process due to the large suppression of the latter
by the factor m2

ψ/m
2
χ or by v2. The total s-wave annihilation cross section into two massless

fermions and one photon is given by [11, 34]

(σv)3-body '
αemf

4Nc

64π2m2
χ

{
(µ+ 1)

[
π2

6
− ln2

(
µ+ 1

2µ

)
− 2Li2

(
µ+ 1

2µ

)]
+

4µ+ 3

µ+ 1
+

4µ2 − 3µ− 1

2µ
ln

(
µ− 1

µ+ 1

)}
. (2.5)

For dark matter particles coupling to light fermions and small values of µ, the cross section of
this process can be more than one order of magnitude larger than the two body annihilation
into a fermion-antifermion pair. The full expression for the differential cross section can be
found e.g. in [41]. The second final state of interest arises from the annihilation into two
vector bosons, V V , which is generated at the quantum level and which is loop- but not
helicity-suppressed. Again, in some instances the helicity suppression can be stronger than
the loop suppression, making the annihilation process χχ→ V V relevant. The cross section
for this process is rather lengthy, therefore we refer the reader to [43]. For V = γ, the two
final states produce a line or a line-like feature in the gamma-ray energy spectrum which
could be detected in present or future gamma-ray telescopes.

The relative importance of the different annihilation channels strongly depends on the
masses of the particles involved in the annihilation, i.e. mχ, mη and mψ. We show in Fig. 1
the dependence of the different cross sections on the dark matter mass mχ (left plot) and the
degeneracy parameter µ (right plot) for the case of couplings to b-quarks. All the annihilation
channels, with the exception of bb̄, have cross sections scaling as 1/m2

χ, while the annihilation
into bb̄ scales as 1/m4

χ (assuming that the annihilation is dominated by the s-wave contri-
bution, otherwise it is also suppressed by 1/m2

χ). Furthermore, replacing the photons with
gluons in the bb̄γ or the γγ final state changes the cross section just by a constant, due to the
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Figure 1. Annihilation cross sections of a dark matter particle which couples via a Yukawa interaction
to the right-handed bottom-quarks and a coloured scalar η. The left plot shows the cross sections
as a function of the dark matter mass for fixed mass ratio squared µ = 1.1, while the right plot as
a function of the mass ratio squared µ for fixed dark matter mass mχ = 300 GeV. In both cases we
adopted for definiteness a coupling f = 1.

different colour factors and to the different values of the gauge coupling constants (note that
the slightly different dependence on the mass visible in Fig. 1 is due to the running of αs).
On the other hand, the two-body cross sections scale as 1/µ2 in the limit of large µ, while the
three-body processes scale as 1/µ4. Therefore, the 2→ 3 annihilations get enhanced when µ
is small, whereas the loop annihilations into two gauge bosons, χχ → γγ, gg, become more
important and dominate as µ increases. For a more detailed discussion of the dependence of
the 2→ 3 annihilation processes with the different masses of the model, see [41].

In our discussion we have concentrated on a toy model consisting in a Majorana dark
matter particle which couples to a fermion and a scalar. However, we note that this toy model
can be realised in concrete particle physics scenarios, for example in the coannihilation region
of the Minimal Supersymmetric Standard Model, or in certain scenarios with right-handed
neutrino dark matter [44].

2.1 Thermal freeze-out

One of the strongest arguments in favour of WIMP dark matter is that these particles can be
thermally produced in the early universe and generate after freeze-out a relic population with
an abundance which is naturally close to the cold dark matter abundance measured by Planck,
Ωh2 = 0.1199 ± 0.0027 [45]. Since the parameter space of interest for this paper consists in
the region where the dark matter particle χ and the scalar η have fairly degenerate masses,
coannihilations can be relevant and the thermal freeze-out must be treated with special care
[46]. In order to take all the relevant processes into account we have used micrOMEGAs2.4
[47] to calculate the relic density in a fully numerical way. This approach has been checked
against calculations performed with a simplified semi-analytic treatment [48] (see [49] for a
detailed description of the calculation of the relic density).

The parameter space of the model is spanned by the coupling constant, f , the dark
matter mass, mχ, and the scalar mass, mη. Then, requiring the correct relic density fixes
the coupling constant f = fth(mχ,mη), which leaves a parameter space spanned by mχ and
mη or, alternatively, by mχ and µ ≡ m2

η/m
2
χ. Nevertheless, not all this parameter space

is theoretically accessible: coannihilations become more and more important as the mass
splitting is reduced and therefore the measured dark matter relic density can only be obtained
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for smaller and smaller values of the coupling constant f . Note that we assume a very mild
lower bound f & 10−4 to ensure that conversions among χ and η remain in equilibrium during
freeze-out. For very degenerate scenarios, namely mη/mχ . 1.1, we find that coannihilations
become so efficient that the total dark matter relic density can no longer be produced via
thermal freeze-out unless mχ & 200 GeV (50 GeV) when the dark matter couples to quarks
(leptons). It follows then that mass degenerate scenarios with dark matter particles with
masses violating these lower bounds must include additional production mechanisms apart
from thermal production in order to reproduce the cold dark matter abundance inferred from
observations.

3 Experimental searches

Within the class of models discussed above, the most prominent signature is the hard gamma-
ray feature arising from internal bremsstrahlung in the annihilation χχ→ qq̄γ (or χχ→ `¯̀γ).
The gamma-ray spectrum is sharply peaked close to the cutoff energy given by the dark matter
mass, and leads to a signature that is basically indistinguishable from a gamma-ray line with
present instruments such as Fermi-LAT or H.E.S.S.. On the other hand, the light mediator
particle η has also a strong influence on possible signals at direct detection experiments as
well as colliders. In the following, we briefly discuss the various experimental probes and
describe some details of the analysis. While the analysis of spectral features from internal
bremsstrahlung is essentially insensitive to the nature of the fermion ψ produced in association
with the photon (as long as mψ � mχ), the complementary probes can depend strongly on
the fermion type. As representative examples we focus mainly on ψ = u, b, and briefly discuss
the leptonic case ψ = µ later on.

3.1 Spectral feature from internal bremsstrahlung

The excellent energy and angular resolutions of Fermi-LAT enable the search for spectral
features in the gamma-ray spectrum. Following this strategy, 43 months of Fermi-LAT data
were analysed in [17] to search for spectral features from internal bremsstrahlung coming from
directions in the sky with optimal expected signal-to-background ratio in the range 40− 300
GeV (see also [18, 20] for similar analyses aiming at monochromatic gamma-rays). Recently,
also the H.E.S.S. collaboration has analysed 112h of data from the central galactic halo
collected during four years [21]. The search region consists of a narrow cone with 1◦ radius
around the galactic centre, but excluding the galactic plane |b| < 0.3◦ in order to minimise
possible astrophysical backgrounds. The main background is then expected to consist of
misidentified cosmic-ray protons, which were suppressed by applying suitable cuts as far as
possible. The residual observed flux was then used to search for spectral features and place
upper limits on annihilation cross sections for monochromatic gamma rays as well as internal
bremsstrahlung in the range 500 GeV–25 TeV.

The existing limits can be improved by future observations with a better energy res-
olution and/or by increasing the statistics via instruments with large effective observation
area [50]. For the case of imaging air Cherenkov telescopes, also an improvement in the
proton/photon discrimination can help to further suppress the background flux. As two im-
portant examples, we will consider the planned GAMMA-400 [22] satellite mission as well
as the Cherenkov Telescope Array (CTA) [26]. While the former is designed to achieve an
energy resolution at the percent level, the latter mainly profits from the huge effective area,
Aeff ' 0.02, 0.3, 2.3 km2 at 100 GeV, 1 TeV and 10 TeV energies, respectively [51]. For
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comparison, the effective area of GAMMA-400 will be O(1 m2) and the energy resolution of
CTA is estimated as σ/E ∼ 25%, 10%, 5%, respectively, at the same energies as given above.

For internal bremsstrahlung, the primary gamma-ray spectrum is peaked at energies
Emaxγ slightly below the dark matter mass mχ, and has an intrinsic width which depends
on the mass ratio mη/mχ. For example, xmax = 0.95+0.04

−0.19, 0.89+0.09
−0.22, 0.79+0.16

−0.27 for mη/mχ =
1.01, 1.1 and 2, respectively. Here, x ≡ Eγ/mχ and the upper and lower values denote the
half-width at half maximum above and below the peak of the spectrum. In addition, as
discussed above, for 2 . mη/mχ . 5 the spectrum consists of a superposition of internal
bremsstrahlung and a monochromatic line at x = 1 with comparable contributions.

In order to derive appropriate limits for the specific shape of the spectrum in each case,
we compute the differential gamma-ray flux arriving at the Earth from an angle ξ with respect
to the Galactic centre,

dΦ

dEdΩ
=

1

4π

(
dσvqq̄γ
dE

+ 2σvγγδ(E −mχ)

) ∫ ∞
0

ds
1

2

(
ρdm(r)

mχ

)2

, (3.1)

where r =
√

(r0 − s cos ξ)2 + (s sin ξ)2, r0 = 8.5 kpc. For definiteness, we assume a radial
dark matter distribution given by the Einasto profile

ρdm(r) ∝ exp

(
− 2

αE

(
r

rs

)αE
)

(3.2)

with αE = 0.17 and scale radius rs = 20 kpc, normalised to ρdm(r0) = 0.4GeV/cm3. Next,
we convolute the primary spectrum for 40 GeV ≤ mχ ≤ 10 TeV and 1.01 ≤ mη/mχ ≤ 10 with
the expected energy resolution for Fermi-LAT [52] and H.E.S.S. [21], respectively. We then
perform a binned profile likelihood analysis to set one-sided 95% confidence level (C.L.) upper
limits on a signal contribution from dark matter on top of a smoothly varying background
spectrum fitted to the Fermi-LAT data taken from [18] (search region 3, Pass7 SOURCE
sample) and the H.E.S.S. data from [21] (CGH region). The background parametrisation and
choice of the energy range included in the fit is chosen as in [17] for Fermi-LAT and [21] for
H.E.S.S., and we refer to these references for details on the statistical analysis. We note that,
for a pure monochromatic gamma-ray line, we checked that our limits agree at the 20% level
with those from [18, 21] for all energies. We also note that the line limits presented recently
by the Fermi-LAT collaboration [20] are comparable to those derived in [18] for the Einasto
profile.

We also derive expected limits by generating a large number of data samples under
the background-only hypothesis, with Poissonian fluctuations around the counts in each bin
corresponding to the assumed background flux. We then derive upper limits on the signal
contribution for each sample and obtain the expected limits by taking the average on a
logarithmic scale. For the case of GAMMA-400, we adopt the search region, observation
time, background flux, effective area and energy resolution from [50], but use the energy
window from [17] which is more suitable for internal bremsstrahlung. We again checked
agreement with [50] for the case of gamma-ray lines. To obtain expected limits for CTA,
we use the projected effective area and energy resolution presented in [51] (MPIK settings),
and assume 50h observations of a region with a 2◦ radius around the galactic centre. For
the background we take into account the gamma-ray emission close to the galactic centre
measured by H.E.S.S. as well as the cosmic-ray electron and proton fluxes [53]. For the latter
we assume a proton/photon discrimination efficiency of 1%, and furthermore assume that
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80% of all incoming events are observed. We take as background a power law with free slope
and normalisation, which are treated as nuisance parameters, and use a sliding energy window
(mχ/ε

0.7,mχε
0.3) with ε = 3 (4) at mχ = 1 (10) TeV. See also [54] for a related approach.

3.2 Secondary gamma rays

A peculiar feature of internal bremsstrahlung is that it produces a sharp spectral feature in
the gamma-ray spectrum together with a comparably small flux of continuum gamma rays.
The latter originate from the decay and fragmentation of the SM particles produced in all
annihilation processes. Typically, this continuum component overwhelms the monochromatic
flux from χχ→ γγ because the latter channel is suppressed by a loop factor and two powers
of the fine-structure constant. In contrast, the cross section for χχ → qq̄γ depends linearly
on αem. Furthermore, since the channel χχ → qq̄ is helicity-suppressed, the continuum
gamma-ray spectrum arises predominantly from the annihilation channel χχ → qq̄g for the
most interesting part of the parameter space (mq � mχ and mη . 2mχ). The ratio of cross
sections is given by [41]

σv(χχ→ qq̄γ)

σv(χχ→ qq̄g)
=
Q2
qαem

CFαs
' 3%(0.7%) , (3.3)

where CF = 4/3 and the numerical values correspond to up(down)-type quarks, using αs at
µ = 300 GeV. For somewhat larger splittings mη & 2mχ, the annihilation channel χχ → gg
contributes significantly to the secondary gamma-ray spectrum (cf. Fig. 1).

To obtain constraints on the secondary gamma-ray flux from qq̄g (and qq̄, gg) we use
Fermi-LAT observations of dwarf galaxies [55, 56], σv < 5 · 10−30 cm3/s/GeV2 × 8πm2

χ/Nγ

where Nγ is the number of photons per annihilation in the range 1 − 100 GeV (see also
[17]). Note that the same annihilation channels also yield a flux of cosmic antiprotons.
Corresponding limits obtained from the antiproton-to-proton fraction measured by PAMELA
[57] turn out to be typically slightly weaker than the dwarf limits, depending on the relatively
large uncertainties in the propagation of charged cosmic rays in the galactic magnetic field
[49].

3.3 Direct searches

As noticed originally in Ref. [58] and further pursued in our previous works [49, 59], the
existence of a scalar particle η just slightly heavier than the dark matter particle χ leads to
dramatic enhancements in both spin-dependent and spin-independent cross-sections. This
has important consequences for the constraints on mass-degenerate dark matter scenarios
coming from direct searches. Here, we follow the exact same procedure as outlined in [49] for
the computation of recoil rates (including spin-dependent and spin-independent contributions)
and the derivation of bounds on the Yukawa coupling f defined in Sec. 2. The direct detection
limits throughout this work refer to the latest XENON100 data [60] only, shown in [49] to be
the most stringent at present across the whole parameter space of mass-degenerate scenarios.
For prospects we use the expected sensitivity of XENON1T. Lastly, all limits shown are the
most conservative within the band of nuclear and astrophysical uncertainties considered in
the reference above.

3.4 Collider searches

Within the model considered here, the interactions of the dark matter particle χ with the
SM fermions are mediated by the scalar particle η. Since we are most interested in the case
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wheremη is comparable tomχ, the scalar η may be considered as a light mediator. Therefore,
the collider phenomenology is very different from the effective theory approach that would
be applicable for mη � mχ [27, 28]. Instead, the scalar η could be pair-produced directly
in proton-proton collisions. For the cases where the light mediator couples χ to quarks, it
carries a colour quantum number and can therefore be copiously produced e.g. via gg → ηη̄.
The subsequent decay η → χq then leads to typical signatures with two jets and missing
transverse energy. If, on the other hand, the mediator couples χ to leptons, pair production
via the Drell-Yan process leads to much smaller production cross sections at the Large Hadron
Collider (LHC). The signature in this case consists of a pair of oppositely charged leptons and
missing transverse energy. The phenomenology thus closely resembles simplified supersym-
metric models containing squarks and neutralino, or sleptons and neutralino, respectively,
with all other SUSY particles decoupled.

An important difference compared to the supersymmetric case is the production cross
section. First, we consider only a single scalar η while the simplified supersymmetric models
typically contain eight mass-degenerate squarks (up/down, left/right, 1st/2nd generation,
see [61] for a discussion of non-degenerate squarks) or two sleptons (1st/2nd generation).
Second, apart from the production diagrams involving only gauge interactions, which are
identical to the SUSY case, there exist also processes such as qq → ηη that are mediated
by χ in the t-channel and the cross section of which is proportional to f4. In the SUSY
case, this coupling is fixed by the hypercharge, e.g. fSUSY ' 0.33, 0.16, 0.5 for the case where
dark matter couples to right-handed up-type quarks, down-type quarks or charged leptons,
respectively. In this work we consider the coupling f as a free parameter of the toy model,
and find that e.g. the process uu→ ηη can give a sizable contribution to the production cross
section in proton-proton collisions when f & 0.5 − 1. One possibility to fix the coupling f
is to require that, for a given set of masses mχ and mη, thermal freeze-out produces a relic
density in agreement with cosmic microwave background observations, i.e. f = fth(mχ,mη).
When taking coannihilations into account we typically find fth < fSUSY for small splittings
mη/mχ . 1.2 and mχ . 1 TeV. On the other hand, for larger masses and/or mass splittings
the coupling required for thermal production can be of order or larger than one.

To obtain an estimate for the regions of parameter space excluded by LHC searches we
consider, for the case of a coloured scalar, the αT -analysis [62] by the CMS collaboration
based on 11.7 fb−1 at 8 TeV energy. This analysis is designed to search for hadronic final
states with missing transverse energy. We use the upper limit on the production cross section
obtained for a simplified model containing squarks and neutralino, and derive an exclusion
limit by requiring that the production cross section computed for a single species of coloured
scalars taken from [63] lies below the upper limit. We also take the effect of the coupling
fth(mχ,mη) into account in an approximate way by computing the corresponding contribution
to the production cross section at leading order using CalcHEP [64, 65]. We caution the reader
that the exclusion limits obtained in this way should be regarded as an estimate. A dedicated
analysis would certainly be desirable, but goes beyond the scope of this work.

For small splittings between the dark matter particle and the scalar η, the jets from
η → χq become so soft that the sensitivity is greatly reduced. This effect can be partly
compensated by taking into account recoil against hard jets emitted by one (or several) of the
coloured particles (e.g. initial state radiation). The latter will be included in the upcoming
LHC analyses for SUSY models. Since a dedicated analysis for the model considered here is
beyond the scope of this work, we adopt the corresponding limits obtained in [66] from 7 TeV
data for a single species of coloured scalars decaying into light quarks and missing energy.
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When the masses of η and χ are quasi-degenerate (mη−mχ . 20 GeV), even monojet searches
can become relevant, since the quarks produced in the decay η → χq have typically very small
energies [66].

For the case where dark matter couples to right-handed muons, we use the LEP limits
from [67] as well as the ATLAS search [68] for direct production of right-sleptons to obtain
approximate collider limits.

4 Results

In this section we compare the limits obtained from the various experimental probes described
above and discuss their interplay at present, as well as in the future. We mainly focus on the
case where the scalar η mediates an interaction of dark matter with quarks, and then briefly
comment on the main differences in the leptonic case.

4.1 Coupling to quarks

4.1.1 Current limits

The search for characteristic features in the gamma-ray spectrum from near the galactic centre
is directly sensitive to the annihilation cross section of χχ → qq̄γ responsible for internal
bremsstrahlung. If mη & 2mχ, also the annihilation cross section into gamma-ray lines gives
a non-negligible contribution, and we therefore show in the following upper limits on their
sum, σvqq̄γ +2σvγγ . For the same reason we also adapted the previous analyses of Fermi-LAT
data [17] and from H.E.S.S. [21], that were done assuming a pure internal bremsstrahlung
spectrum. In Fig. 2 (top), we show the resulting upper limits (95% C.L.) obtained for q = uR
and three values of the mass ratiosmη/mχ = 1.01, 1.1, 2, ranging from 10−27−10−26 cm3/s for
mχ = 40−104 GeV. As was observed previously [17], the dependence on the splitting is rather
mild. When taking only internal bremsstrahlung into account, the limits degrade slightly when
increasing mη/mχ since the spectrum becomes less sharply peaked [17]. However, adding the
line contribution counteracts this tendency because it sharpens the gamma-ray feature, and
it becomes more important when increasing mη/mχ (see Fig. 1). The superposition of these
effects changes the dependence of the limits on mη/mχ. They degrade slightly up to a certain
value mη/mχ ∼ O(2 − 4), and then become slightly stronger again. Typically, this reduces
the dependence on the mass ratio even further (cf. top frame of Fig. 2). As expected, we find
that the limits from spectral features also depend only very mildly on the quark flavour as
clear from Fig. 3.

The limits obtained from secondary gamma rays from Fermi-LAT observations of dwarf
galaxies are arising mainly from χχ→ qq̄g, and are rather insensitive tomη/mχ (cf. top frame
of Fig. 2). The corresponding upper limits on σvqq̄g are also comparable for q = uR and q = bR.
When translated into limits on σvqq̄γ , the dwarf limits for q = bR are consequently stronger
by a factor of the order of Q2

u/Q
2
d = 4 than those for q = uR (since σvqq̄γ/σvqq̄g ∼ Q2

q). In
comparison to the searches for spectral features from the galactic centre region, the dwarf
limits are comparable for q = uR, and slightly stronger for q = bR, see Fig. 3. However, we
stress that their relative strength depends on the uncertainties of the dark matter distribution
in the galactic centre and in dwarf spheroidal galaxies, respectively.
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Figure 2. Upper limits (95% C.L.) on the annihilation cross section obtained from searches for a
spectral feature in the gamma-ray spectrum using Fermi-LAT and H.E.S.S. observations (blue lines),
for three values of the mass splitting mη/mχ = 1.01, 1.1, 2 and assuming an Einasto profile. Also
shown are complementary constraints from direct searches (XENON100, red lines) and constraints
on secondary gamma rays from Fermi-LAT observations of dwarf galaxies (light blue lines), both
of which were translated into limits on the annihilation cross section 〈σvqq̄γ〉 + 2〈σvγγ〉. The black
lines indicate the cross section expected for a thermal relic. The lower frame shows an estimate for
the upper limit that can be achieved by searches for spectral features by GAMMA-400 and CTA,
respectively, as well as the prospect for XENON1T. Here we assumed that dark matter interacts with
right-handed up-quarks.
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Figure 3. Comparison of future prospects for searches for spectral features in gamma-rays (GAMMA-
400, CTA) and direct searches (XENON1T) in the case where dark matter couples to right-handed
up- and bottom-quarks, respectively in the top and bottom frames, and mη/mχ = 1.1. The shaded
areas are excluded by various present experiments as discussed in the text. The dashed black line
shows the cross section expected for a thermal relic, and the dotted black line refers to the case where
the Yukawa coupling is fixed to f = 0.33 (0.16) for u (b), as is appropriate in the supersymmetric
case. The dotted grey lines correspond to the ±1σ range for the expected upper limit for CTA.
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The Yukawa coupling between dark matter and quarks may also be observable via scat-
terings χN → χN off heavy nuclei. Since the mediator η appears in the s-channel, the
scattering rate is resonantly enhanced for small mass splittings mη −mχ and therefore leads
to strong limits from direct detection experiments [49, 58]. For example, for up-quarks, the
direct detection limits obtained from XENON100 are stronger than the limits from spectral
features for dark matter masses mχ . 2 TeV if mη/mχ = 1.1, as shown in the top frame
of Fig. 2. For larger splitting, the XENON100 limits are somewhat weaker. On the other
hand, for very small splittings (mη/mχ = 1.01) direct detection limits dominate nearly over
the whole range we are considering (up to 8 TeV). If dark matter couples to bottom quarks,
the limits from direct detection are weaker by about an order of magnitude (cf. Fig. 3).
Nevertheless, they are still stronger compared to the Fermi-LAT limits on spectral features
and on secondary gamma rays, and stronger than (or comparable to) the H.E.S.S. limits for
mχ . 600 GeV if mη/mχ = 1.1. Along the same lines, it is interesting to point out that the
tentative spectral feature spotted in Fermi-LAT data at around 130 GeV [17, 18, 20], indi-
cated by a cross in Fig. 3, is convincingly excluded by XENON100 (as well as LHC bounds
and Fermi-LAT dwarf observations) in hadronic dark matter models.

The dependence of the various limits on the dark matter mass and the mass splitting is
summarised in Fig. 4 (top). In particular, within the region shaded in red the XENON100
bound is stronger than the scattering cross section off Xe nuclei expected for a thermal relic.
For the conservative set of nuclear parameters (see [49]), this region extends up to mχ . 300
GeV for a splitting of 15− 20%. Note that, for smaller splittings, the cross sections expected
for a thermal relic decrease very quickly due to efficient coannihilations. This overcompensates
even the resonant enhancement of the scattering cross section off nuclei for small splittings. In
particular, within the grey shaded region coannihilations are so efficient that the relic density
falls below the observed dark matter relic density even for tiny Yukawa couplings f ≤ 10−3.

It also follows from Fig. 4 that the sensitivity of gamma-ray observations reaches a
maximum for mη/mχ ≈ 1.1. This optimal value arises from the fact that, for a fixed coupling
constant, the annihilation rate into qq̄γ increases as mη/mχ decreases. At the same time,
as mentioned before, for decreasing mη/mχ coannihilations become more and more efficient
and a smaller and smaller coupling constant is necessary in order to reproduce the correct
relic abundance. Therefore, for a thermally produced dark matter particle, the annihilation
cross section into qq̄γ does not increase monotonically as mη/mχ decreases, but reaches a
maximum, due to the nontrivial dependence of the coupling constant fth(mχ,mη) on the
masses.

In Fig. 4 we also show a collection of various collider bounds as described in the previous
section. The bounds obtained from a CMS search for hadronic final states and missing
transverse energy using the αT variable [62] indicate that dark matter masses up to TeV
energies can be excluded when the mass splitting is not too small (mη −mχ & O(150 GeV))
and not too large (such that mη . O(1.2 TeV)). As discussed before, the exclusion becomes
much weaker for a quasi-degenerate spectrum, and we quote the approximate limits obtained
in [66] by reinterpreting CMS αT and razor as well as ATLAS monojet analyses. The resulting
limits are of the order of mχ & O(200 GeV). A dedicated analysis of collider limits would
definitely be desirable to obtain a more reliable estimate of the excluded regions.
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Figure 4. Comparison of experimental constraints as a function of the dark matter mass mχ and
the relative mass splitting mη/mχ− 1. Here we assume that dark matter interacts with right-handed
up-quarks and fix the Yukawa coupling f = fth(mη,mχ) at each point by requiring that the thermal
relic density matches the one derived from the cosmic microwave background. The red region in the
upper frame is excluded by XENON100 at 95% C.L., and the green regions indicate exclusions by
various collider searches. The contour lines show the ratio r = σvU.L./σvth of the upper limits on the
annihilation cross section obtained from searches for spectral features with Fermi-LAT and H.E.S.S.,
respectively, and the cross section expected for a thermal relic. The regions inside the contours are
excluded if the annihilation signal is boosted relative to the Einasto profile by a factor BF ≥ r. Within
the dark grey regions, thermal freeze-out cannot account for the cold dark matter density (in the lower
right corner Ωthh

2 < 0.12 for all values of the coupling f , and in the upper right corner f becomes
non-perturbatively large). The dashed black line corresponds to fth(mη,mχ) = 0.33(= fSUSY ). The
lower frame shows the prospects for the region that can be excluded by XENON1T and the expected
limits from CTA.
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The limits shown in Fig. 4 demonstrate the complementarity of the various search strate-
gies with respect to the mass range and the dependence on the mass splitting. In particular,
direct detection experiments are very sensitive to (moderately) small mass splittings, while
LHC limits appear to be most constraining for relative mass splittings of order one or larger.
On the other hand, the range of dark matter masses probed by H.E.S.S. lies above the present
reach of direct detection and collider bounds. Nevertheless, H.E.S.S. could exclude a ther-
mally produced dark matter particle only if the annihilation signal from the central galactic
halo was boosted by a factor O(102) relative to the flux resulting from an Einasto profile.

4.1.2 Prospects

There is today a huge effort within the astroparticle physics community to improve our
mapping of the gamma-ray sky with experiments such as H.E.S.S. II [24], MAGIC-II [25],
GAMMA-400 [22], DAMPE [23] or CTA [26], and to push down the sensitivity of direct
searches with the likes of CRESST [69], LUX [70], XENON1T [71], SuperCDMS [72], EU-
RECA [73] or DARWIN [74, 75]. It is therefore timely to analyse the future prospects for
constraining mass-degenerate scenarios through these two dark matter detection strategies.
We show in Fig. 2 (bottom) the expected 95% C.L. exclusion limits of GAMMA-400, CTA and
XENON1T for our three fiducial mass ratios mη/mχ = 1.01, 1.1, 2 and for couplings to up-
quarks. Clearly, if no signal is observed, GAMMA-400 will provide the strongest constraints
on the search for internal bremsstrahlung signatures up to mχ ∼200 GeV, whereas CTA will
take over at higher masses with a flat dependence on the dark matter mass. The reason
for this nearly constant sensitivity of CTA up to a few TeV is that the effective area grows
rapidly with increasing energy, counteracting the usual dependence m−2

χ due to the squared
dark matter density. Another interesting feature of Fig. 2 (bottom) lies in the behaviour of the
gamma-ray constraints with mη/mχ. Similarly to the current limits discussed in the previous
subsection, the projected bounds are only weakly sensitive to the actual value of the mass
ratio and, for CTA, the sharper the IB spectral feature (i.e. the smaller mη/mχ), the stronger
the constraint. However, the situation gets inverted in the case of GAMMA-400, for which
the mass ratio mη/mχ = 2 leads to the most stringent limit. This is due to the extremely
good energy resolution of GAMMA-400. In fact, with percent-level energy resolutions, one
can start distinguishing the IB signature from the line at the end of the spectrum, the latter
becoming more prominent at large mass splittings (as for mη/mχ = 2) and consequently
driving the overall constraint. Note that the resolution featured by Fermi-LAT, H.E.S.S. and
CTA are not sufficient to separate internal bremsstrahlung from the line, and thus both con-
tributions would show up as an extended spectral distortion in the measured gamma-ray
spectrum. Also shown in Fig. 2 (bottom) are the XENON1T projected limits, which present
the same behaviour withmη/mχ as the XENON100 limits drawn in Fig. 2 (top) and discussed
in the previous subsection. XENON1T will boast impressive bounds on the models considered
here (if dark matter couples to up-quarks), not only for small mass splittings but even for
fairly non-degenerate configurations. For instance, in the case mη/mχ = 2, XENON1T shall
overshadow gamma-ray constraints up to mχ ∼ 2 − 3 TeV. Moreover, as discussed later on
and illustrated in Fig. 4 (bottom), the next generation of direct detection instruments will
be able to probe thermal relics for a wide range of mass splittings and frequently up to TeV
masses.

Fig. 3 shows a summary of current and future constraints for the mass ratiomη/mχ = 1.1
and couplings to up- and bottom-quarks. In both cases, GAMMA-400 will improve upon
Fermi-LAT (mainly due to its superior energy resolution) but not more than a factor of a
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few, whereas CTA will eventually supersede H.E.S.S. by no more than one order of magnitude.
We should caution at this point that our computation of gamma-ray prospects is conservative
and can certainly be improved with a better knowledge of the actual instruments. Never-
theless, it should be appreciated that the present mapping of the gamma-ray sky provided
by extremely precise experiments as Fermi-LAT, H.E.S.S. and others leaves little room for
orders-of-magnitude improvements.

Now, two striking results apparent from Fig. 3 have important implications for the
complementarity between direct and gamma-ray searches in the framework of mass-degenerate
dark matter models. First, it is rather impressive that current limits from XENON100 exclude
the possibility of observing spectral features with GAMMA-400 for couplings to the up- and
bottom-quarks and a 10% mass splitting. Such situation holds – at least qualitatively – for a
large range of mass splittings and not only for the fiducial 10% case shown in Fig. 3. Turning
the argument around, if GAMMA-400 observes an IB spectral feature at any energy, that will
constitute a strong indication that dark matter does not couple to (light) quarks.

The second striking result of Fig. 3 is that the complementarity between CTA and
XENON1T is close to maximal: the former will push down the sensitivity to spectral features
in the whole mass range mχ = O(10) GeV − O(10) TeV and with little dependence on the
actual value of mχ, while the latter will probe extremely small cross sections but just up to a
few TeV. Therefore, gamma-ray and direct searches really push the allowed parameter space in
distinct, nearly orthogonal directions, implying good prospects to close in on mass-degenerate
scenarios along the next decade. A glance at Fig. 3 suggests that, for a non-negligible region
of the parameter space, it even appears plausible that CTA and XENON1T find evidence
for dark matter in a consistent way. This would be, of course, a truly exceptional situation
with profound implications for dark matter model building, including a preference for mass-
degenerate models with hadronic couplings.

Up to now we have analysed all the prospects in a global manner, with no particular
focus on thermal production of WIMPs. Since the assumption of thermal relics shifts all the
constraints in a non-trivial way, we present in Fig. 4 (bottom) the thermal regions that will
be probed by CTA and XENON1T. On the one hand, CTA shall not touch upon thermal
cross sections (as also apparent from Figs. 2 and 3) if the Einasto profile is an accurate
description of the dark matter distribution towards the galactic centre. In case a boost &10 is
in order, CTA will cover an extensive mass range up to tens of TeV, particularly around 10%
mass splittings. On the other hand, XENON1T has the potential to test thermal candidates
up to ∼1–2 TeV for mη/mχ = 1.1. This anticipates a neat complementarity between direct
detection and gamma-ray searches in the near future. In a less optimistic note, assuming CTA
and XENON1T spot no dark matter signal, the allowed parameter space of mass-degenerate
models would be confined to the upper right corner in Fig. 4 (bottom), namely mχ & 1 TeV,
mη/mχ − 1 & 30%.

A certain portion of this corner may be probed by LHC after the upgrade of the centre-
of-mass energy to 14 TeV in searches for hadronic channels and missing transverse energy.
While detailed predictions for collider bounds require a dedicated analysis which is clearly
beyond the scope of this work, it is safe to assume that in the most generic scenarios with
sizable mη/mχ the limit on mη will be pushed into the multi-TeV region [76]. For a nearly
mass-degenerate spectrum, the improvement in sensitivity depends on details of the analysis
(such as jet energy cuts) and is affected by uncertainties related to e.g. jet matching [66].
A considerable improvement for mass splittings in the range of a few tens of percent would
potentially permit to probe thermal dark matter models with a light hadronic mediator at
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Figure 5. As Figs. 2 and 3, but for dark matter coupling to right-handed muons.

the LHC, and could also provide complementary information to XENON1T especially if dark
matter couples to bottom quarks.

4.2 Coupling to leptons

The analysis of gamma-ray features in association to leptons, χχ → ll̄γ, is completely anal-
ogous to the case of quarks, with the obvious substitution of the quark charge by the lepton
charge. Taking for concreteness the case of a dark matter particle coupling to muons, the
different charge of the muon compared to the quark leads to a small shift in the relative im-
portance of the loop process γγ with respect to the µµ̄γ channel. However, for a small mass
splittingmη/mχ = 1.1 the limits from Fermi-LAT and H.E.S.S. remain essentially unchanged,
as shown in Fig. 5. A more important difference arises from the limits from the observations
of dwarf galaxies with the Fermi-LAT telescope. These limits are obtained from the non-
observation of secondary gamma rays from dark matter annihilations, and therefore their
strength depends on the ratio of secondary-to-primary gamma rays, which in turn depends
substantially on the final state. In particular, the relative importance of the dwarf limits
in the case of quarks mainly stems from the fact that the annihilation channels producing
primary photons qq̄γ and γγ are always accompanied by the channels qq̄g and gg which, as
seen in Fig. 1, have a significantly higher branching ratio and produce only secondary gamma
rays. Consequently, these bounds are significantly weaker for leptons and are less stringent
than the constraints from the searches for gamma-ray features [17]. Furthermore, in the case
of couplings to leptons, direct detection experiments practically pose no limit, since the only
interactions with the nucleus arise at the two loop level [77]. Besides, new physics that cou-
ples exclusively to leptons is inherently hard to probe at the LHC, making LEP limits still
competitive at present. LEP II constraints require mη & 90 GeV [67] unless mη/mχ . 1.03
as the searches lose sensitivity in the limit of degenerate masses. In that case the bound
mη &MZ/2 from the Z decay width applies.
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Figure 6. As Fig. 4, but for dark matter coupling to right-handed muons.

We show in Fig. 6 the current status and prospects for this class of scenarios in the
plane mχ vs. mη/mχ, assuming that the dark matter particle was thermally produced. It
follows from the figure that the sensitivity of gamma-ray observations reaches a maximum
for mη/mχ ≈ 1.1, for the same reason as discussed before for quarks. It is interesting to note
that even with cross sections of electroweak strength, there is a region in the parameter space
where coannihilations are so efficient that it is not possible to produce thermally the whole
cold dark matter population.

Searches for charged colourless scalars at hadron colliders rely mainly on Drell-Yan pro-
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duction and are therefore practically independent of the size of the coupling constant f . LHC
searches for muon pairs and missing energy [68] are starting to probe the parameter space at
low masses and high splittings, whereas the LEP limits [67] still stand as the strongest ones
in the region with low splittings. The ATLAS limits depend rather strongly on the leptonic
flavour since taus decay mostly hadronically, thus making their identification rather challeng-
ing. In general, collider searches do not probe mχ & 100 GeV so far, therefore gamma-ray
observations remain the most sensitive probe for dark matter coupling to leptons. The next
generation of gamma-ray telescopes like GAMMA-400 and CTA will continue closing in on
this class of scenarios, see Fig. 6 (bottom); however, thermally produced dark matter particles
might easily escape detection, unless the rate of annihilations is enhanced by astrophysical or
particle physics boost factors.

5 Conclusions

The complementarity between direct, indirect and collider searches for dark matter is a rela-
tively new possibility and likely to acquire increasing importance in the coming years. Given
the absence of evidence for full-fledged theoretical frameworks (such as supersymmetry) from
the LHC or elsewhere, minimal models – that very often predict spectacular signatures –
have become rather popular lately. In this work, we constructed minimal mass-degenerate toy
models and studied comprehensively the corresponding internal bremsstrahlung constraints
given the current status of direct searches. It turns out that, despite impressively strin-
gent and displaying an almost flat trend across the GeV–TeV mass range, the latest internal
bremsstrahlung limits are still far from probing thermal relics in the models considered. In
the future, if no spectral feature is detected, GAMMA-400 and CTA will improve significantly
upon the existing bounds at low and high masses, respectively. However, we conclude that
both experiments will fall short of the thermal region for both hadronic and leptonic couplings,
unless the boost factor towards the galactic centre is in excess of one order of magnitude. In-
stead, XENON100 excludes already thermal candidates at intermediate mass splittings up to
hundreds of GeV, if dark matter couples to (light) quarks. Incidentally, current and upcoming
direct searches have crucial implications on the planning of future internal bremsstrahlung
campaigns. Firstly, we find that for hadronic models a gamma-ray space telescope sensitive
up to the TeV with superior energy resolution – such as GAMMA-400 – shall only cover a
portion of the parameter space already excluded by the latest XENON100 data. Secondly,
the prospects for CTA and XENON1T are particularly complementary and it is even possible
that each experiment will provide independent, compatible evidence for dark matter. This
would constitute a suggestive argument in favour of mass-degenerate scenarios. Otherwise, if
no signal is observed by CTA nor XENON1T, then mass-degenerate models with couplings to
light quarks will be confined to large dark matter masses and large mass splittings. Closing
that gap will be extremely challenging even on the long run.
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