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Abstract

The SU(3) beta function is derived from Wilson loops computed to 20th order in numerical
stochastic perturbation theory. An attempt is made to include massless fermions, whose contri-
bution is known analytically to 4th order. The question whether the theory admits an infrared
stable fixed point is addressed.
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The evolution of the running couplingg2(µ) of nonabelian gauge theories as a function of the
Euclidean momentum scaleµ is of fundamental interest. It is encoded in the Callan-Symanzik β
function. Of particular interest is the evolution ofg2(µ) at small momenta, which is determined
by the behavior of theβ function at largeg2. Three possibilities come to mind. In the pure gauge
theory the most plausible, and internally consistent, scenario is thatµ cannot be taken lower than
a certain value,µ0 ≤ µ, whereµ0 is the ‘mass gap’ of the theory.1 In the theory with dynamical
massless fermions there is no mass gap, and nothing stopsµ from being taken to zero. Whether
theβ function exibits an infrared fixed point andg2(µ) freezes at small scalesµ, giving rise to a
conformal window, is an open question though. The third scenario is that theβ function has a pole
at some finite value ofg2, like that of the supersymmetric Yang-Mills theory [1]. Actually, this is a
special case of the first scenario. It will divide the theory into two phases, one being asymptotically
free and another being strongly coupled in the infrared, with g2(µ) flowing to a pointg∗2, both from
the small and largeg2 domain. In this work we shall seek an ‘all-order’ perturbative solution to the
SU(3)β function.

We start from rectangularL × T Wilson loopsW(L, T ) and the corresponding Creutz ratios
R(L, T ),

R(L, T ) =
W(L, T ) W(L − 1, T − 1)
W(L, T − 1)W(L − 1, T )

. (1)

ForT ≫ L the Wilson loops can be written

W(L, T ) = C exp{−E(L) T } , E(L) = −C̃F
g2

V(L)

L
+ σ L −

π

12L
, (2)

whereC̃F = CF/4π = 1/3π. The string tensionσ and the contribution−π/12L from fluctuations
of the bosonic string [2] are of nonperturbative origin and will be discarded in the following. The
factorC, with ln C ∝ (L + T )), drops out in the Creutz ratio. This leaves us with

ln R(L, T ) = C̃F

[

g2
V(L)

L
−

g2
V(L − 1)

L − 1

]

. (3)

If we now expandg2
V(L) andg2

V(L − 1) aroundL = L̄ ≡
√

L(L − 1), g2
V(L) = g2

V(L̄) + g2 ′
V (L̄) (L −

L̄) + · · · , we find

ln R(L, T ) = C̃F

[

−
g2

V(L̄)

L̄2
+

g2 ′
V (L̄)

L̄

]

≡ −C̃F

g2
qq(L̄)

L̄2
= −F(L̄) , (4)

up to a systematic error≃ −C̃F g2 ′′′
V (L̄)/24L̄ arising from the truncation of the Taylor series, where

F(L) is the force andg2
qq(L) the coupling in theqq or force scheme. The correspondingβ function,

βqq(gqq(L)), is given by
1

2gqq(L)

∂ g2
qq(L)

∂ ln L
= −βqq(gqq(L)) , (5)

1This might be the dynamically generated mass of the gluon.
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from which the running couplingg2
qq(µ), with µ = 1/L, may be obtained by solving

µ

Λqq
=

(

β0 g2
qq(µ)

)

β1
2β20 exp

{

1
2β0g2

qq(µ)
+

∫ gqq(µ)

0
dg

(

1
βqq(g)

+
1
β0 g3

− β1

β2
0 g

)}

. (6)

Perturbatively, theβ function

βqq(g) = −g3
(

β0 + β1 g2 + β
qq
2 g4 + · · ·

)

(7)

is known to four loops [3]. The first two coefficients are universal,β0 = 11/(4π)2, β1 = 102/(4π)4,
while the remainder are scheme dependent.

In [4] we have computed rectangular Wilson loopsW(L, T ) on the 124 lattice forL, T = 1, · · · , 6
to N = 20 loops in the bare couplingg2

0, using numerical stochastic perturbation theory [5] and the
Wilson gauge action. We did not encounter any renormalon singularities. The perturbative series
of the smaller Wilson loops were estimated to converge forg2

0 ≤ 1.04. Knowing the Wilson loops,
we can compute the Creutz ratios. The latter can be written

R(L, T ) = 1+
N

∑

n=1

rn(L, T ) g2n
0 , (8)

from which we obtain the running coupling

g2
qq(L̄) =

1
r1(L, T )

ln R(L, T ) = g2
0 +

N
∑

n=2

cn(L, T ) g2n
0 . (9)

Figure 1: A plot of the couplinggqq(L) as a function of lnL. The crosses (×) show the lattice
results for bare couplingsg2

0 = 0.5, · · · , 0.9, 0.95, 1.0, 1.02, 1.04, from top to bottom. The curves
show a second-order Lagrange interpolation of the lattice data.
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We consider Wilson loops of sizeT = 5 andL = 2, 3 and 4. This leaves us with the Creutz
ratiosR(2, 5),R(3, 5) andR(4, 5), from which we obtaing2

qq(L̄) at L̄ =
√

2,
√

6 and
√

12. In first
(one-loop) approximationg−2

qq (L) is a linear function of lnL. In Fig. 1 we plotg−2
qq (L) against lnL

for various values ofg2
0. At g2

0 = 1.04 we findg2
qq(
√

12) ≈ 16, which allows us to probe rather
large values of the running coupling. We employ a second-order Lagrange polynomial in lnL for
interpolation ofg−2

qq (L). The result is shown in Fig. 1 as well. Theβ function is then obtained from

1
2

∂ g−2
qq (L)

∂ ln L
= β̄qq(gqq(L)) , (10)

whereβ̄(g) = g−3 β(g).

The first two coefficients of theβ function can directly be read off from the perturbative ex-
pansion ofβ̄qq in powers ofg2

0, β̄qq = −
(

β0 + β1g2
0 + · · ·

)

, with β0 = (1/2)∂ c2/∂ ln L andβ1 =

(1/2)∂ (c3 − c2
2)/∂ ln L. The renormalization group predicts that bothc2 and (c3 − c2

2) are linear
functions of lnL. The first coefficient turns out to beβ0 = 11.8/(4π)2, independent ofL, as ex-
pected. The second coefficient,β1, is somewhat special. It is a small difference of large numbers,
with the condition that the quadratic terms∝ ln2 L in c3 andc2

2 cancel. The cancellation is not
perfect, which makesβ1 depend onL. At L =

√
6, the midpoint, we findβ1 = 115/(4π)4. At this

point (10) coincides with the textbook central derivative.Alternatively, we may fit a linear curve
to (c3 − c2

2). A weighted fit givesβ1 = 141(90)/(4π)4, with a correlation coefficient ofr = −0.99,

Figure 2: The fullβ function forN = 20 andL =
√

6 (×), L =
√

9 (+) andL =
√

12 (A), together
with theβ function truncated atN = 15 for L =

√
9 (•). The bare coupling has been limited to

g2
0 ≤ 1.04.
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Figure 3: Theβ function βqq against the couplingg2
qq. The solid band shows the lattice result,

including the error. The dashed curve shows the analytic four-loop result.

indicating that the (two) fit parameters are strongly correlated.2 As an estimator for the weight
factor we have used the systematic error ofg2

qq(L̄), which is estimated to be∝ 1/L̄2 (mod logs, see
(4) et seq.). The higher coefficients ofβqq are no longer linear functions of lnL.

We now turn to the fullβ function. Sources of error are discretization effects and malconver-
gence of the perturbative series. To test for possible discretization errors, we compareβqq(gqq) for
L =

√
6,
√

9 and
√

12 in Fig. 2. We do not see any significant dependence onL. To test whether
the perturbative series has converged, we compareβqq(gqq) for N = 20 andN = 15. We see no
difference either. We start to see a difference only when the series is truncated atN ≈ 10. This
indicates that theβ function is not sensitive to very large (N & 10) loops, as long as we keep the
bare coupling belowg2

0 ≈ 1.04.

In Fig. 3 we plot our final result for theβ function. The error band shows the variance of
βqq(gqq) asL is varied betweenL =

√
6 and

√
12.3 We compare our result with the analytic four-

loop formula [3]. The difference grows rapidly withg2
qq. At g2

qq = 6.3 (αqq = 0.5) the full β
function is about half the size of the four-loop analytic result, and atg2

qq = 8.2 (αqq = 0.65) it is
one third the size only. For want of an analytic expression, the latticeβ function can be very well
described by the [3, 3] Padé approximant

βqq(gqq) = −g3
qq













β0 + a1 g2
qq + a2 g4

qq + a3 g6
qq

1+ b1 g2
qq + b2 g4

qq + b3 g6
qq













. (11)

2We have not attempted a correlated fit, which we do not consider very meanigful in this case.
3This is based on a Padé fit of the form (11) to the lattice data with g2

0 ≤ 1.04.
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Figure 4: The running couplingαqq(µ) as a function ofµ/Λqq. The solid band shows the lattice
result, including the error. The dashed curve shows the analytic four-loop result.

It allows βqq(gqq) to evolve asymptotically with any power ofgqq from −3 to+9 and have several
zeroes and poles. Using MINUIT, we fit (11) to the latticeβ function atL =

√
9 with β0 (=

0.074724) anda1 − β0b1 = β1 (= 0.004612) fixed at the one- and two-loop values. The fit gives
a2 = −0.008910,a3 = 0.001550,b1 = 1.3008,b2 = −0.1605,b3 = 0.0200. The difference between
the lattice result and the fit is practically invisible. We find that (11) has no poles and no zeroes on
the positive real axis, in contrast to Padé fits to the four-loopβ function [6]. Instead, (11) has one
pole on the negative real axis and two poles deep in the complex. The same applies to the zeroes
of theβ function. Solving (6) forg2

qq(µ), we obtain the running couplingαqq(µ) = g2
qq(µ)/4π shown

in Fig. 4. The interesting result is thatαqq(µ) hits a wall atµ/Λqq ≈ 0.7, indicating thatµ cannot be
taken lower than≈ 0.7Λqq. The lambda parameter in the force scheme isΛqq = 1.048ΛMS . Thus,
αqq andαMS lie close together. From [7] we obtainΛqq = 254(2) MeV, takingr0 = 0.5 fm to set the
scale. It is tempting now to include fermions. The contribution of massless fermions is known to
four loops [3]. Adding together the gluonic and fermionic contribution, we arrive at theβ function
for N f quark flavors

β
N f
qq (gqq) = βqq(gqq) − g3

qq

[

β
N f

0 + β
N f

1 g2
qq + β

qq,N f

2 g4
qq

+ β
qq,N f

3 g6
qq + β

qq,N f

3,l g6
qq ln

(

3g2
qq/8π

)]

.
(12)

We are interested in the low-energy behavior ofαqq(µ). This is governed by theu andd quarks,
which can be assumed to be massless. We thus are led to consider the caseN f = 2. In view of
successful predictions of higher-order contributions in the past [8], we fit a [3, 3] Padé approximant
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Figure 5: Theβ functionβ
N f=2
qq against the couplingg2

qq. The solid band shows the result of the
Padé fit, including the error of the pure gauge part. The dashed curve shows the analytic 4+4-loop
result.

Figure 6: The running couplingα
N f=2
qq (µ) as a function ofµ/Λqq, including the error.
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to (12). The result of the fit is

β
N f=2
qq (gqq) = − g3

qq

(0.066281+ 0.090111g2
qq − 0.010112g4

qq − 0.000857g6
qq

1+ 1.3053g2
qq − 0.1711g4

qq − 0.0041g6
qq

− 0.000044g6
qq ln g2

qq

)

,

(13)

where we have kept the logarithmic contribution separate. This is justified, as the latter contributes
only a few percent in the region that is of interest to us. Theβ function (13) is shown in Fig. 5. It has
a zero atg2

qq = 6.3 followed by a pole atg2
qq = 7.3. The other two poles lie on the negative real axis.

The coefficienta1 (in the notation of (11)) underwent the biggest change, while b1 has practically
not changed at all, and the subleading negative coefficientsa2 andb2 have changed by 15% or less,
as compared to (11). For the [3, 3] Padé approximant to be sufficiently well constrained it was
important to know the fermionic contribution to four loops.From theβ function (13), and (6), we
may now compute the running couplingαN f=2

qq (µ). The result is shown in Fig. 6. As expected, the

running coupling freezes atα
N f=2
qq ≈ 0.5 asµ is taken to zero, rendering the theory scale invariant.

The question arises how reliable is our prediction of an infrared fixed point. Our main result is
that at larger couplings the full, pure gaugeβ function is significantly smaller (in absolute terms)
than its four-loop counterpart. That gives the fermionic part considerably more weight. In Fig. 7
we show the sum (12) of gluonic and fermionic contribution, in dependence on the number of loops
of the fermionic part. Already at three loops theβ function shows a second zero, which moves to
α

N f=2
qq ≈ 0.7 at four loops and down toα

N f=2
qq ≈ 0.5 in case of the Padé approximant (13). This

Figure 7: The pure gaugeβ function (11) plus the fermionic contribution to 0, 2, 3 and 4loops,
together with the Padé approximant of Fig. 5.
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votes for the existence of an infrared fixed point for two massless quark flavors. The exact position
of the second zero is subject to change though.

To conclude, we have shown that the pure gaugeβ function can be obtained from Wilson loops
computed to very high order in numerical stochastic perturbation theory. First results from the
124 lattice are encouraging. The main source of uncertainty arediscretization errors and, possibly,
finite size corrections. We hope to extend the calculations to larger lattices in due course. This will
allow us to probe theβ function at even larger values of the couplingg2

qq(L). To corroborate our
results on the infrared fixed point of the QCDβ function for a small number of massless quarks
beyond any doubts, we would need to compute the fermionic contribution to higher loops. That
appears to be feasible. In [9] numerical stochastic perturbation theory has been extended to full
QCD, and first results on Wilson loops have been reported. Perhaps, this is the only possibility of
computing theβ function for massless quarks at small virtualities.
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