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Abstract

The SU(3) beta function is derived from Wilson loops compguie 2Gh order in numerical
stochastic perturbation theory. An attempt is made to delmassless fermions, whose contri-
bution is known analytically to#h order. The question whether the theory admits an infrared
stable fixed point is addressed.
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The evolution of the running couplingf(x) of nonabelian gauge theories as a function of the
Euclidean momentum scateis of fundamental interest. It is encoded in the Callan-Syziias
function. Of particular interest is the evolution gf(x) at small momenta, which is determined
by the behavior of thg function at largeg?. Three possibilities come to mind. In the pure gauge
theory the most plausible, and internally consistent, agens thatu cannot be taken lower than
a certain valueyy < u, whereyg is the ‘mass gap’ of the theo@y]n the theory with dynamical
massless fermions there is no mass gap, and nothing gtivspm being taken to zero. Whether
the B function exibits an infrared fixed point argd(u) freezes at small scales giving rise to a
conformal window, is an open question though. The third aderis that the3 function has a pole
at some finite value af?, like that of the supersymmetric Yang-Mills theoty [1]. Aelly, thisis a
special case of the first scenario. It will divide the thearpitwo phases, one being asymptotically
free and another being strongly coupled in the infrared) gfi(:) flowing to a pointg*2, both from
the small and largg? domain. In this work we shall seek an ‘all-order’ perturisatolution to the
SU(3)A function.

We start from rectangulde x T Wilson loopsW(L, T) and the corresponding Creutz ratios
R(L,T),
WL, T)WL-1,T-1)

WL, T-1)WL-1T)
ForT > L the Wilson loops can be written

R(L,T) =

(1)

oo (L) n

|_ + o L - ﬁ B (2)
whereCr = Cg/4n = 1/3r. The string tensiorr and the contributiorz/12L from fluctuations
of the bosonic string |2] are of nonperturbative origin and e discarded in the following. The

factorC, with In C o (L + T)), drops out in the Creutz ratio. This leaves us with

gL gi(L-1)
L L-1 |

W(L,T) = C exp{-E(L) T}, E(L) =—-C¢

In R(L,T) = Cr [ 3)

If we now expandg?(L) andg?(L — 1) aroundL = L = vL(L - 1), g2(L) = g2(L) + ¢3’(L) (L -
L)+---, we find

E =-C- =5 =-F(), (4)

_ g .
In R(L,T) = Cr [_g\z/(l‘) " g\Z/L(L)] ~ 9L

up to a systematic errer —Cr g\z,”’(lf)/24lfarising from the truncation of the Taylor series, where
F(L) is the force an@gq(L) the coupling in theyg or force scheme. The correspondmfunction,
Baa(Jaq(L)), is given by
1 dgiL)
20g(L) oInL

= —Buq(9ga(L)) » (5)

1This might be the dynamically generated mass of the gluon.
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from which the running couplinggq(,u), with 4 = 1/L, may be obtained by solving

1 Goq (1) 1 1 :81 )}
d - : 6
A (B °gqq(”)) eXp{ZBc)géq(u) +fo g(ﬁqq(g) " B B9 ©)
Perturbatively, thg function
Bag(@) = —0° (Bo+ B + B3 gt + ) (7)

is known to four loops[3]. The first two céiicients are universagby = 11/(4n)?, B, = 102/(4n)*,
while the remainder are scheme dependent.

In [4] we have computed rectangular Wilson lo&WéL, T) on the 12 lattice forL, T = 1,--- ,6
to N = 20 loops in the bare couplirgf, using numerical stochastic perturbation theoiy [5] ared th
Wilson gauge action. We did not encounter any renormalogusamities. The perturbative series
of the smaller Wilson loops were estimated to convergqggog 1.04. Knowing the Wilson loops,
we can compute the Creutz ratios. The latter can be written

N
RILT) =1+ > (L, T) &, (8)
n=1
from which we obtain the running coupling
- 1
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Figure 1: A plot of the couplingyy(L) as a function of Ii.. The crossesx) show the lattice
results for bare couplingg = 0.5, ,0.9,0.95,1.0,1.02 1.04, from top to bottom. The curves
show a second-order Lagrange interpolation of the lattata.d
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We consider Wilson loops of siZé = 5 andL = 2,3 and 4. This leaves us with the Creutz
ratiosR(2, 5), R(3, 5) andR(4, 5), from which we obtairgZ,(L) atL = V2, V6 and V12. In first
(one-loop) approximatiogag(L) is a linear function of InL. In Fig.[d we plotgag(L) against In_
for various values ofj3. At g3 = 1.04 we findggq(\/l_Z) ~ 16, which allows us to probe rather
large values of the running coupling. We employ a secon@drdgrange polynomial in Ib for

interpolation ofgag(L). The result is shown in Figl 1 as well. TAdunction is then obtained from

10055(L) -
Eﬁ = Baa(Gaa(L)) » (10)

whereg(g) = g7 8(9).

The first two coéicients of thes function can directly be readfiofrom the perturbative ex-
pansion off, in powers ofg3, Bqq = —(,Bo + 15+ - ) with 8o = (1/2)dc/dInL andB; =
(1/2)0 (c3 — ¢3)/dInL. The renormalization group predicts that baghand €3 — cs) are linear
functions of InL. The first coicient turns out to b@, = 11.8/(4r)?, independent of, as ex-
pected. The second dbeient,3;, is somewhat special. It is a smalki@drence of large numbers,
with the condition that the quadratic termsIn®L in c; andc% cancel. The cancellation is not
perfect, which makeg, depend oriL. At L = V6, the midpoint, we fing;, = 115/(4n)*. At this
point (10) coincides with the textbook central derivativdternatively, we may fit a linear curve
to (c; — ¢3). A weighted fit gives; = 141(90) (4x)*, with a correlation coéicient ofr = —0.99,
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Figure 2: The fullg function forN = 20 andL = V6 (x), L = V9 (+) andL = V12 (x), together
with the 3 function truncated aN = 15 for L = V9 (s). The bare coupling has been limited to
03 < 1.04.



2
gqq

Figure 3: Thes function 8y, against the couplinggq. The solid band shows the lattice result,
including the error. The dashed curve shows the analyticlfmap result.

indicating that the (two) fit parameters are strongly catef] As an estimator for the weight
factor we have used the systematic errogﬁa(L), which is estimated to be 1/L? (mod logs, see
(@) et seq.). The higher cofficients of3,q are no longer linear functions of In

We now turn to the fulp function. Sources of error are discretizatidifeets and malconver-
gence of the perturbative series. To test for possible eligation errors, we compaggy(9qq) for
L = V6, V9 and V12 in Fig.[2. We do not see any significant dependenck.dfo test whether
the perturbative series has converged, we compa(g,,) for N = 20 andN = 15. We see no
difference either. We start to see #elience only when the series is truncatedat 10. This
indicates that th@ function is not sensitive to very larg&l (> 10) loops, as long as we keep the
bare coupling belowg ~ 1.04.

In Fig.[3 we plot our final result for thg function. The error band shows the variance of
Baa(9qq) asL is varied betweeh = V6 and V120 we compare our result with the analytic four-
loop formula [3]. The dference grows rapidly witlgg,. At g3, = 6.3 (2gq = 0.5) the full 8
function is about half the size of the four-loop analyticulésand atgf1q =82 (agq = 0.65) it is
one third the size only. For want of an analytic expressibe Jattices function can be very well
described by the [8] Padé approximant

(11)

Baa(Gaa) = ~ 0 ('80 1 O + B0 * ggq) :
Wl 1+ b]_ géq + b2 ga‘q + b3 ggq

2We have not attempted a correlated fit, which we do not consigly meanigful in this case.
3This is based on a Padé fit of the fofm](11) to the lattice déttagg < 1.04.
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Figure 4: The running couplingqq(«) as a function of:/Aqq. The solid band shows the lattice
result, including the error. The dashed curve shows theyao&bur-loop result.
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It allows Bqq(0qq) to evolve asymptotically with any power g, from -3 to +9 and have several
zeroes and poles. Using MINUIT, we fli{11) to the latt@dunction atL = V9 with S, (=
0.074724) andh; — Bob; = B1 (= 0.004612) fixed at the one- and two-loop values. The fit gives
a, = —0.008910a; = 0.001550p; = 1.3008,b, = —0.1605,b; = 0.0200. The diference between
the lattice result and the fit is practically invisible. Wedithat [11) has no poles and no zeroes on
the positive real axis, in contrast to Padé fits to the fowp|3 function [6]. Instead,[(11) has one
pole on the negative real axis and two poles deep in the complee same applies to the zeroes
of the function. Solving[(6) fogﬁq(p), we obtain the running couplingy(u) = ggq(,u)/47r shown

in Fig.[4. The interesting result is thad,(u) hits a wall afu/Aq.q ~ 0.7, indicating thaj: cannot be
taken lower thar: 0.7A4q. The lambda parameter in the force schemayis= 1.048Ays. Thus,
@qq andajyg lie close together. From[7] we obtaity, = 254(2) MeV, taking, = 0.5 fm to set the
scale. It is tempting now to include fermions. The contiiditof massless fermions is known to
four loops [3]. Adding together the gluonic and fermioniatidbution, we arrive at thg function

for N¢ quark flavors

,Bq,\lqf (9qq) = Baa(Gaa) — gﬁq[ﬁgf +,31Nf gﬁq +,B§q’Nf gﬁq

(12)

"‘:ng’Nf Jag +'B§,?’Nf Jog IN (39§q/87r)] :
We are interested in the low-energy behaviongf(x). This is governed by tha andd quarks,
which can be assumed to be massless. We thus are led to coth&dmseN; = 2. In view of

successful predictions of higher-order contributiondimpast([8], we fit a [[33] Padé approximant
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Figure 5. Thes function,Bquf=2 against the couplinggq. The solid band shows the result of the
Padé fit, including the error of the pure gauge part. Theethshrve shows the analytic#4-loop
result.
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Figure 6: The running couplin@gg:z(y) as a function ofi/ Ay, including the error.




to (I2). The result of the fit is

0.066281+ 0.090111gZ, — 0.0101125%, — 0.000857g¢,
1+ 1.3053gZ, - 0.1711g?, — 0.0041g%, (13)

,Blc;qu :z(gqq) == ggq(
— 0.000044g5, In gZ,).

where we have kept the logarithmic contribution separalés iE justified, as the latter contributes
only a few percent in the region that is of interest to us. Ahenction [13) is shown in Fid.l5. It has
a zero aggq = 6.3 followed by a pole aggq = 7.3. The other two poles lie on the negative real axis.
The codficienta; (in the notation of[(1l1)) underwent the biggest change, ahilhas practically
not changed at all, and the subleading negativéicientsa, andb, have changed by 15% or less,
as compared td (11). For the,[d Padé approximant to be igiently well constrained it was
important to know the fermionic contribution to four loogg:om thes function (13), and[(6), we
may now compute the running coupliaﬁgzz(ﬂ). The result is shown in Fi§] 6. As expected, the

running coupling freezes aﬂ;:z ~ 0.5 asu is taken to zero, rendering the theory scale invariant.

The question arises how reliable is our prediction of arairgd fixed point. Our main result is
that at larger couplings the full, pure gaygéunction is significantly smaller (in absolute terms)
than its four-loop counterpart. That gives the fermionid gansiderably more weight. In Figl 7
we show the suni(12) of gluonic and fermionic contributiorgépendence on the number of loops
of the fermionic part. Already at three loops théunction shows a second zero, which moves to

anquz ~ 0.7 at four loops and down tanqf=2 ~ 0.5 in case of the Padé approximantl(13). This
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Figure 7: The pure gauggfunction (11) plus the fermionic contribution to 0, 2, 3 antbdps,
together with the Padé approximant of Hig. 5.
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votes for the existence of an infrared fixed point for two nessquark flavors. The exact position
of the second zero is subject to change though.

To conclude, we have shown that the pure ga@ifienction can be obtained from Wilson loops
computed to very high order in numerical stochastic pedtion theory. First results from the
12* lattice are encouraging. The main source of uncertaintyliaretization errors and, possibly,
finite size corrections. We hope to extend the calculationarger lattices in due course. This will
allow us to probe thg function at even larger values of the couplig@(L). To corroborate our
results on the infrared fixed point of the Q@Ifunction for a small number of massless quarks
beyond any doubts, we would need to compute the fermionitribotion to higher loops. That
appears to be feasible. In|[9] numerical stochastic peatioh theory has been extended to full
QCD, and first results on Wilson loops have been reportechapsr this is the only possibility of
computing theg function for massless quarks at small virtualities.
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