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ABSTRACT

In this contribution to the Snowmass process 2013 (which is a preliminary
version of [1]) we give a brief review of how new physics could enter in the
electroweak (EW) sector of the Standard Model (SM). This new physics,
if it is directly accessible at low energies, can be parameterized by explicit
resonances having certain quantum numbers. The extreme case is the de-
coupling limit where those resonances are very heavy and leave only traces
in the form of deviations in the SM couplings. Translations are given into
higher-dimensional operators leading to such deviations. As long as such
resonances are introduced without a UV-complete theory behind it, these
models suffer from unitarity violation of perturbative scattering amplitudes.
We show explicitly how theoretically sane descriptions could be achieved by
using a unitarization prescription that allows a correct description of such a
resonance without specifying a UV-complete model.
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1 Introduction: extended electroweak symmetry break-

ing

After the first run of LHC, a light Higgs particle compatible with the predictions from the SM
as well as with electroweak precision tests (EWPT) with a mass of mH = 125 GeV has been
found. At the moment, all production cross sections and decay rates are compatible with the
SM. This, however, is not so astonishing as it is rather difficult to cook up a BSM model that is
compatible with EWPT and has deviations in the Higgs properties larger than the experimental
uncertainties of the 2011/12 data. So, we got a glimpse on the electroweak symmetry breaking
mechanism, but not yet the full answer. We have to check whether longitudinal electroweak
vector boson scattering, i.e. scattering of Higgs field components really behaves in the way as
expected from the SM. Furthermore we have to look to possible additional states that couple
to the electroweak system of the W , Z and the 125 GeV state. Almost all BSM models predict
modifications of the EW sector as part of the explanation of the hierarchy problem, namely
the stability of a fundamental scalar state under radiative corrections. Examples are extra-
dimensional models that comprise Kaluza-Klein recurrences of the of the EW gauge bosons
and possibly also the Higgs, SUSY models as more generally two- or multi-doublet Higgs
models, Little Higgs models, Twin Higgs models, model of complete or partial compositeness,
Technicolor- or Topcolor-like models etc.

Usually, a fine-tuning measure is used for the definition of the little hierarchy problem: if
the parameters of a model have to be tuned to a higher precision in order to achieve the correct
Higgs mass parameter, the higher the fine tuning is. Though this is not a physical argument per
se, it might give a guideline how contrived a model is. Most models seem the most natural for
extensions of the electroweak sector “just around the corner”, i.e. very close to the EW scale
itself (as a prime example, this has been analyzed for Little Higgs models quite recently [2]).

Any model that is believed to solve the hierarchy problem is endowed with some sort of
sector of new physics that couples to the EW bosons. The goal of this contribution to the
Snowmass white paper is to define a Simplified Model that is able to describe the essence of
this new physics sector in an approach as model-independent as possible. We refrain from
discussing fermionic resonances here as those would contribute only at the 1-loop order to
vector boson scattering, and concentrate on new bosonic resonances. To do so, one needs to
supplement the Lagrangian of the EW SM (accounting for the discovery of the 125 GeV state
as the SM Higgs boson but maybe allowing its couplings to deviate within the limits of the
EWPT from their SM values). As the main signatures to study the EW sector of the SM are
diboson, triboson and generically multi-boson production as well as vector-boson scattering
(VBS), and here particularly scattering of longitudinal gauge bosons, it is convenient to use
an operator basis containing explicitly the longitudinal degrees of freedom (DOFs) of the EW
gauge bosons. This effective Lagrangian is basically identical to the chiral EW Lagrangian [3],
except that we linearize the Lagrangian by adding the Higgs particle, and all higher-dimensional
operators stem from BSM contributions. So we implement SU(2)L × U(1)Y gauge invariance,
where the building blocks are the SM fermions, ψ, the EW (transversal) gauge boson fields
W a
µ (a = 1, 2, 3) and Bµ as well as the longitudinal DOFs, Σ = exp

[−i
v
waτa

]
. Our first goal is

to write down the minimal EW Lagrangian, and add then deviations from that Lagrangian in
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the form of higher-dimensional operators allowed by gauge symmetry as well as CP. Later, we
show how precisely such couplings can arise when heavy BSM resonances are in the game. The
minimal Lagrangian including gauge interactions is then:

Lmin =
∑
ψ

ψ(i /D)ψ −
∑
ψ

ψLΣMψR −
1

2g2
tr [WµνW

µν ]− 1

2g′ 2
tr [BµνB

µν ]

+ (Dµφ)†Dµφ+ V (φ) +
ghv

2
tr [VµVµ]h−

∑
ψ

ψLMψRφ+
v2

4
tr [(DµΣ)(DµΣ)] (1)

Here, bold-faced quantities are always in the vector representation of SU(2)L, D is the corre-
sponding gauge-covariant derivative. φ = 1√

2
(0, v + h)T is the field of the Higgs particle, and

Dµφ = (∂µ + Vµ)φ is the gauge-covariant derivative of the Higgs field. V is the field of longi-
tudinal vectors, V = Σ(DΣ)† that will be used shortly to write down operators giving rise to
modified couplings. V (φ) contains the trilinear and quadrilinear Higgs self-couplings as well as
the Higgs mass term. In order to write down operators projecting out the neutral component,
one uses T = Στ 3Σ†.

There are two extrem limits, one is the unitary gauge where one chooses a gauge to rotate the

Goldstone fields away: w ≡ 0, i.e., Σ ≡ 1. Here, V −→ − ig
2

[√
2(W+τ+ +W−τ−) + 1

cw
Zτ 3

]
and T −→ τ 3. On the other hand, there is the gaugeless limit, removing the transversal
DOFs by g, g′ → 0. This limit makes calculations for scattering processes of longitudinal
gauge bosons particularly simple, and was the choice within approaches for Higgsless models or
models with strongly interacting Ws and/or (very) heavy Higgs bosons. Here, one has V −→
i
v

{√
2∂w+τ+ +

√
2∂w−τ−+ ∂zτ 3

}
+O(v−2) and T −→ τ 3 + 2

√
2 i
v

(w+τ+ − w−τ−) +O(v−2).

This minimal (SM) Lagranigan can now be supplemented by additional operators,

Leff = Lmin + β1L′0 +
∑
i

αiLi +
1

Λ

∑
i

α
(5)
i L(5) +

1

Λ2

∑
i

α
(6)
i L(6) + . . . (2)

where Λ is (up to O(1) constants) the scale where BSM physics potentially enters.

L′0 =
v2

4
tr [TVµ] tr [TVµ] (3)

L1 = tr [BµνW
µν ] L6 = tr [VµVν ] tr [TVµ] tr [TVν ] (4)

L2 = i tr [Bµν [V
µ,Vν ]] L7 = tr [VµV

µ] tr [TVν ] tr [TVν ] (5)

L3 = i tr [Wµν [V
µ,Vν ]] L8 = 1

4
tr [TWµν ] tr [TWµν ] (6)

L4 = tr [VµVν ] tr [VµVν ] L9 = i
2

tr [TWµν ] tr [T[Vµ,Vν ]] (7)

L5 = tr [VµV
µ] tr [VνV

ν ] L10 = 1
2

(tr [TVµ] tr [TVµ])2 (8)

For more technical details about this formalism interpreted in that context of simplified models
for extended EW symmetry breaking, cf. [4,1]. Indirect information on new physics is encoded
in the operator coefficients β1, αi.
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From EWPT (SLC/LEP/Tevatron measurements), one knows that αi � 1, while on the
other hand from naive dimensional analysis one would assume αi ∼ 1/16π2 ≈ 0.006 as they
have to renormalize divergencies in an effective field theoretic simplified model of a UV-complete
BSM model. Using such a bottom-up approach, it is notoriously difficult, as the usual setup
as a ratio of the EW and the BSM scale αi = v2/Λ2 is only valid upto unknown operator
normalization coefficients (that are in general coupling constants of the UV-complete model),
furthermore the power counting can be highly nontrivial, producing unexpected scaling behavior
of operators.

One way to deal with this in a model-independent is to consider resonances that couple to
EWSB sector, which we will do in the next section. For completeness, we repeat the formulae
for triple and quartic gauge couplings, and how they depend on the SM parameters as well as
on the operator coefficients of the effective Lagrangian above:

LTGC = ie

[
gγ1Aµ

(
W−
ν W

+µν −W+
ν W

−µν)+ κγW−
µ W

+
ν A

µν +
λγ

M2
W

W−
µ
νW+

νρA
ρµ

]
+ ie

cw

sw

[
gZ1 Zµ

(
W−
ν W

+µν −W+
ν W

−µν)+ κZW−
µ W

+
ν Z

µν +
λZ

M2
W

W−
µ
νW+

νρZ
ρµ

]
(9)

LQGC = e2
[
gγγ1 AµAνW−

µ W
+
ν − g

γγ
2 AµAµW

−νW+
ν

]
+ e2 cw

sw

[
gγZ1 AµZν

(
W−
µ W

+
ν +W+

µ W
−
ν

)
− 2gγZ2 AµZµW

−νW+
ν

]
+ e2 c

2
w

s2
w

[
gZZ1 ZµZνW−

µ W
+
ν − gZZ2 ZµZµW

−νW+
ν

]
+

e2

2s2
w

[
gWW

1 W−µW+νW−
µ W

+
ν − gWW

2

(
W−µW+

µ

)2
]

+
e2

4s2
wc

4
w

hZZ(ZµZµ)2 (10)

In these equations, the SM values are gγ,Z1 = κγ,Z = 1, λγ,Z = 0, and gV V
′

1/2 = 1, hZZ = 0.

The quantity δZ = β1+g′ 2α1

c2w−s2w takes into account the definition of the EW scheme as well as the
oblique corrections through the ρ parameter. In the presence of the operators Eq. 3, one gets
the following shifts:

∆gγ1 = 0 ∆κγ = g2(α2 − α1) + g2α3 + g2(α9 − α8) (11)

∆gZ1 = δZ + g2

c2w
α3 ∆κZ = δZ − g′ 2(α2 − α1) + g2α3 + g2(α9 − α8) (12)

as well as

∆gγγ1 = ∆gγγ2 = 0 ∆gZZ2 = 2∆gγZ1 −
g2

c4w
(α5 + α7) (13)

∆gγZ1 = ∆gγZ2 = δZ + g2

c2w
α3 ∆gWW

1 = 2c2
w∆gγZ1 + 2g2(α9 − α8) + g2α4 (14)

∆gZZ1 = 2∆gγZ1 + g2

c4w
(α4 + α6) ∆gWW

2 = 2c2
w∆gγZ1 + 2g2(α9 − α8)− g2 (α4 + 2α5)

(15)

hZZ = g2 [α4 + α5 + 2 (α6 + α7 + α10)] (16)
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2 Electroweak Resonances and Translation into Anoma-

lous Couplings

In the previous section, it has been discussed how higher-dimensional operators do lead to
deviations of the triple and quartic gauge couplings from their SM values. Here, we want to
make the connection how BSM models in their incarnation as EW resonances coupling to the
SM EW gauge boson sector (particularly the longitudinal DOFs) generate such anomalous
couplings. To be as general as possible, we include weakly interacting cases (e.g. Little Higgs
models) where the new resonances are narrow (proper particles), as well as strongly interacting
cases (e.g. compositeness or Technicolor models) where the new resonances are rather wide
and could even approach the case of a continuum (e.g. unparticles or conformal sectors). As
we know from EWPT, β1 � 1, so the SU(2)c custodial symmetry of weak isospin (that in
the SM is only broken by hypercharge g′ 6= 0 and the fermion masses) is valid to a very
good approximation. From the spin and isospin quantum numbers, only the resonances in the
following table can couple to system of two EW vector bosons,

J = 0 J = 1 J = 2
I = 0 σ0 (“Higgs”) [ω0] (γ′/Z ′) f 0 (KK graviton)
I = 1 [π±, π0] (2HDM) ρ±, ρ0 (W ′/Z ′) [a±, a0]
I = 2 φ±±, φ±, φ0 (Higgs triplet) — t±±, t±, t0

So only the scalars, vector or tensors can couple, and only the weak isospins I = 0, 1, 2 are
allowed. The table shows prime examples for the corresponding combinations where a specific
choice for the hypercharge has been made. The entries in brackets are combinations that are
only possible with SU(2)c-violating couplings, and are not further discussed here. The scalar
isoscalar has the same quantum numbers as the SM Higgs boson. The scalar isovector appears
in Technicolor models, while the isotensor can be found in the Littlest Higgs model, e.g. Vector
resonances appear in extra-dimensional models, Technicolor, Little Higgs models and many
more. Tensor resonances without EW quantum numbers can be thought of as a recurrence of
the graviton, while the isovector and -tensor are quite exotic and appear only e.g. in extended
compositeness models.

As a next step, we relate these resonances from our simplified models to anomalous cou-

plings. Consider any kind of heavy resonance with generic Lagrangian LΦ = z
[
Φ (M2

Φ +DD) Φ+

2ΦJ
]
. Here, z is a (wavefunction re)normalization constant of the Lagrangian, and D is the

gauge-covariant derivative. J is the EW current to which that particular resonance couples.
Integrating out the resonance leeds to Leff

Φ = − z
M2JJ + z

M4J(DD)J + O(M−6). We now

specialize to a scalar isoscalar resonance σ, whose Lagrangian is given by Lσ = −1
2

[
σ(M2

σ +

∂2)σ − gσv tr [VµV
µ]− hσ tr [TVµ] tr [TVµ]

]
. Integrating out the scalar, leads to the effective

Lagrangian

Leff
σ =

v2

8M2
σ

[
gσ tr [VµV

µ] + hσ tr [TVµ] tr [TVµ]

]2
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α4

α5

σ

φ

ρ

f

a

Figure 1: Shifts in the (α4, α5) plane through heavy resonances in different spin-isospin chan-
nels. σ and φ are scalar resonances with I = 0, 2, respectively, ρ is a vector isovector, while f
and t are tensor resonances of I = 0, 2, respectively. The dashed line shows the corrections to
the α parameters from higher orders in the SM perturbative series.

From this one can read off that integrating out a scalar isoscalar generates the following anoma-
lous quartic couplings

α5 = g2
σ

(
v2

8M2
σ

)
α7 = 2gσhσ

(
v2

8M2
σ

)
α10 = 2h2

σ

(
v2

8M2
σ

)
(17)

One sees immediately, that a heavy SM Higgs would have fit into that scheme, using the special
couplings gσ = 1 and hσ = 0.

When one tries to turn constraints on anomalous couplings into direct constraints on new
physics, one faces the problem that there are too many free parameters to overconstrain the
system. There is however one limiting case where one can do that which has been applied in the
context of studies of the possible search power of a 1 TeV ILC on anomalous quartic couplings
and their interpretation in terms of resonances [5]: In the limit of a very broad resonance
(that couples rather strongly to the EW sector), the resonance is close to a broad continuum:
Γ ∼M � Γ(non−WW,ZZ) ∼ 0. Also, in that case the decays of such a particular resonance
into non-W/Zs can be ignored. From the functional relation between the resonance width, its
couplings and its mass (again in the case of a scalar isoscalar)

Γσ =
g2
σ + 1

2
(g2
σ + 2h2

σ)2

16π

(
M3

σ

v2

)
+ Γ(non−WW,ZZ) (18)

one can then translate bounds for anomalous couplings directly into those of the effective
Lagrangian:

α5 ≤
4π

3

(
v4

M4
σ

)
≈ 0.015

(Mσ in TeV)4
⇒ 16π2α5 ≤

2.42

(Mσ in TeV)4
(19)
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QCD

QCD
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Figure 2: Signature of vector boson scattering at the LHC as a means to measure quartic gauge
couplings.

Note that because of the different dependence of scalar and tensor widths compared to vector
widths, the limits behave differently depending on the spin of the resonance:

Scalar: Γ ∼ g2M3, α ∼ g2/M2 ⇒ αmax ∼ 1/M4

Vector: Γ ∼ g2M , α ∼ g2/M2 ⇒ αmax ∼ 1/M2

Tensor: Γ ∼ g2M3, α ∼ g2/M2 ⇒ αmax ∼ 1/M4

The following table

Resonance σ φ ρ f t

Γ[g2M2/(64πv2)] 6 1 4
3
( v2

M2 ) 1
5

1
30

∆α4[(16πΓ/M)(v4/M4)] 0 1
4

3
4

5
2
−5

8

∆α5[(16πΓ/M)(v4/M4)] 1
12
− 1

12
−3

4
−5

8
35
8

shows the width of the five different possible non-SU(2)c violating resonances with their widths
into longitudinal EW gauge bosons, as well as their contributions to the anomalous quartic
couplings parameters α4 and α5. Fig. 1 shows how the different resonances would show up in
the (α4, α5) plane. From this a discrimination of different resonances even slighly below direct
production of those resonances would be possible. σ and φ are scalar resonances of isospin
I = 0, 2, respectively, ρ is a vector isovector, while the tensor resonances f and t also have
isospins I = 0, 2, respectively. Those are just the cases one can write down without violation of
the custodial symmetries. The dashed lines in Fig. 1 show shifts due to higher-order corrections
from SM longitudinal gauge bosons. Note that the treatment of tensor resonances is notoriously
complicated, as their couplings to longitudinal and transversal currents have to be constructed
in different ways, as will be shown in [1].

3 Vector Boson Scattering at LHC and Unitarity

In this section, we want to discuss the signatures for vector boson scattering (VBS) at the LHC
as well as issues of perturbative tree-level unitarity for our simplified models. At a hadron
collider like the LHC, the typical signature for VBS for measuring (anomalous) quartic gauge
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couplings at the LHC is shown in Fig. 2. When one takes all leptons (including τs) as final-
state particles, the cross section at the LHC for pp → jj(ZZ/WW ) → jj`−`+ν`ν̄` is roughly
σ ≈ 40 fb. The most severe background comes from top pair production, tt̄ → WbWb, being
three orders of magnitude larger, σtt ≈ 52 pb. Also, single top where one of the jets has been
misreconstructed contributes with a cross section of σt ≈ 4.8 pb to the background, while the
QCD background – though still sizeable – is not that bad: σQCD ≈ 0.21 pb. To separate VBS
from the background, a tag of two identified and separated leptons and two jets each is applied,
where a large rapidity distance of the two jets is demanded in order to take into account collinear
radiation, |∆ηjj| > 4.4, and explicit vetos against b jets. The leptons should be in a fiducial
volume in the central part of the detector, ηmintag < η` < ηmaxtag , there is a lower cut on the dijet
invariant mass, e.g. Mjj > 1000 GeV, lower cuts on the jet energy (e.g. Ej > 600, 400 GeV)
as well as lower cuts on the two jet p1

T,j > 60, 24 GeV (all values are just rough estimates).
Particularly the large dijet invariant mass is a powerful means to discriminate against top
contamination. At the moment, it is still unclear, whether vetoing against hadronic activity
in the central part of the detector is feasible or not. In general, like those mentioned help to
improve the signal-over-background ration by roughly one order of magnitude.

Now, we discuss the issues of perturbative unitarity within one example of our simplified
models, a model that contains a scalar resonance explicitly, but also anomalous quartic gauge
couplings explicitly. This sounds contrived at first, but such O4,5 can easily arise through
other resonances with different spin or different recurrences of scalar resonances, e.g. in extra-
dimensional models. Furthermore, they can be generated through higher-order corrections,
which in strongly-interacting models can be sizeable. Clearly, in nature, unitarity will never
be violated, it is just the truncation of a perturbative series in a simplified model/an effective
field theory that leads to a possible violation of lowest-order perturbative unitarity. A UV
completion of such a model has to restore unitarity again (possibly through higher orders). For
the discussion of the issues of unitarity and an algorithm to a prescription that does not violate
unitarity, we review the issue of perturbative unitarity in Goldstone boson scattering, taking
the lowest-order EW Lagrangian including the Higgs and anomalous couplings:

L = −v
2

4
tr [VµV

µ] +
ghv

2
tr [VµVµ]h+ α4 tr [VµVν ] tr [VµVν ] + α5 (tr [VµV

µ])2 . (20)

Using the standard Mandelstam variables, s = (p1 + p2)2, t = (p1 − p3)2 and u = (p1 − p4)2,
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this leads to the following amplitudes for the scattering of longitudinal EW vector bosons:

A(s, t, u) =: A(w+w− → zz) =
s

v2
− g2

h

v2

s2

s−M2
H

+ 8α5
s2

v4
+ 4α4

t2 + u2

v4
(21a)

A(w+z → w+z) =
t

v2
− g2

h

v2

t2

t−M2
H

+ 8α5
t2

v4
+ 4α4

s2 + u2

v4
(21b)

A(w+w− → w+w−) = − u

v2
−
∑
x=s,t

g2
h

v2

x2

x−M2
H

+ (4α4 + 2α5)
s2 + t2

v4
+ 8α5

u2

v4

(21c)

A(w+w+ → w+w+) = − s

v2
−
∑
x=t,u

g2
h

v2

x2

x−M2
H

+ 8α4
s2

v4
+ 4 (α4 + 2α5)

t2 + u2

v4

(21d)

A(zz → zz) = −
∑
x=s,t,u

g2
h

v2

x2

x−M2
H

+ 8 (α4 + α5)
s2 + t2 + u2

v4

(21e)

The first term in these equations is the so-called low-energy theorem (LET) that constitutes
the scattering of longitudinal gauge bosons through themselves, the second term comes from
exchange of the Higgs particle (whose coupling in the SM would be gh = 1), while the other
terms originate from the higher-dimensional operators.

In order to derive the unitarity limits, one has to decompose this into the corresponding
isospin eigenamplitudes according to the following Clebsch-Gordan decomposition:

A(I = 0) = 3A(s, t, u) +A(t, s, u) +A(u, s, t) (22)

A(I = 1) = A(t, s, u)−A(u, s, t) (23)

A(I = 2) = A(t, s, u) +A(u, s, t) (24)

Following the discussion in [6], the total cross section σ = |A|2/(64π2s) due to the unitarity
of the S matrix has to obey the optical theorem, σtot = Im [Aii(t = 0)] /s, where the Mandelstam
variable is t = −s(1 − cos θ)/2. In order to check the scattering wave unitarity, one has
to decompose the quantum-mechanical amplitude into partial wave amplitudes, A(s, t, u) =
32π

∑
`(2` + 1)A`(s)P`(cos θ). Assuming only elastic scattering processes and demanding the

equality between total cross section and the imaginary part of the forward scattering amplitude
for the partial wave results in the condition:

∣∣A(s)− i
2

∣∣ = 1
2
. This means that the elastic

scattering amplitude has to lie on the Argand circle (Fig. 3, left).
From the Goldstone scattering amplitudes Eq. 21, project out the isospin eigenampli-

tudes [6], which leads (only for the LET-part) to the three following spin-isopin eigenamplitudes:

AI=0 =
s

16πv2
AI=1 =

s

96πv2
AI=2 = − s

32πv2
. (25)

The condition |AIJ | . 1
2

leads to the famous unitarity bounds, E ∼
√
{8, 48, 16} πv =

{1.2, 3.5, 1.7} TeV, respectively. The Higgs exchange (the second term in Eq. 21) ameliorates
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Im[A]

Re[A]

A(s)

AK(s)

i
2

√
s

AK

2v 4v 6v

1

Figure 3: Left: Argand circle for elastic scattering amplitudes according to the optical theo-
rem. Stereographic K-matrix projection back to the circle for amplitudes violating perturbative
unitarity. Right: Saturation of an amplitude rising quadratically with energy due to K-matrix
unitarization, reaching a constant value.

the quadratic rise in energy to A(s, t, u) = −(M2
H/v

2)× s/(s−M2
H), which leads to the (tree-

level) unitarity bound for a heavy SM Higgs boson of MH .
√

8πv ∼ 1.2 TeV.
In the SM with a 125 GeV Higgs boson no problem with perturbative unitarity should arise,

and no deviations should be visible in VBS from their SM predictions. However, even slight
deviations in the Higgs couplings, gh = 1, would lead to uncanceled unitarity violation. Also
simplified models to test the spin of the 125 GeV Higgs against are difficult to define in a sane
way as one has to take the scalar Higgs out in introduce a tensor resonance in order to exclude
spin 2 from data. In all such cases, simplified models could arise that suffer from the issue of
perturbative unitarity violations. Particularly, all simplified models endowed with resonances
motivated by nearly all BSM models mentioned above do so. In order to get a theoretical
description (e.g. for a Monte Carlo simulation), a prescription that leads to a simplified model
covering the gross features of such BSM models, but on the other hand yielding amplitudes
consistent with unitarity constraints would be highly welcome. Such an algorithm was proposed
in [4] and is further refined in [1].

One straightforward prescription is the so-called K-matrix unitarization that has been used
for the descrition of pion scattering processes. It consists of using a stereographic projection of
an amplitude exceeding the unitarity constraint on the real axis back to the Argand circle (cf.
left hand side of Fig. 3):

AK(s) =
A(s)

1− iA(s)
= A(s)

1 + iA(s)

1 +A(s)2
. (26)

Physically, this would correspond to unitarization by an infinitely heavy and infinitely wide
resonance (for more technical details, references, and also relations to other unitarization pre-
scriptions cf. [4,1]). This prescription leads ameliorates a e.g. quadratic (or quartic) rise of an
amplitude to a constant just saturating the unitarity bound at the very point where unitarity
violation would start to set in (right hand side of Fig. 3).
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We now show how this unitarization prescription works in the case of a scalar isosinglet
resonance. Here, the Lagrangian including the kinetic term and the coupling to the current of
the longitudinal EW gauge bosons is given by

Lσ = −1
2
σ
(
M2

σ + ∂2
)
σ + gσv

2
σ tr [VµV

µ] , (27)

which leads to the following Feynman rules: σw+w− : −2igσ
v

(k+ · k−), σzz : −2igσ
v

(k1 ·
k2). Note that this is in complete analogy to the case of the SM Higgs which has the same
quantum numbers, except that now the mass and the coupling are completely arbitrary. Hence,
the amplitude for the s-channel exchange is Aσ(s, t, u) = (g2

σ/v
2) × s2/(s −M2). This leads

then to the isospin eigenamplitudes that contain explicit resonance poles, and spin-isospin
eigenamplitudes that are no longer polynomial in the Mandelstam variables. For e.g.:

Aσ00(s) = 3g
2
σ

v2
s2

s−M2 + 2 g
2

v2
S0(s) S0(s) = M2 − s

2
+
M4

s
log

s

s+M2
(28)

For the K-matrix unitarization, the s-channel resonance pole must be treated separately in
special way. We define the complete spin-isospin eigenamplitude as the SM amplitude (including

the Higgs boson exchange), A
(0)
IJ (s), then a BSM contribution (due to anomalous couplings or

finite pieces of resonance exchange, or due to deviations of the Higgs amplitude from its SM
value), FIJ(s), and the explicit resonance pole, GIJ(s):

AIJ(s) = A
(0)
IJ (s) + FIJ(s) +

GIJ(s)

s−M2
. (29)

The coefficient function GIJ(s) ∝ s for vector resonances, and ∝ s2 for scalar and tensor reso-
nances, respectively. Applying the K-matrix projection leads to a correction of the amplitude,
which can be redefined as an additive correction to the original amplitude:

ÂIJ(s) =
AIJ(s)

1− i
32π
AIJ(s)

= A
(0)
IJ (s) + 32πi∆AIJ(s), (30)

with

∆AIJ(s) = 32πi

1+ i
32π
A

(0)
IJ (s)+

s−M2

i
32π
GIJ(s)− (s−M2)

[
1− i

32π
(A

(0)
IJ (s) + FIJ(s))

]
 (31)

In order to implement this into a Monte Carlo event generator, one has to explicitly take
care that the unitarization prescription by means of the K-matrix projection only happens
in s-channel like configurations. Hence, such an algorithm breaks crossing symmetry. The
formalism described here in form of the simplified models discussed above has been implemented
and validated in the event generator WHIZARD [7,8]. Its setup of the color-flow formalism [9]
as well as the connection to the parton shower [10] are both compatible with the formalism of
the K-matrix prescription. For more technical details (also a validation using the FeynRules
interface [11]) cf. [1].
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Figure 4: Scalar resonances the scattering of longitudinal W bosons, w+w− → w+w−. The
green line is the SM cross section which is constant in energy. The dashed black and red
line show the cross sections for the scalar isosinglet σ and the isotensor φ, respectively. The
unitarization violation is clearly visible. The full black and red lines are the ones with K-matrix
unitarization.

Using that implementation, the sensitivity of a 1 TeV ILC with 1 ab−1 has been determined
in an extensive study [5]. There, the 1 σ sensitivity on the anomalous couplings α4 and α5 turn
out to be 0.0088 and 0.0071, respectively. This translate into the following reach limits for pure
EW resonances in the setup of a 1 TeV ILC (in TeV):

Spin I = 0 I = 1 I = 2

0 1.39 1.55 1.95
1 1.74 2.67 −
2 3.00 3.01 5.84

For this 1 TeV ILC study, possible unitarity violation issues have not yet played a role, but
both 8 and 14 TeV LHC runs as well as a EW physics at a 3 TeV CLIC both have to take this
into account. No concise LHC study has as yet been done for these simplified models, but more
results will be given in [1]. Generically, one can deduce that the sensitivity on new resonances
rises with the number of intermediate (spin) states, such that tensor resonances have higher
reach than vectors or even scalar resonances. A first rough estimate from [4] might serve as
a guideline for the expectations from 300 fb−1 at 14 TeV LHC, where the expected reach is
varying from 0.5 TeV to 2 TeV for scalar up to tensor resonances.
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4 Summary and Conclusion

In this contribution to the Snowmass White Paper we were constructing simplified models that
allow to describe the physics of a modified electroweak sector compared to the SM. Experimen-
tal observables for such scenarios are modifications of diboson production, triboson production,
and particularly vector boson scattering. Modifications of the EW sector could be just param-
eterized by deviations in the triple and quartic gauge couplings. In such a case a convenient
operator basis is the one from the EW chiral Lagrangian that has now been enlarged by all
operators containing the Higgs state observed from the LHC. However, most models have their
most natural regions of parameter space where new resonances show up directly in the upcom-
ing 14 TeV of LHC. In such a case, a description with higher-dimensional operators alone is
insufficient and not applicable. The simplified models discussed here contain the SM supple-
mented by all possible resonances that could couple to the sector of EW gauge bosons according
to their spin and isospin quantum numbers. Such simplified models cover cases ranging from
Two- or Multi-Higgs doublet models, extended scalar sectors, Technicolor models, models of
complete or partial compositeness, Little Higgs models, Twin Higgs models and many more.
Cases where there is only a single resonance present could be described along these lines as well
as cases where there are more resonances (but maybe only one of them accessible to LHC).
The resonances are just parameterized by their mass, possibly their width, as well as their
couplings to the electroweak sector. As simplified models are like any effective field theory
not UV-complete, perturbative unitarity of tree-level amplitudes in that setup are not guar-
anteed. To give a prescription that can be used by the experiments in a model-independent
setup and does not yield overly optimistic results due to unphysical amplitude contributions
within exclusion limits, a unitarization formalism has been introduced that projects back on
amplitudes that are genuinely unitary. This is insured by giving additive corrections to the SM
vector boson scattering augmented by the BSM resonances. A simple implementation has been
performed in the event generator WHIZARD [7]. This proceedings contribution is intended as
a first gathering of the findings in [1] where also all the technical details can be found. Special
emphasis there is also given to tensor resonances that have not been discussed that extensively
in the literature. There, particularly a careful treatment of subleading terms in longitudinal
and transversal modes of electroweak gauge bosons is crucial.

For a 1 TeV ILC there was an elaborate joint experimental and theoretical study that
determined the ILC search reach for anomalous quartic couplings and its re-interpretation in
terms of model-independent resonances. The sensitivity rises with number of intermediate
states, from scalars over vectors to tensors. At the LHC sensitivity limited in pure EW sector,
the projected reach might lie in the range from 0.6 − 2 TeV compared to 1 − 6 TeV. More
studies are urgently needed to find out whether a high-luminosity phase of the 14 TeV LHC or
a higher-energy upgrade are the better options for these kinds of extensions of the EW sector.
Also, it is not yet clear whether cut-based approaches or multi-variate analyses give the best
sensitivities. More kinematic variables have to be investigated in order to optimize the reach
of the LHC even with only 300 fb−1 for vector boson scattering.
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