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We present a precise calculation of the dilepton invariant-mass spectrum and the
decay rate for B± → π±`+`− (`± = e±, µ±) in the Standard Model (SM) based on
the effective Hamiltonian approach for the b → d`+`− transitions. With the Wilson
coefficients already known in the next-to-next-to-leading logarithmic (NNLL) accuracy,
the remaining theoretical uncertainty in the short-distance contribution resides in the form
factors f+(q2), f0(q

2) and fT (q2). Of these, f+(q2) is well measured in the charged-current
semileptonic decays B → π`ν` and we use the B-factory data to parametrize it. The
corresponding form factors for the B → K transitions have been calculated in the Lattice-
QCD approach for large-q2 and extrapolated to the entire q2-region using the so-called z-
expansion. Using an SU(3)F -breaking Ansatz, we calculate the B → π tensor form factor,
which is consistent with the recently reported lattice B → π analysis obtained at large q2.
The prediction for the total branching fraction B(B± → π±µ+µ−) = (1.88+0.32

−0.21) × 10−8

is in good agreement with the experimental value obtained by the LHCb collaboration.
In the low q2-region, the Heavy-Quark Symmetry (HQS) relates the three form factors
with each other. Accounting for the leading-order symmetry-breaking effects, and using
data from the charged-current process B → π`ν` to determine f+(q2), we calculate the
dilepton invariant-mass distribution in the low q2-region in the B± → π±`+`− decay. This
provides a model-independent and precise calculation of the partial branching ratio for
this decay.
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1 Introduction

Recently, the LHCb collaboration has reported the first observation of the B± → π±µ+µ−

decay, using 1.0 fb−1 integrated luminosity in proton-proton collisions at the Large Hadron
Collider (LHC) at

√
s = 7 TeV [1]. Unlike the b → s `+`− transitions, which have

been studied at the B-factories and hadron colliders in a number of decays, such as
B → (K, K∗) `+`− and Bs → φ `+`− [2], the B± → π± µ+µ− decay is the first b→ d `+`−

transition measured so far. Phenomenological analysis of this process, under controlled
theoretical errors, will provide us independent information concerning the b→ d Flavor-
Changing-Neutral-Current (FCNC) transitions in the B-meson sector. Hence, B± →
π±µ+µ− decay is potentially an important input in the precision tests of the SM in the
flavor sector and, by the same token, also in searches for physics beyond it.

The measured branching ratio B(B+ → π+µ+µ−) = [2.3 ± 0.6(stat) ± 0.1(syst)] ×
10−8 [1] is in good agreement with the SM expected rate [3], which, however, like a
number of other estimates in the literature [4, 5], is based on model-dependent input
for the B → π form factors. The Light-Cone Sum Rules (LCSR) approach (see, for
example, [6] and [7]) is certainly helpful in the low q2-region and has been used in the
current phenomenological analysis of the data [1]. However, theoretical accuracy of the
LCSR-based form factors is limited due to the dependence on numerous input parameters
and wave function models. Hence, it is very desirable to calculate the form factors from
first principles, such as Lattice-QCD, which have their own range of validity restricted
by the recoil energy (here, the energy Eπ of the π-meson), as the discretization errors
become large with increasing Eπ. With improved lattice technology, one can use the
lattice form factors to predict the decay rates in the B → π and B → K transitions (as
well as in other heavy-to-light meson transitions) in the low-recoil region, where the lattice
results apply without any extrapolation, in a model-independent manner. At present, the
dimuon invariant mass distribution in the B+ → π+ µ+µ− decay is not at hand and
only the integrated branching ratio is known. We combine the lattice input with other
phenomenologically robust approaches to calculate the dilepton invariant-mass spectrum
in the entire q2-region to compute the corresponding integrated decay rates for comparison
with the data [1]. Our framework makes use of the methods based on the Heavy-Quark
Symmetry (HQS) in the large-recoil region, data from the B-factory experiments on the
charged-current processes4 B0 → π−`+ν` and B+ → π0`+ν` to determine one of the form
factors, f+(q2), and the available lattice results on the B → π and B → K form factors
in the low-recoil region.

We recall that the decay B± → π± `+`− involves three form factors, two of which,
f+(q2) and f0(q

2), characterize the hadronic B → π matrix element of the vector current
JµV (x) = b̄(x)γµd(x), and the third, fT (q2), enters in the corresponding matrix element of
the tensor current JµT (x) = b̄(x)σµνqνd(x), where qµ = pµB − pµπ is the momentum trans-
ferred to the lepton pair `+`− (see Eqs. (15) and (16) below). Using isospin symmetry,
the first two form factors are the same as the ones encountered in the charged-current
processes B+ → π0`+ν` and B0 → π−`+ν`. Of these, the contribution to the decay rate

4Charge conjugation is implicit in this paper.
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proportional to f0(q
2) is strongly suppressed by the mass ratio m2

`/m
2
B (for ` = e, µ).

The form factor f+(q2) has been well measured (modulo |Vub|) in the entire q2-range by
the BaBar [8,9] and Belle [10,11] collaborations. We have undertaken a chi-squared fit of
these data, using four popular form-factor parametrizations of f+(q2): (i) the Becirevic-
Kaidalov (BK) parametrization [12], (ii) the Ball-Zwicky (BZ) parametrization [6], (iii)
the Boyd-Grinstein-Lebed (BGL) parametrization [13], and (iv) the Bourrely-Caprini-
Lellouch (BCL) parametrization [14]. All these parametrizations yield good fits mea-
sured in terms of χ2

min/ndf, where ndf is the number of degrees of freedom (see Table 3).
However, factoring in theoretical arguments based on the Soft-Collinear Effective The-
ory (SCET) [15], and preference of the Lattice-QCD-based analysis of the form factors
f+(q2), f0(q

2), and fT (q2) in terms of the so-called z-expansion, and a variation thereof
(see Ref. [16] for a recent summary of the lattice heavy-to-light form factors), we use
the BGL-parametrization as our preferred choice for the extraction of f+(q2) from the
B → π`ν` data.

In order to determine the other two form factors, f0(q
2) and fT (q2), in the entire

q2-domain, we proceed as follows: Lattice QCD provides them in the high-q2 region. A
number of dedicated lattice-based studies of the heavy-to-light form factors are available
in the literature. In particular, calculations of the form factors in the B → (K, K∗) `+`−

decays, based on the 2 + 1 flavor gauge configurations generated by the MILC collab-
oration [17], have been undertaken by the FNAL/MILC [18, 19], HPQCD [20, 21] and
the Cambridge/Edinburgh [22,23] Lattice groups. We make use of the B → K lattice re-
sults, combining them with an Ansatz on the SU(3)F -symmetry breaking to determine the
fT (q2) form factor for the B → π transition. Very recently, new results on the B → π form
factors, in particular the first preliminary results on the tensor form factor fBπT (q2), from
the lattice simulations have also become available [24, 25]. While the analysis presented
in Ref. [25] by the FermiLab Lattice and MILC Collaborations is still blinded with an
unknown off-set factor, promised to be disclosed when the final results are presented, we
use the available results on the fBKT (q2) form factor by the HPQCD collaboration [20,21]
as input in the high q2-region to constrain our Ansatz on the SU(3)F -symmetry breaking.
Thus, combining the extraction of f+(q2) from the B → π`ν` data, the lattice-QCD data
on fT (q2) for the large-q2 domain, and the BGL-like parametrization [13] in the form of
z-expansion to extrapolate this form factor to the lower q2-range, we obtain the following
branching ratio:

B(B+ → π+µ+µ−) = (1.88+0.32
−0.21)× 10−8 , (1)

which has a combined accuracy of about ±15%, taking into account also the uncertainties
in the CKM matrix elements, for which we have used the values obtained from the fits of
the CKM unitarity triangle [26]. This result is in agreement (within large experimental
errors) with the experimental value reported recently by the LHCb collaboration [1]:

B(B+ → π+µ+µ−) = (2.3± 0.6(stat.)± 0.1(syst.))× 10−8. (2)

As the lattice calculations of the B → π form factors become robust and the dilepton
invariant-mass spectrum in B+ → π+µ+µ− is measured, one can undertake a completely
quantitative fit of the data in the SM taking into account correlations in the lattice
calculations and data.
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In the SM, b→ d `+`− transition is suppressed essentially by the factor |Vtd/Vts| rela-
tive to the b → s `+`− transition. In terms of exclusive decays, first measurement of the
ratio B(B+ → π+`+`−)/B(B+ → K+`+`−) has been reported by the LHCb collabora-
tion [1]:

B(B+ → π+µ+µ−)

B(B+ → K+µ+µ−)
= 0.053± 0.014(stat.)± 0.001(syst.) . (3)

In the SM, this ratio can be expressed as follows:

B(B+ → π+µ+µ−)

B(B+ → K+µ+µ−)
=

∣∣∣∣VtdVts
∣∣∣∣2 F π/K

tot , (4)

where F
π/K
tot is the ratio resulting from the convolution of the form factors and the q2-

dependent effective Wilson coefficients. Using F
π/K
tot = 0.87, and neglecting the errors

on this quantity, LHCb has determined the ratio of the CKM matrix elements, yielding
|Vtd/Vts| = 0.266± 0.035(stat.)± 0.003(syst.) [1]. At present this method is not compet-
itive with other determinations of |Vtd/Vts|, such as from the B(s)–B̄(s) mixings [2], but
with greatly improved statistical error, anticipated at the LHC and Super-B factory ex-
periments, this would become a valuable and independent constraint on the CKM matrix.
A reliable estimate of the quantity F

π/K
tot is also required. In particular, we expect that

the error on the corresponding quantity, F
π/K
HQS (q2 ≤ q20), denoting the ratio of the partial

branching ratios restricted to the low-q2-domain, can be largely reduced with the help of
the heavy quark symmetry (HQS). We hope to return to improved theoretical estimates

of F
π/K
tot and F

π/K
HQS (q2 ≤ q20) in a future publication.

In the large-recoil limit, the form factors in the B → (π, ρ, ω) and B → (K, K∗)
transitions obey heavy quark symmetry, reducing the number of independent form fac-
tors [27]. In particular, the B → π form factors f0(q

2) and fT (q2) are related to f+(q2)
in the HQS limit (see Eqs. (67) and (68) below). Taking into account the leading-order
symmetry-breaking corrections, these relations get modified [28], bringing in their wake
a dependence on the QCD coupling constant αs(µh) and αs(µhc), where the hard scale
µh ' mb and the intermediate (or hard-collinear) scale µhc =

√
mbΛ, with Λ ' 0.5 GeV,

reflect the multi-scale nature of this problem. In addition, a non-perturbative quantity
∆Fπ, which involves the leptonic decay constants fB and fπ and the first inverse moments
of the leading-twist light-cone distribution amplitudes (LCDAs) of the B- and π-meson
also enters (see Eqs. (73) and (74) below). We have used the HQS-based approach to
determine the fT (q2) form factor in terms of the measured f+(q2) form factor from the
semileptonic B → π`ν` data, discussed above. This provides a model-independent deter-
mination of the dilepton invariant-mass distribution in the low q2-region.

Uncertainties from the form factors aside, the other main problem from the theoretical
point of view in the b → d `+`− transitions is the so-called long-distance contributions,
which are dominated by the c̄c and ūu resonant states which show up as charmonia (J/ψ,
ψ(2S), ...) and light vector (ρ and ω) mesons, respectively. Only model-dependent de-
scriptions (in a Breit-Wigner form) of such long-distance effects are known at present,
which compromise the precision in the theoretical predictions of the total branching frac-
tions. Excluding the resonance-dominated regions from the dilepton invariant-mass dis-
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tributions is therefore the preferred way to compare data and theory. With this in mind,
we calculate the following partially integrated branching ratio

B(B+ → π+µ+µ−; 1 GeV2 ≤ q2 ≤ 8 GeV2) =
(
0.57+0.07

−0.05
)
× 10−8 , (5)

where the lower and upper q2-value boundaries are chosen to remove the light-vector (ρ-
and ω-mesons) and charmonium-resonant regions. However, with the product branching
ratios [26]: B(B+ → ρ0π+) × B(ρ0 → µ+µ−) = (3.78± 0.59) × 10−10 and B(B+ →
ωπ+)×B(ω → µ+µ−) = (6.2± 2.2)× 10−10, the long-distance effects in the low q2-region
are numerically not important.

Due to the small branching ratio, it will be a while before the entire dimuon invariant
mass is completely measured in the B+ → π+ µ+µ− decay. Anticipating this, and fol-
lowing similar procedures adopted in the analysis of the data in the B → (K, K∗) `+`− de-
cays [29,30] we present here results for the partial branching ratios dB(B+ → π+µ+µ−)/dq2,
binned over specified ranges [q2min, q

2
max] in eight q2-intervals. They would allow the exper-

iments to check the short-distance (renormalization-improved perturbative) part of the
SM contribution in the b→ d `+`− transitions precisely.

This paper is organized as follows: In Section 2, we present the dilepton invariant-mass
spectrum dB(B+ → π+ µ+µ−)/dq2 in the effective Hamiltonian approach based on the SM
and the numerical values of the effective Wilson coefficients. Section 3 is devoted to the
four popular parameterizations of the vector, scalar and tensor form factors. Section 4
describes the fits of the semileptonic data on the B → π`ν` decays using the form-factor
parametrizations discussed earlier. Section 5 describes the calculation of the form factors
f0(q

2) and fT (q2) for the B → π transition, using Lattice data as input in the high q2-
region and the z-expansion to extrapolate it to low-q2. Section 6 contains the calculation
of the dilepton invariant-mass spectrum in the low-q2 region, using methods based on the
Heavy-Quark Symmetry. In Section 7, we present the dilepton invariant-mass spectrum
in the entire q2-region as well as the partial decay rates, integrated over eight different
q2-intervals. A summary and outlook are given in Section 8.

2 The B+ → π+`+`− Decay

The effective weak Hamiltonian encompassing the transitions b → d `+`− (`± = e±, µ±,
or τ±), in the Standard Model (SM) can be written as follows [31]:

Hb→d
eff =

4GF√
2

[
VudV

∗
ub

(
C1O(u)

1 + C2O(u)
2

)
+ VcdV

∗
cb (C1O1 + C2O2)− VtdV ∗tb

10∑
i=3

CiOi
]
,

(6)
where GF is the Fermi constant, Vq1q2 are the CKM matrix elements which satisfy the
unitary condition VudV

∗
ub+VcdV

∗
cb+VtdV

∗
tb = 0 (it can be used to eliminate one combination).

In contrast to the b → s transition, all three terms in the unitarity relation are of the
same order in λ (V ∗ubVud ∼ V ∗cbVcd ∼ V ∗tbVtd ∼ λ3), with λ = sin θ12 ' 0.2232 [26].
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B+ π+

b̄

u u

d̄

`+`−

Figure 1: Feynman diagram for the decay B+ → π+`+`−.

The local operators appearing in (6) are the dimension-six operators, and are defined
at an arbitrary scale µ as follows [32,33]:

O(u)
1 =

(
d̄LγµT

AuL
) (
ūLγ

µTAbL
)
, O(u)

2 =
(
d̄LγµuL

)
(ūLγ

µbL) , (7)

O1 =
(
d̄LγµT

AcL
) (
c̄Lγ

µTAbL
)
, O2 =

(
d̄LγµcL

)
(c̄Lγ

µbL) , (8)

O3 =
(
d̄LγµbL

)∑
q (q̄γµq) , O4 =

(
d̄LγµT

AbL
)∑

q

(
q̄γµTAq

)
, (9)

O5 =
(
d̄LγµγνγρbL

)∑
q (q̄γµγνγρq) , O6 =

(
d̄LγµγνγρT

AbL
)∑

q

(
q̄γµγνγρTAq

)
, (10)

O7 =
emb

g2s

(
d̄Lσ

µνbR
)
Fµν , O8 =

mb

gs

(
d̄Lσ

µνTAbR
)
GA
µν (11)

O9 =
e2

g2s

(
d̄Lγ

µbL
)∑

`

(
¯̀γµ`

)
, O10 =

e2

g2s

(
d̄Lγ

µbL
)∑

`

(
¯̀γµγ5`

)
, (12)

where e is the electric elementary charge, gs is the strong coupling, i, j = 1, 2, 3 are the
color indices of quarks, σµν = i (γµγν − γνγµ) /2, the subscripts L and R refer to the left-
and right-handed components of the fermion fields, ψL,R = (1∓ γ5)ψ/2, Fµν and GA

µν

are the photon and gluon fields, respectively, and mb is the b-quark mass. (The terms
in the operators O7 and O8 proportional to the d-quark mass md are omitted as their
contributions to the amplitudes are suppressed by the ratio md/mb ∼ 10−3 and negligible
at the present level of accuracy). Sums over q and ` denote sums over all quarks (except
the t-quark) and charged leptons, respectively.

The Wilson coefficients Ci(µ) (i = 1, . . . , 10) depending on the renormalization scale µ
are calculated at the matching scale µW ∼ MW , the W -boson mass, as a perturbative
expansion in the strong coupling constant αs(µW ) [33]:

Ci(µW ) = C
(0)
i (µW ) +

αs(µW )

4π
C

(1)
i (µW ) +

(
αs(µW )

4π

)2

C
(2)
i (µW ) + . . . , (13)

and can be evolved to a lower scale µb ∼ mb using the anomalous dimensions of the above
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operators to NNLL order [33]:

γi =
αs(µW )

4π
γ
(0)
i +

(
αs(µW )

4π

)2

γ
(1)
i +

(
αs(µW )

4π

)3

γ
(2)
i + . . . . (14)

Feynman diagram of the decay B+ → π+`+`− is displayed in Fig. 1 in which the
solid blob represents the effective Hamiltonian Hb→d

eff (6). The hadronic matrix elements
of the operators Oi between the B- and π-meson states are expressed in terms of three
independent form factors [34]:

〈π(pπ)|b̄γµd|B(pB)〉 = f+(q2)

[
pµB + pµπ −

m2
B −m2

π

q2
qµ
]

+ f0(q
2)
m2
B −m2

π

q2
qµ, (15)

〈π(pπ)|b̄σµνqνd|B(pB)〉 =
ifT (q2)

mB +mπ

[
q2 (pµB + pµπ)−

(
m2
B −m2

π

)
qµ
]
, (16)

where pµB and pµπ are the four-momenta of the B- and π-mesons, respectively, mB and
mπ are their masses, and qµ = pµB − pµπ is the momentum transferred to the lepton pair.
The B → π transition form factors f+(q2), f0(q

2) and fT (q2) are scalar functions whose
shapes are determined by using non-perturbative methods. Of these, using the isospin
symmetry, f+(q2) can also be obtained by performing a phenomenological analysis of the
existing experimental data on the charged-current semileptonic decays B → π`ν`. In the
large-recoil (low-q2) limit, these form factors are related by the heavy-quark symmetry,
as discussed below.

The differential branching fraction in the dilepton invariant mass q2 can be expressed
as follows:

dB (B+ → π+`+`−)

dq2
=

G2
Fα

2
emτB

1024π5m3
B

|VtbV ∗td|2
√
λ(q2)

√
1− 4m2

`

q2
F (q2), (17)

where αem is the fine-structure constant, m` is the lepton mass, τB is the B-meson lifetime,

λ(q2) =
(
m2
B +m2

π − q2
)2 − 4m2

Bm
2
π (18)

is the kinematic function encountered in three-body decays (the triangle function), and
F (q2) is the dynamical function encoding the Wilson coefficients and the form factors:

F (q2) =
2

3
λ(q2)

(
1 +

2m2
`

q2

) ∣∣∣∣Ceff
9 (q2) f+(q2) +

2mb

mB +mπ

Ceff
7 (q2) fT (q2)

∣∣∣∣2 (19)

+
2

3
λ(q2)

(
1− 4m2

`

q2

) ∣∣Ceff
10 f+(q2)

∣∣2 +
4m2

`

q2
(
m2
B −m2

π

)2 ∣∣Ceff
10 f0(q

2)
∣∣2 .

Note that the last term in Eq. (19) containing the form factor f0(q
2) is strongly suppressed

by the mass ratio m2
`/q

2 for the electron or muon pair production over the most of the
dilepton invariant-mass spectrum and will not be needed in our numerical estimates.
The dynamical function (19) contains the effective Wilson coefficients Ceff

7 (q2), Ceff
9 (q2)
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and Ceff
10 which are specific combinations of the Wilson coefficients entering the effective

Hamiltonian (6). To the NNLO approximation, the effective Wilson coefficients are given
by [33,35–38]:

Ceff
7 (q2) = A7 −

αs(µ)

4π

[
C

(0)
1 F

(7)
1 (s) + C

(0)
2 F

(7)
2 (s) + A

(0)
8 F

(7)
8 (s)

]
(20)

+ λu
αs(µ)

4π

[
C

(0)
1

(
F

(7)
1,u (s)− F (7)

1 (s)
)

+ C
(0)
2

(
F

(7)
2,u (s)− F (7)

2 (s)
)]
,

Ceff
9 (q2) = A9 + T9 h(m2

c , q
2) + U9 h(m2

b , q
2) +W9 h(0, q2) (21)

− αs(µ)

4π

[
C

(0)
1 F

(9)
1 (s) + C

(0)
2 F

(9)
2 (s) + A

(0)
8 F

(9)
8 (s)

]
+ λu

(
4

3
C1(µ) + C2(µ)

)[
h(m2

c , q
2)− h(0, q2)

]
+ λu

αs(µ)

4π

[
C

(0)
1

(
F

(9)
1,u (s)− F (9)

1 (s)
)

+ C
(0)
2

(
F

(9)
2,u (s)− F (9)

2 (s)
)]
,

Ceff
10 =

4π

αs(µ)
C10(µ), (22)

where s = q2/m2
B is the reduced momentum squared of the lepton pair. The quantity λu

above is the ratio of the CKM matrix elements, defined as follows:

λu ≡
VubV

∗
ud

VtbV ∗td
= −Rb

Rt

eiα, (23)

which is expressed in terms of the apex angle α and the sides Rt =
√

(1− ρ̄)2 + η̄2

and Rb =
√
ρ̄2 + η̄2 [26] of the unitarity triangle, where ρ̄ and η̄ are the perturbatively

improved Wolfenstein parameters [39] of the CKM matrix. The usual procedure is to
include an additional term usually denoted by Y (q2) [37,40] into the Ceff

9 (q2) Wilson coef-
ficient (21) which effectively accounts for the resonant states (mostly charmonia decaying
into the lepton pair). But, as stated in the introduction, we only concentrate on the
short-distance part in the differential branching ratio.

Following the prescription of Ref. [37], the terms ωi(s) accounting for the bremsstrahlung
corrections necessary for the inclusive B → (Xs, Xd) `

+`− decays are omitted and, the
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Table 1: Wilson coefficients C1, C2, C
eff
10 , and the combinations of the Wilson coef-

ficients specified in Eqs. (24)–(29), are shown at three representative renormalization
scales: µb = 2.45 GeV, µb = 4.90 GeV and µb = 9.80 GeV. The strong coupling αs(µ)
is evaluated by the three-loop expression in the MS scheme with five active flavors and
αs(MZ) = 0.1184 [26]. The entries correspond to the top-quark mass mt = 175 GeV.
The superscript (0) denotes the lowest order contribution while a quantity with the su-
perscript (1) is a perturbative correction of order αs, and X = X(0) +X(1).

µ = 2.45 GeV µ = 4.90 GeV µ = 9.80 GeV
αs(µ) 0.269 0.215 0.180

(C
(0)
1 , C

(1)
1 ) (−0.707, 0.241) (−0.492, 0.207) (−0.330, 0.184)

(C
(0)
2 , C

(1)
2 ) (1.047, −0.028) (1.024, −0.017) (1.011, 0.010)

(A
(0)
7 , A

(1)
7 ) (−0.355, 0.025) (−0.313, 0.010) (−0.278, −0.001)

A
(0)
8 −0.164 −0.148 −0.134

(A
(0)
9 , A

(1)
9 ) (4.299, −0.237) (4.171, −0.053) (4.164, 0.090)

(T
(0)
9 , T

(1)
9 ) (0.101, 0.280) (0.367, 0.251) (0.571, 0.231)

(U
(0)
9 , U

(1)
9 ) (0.046, 0.023) (0.033, 0.015) (0.023, 0.010)

(W
(0)
9 , W

(1)
9 ) (0.045, 0.016) (0.032, 0.012) (0.022, 0.008)

(C
eff(0)
10 , C

eff(1)
10 ) (−4.560, 0.378) (−4.560, 0.378) (−4.560, 0.378)

following set of auxiliary functions is used:

A7(µ) =
4π

αs(µ)
C7(µ)− 1

3
C3(µ)− 4

9
C4(µ)− 20

3
C5(µ)− 80

9
C6(µ), (24)

A8(µ) =
4π

αs(µ)
C8(µ) + C3(µ)− 1

6
C4(µ) + 20C5(µ)− 10

3
C6(µ), (25)

A9(µ) =
4π

αs(µ)
C9(µ) +

6∑
i=1

Ci(µ) γ
(0)
i9 ln

mb

µ
+

4

3
C3(µ) +

64

9
C5(µ) +

64

27
C6(µ),(26)

T9(µ) =
4

3
C1(µ) + C2(µ) + 6C3(µ) + 60C5(µ), (27)

U9(µ) = −7

2
C3(µ)− 2

3
C4(µ)− 38C5(µ)− 32

3
C6(µ), (28)

W9(µ) = −1

2
C3(µ)− 2

3
C4(µ)− 8C5(µ)− 32

3
C6(µ), (29)

where the required elements of the anomalous dimension matrix γ
(0)
ij can be read off from

Ref. [33]. The numerical values of the scale-dependent functions specified above at three
representative scales µ = 2.45 GeV, µ = 4.90 GeV and µ = 9.80 GeV are presented in
Table 1. In Eq. (21) mc and mb are the c- and b-quark masses, respectively, the masses
of the light u-, d-, and s-quarks are neglected, and the standard one-loop function h(z, s)

9



Figure 2: (Color online.) The real (solid lines) and imaginary parts (dotted lines) of the

functions F
(7)
1,2 (s) (top two frames) and F

(9)
1,2 (s) (bottom two frames) at the scale µ = mb. For

plotting the curves with
√
z = 0, the exact analytic expressions [41] were used. For non-zero

values of
√
z, the analytic two-loop expressions obtained as double expansions in

√
z and s [35,36]

are used in plotting these functions in the region s ≤ 0.35, whereas the expansions in
√
z

and 1− s [42] are used in the range 0.55 < s < 1. For these curves, we have fixed
√
z = 0.36.

is used [31] (x = 4z/s):

h(z, s) = −4

9
ln

z

µ2
+

8

27
+

4

9
x− (30)

−2

9
(2 + x)

√
|1− x|

 ln

∣∣∣∣1 +
√

1− x
1−
√

1− x

∣∣∣∣− iπ, forx < 1,

2 arctan(1/
√

1− x), forx > 1.

The renormalized αs-corrections F
(7)
1,2 (s) and F

(9)
1,2 (s) to the b→ s `+`− matrix element

originated by the O1- and O2-operators from the effective Hamiltonian are known ana-
lytically both at small-q2 [35, 36] and large-q2 [42] domains of the lepton invariant mass
squared as expansions in

√
z = mc/mb. Note that to obtain the invariant-mass spec-

trum and forward-backward symmetry in the inclusive B → Xs`
+`− decays the F

(7)
1,2,8(s)

and F
(9)
1,2,8(s) functions were expressed in terms of master integrals and evaluated numer-

ically [43]. The functions F
(7)
1(2),u(s) and F

(9)
1(2),u(s) which are important in the b → d `+`−

transitions were also calculated analytically first as an expansion in powers of s [38] and

10



later exactly [41] from which the later expressions are used by us as we are considering
the B → π`+`− decay in the entire q2-region.

The functions F
(7)
1,2 (s) (the top two frames) and F

(9)
1,2 (s) (the bottom two frames) are

presented in Fig. 2 at the scale µ = mb and
√
z = 0.36. The real and imaginary parts

of these functions are shown by the solid and dashed lines, respectively. The functions
F

(7)
1,2 (s) and F

(9)
1,2 (s) at

√
z = 0, which are obtained analytically in Ref. [41], are also

shown in the same manner in Fig. 2. The vertical dashed lines specify the s-region where
the expansions no longer hold. Note that this is also the interval in which charmonium
resonances contribute. As the correct analytical functions in this region are not known
for realistic value of

√
z, we have extrapolated the known analytic expressions (in the

form of expansions in s and 1 − s) to the resonant region and found the matching value
somewhere inside that the branching fraction has a minimal discontinuity This allow us
to get a rough estimate of the differential branching fraction in the gap between the J/ψ-
and ψ(2S)-resonances.

In the analysis we also used the renormalized αs-corrections F
(7,9)
8 (s) from the O8-

operator valid in the full kinematic q2-domain (0 ≤ s ≤ 1) [42]:

F
(7)
8 (s) =

4π2

27

2 + s

(1− s)4 −
4(11− 16s+ 8s2)

9(1− s)2 − 8
√
s(4− s)

9(1− s)3
(
9− 5s+ 2s2

)
arcsin

√
s

2

− 16(2 + s)

3(1− s)4 arcsin2

√
s

2
− 8s ln s

9(1− s) −
8iπ

9
− 32

9
ln

µ

mb

, (31)

F
(9)
8 (s) = −8π2

27

4− s
(1− s)4 +

8(5− 2s)

9(1− s)2 +
16
√

4− s
9
√
s (1− s)3

(
4 + 3s− s2

)
arcsin

√
s

2

+
32(4− s)
3(1− s)4 arcsin2

√
s

2
+

16 ln s

9(1− s) , (32)

where the mass mb of the b-quarks is assumed to be the pole one.
To perform the numerical analysis one needs to know the B → π transition form

factors f+(q2), f0(q
2) and fT (q2) in the entire kinematic range:

4m2
` ≤ q2 ≤ (mB −mπ)2 . (33)

Their model-independent determination is the main aim of this paper, which is described
in detail in subsequent sections.

3 Form-Factor Parametrizations

Several parametrizations of the semileptonic form factors f+(q2), f0(q
2) and fT (q2) have

been proposed in the literature. The four parametrizations of f+(q2) discussed below have
been used in the analysis of the semileptonic data on B → π`ν`. All of them include at
least one pole term at q2 = m2

B∗ , where mB∗ = 5.325 GeV [26] is the vector B∗-meson
mass. As far as this mass satisfies the condition mB∗ < mB + mπ, i. e., it lies below the
so-called continuum threshold, it should be included into the form factor as a separate
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pole. Mesons and multi-particle states with the appropriate JP = 1− quantum number
can be described either by one or several poles or by some other rapidly convergent
function, both effectively counting the continuum. The tensor form factor fT (q2) shows
a similar qualitative behavior and its model function obeys the same shape as the vector
one. The case of the scalar form factor f0(q

2) is different as the first orbitally-excited
scalar B∗∗-meson with JP = 0+ (it is expected to be somewhere within the signal called
as the B∗J(5732) resonance [26] with the mass mB∗

J (5732)
= 5698 ± 8 MeV and width

ΓB∗
J (5732)

= 128 ± 18 MeV which can be interpreted as stemming from several narrow
and broad resonances5) has the mass squared above the continuum threshold t0 = (mB +
mπ)2 = 29.36 GeV2 and, hence, it belongs to the continuum which makes f0(q

2) regular
at q2 = m2

B∗ , in contrast to f+(q2) and fT (q2).

3.1 The Becirevic-Kaidalov Parametrization

The form factor f+(q2) in the Becirevic-Kaidalov (BK) parametrization [12] can be written
as follows:

f+(q2) =
f+(0)

(1− q̂2∗) (1− αBK q̂2∗)
, (34)

where q̂2∗ = q2/m2
B∗ . The fitted parameters are the form-factor normalization, f+(0),

and αBK which defines the f+(q2) shape [12]. This parametrization is one of the simplest
ones. The shape of the tensor form factor fT (q2) is the same (34) as it also has the
pole at q2 = m2

B∗ below the continuum threshold. The scalar form factor f0(q
2) was also

introduced in its simplest form [12]:

f0(q
2) =

f+(0)

1− q̂2∗/βBK

, (35)

with the same normalization factor f+(0) but a different effective pole position determined
by the free parameter βBK.

This form-factor parametrizations should be taken with caution, since the simple two-
parameter shape is overly restrictive and has been argued to be inconsistent with the
requirements from the Soft-Collinear Effective Theory (SCET) [15].

3.2 The Ball-Zwicky Parametrization

The Ball-Zwicky (BZ) parametrization for the vector form factor f+(q2) is a modified
form of the BK parametrization, given as [6]:

f+(q2) =
f+(0)

1− q̂2∗

[
1 +

rBZ q̂
2
∗

1− αBZ q̂2∗

]
=
f+(0) [1− (αBZ − rBZ) q̂2∗]

(1− q̂2∗) (1− αBZq̂2∗)
, (36)

where the fitted parameters are f+(0), αBZ, and rBZ. f+(0) sets again the normalization
of the form factor, while αBZ and rBZ define the shape [6]. In particular, for αBZ = rBZ

5 Approximately the same mass difference mB∗∗
s
−mBs

= 385 ± 16 ± 5 ± 25 MeV in the Bs-meson
sector was obtained by the HPQCD Collaboration [44].
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one reproduces the BK parametrization (34). The same redefinition is also applied to
the tensor form factor fT (q2). In a similar way the scalar form factor f0(q

2) (35) can be

modified by introducing its own second free parameter r
(0)
BZ.

3.3 The Boyd-Grinstein-Lebed Parametrization

This parametrization was introduced for the form factors entering both the heavy-to-
light [13] and heavy-to-heavy [45] transition matrix elements and used in the analysis of
the semileptonic B → D(∗)`ν` [45–47] and B → π`ν` [13, 48] decays. The basic idea is
to find an appropriate function z(q2, q20) in term of which the form factor can be written
as a Taylor series with good convergence for all physical values of q2 so that the form
factor can be well described by the first few terms in the expansion. The generalization of
this parametrization to additional form factors entering rare semileptonic B → hL `

+`−,
where hL is the pseudoscalar K- or the vector ρ- or K∗-mesons, and Bs → φ `+`− decays,
was undertaken in [49]. As this will be our default parametrization in our analysis, we
discuss it at some length.

The following shape for the form factors fi(q
2) with i = +, 0, T is suggested in the

BGL parametrization [13]:

fi(q
2) =

1

P (q2)φi(q2, q20)

kmax∑
k=0

ak(q
2
0)
[
z(q2, q20)

]k
, (37)

where the following form for the function z(q2, q20) is used:

z(q2, q20) =

√
m2

+ − q2 −
√
m2

+ − q20√
m2

+ − q2 +
√
m2

+ − q20
, (38)

with the pair-production threshold m2
+ = (mB + mπ)2 and a free parameter q20. The

function z(q2, q20) maps the entire range of q2 onto the unit disc |z| ≤ 1 in a way that
the minimal physical value zmin = z(m2

−, q
2
0) corresponds to the lowest hadronic recoil

q2max = m2
− = (mB − mπ)2, the maximal value zmax is reached at q2 = 0, and z(q2, q20)

vanishes at q2 = q20. In early studies of the form factors, the parameter q20 was often taken
to be q20 = m2

− [13, 45], so that zmin = 0. In this case, the maximal value zmax = 0.52 for
the B → π`ν` decay is not small but enough to constrain the form factor f+(q2) [48, 50].
To decrease the value of zmax, and improve the convergence of the Taylor series in (37),
it was proposed to take a smaller (optimal) value of q20 somewhere in the interval 0 <
q20 < m2

− [51]. In our analysis we make the choice q20 = 0.65m2
− following [8], so that

−0.34 < z(q2, q20) < 0.22 in the entire range 0 < q2 < m2
−.

The proposed shape (37) for the form factor contains the so-called Blaschke fac-
tor P (q2) which accounts for the hadronic resonances in the sub-threshold region q2 < m2

+.
For the semileptonic B → π`ν` decay, where ` is an electron or a muon, there is only
B∗-meson with the mass mB∗ = 5.325 GeV satisfying the sub-threshold condition and
producing the pole in the form factor at q2 = m2

B∗ . In this case, the Blaschke factor is
simply P (q2) = z(q2,m2

B∗) for f+,T (q2) and P (q2) = 1 for f0(q
2).
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Table 2: Parameters entering the outer functions φi(q
2, q20) defined in (40) with i = +, 0, T

in the B → π transition form factors.

fi Ki αi βi χ
(0)
i

f+ 48π 3 2 7.005× 10−4 GeV−2

f0 16π/(m2
+m

2
−) 1 1 1.452× 10−2

fT 48πm2
+ 3 1 1.811× 10−3 GeV−2

The coefficients ak (k = 0, 1, . . . , kmax) entering the Taylor series in Eq. (37) are the
parameters, which are determined by fits of the data. The outer function φi(q

2, q20) is an
arbitrary analytic function, whose choice only affects particular values of the coefficients ak
and allows one to get a simple constraint from the dispersive bound [48]6:

∞∑
k=0

a2k ≤ 1. (39)

This restriction can be achieved with the following outer function [52]:

φi(q
2, q20) =

√
nI

Kiχ
(0)
fi

(√
m2

+ − q2 +
√
m2

+ − q20
)

(m2
+ − q2)(αi+1)/4

(m2
+ − q20)1/4

(40)

×
(√

m2
+ − q2 +

√
m2

+ −m2
−

)αi/2(√
m2

+ − q2 +m+

)−(3+βi)
,

where nI = 3/2 is the isospin factor, while the values of Ki, αi and βi are collected in

Table 2. The numerical quantities χ
(0)
fi

are obtained from the derivatives of the scalar func-
tions entering the corresponding correlators calculated by the operator product expansion
method [48,49,51]. In the two-loop order at the mass scale µb they are as follows [49]:

χ
(0)
f+

=
3

32π2m2
b

(
1 +

CFαs(µb)

4π

25 + 4π2

6

)
− 〈q̄q〉

m5
b

− 〈αsG
2〉

12πm6
b

+
3〈q̄Gq〉
m7
b

, (41)

χ
(0)
f0

=
1

8π2

(
1 +

CFαs(µb)

4π

3 + 4π2

6

)
+
〈q̄q〉
m3
b

+
〈αsG2〉
12πm4

b

− 3〈q̄Gq〉
2m5

b

, (42)

χ
(0)
fT

=
1

4π2m2
b

(
1 +

CFαs(µb)

4π

[
10 + 2π2

3
+ 8 ln

mb

µb

])
− 〈q̄q〉

m5
b

− 〈αsG
2〉

24πm6
b

+
7〈q̄Gq〉

2m7
b

, (43)

where CF = 4/3, and mb is the mass of the b-quark in the loops which is identified with the

MS b-quark mass m̄b(m̄b) = 4.18 GeV [26]. For the evaluation of χ
(0)
fi

it is enough to use the
central values of the input parameters to get the overall numerical normalization factor for
the form factors and the existing uncertainties in χ

(0)
fi

are of not much consequence. The
following input values are used: αs(MZ) = 0.1184± 0.0007 [26], 〈q̄q〉(1 GeV) = −(1.65±

6 The definition for f0(q
2) in accordance with Ref. [49] results in even stronger bound

∑∞
k=0 a

2
k ≤ 1/3.
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0.15)×10−2 GeV3, 〈q̄Gq〉 = 〈q̄gsσµνGA
µνT

Aq〉 = m2
0〈q̄q〉, m2

0(1 GeV) = 0.8±0.2 GeV2, and
〈(αs/π)G2〉 = 0.005±0.004 GeV4 from Ref. [53]. While the mixed quark-gluon 〈q̄Gq〉 and
the two-gluon 〈(αs/π)G2〉 condensates are practically scale-independent quantities [53],
the strong coupling and the quark condensate have to be evolved to the scale of the b-
quark mass where they have the values αs(m̄b) = 0.227 to the two-loop accuracy and

〈q̄q〉(m̄b) = −0.023 GeV3. Numerical values of χ
(0)
fi

are presented in Table 2. They agree
well (up to 5%) with the ones presented in Table 2 of [49], despite difference in the input
parameters. Note that the BaBar collaboration [8] used approximately the same value

χ
(0)
f+

= 6.889× 10−4 GeV−2 in the analysis of the B0 → π+`−ν` decays.

Having relatively small values of z(q2, q20) in the physical region of q2, the shape of the
form factor can be well approximated by the truncated series at kmax = 2 or 3 [46].

3.4 The Bourrely-Caprini-Lellouch Parametrization

The problems with the from-factor asymptotic behavior at |q2| → ∞ and truncation of the
Taylor series found in the BGL-parametrization [14,15] were solved by the introduction of
another representation of the series expansion (called the Simplified Series Expansion —
SSE [49]). The shape suggested for the vector f+(q2) form factor [14] was extended to
the other two, scalar f0(q

2) and tensor fT (q2) form factors [49]:

f+(q2) =
1

1− q̂2∗

kmax∑
k=0

bk(q
2
0)
[
z(q2, q20)

]k
, (44)

f0(q
2) =

m2
B

m2
B −m2

π

kmax∑
k=0

bk(q
2
0)
[
z(q2, q20)

]k
, (45)

fT (q2) =
mB +mπ

mB (1− q̂2∗)
kmax∑
k=0

bk(q
2
0)
[
z(q2, q20)

]k
, (46)

where q̂2∗ = q2/m2
B∗ and the function z(q2, q20) is defined in Eq. (38). In this expan-

sion the shape of the form factor is determined by the values of bk, with truncation at
kmax = 2 or 3. The value of the free parameter q20 is proposed to be the so-called optimal

one q20 = q2opt = (mB +mπ)
(√

mB −
√
mπ

)2
[14] which is obtained as the solution of

the equation z(0, q20) = −z(m2
−, q

2
0) (the latter condition means that the physical range

0 < q2 ≤ m2
− is projected onto a symmetric interval on the real axis in the complex

z-plane). The prefactors 1/(1− q̂2∗) in f+(q2) and fT (q2) allow one to get the right asymp-
totic behavior ∼ 1/q2 predicted by the perturbative QCD. In Ref. [14, 15] an additional
restriction on the series coefficients was discussed. In particular, in the case of f+(q2) at
q2 ∼ m2

+, the threshold behavior of the form factor results in a constraint on its deriva-
tive, df+/dz|z=−1 = 0 [14], which allows one to eliminate the last term in the truncated
expansion as follows:

bkmax = −(−1)kmax

kmax

kmax−1∑
k=0

(−1)k k bk. (47)
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B0 π−

b̄

d d

ū

`+ν`

Figure 3: Feynman diagram for the decay B0 → π−`+ν`.

In the case of f0(q
2) the threshold behavior is different and a similar relation is not applied.

To the best of our knowledge, a detailed analysis of the additional constraints based on
the threshold behavior of the tensor fT (q2) form factor has not yet been performed.
This behavior, however, is not expected to be very different from the one found for
the vector f+(q2) form factor. So, one may as well put the condition on the derivative
dfT/dz|z=−1 = 0 in this case, which allows to eliminate the last term in the truncated
expansion for fT (q2).

4 Extraction of the f+(q
2) Form-Factor Shape

4.1 The B0 → π−`+ν` Branching Fraction

The charged-current Lagrangian inducing the b→ u transition in the SM is:

LW (x) = − g

2
√

2
Vub [ū(x)γµ (1− γ5) b(x)]W µ(x) + h. c., (48)

where g is the SU(2)L coupling, Vub is the element of the CKM matrix, u(x) and b(x)
are the u- and b-quark fields, and W (x) is the W -boson field. Feynman diagram for the
B0 → π−`+ν` decay is shown in Fig. 3 and the one for the B+ → π0`+ν` decay differs by
the exchange of the spectator-quark flavor (d → u) only. The B → π transition matrix
element entering the B-meson decay B → π`ν`, can be parametrized in terms of two form
factors f+(q2) and f0(q

2) as follows [54,55]:

〈π(pπ)|ūγµb|B(pB)〉 = f+(q2)

[
pµB + pµπ −

m2
B −m2

π

q2
qµ
]

+ f0(q
2)
m2
B −m2

π

q2
qµ. (49)

Here, pB (mB) and pπ (mπ) are the four-momenta (masses) of the B- and π-mesons,
respectively. In the isospin-symmetry limit, the form factors entering in the charged-
current matrix element (49) are exactly the same as the ones in Eq. (15) in the FCNC
process B → π `+`−.
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Measurements of the B0 → π−`+ν` and B+ → π0`+ν` decays, where ` = e, µ, allow to
extract both the CKM matrix element |Vub| and the shape of the f+(q2) form factor. The
differential branching fractions of the above processes can be written in the form [26]:

dΓ(B → π`+ν`)

dq2
= CP

G2
F |Vub|2

192π3m3
B

λ3/2(q2)f 2
+(q2) (50)

where GF is the Fermi constant, CP is the isospin factor with CP = 1 for the π+-meson
and CP = 1/2 for the π0-meson, λ(q2) is the standard three-body kinematic factor (18),
q = p` + pν is the total four-momentum transfer, bounded by m2

` ≤ q2 ≤ (mB − mπ)2,
and p` and pν are the four-momenta of the charged lepton and the neutrino, respectively.
In general, the B → π transition matrix element (49) depends on two form factors,
in practice, however, only f+(q2) is measurable in the B → π`ν` decays with electrons
and muons, since the contribution of the scalar form factor f0(q

2) to the decay rate is
suppressed by the mass ratio of the charged lepton to the B-meson [55].

The values of GF , mB, and mπ are known with high accuracy [26], while the experi-
mentally derived value of |Vub| depends somewhat on the extraction method and B-meson
decays considered. This is discussed at great length in the Particle Data Group (PDG)
reviews [26]. The value quoted from the analysis of the exclusive B → π`ν̄ decay is listed
there as |Vub| = (3.23 ± 0.31) × 10−3. On the other hand, assuming the SM, the CKM
unitarity fits yield a value of |Vub| which is consistent with the previous value, but it is
about a factor 2 more precise [26]: |Vub| = (3.51+0.15

−0.14)× 10−3, which we use as our default
value in the numerical estimates.

The partial branching fractions for the B0 → π−`+ν` decays has been measured by
the CLEO, BaBar and Belle collaborations, and for the B+ → π0`+ν` decays by the
Belle collaboration. Below we give the total branching fraction of the B0 → π−`+ν` decay
taking into account the recent data from the BaBar and Belle collaborations [10,11,56,57]:

B(B0 → π−`+ν`) =


(1.42± 0.05stat ± 0.07syst)× 10−4 [BaBar, 2011] ,
(1.45± 0.04stat ± 0.06syst)× 10−4 [BaBar, 2012] ,
(1.49± 0.04stat ± 0.07syst)× 10−4 [Belle, 2011] ,
(1.49± 0.09stat ± 0.07syst)× 10−4 [Belle, 2013] .

(51)

All these measurements are in excellent agreement with each other, and with the one for
the B+ → π0`+ν` decay reported by the Belle collaboration [11]:

B(B+ → π0`+ν`) = (0.80± 0.08stat ± 0.04syst)× 10−4. (52)

Both the collaborations have presented differential distributions in q2 relevant for the
extraction of f+(q2) from data [10, 11, 56, 57]. We show them in the next subsection,
where also our fitting procedure is presented.

4.2 Fitting Procedure

In this subsection the extraction of the f+(q2) form-factor shape from the dilepton invariant-
mass spectra in the B0 → π−`+ν` and B+ → π0`+ν` decays measured by the BaBar [56,57]
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Table 3: Summary of the χ2
min/ndf values, where ndf is the number of degrees of freedom,

(corresponding p-values) for different sets of experimental data (rows) and different form-
factor parametrizations (columns).

BK [12] BZ [6] BGL [46] BCL [14]
BaBar 2011 [56] 9.93/10 (45%) 4.80/9 (85%) 4.12/9 (90%) 3.75/9 (93%)
BaBar 2012 [57] 8.68/10 (56%) 5.50/9 (79%) 5.65/9 (77%) 5.73/9 (77%)
Belle 2011 [10] 15.86/11 (15%) 14.55/10 (15%) 12.97/10 (23%) 14.44/10 (15%)
Belle 2013 [11] 24.41/18 (14%) 23.55/17 (13%) 24.16/17 (12%) 23.26/17 (14%)
BaBar & Belle 44.99/43 (39%) 44.91/42 (35%) 44.56/42 (36%) 44.77/42 (36%)

and Belle [10,11] collaborations is explained. All four f+(q2) form-factor parametrizations
from Sec. 3 are examined to test their consistency with the experiment in terms of the
best-fit values resulting from the χ2-distribution function [26].

The fitted form factor is presented as a function of q2 which contains a set of k unknown
parameters α1, . . . , αk:

f+(q2) = f(q2;α1, . . . , αk). (53)

Given the experimental values yi of the partial branching fractions ∆B(q2)/∆q2 in bins
of q2, with their uncertainties σi, the χ2-distribution function is defined as follows [26]:

χ2 =
N∑
i=1

(yi − F (xi;α1, . . . , αk))
2

σ2
i

, (54)

whereN is the number of experimental points and F (xi;α1, . . . , αk) denotes the theoretical
estimates of the partial branching fractions ∆B(q2)/∆q2 for the given parametrization:

F (xi;α1, . . . , αk) =

xi+ai/2∫
xi−ai/2

dB(q2)

dq2
dq2, (55)

with xi and ai being the center and the width of the ith bin. The standard minimization
procedure of the χ2-function (minimum of this function is denoted as χ2

min) allows us
to extract the values of fitted parameters α1,min, . . . , αk,min, which are considered to be
their best-fit values. The results obtained by using the four form-factor parametrizations
for different sets of experimental data obtained by the BaBar [56, 57] and Belle [10, 11]
collaborations are presented in Figs. 4 and 5, respectively, and the numerical values for
χ2
min/ndf, where ndf is the number of degrees of freedom, and the corresponding p-values

are presented in Table 3. The results from the combined analysis of the BaBar and Belle
data sets are shown in Fig. 6. In this analysis we have assumed that the experimental
points are all uncorrelated.

From Table 3 it follows that the smallest value for χ2
min/ndf corresponds to the simplest

Becirevic-Kaidalov parametrization. From the rest of the specified parametrizations, the
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Figure 4: (Color online.) Partial ΔBr(q2)/Δq2 spectra for the B0 → π−`+ν` and B
+ → π0`+ν`

decays, where ` = e, µ. The data points (black dots) are placed in the middle of each bin. The
error bars (blue) include the total experimental uncertainties. The curves show the results of the
fit to the data for the four form-factor parametrizations discussed in the text: BK (34) (thick
dotted blue line), BZ (36) (thick dashed purple line), BGL (37) with kmax = 2 (thick dot-dashed
yellow line), and BCL (44) with kmax = 2 (thick solid green line). The upper-left and upper-
right plots correspond to the BaBar 2011 [56] and 2012 [57] data sets, while the lower-left and
lower-right plots are plotted based on the Belle 2011 [10] and 2013 [11] data sets.

Boyd-Grinstein-Lebed one has the smallest χ2
min/ndf value and we will use it for all the

form factors entering the B → π`+`− decay.
The combined analysis of the BaBar and Belle data results the following set of fit-

ted parameters entering the f+(q2) form factor expansion in the BGL parametrization
truncated at kmax = 2:

a0 = 0.0209± 0.0004,

a1 = −0.0306± 0.0031, (56)

a2 = −0.0473± 0.0189.

The numerical values extracted depend on the CKM matrix element |Vub| and correspond
to the PDG value [26]: |Vub| = (3.51+0.15

−0.14) × 10−3. The errors specified in the coeffi-
cients (56) are the square roots of the covariance matrix Uij for the BGL form-factor
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Figure 5: (Color online.) The f+(q
2) form-factor shapes multiplied by the CKM matrix ele-

ment |Vub| following from the BaBar [56,57] and Belle [10,11] data. The curves show the results
of the fit to these data: BK (34) (thick dotted blue line), BZ (36) (thick dashed purple line),
BGL (37) with kmax = 2 (thick dot-dashed yellow line), and BCL (44) with kmax = 2 (thick
solid green line) parametrizations.

coefficients which can be derived from the χ2-function (54) as follows [26]:(
U−1

)
ij

=
1

2

∂2χ2

∂αi∂αj

∣∣∣∣
αk=α̂k

, (57)

where α̂k are the best-fit values of the fitting parameters. The BGL form factor belongs
to the case for which the function F (xi;α1, . . . , αk) depends linearly on the unknown
parameters, which simplifies the analysis. The corresponding correlation matrix rij is
connected with the covariance matrix by the relation rij = Uij/(σi σj), where σ2

i is the
variance of αi. For the BGL form factor with the truncation at kmax = 2, the following
(3× 3) correlation matrix was obtained:

rij =

 1 −0.26 −0.43
−0.26 1 −0.68
−0.43 −0.68 1

 . (58)

One can see a strong correlation of the third coefficient a2 in the z-expansion with the
other two a0 and a1. This is shown in Fig. 7. The relative error on the coefficient a2 is
approximately 40% as ca also be seen in Eq. (56)
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Figure 6: (Color online.) Partial ΔB(q2)/Δq2 spectra for the decays B0 → π−`+ν` and B
+ →

π0`+ν` are presented on the left plot. The f+(q
2) form factor is shown on the right plot. The

BGL parametrization is adopted as the preferred choice. Results are obtained by combining the
experimental data by the BaBar [57] and Belle [10,11] collaborations and, in addition, the value
|Vub| = (3.51+0.15

−0.14)× 10−3 [26]) is used to extract explicitly the form-factor shape. The existing
Lattice-QCD data [58] on the form factor are presented as the vertical bars on the right plot.

5 Determination of f0(q
2) and fT (q

2) Shapes

As pointed out earlier, the form factor f0(q
2) is not required for either the charged-

current decay B → π`ν` or the FCNC semileptonic B → π`+`− decay with ` = e, µ, as
its contribution to the branching fraction is suppressed by the smallness of the lepton
mass squared. However, for the sake of completeness involving the semileptonic processes
with `± = τ±, we also work out the f0(q

2) form factor. The information on the form
factors f+(q2) and f0(q

2) for the B → π and B → K transitions is available, though
the lattice results on the B → π form factor fT (q2) are still scant. For our analysis,
we use an Ansatz for the SU(3)F -symmetry breaking to obtain the shape of fBπT (q2),
from the corresponding B → K form factor fBKT (q2). We show subsequently that our
Ansatz, which assumes that the SU(3)F -symmetry breaking in fT (q2) is an average of
the corresponding symmetry-breaking effects in the form factors f+(q2) and f0(q

2), yields
an fBπT (q2), which is in good agreement with the preliminary results on this form factor,
obtained from lattice in the low-recoil region.

5.1 The f0(q
2) Form Factor

The parameters of f0(q
2) can be obtained from the existing results of the B → π transition

form factor calculated by the HPQCD collaboration [58]. In addition one can use the exact
relation between f+(q2) and f0(q

2) at q2 = 0:

f+(0) = f0(0), (59)

which follows from the requirement of the finiteness of the B → π transition matrix
element (15) at this point. To fix f0(0), we use the reference point f+(0) = 0.261± 0.014,
extracted by us from the experimental data. The form-factor parametrization we use
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Figure 7: (Color online.) The two-dimensional correlations among the fitted parameters a0, a1
and a2 entering the BGL-parametrization of the form factor f+(q

2): a0 − a1 (upper-left plot),
a0−a2 (upper-right plot) and a1−a2 (lower-left plot). The three-dimensional correlation among
all three fitted parameters is shown in the lower-right plot.

for f0(q
2) follows our default choice from the analysis of f+(q2) — the BGL expansion

in z(q2, q20) truncated at kmax = 2. The set of the fitted parameters entering f0(q
2) is as

follows:

a0 = 0.0201± 0.0007,

a1 = −0.0394± 0.0096, (60)

a2 = −0.0355± 0.0556,

and the corresponding correlation matrix (i, j = 1, 2, 3) is:

rij =

 1 0.72 −0.82
0.72 1 −0.96
−0.82 −0.96 1

 . (61)

One sees again strong correlations among all the fitted parameters, which can be well
approximated by linear correlations.
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Figure 8: (Color online) The scalar B → π transition form factor f0(q
2) in the entire kine-

matic region using the BGL parametrization. The solid green lines show the uncertainty
in the form factor. The vertical bars are the Lattice-QCD data [58] used for fixing the
form-factor shape.

5.2 The fT (q
2) Form Factor

As already mentioned, there is at present only scant information about the B → π tensor
form factor fBπT (q2). So, one needs to find a reliable method to extract it from the existing
model-independent data. We use an SU(3)F -symmetry-breaking Ansatz involving the
both B → K and B → π form factors. We recall that all three B → K transition form
factors fBK+ (q2), fBK0 (q2) and fBKT (q2) have been calculated recently by the HPQCD
collaboration [20, 21] and the two B → π transition form factors fBπ+ (q2) and fBπ0 (q2)
are also known [58]. Of course, lattice results are available only in the small-recoil limit.
With this knowledge, we first estimate the SU(3)F -symmetry-breaking corrections in the
already known vector and scalar form factors and use these corrections to estimate the
B → π tensor form factor fBπT (q2) from the corresponding B → K transition form factor
fBKT (q2). We introduce the following measures of the SU(3)F -breaking corrections in the
transition form factors:

Ri(q
2) =

fBKi (q2)

fBπi (q2)
− 1, (62)

where i = +, 0, T . The curves for the SU(3)F -symmetry breaking functions R+(q2) and
R0(q

2), calculated for the central values of the form factors from the lattice for small-recoil
region, are presented in Fig. 9. As expected, breaking effects of order 10% are seen in
both the ratios. We also expect that the SU(3)F -symmetry breaking effect in the third
ratio, RT (q2), is of the same order. For the sake of definiteness, we assume that the ratio
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Table 4: Values of the tensor form factor fBπT (q2) at the indicated values of q2 obtained
from the existing Lattice-QCD data on the fBKT (q2) transition form factor [21] and the
SU(3)F -symmetry breaking function RT (q2) defined in the text. The variance of fBπT (q2)
is calculated by adding the errors of fBKT (q2) and RT (q2) in quadrature.

q2, GeV2 18.4 19.1 19.8 20.6
fBKT (q2) 1.197± 0.047 1.307± 0.051 1.434± 0.057 1.608± 0.069
RT (q2) 0.080± 0.021 0.076± 0.021 0.073± 0.023 0.071± 0.023
fBπT (q2) 1.108± 0.126 1.215± 0.115 1.337± 0.117 1.503± 0.123

q2, GeV2 21.3 22.1 22.8 23.5
fBKT (q2) 1.793± 0.082 2.054± 0.106 2.342± 0.135 2.713± 0.176
RT (q2) 0.070± 0.037 0.072± 0.050 0.076± 0.067 0.083± 0.090
fBπT (q2) 1.675± 0.144 1.916± 0.169 2.178± 0.211 2.506± 0.302

RT (q2) of the tensor form factors is the average of the other two: R+(q2) and R0(q
2),

RT (q2) =
1

2

[
R+(q2) +R0(q

2)
]
. (63)

The corresponding function RT (q2) is presented in Fig. 9 as the central curve. Explicit
values of of this function in the small-recoil region are presented in Table 4. The errors
reflect the uncertainties of the lattice calculations and we assume that the errors in the
B → π and B → K transition form factors are uncorrelated.

The values of the fBπT (q2) form factor were then obtained by rescaling them from the
known values of the fBKT (q2) form factor [21] by utilizing the relation:

fBπT (q2) =
fBKT (q2)

1 +RT (q2)
. (64)

They are presented in Table 4. The variance of fBπT (q2) is calculated by adding the errors of
fBKT (q2) and RT (q2) in quadrature. The normalization at q2 = 0: fBπT (0) = 0.231±0.013,
which results from fBπ+ (0) = 0.261 ± 0.014, extracted by us from the experimental data
on B → π`ν`, and the Heavy-Quark Symmetry relation between the form factors in the
large-recoil limit of the π-meson [27,34]: fBπT (0) = (1 +mπ/mB) fBπ+ (0). With all this at
hand, we have a fairly constrained model for the fBπT (q2) form factor.

For the BGL parametrization of the fBπT (q2) form factor, the set of fitted parameters
entering the expansion in z(q2, q20) and truncated at kmax = 2 is as follows:

a0 = 0.0458± 0.0027,

a1 = −0.0234± 0.0124, (65)

a2 = −0.2103± 0.1052,

24



Figure 9: (Color online) The SU(3)F -symmetry breaking functions R+(q2), R0(q
2) and

RT (q2) (left plot) in the q2-range accessible by the Lattice-QCD simulations and the
tensor B → π transition form factor fT (q2) (right plot) in the entire kinematic region.
The sets of vertical bars in the large-q2 region are the preliminary results from the HPQCD
Collaboration [24] presented at the Lattice-2013 Conference. The legend on the right plot
specifies the lattice ensembles as used in the B → K transitions [21], by the HPQCD
collaboration.

with the corresponding correlation matrix (i, j = 1, 2, 3):

rij =

 1 0.68 −0.90
0.68 1 −0.83
−0.90 −0.83 1

 . (66)

Strong correlations among the fitted parameters are observed similar to the case of
fBπ0 (q2).

The resulting fBπT (q2) form factor is shown in Fig. 9. Recent preliminary results
for this form factor at large q2 from the HPQCD Collaboration [24] are also presented
in this figure.7 The symbols (F1, F2, C1, C2, C3) and the corresponding lattice-data
points denote the various lattice ensembles used by this collaboration for performing the
numerical simulations, which are the same as the ones used in the calculation of the B →
K transition form factors [20, 21], namely the MILC 2 + 1 asqtad gauge configurations.
Good agreement of the lattice data on fBπT (q2) in the large-q2 region with our results
based on using the SU(3)F -symmetry-breaking Ansatz is evident in this figure.

As all the form factors in the B → π transition are now determined, using data and
lattice QCD, we can now make model-independent predictions for the dilepton invariant-
mass spectrum and the decay width in the semileptonic B → π `+`− decays.

7They were presented by C. Bouchard et al. at the Lattice-2013 Conference, held recently in Mainz
(Germany).
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6 B+ → π+`+`− Decay in the Low-q2 Region

6.1 HQS Limit

As discussed in the introduction, one can apply the heavy-quark symmetry (HQS) tech-
niques to relate the form factor fBπT (q2) in B± → π±`+`− to the one measured form factor
f+(q2) in the charged-current decay B → π`ν`, in the large-recoil (or low-q2) region. As
shown in Ref. [34], in the HQS limit (i. e., without taking into account symmetry-breaking
corrections), f0(q

2) and fT (q2) are proportional to f+(q2):

f0(q
2) =

m2
B − q2
m2
B

f+(q2), (67)

fT (q2) =
mB +mπ

mB

f+(q2). (68)

In the symmetry limit, there is only one independent form factor f+(q2), the shape of
which can be extracted from the analysis of the B0 → π+`+ν` and B+ → π0`+ν`, which
we presented earlier. The decay rate of B+ → π+`+`− in the HQS limit is greatly
simplified and takes the form:

dB (B+ → π+`+`−)

dq2
=
G2
Fα

2
emτB+

1024π5m3
B

|VtbV ∗td|2
√
λ(q2)

√
1− 4m2

`

q2
F̃ (q2) f 2

+(q2), (69)

where the dynamical function F (q2), defined in Eq. (19), is now reduced to the following
expression:

F̃ (q2) =
2

3
λ(q2)

(
1 +

2m2
`

q2

) ∣∣∣∣Ceff
9 (q2) +

2mb

mB

Ceff
7 (q2)

∣∣∣∣2 +
2

3
λ(q2)

∣∣Ceff
10

∣∣2
+

4m2
`

q2
∣∣Ceff

10

∣∣2 [(1− m2
π

m2
B

)2 (
m2
B − q2

)2 − 2

3
λ(q2)

]
, (70)

and the kinematic function λ(q2) is given in (18).
Restricting ourselves to the NLL results for the effective Wilson coefficients (i. e.,

dropping the αs(µ)-dependent terms in them) and using the f+(q2) form-factor shape
extracted in terms of the BGL parametrization from the combined BaBar and Belle
data, and the numerical values of the different quantities entering (69) from Table 5, the
numerical values of the B± → π±µ+µ− partial branching ratio in the ranges 4m2

µ ≤ q2 ≤
8 GeV2 and 1 GeV2 ≤ q2 ≤ 8 GeV2 are given below:

B(B± → π±µ+µ−; 0.05 GeV2 ≤ q2 ≤ 8 GeV2) = (0.80± 0.07)× 10−8, (71)

B(B± → π±µ+µ−; 1 GeV2 ≤ q2 ≤ 8 GeV2) = (0.72± 0.06)× 10−8. (72)
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Table 5: Main input parameters used in the theoretical evaluations of the B+ → π+`+`−

branching fractions taken from the PDG [26], except for the B-meson leptonic decay
constant fB, whose value is taken from lattice-NRQCD [59].

GF = 1.11637× 10−5 GeV−2 α−1em = 129
αs(MZ) = 0.1184± 0.0007 fB = (184± 4) GeV
mc(mc) = (1.275± 0.025) GeV mb(mb) = (4.18± 0.03) GeV
λ = 0.22535± 0.00065 A = 0.817± 0.015
ρ̄ = 0.136± 0.018 η̄ = 0.348± 0.014
|Vud| = 0.97427 |Vtb| = 0.999146
|Vub| = (3.51+0.15

−0.14)× 10−3 |Vtd| = (8.67+0.29
−0.31)× 10−3

6.2 Including HQS-Breaking Correction

Both heavy-quark symmetry and final hadron kinematics in the large-recoil limit allows
to get relations among the B → π form factors [27]. With taking into account symmetry-
breaking corrections, these relations were worked out in Ref. [34]:

f0(q
2) =

(
1− q2

m2
B

)
f+(q2)

{
1 +

CFαs(µh)

4π

[
2− 2L(q2)

]}
+

CFαs(µhc)

4π

q2

m2
B − q2

∆Fπ, (73)

fT (q2) =

(
1 +

mπ

mB

)
f+(q2)

[
1 +

CFαs(µh)

4π

(
ln
m2
b

µ2
h

+ 2L(q2)

)]
− CFαs(µhc)

4π

mB (mB +mπ)

m2
B − q2

∆Fπ, (74)

where CF = 4/3. The strong coupling αs(µ) depends on the specific scales of the con-
tributing diagrams, which we take as the hard µh ∼ mb and hard-collinear µhc ∼

√
mbΛ

scales, where Λ ' 0.5 GeV is the typical soft hadronic scale. The auxiliary function L(q2)
is defined as [34]:

L(q2) =

(
1− m2

B

q2

)
ln

(
1− q2

m2
B

)
, (75)

with the normalization L(0) = 1, and the contributions of the hard-spectator diagrams
are parametrized by the quantity [34]:

∆Fπ =
8π2fBfπ

3mB

〈
l−1+

〉
+

〈
ū−1
〉
π
. (76)
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Here, fB and fπ are the leptonic decay constants of the B- and π-mesons and the following
first inverse moments of the B- and π-mesons are used:

〈
l−1+

〉
+

=

∞∫
0

dl+
φB+(l+)

l+
,
〈
ū−1
〉
π

=

1∫
0

du
φπ(u)

1− u , (77)

which are completely determined by the leading-twist light-cone distribution amplitudes
φB+(l+) [60,61] and φπ(u) [62–70]. With the input parameters mB, fB and fπ from Table 5,
the values of moments 〈ū−1〉π (1 GeV) = 3.30 ± 0.42 and

〈
l−1+

〉
+

(1.5 GeV) = (1.86 ±
0.17) GeV−1 [71], the value of (76) is estimated as ∆Fπ = 0.74±0.12. We note that this is
smaller than ∆Fπ = 1.17 used in Ref. [34]. This difference reflects the observation that the
π-meson is well described by the asymptotic form of the twist-2 LCDA φπ(u) = 6u (1− u),
and the first subleading Gegenbauer moment a2(1 GeV) = 0.10 ± 0.14 [72] is consistent
with zero.

Taking into account the symmetry-breaking corrections, and the NNLO effects in the
effective Wilson coefficients, the partial branching fractions, integrated in the ranges of q2

as in (71) and (72), are decreased. We get

B(B+ → π+µ+µ−; 0.05 GeV2 ≤ q2 ≤ 8 GeV2) = (0.65+0.08
−0.06)× 10−8, (78)

B(B+ → π+µ+µ−; 1 GeV2 ≤ q2 ≤ 8 GeV2) = (0.57+0.07
−0.05)× 10−8, (79)

which mainly reflects the NNLO effects in the Wilson coefficients. The corresponding
dilepton invariant-mass distribution in the large-recoil approximation (q2 ≤ 8 GeV2)
is shown in Fig. 10. The vertical line shows the light-resonance (ρ, ω, and φ) region
collectively. The upper bound on q2 is imposed to avoid the large (resonant) contribution
from the long-distance process B± → π± J/ψ → π±`+`−.

7 B+ → π+`+`− Decay in the Entire q2-Range

In the low hadronic-recoil region (large-q2), heavy-quark symmetry does not hold, and
we have three independent form factors f+(q2), f0(q

2) and fT (q2) in B± → π±`+`−. We
have given a detailed account of their determination in the preceding sections, taking
into account the Belle and BaBar data on B → π`ν`, heavy-quark symmetry and its
leading-order breaking (for q2 ≤ 8 GeV2) and Lattice-QCD results in the large-q2 region,
obtained for the B → K and B → π transitions.

Before presenting our numerical results, we discuss the choice for the parameter√
z = mc/mb entering the NNLO corrections. The NNLO corrections to the b → s `+`−

transition matrix element [42], which we have adapted for the exclusive b → d `+`− case
discussed by us here, are available in the literature both as a Mathematica and a C++
programs [42], from which the former one was implemented into our own Mathematica
routine. We need to fix this ratio in terms of the c- and b-quark pole masses. The three-
loop relation between the pole mpole and MS-scheme m̄(m̄) masses [73–75] can be used to
get the c- and b-quark pole masses. Staring from the values collected in Table 5, the ratio
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Figure 10: The dilepton invariant-mass distribution dB(B± → π±`+`−)/dq2 for 0 ≤ q2 ≤
8 GeV2 calculated by taking into account the leading HQS-breaking corrections. Dashed
vertical line indicates collectively the vector ρ-, ω-, and φ-resonance region.

mc(mc)/mb(mb) = 0.305 ± 0.006 can be transformed into the ratio of the pole masses
mc,pole/mb,pole = 0.402 ± 0.008. In another work [76], additional electroweak corrections
to the relation between the pole and MS quark masses were taken into account with the
resulting pole masses: mc,pole = 1.77 ± 0.14 GeV and mb,pole = 4.91 ± 0.12 GeV, with
the ratio mc,pole/mb,pole = 0.36 ± 0.03. This value is used by us as the input for

√
z in

calculating the c-quark loop-induced corrections.
The invariant-mass spectrum in the entire range of q2 (4m2

` < q2 < 26.4 GeV2)
is presented in Fig. 11. The dashed vertical lines specify the resonant regions of light
mesons at q2 . 1 GeV2 as well as of J/ψ- and ψ(2S)-mesons. As mentioned earlier, in the
calculation of this spectrum the Wilson coefficients in NNLO and the model-independent
f+(q2) and fT (q2) form factors were used. As the auxiliary functions F

(7)
1,2 (q2) and F

(9)
1,2 (q2)

entering the next-to-leading correction in Ceff
9 (q2) are known analytically as the power

expansions in s = q2/m2
B and in 1 − s (as shown in Fig. 2) we have extrapolated these

functions into the intermediate q2-region. In doing this, we have matched the known
analytical functions in the form of expansions at the “matching” point q2 ' 12.5 GeV2,
at which value the spectrum has the minimal discontinuity (see Fig. 11). This results into
an invariant-mass spectrum which is a smooth function in q2, within uncertainties. It is
important to note that the “matching” point q2 ' 12.5 GeV2 lies in the ψ(2S)-resonance
region which is dominated by the long-distance effects and the short-distance analysis
performed by us is not valid. After excluding the resonance regions, the short-distance
contribution to the differential branching fraction dominates and the discontinuity in the
spectrum is not crucial. This allows us to make a prediction for the partial branching
fraction also in the gap between the J/ψ- and ψ(2S)-resonances (a similar quantity has
been measured in the B → K `+`− decays) but this estimate should be taken with caution
as possible long-distance effects, being sub-dominant, nevertheless could change the value
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Figure 11: The dilepton invariant-mass distribution in the B+ → π+`+`− decay for the
entire kinematic range 0 ≤ q2 ≤ 26.4 GeV2. Dashed vertical lines specify the positions of
vector resonances: ρ-, ω- and φ-mesons at q2 . 1 GeV2 and J/ψ- and ψ(2S)-mesons near
q2 ' 9.5 GeV2 and q2 ' 13.5 GeV2, respectively.

substantially.
Our predictions for the partial branching fractions dB(B± → π± `+`−)/dq2 in eleven

different q2 bins are presented in Table 6. The total branching fraction of the semileptonic
B± → π± µ+µ− decay is as follows:

B(B± → π± µ+µ−) =
(

1.88+0.28
−0.15

∣∣
µb
± 0.13

∣∣
|Vtd|
± 0.08

∣∣
FF
± 0.01

)
× 10−8

=
(
1.88+0.32

−0.21
)
× 10−8, (80)

where the individual uncertainties are from the scale dependence µb of the Wilson coeffi-
cients, the CKM matrix element |Vtd| and form factors (FF), as indicated. The resulting
average uncertainty about 15% is dominated by the scale dependence of the Wilson coef-
ficients and can be reduced after the scale-dependence of the tensor form factor fBπT (q2)
is worked out properly in the entire q2-range.

The branching fraction for the semileptonic B± → π± e+e− decay is the same as
(80), as the additional contribution induced by the shift to the lower kinematic values of
q2 = m2

e ' 0.26 MeV2 is negligible.

8 Summary and Outlook

We have presented a theoretically improved calculation of the branching fraction for the
B± → π±µ+µ− decay, measured recently by the LHCb collaboration [1]. In doing this,
we have used the effective Wilson coefficients Ceff

7 (q2), Ceff
9 (q2) and Ceff

10 , obtained in the
NNLO accuracy earlier for the b → (s, d) `+`− decays [33, 35–38]. Some of the auxiliary

30



Table 6: Partial branching ratios dB(B+ → π+µ+µ−)/dq2 integrated over the indicated
ranges [q2min, q

2
max].

[q2min, q
2
max] 108 × B(q2min ≤ q2 ≤ q2max)

[0.05, 2.0] 0.15+0.03
−0.02

[1, 2.0] 0.08+0.01
−0.01

[2.0, 4.3] 0.19+0.03
−0.02

[4.3, 8.68] 0.37+0.06
−0.04

[10.09, 12.86] 0.25+0.04
−0.03

[14.18, 16.0] 0.15+0.03
−0.02

[16.0, 18.0] 0.15+0.03
−0.02

[18.0, 22.0] 0.25+0.04
−0.03

[22.0, 26.4] 0.13+0.02
−0.02

[0.05, 8.0] 0.66+0.10
−0.07

[1.0, 8.0] 0.58+0.09
−0.06

[4m2
µ, (mB −mπ)2] (total) 1.88+0.32

−0.21

functions, called F
(7)
1,2 (q2), F

(9)
1,2 (q2), F

(7)
1,(2),u(q

2), F
(9)
1,(2),u(q

2) are known analytically in the

limiting case ofmc/mb = 0 [41], which we have used. For realistic values of this ratio, taken
by us as

√
z = mc/mb = 0.36, the results are known only in limited ranges of s = q2/m2

B

(s ≤ 0.35 and 0.55 < s < 1.0). All these functions are shown numerically in Fig. 2. We
have interpolated in the gap, which introduces some uncertainty, but being part of the
NNLO contribution, it is not expected to be the dominant error. Theoretical uncertainties
are dominated by the imprecise knowledge of the form factors, fBπ+ (q2) and fBπT (q2). We
have extracted the shape the former from data on the charged-current process B → π`ν`,
measured at the B-factories. Among the four popular parametrizations, the BGL one
(z-expansion) was chosen as the working tool. For the tensor form factor fBπT (q2), heavy-
quark symmetry provides the information in the low-q2 (large-recoil) region, in which
this form factor is related to the known factor fBπ+ (q2), up to symmetry-breaking effects,
which we have estimated from the existing literature. This provides us an estimate of
the dilepton invariant-mass spectrum for q2 ≤ 8 GeV2. For larger values of q2, we have
used the SU(3)F -symmetry-breaking Ansatz and knowledge of the form factor fBKT (q2).
Comparison with the preliminary results by the HPQCD collaboration studies of the form
factor fBπT (q2) in the low-recoil (or large-q2) region [24] shows a good consistency of our
findings. This then provides us a trustworthy profile of the two form factors needed in
estimating the entire dilepton invariant-mass spectrum and the partial branching ratio.
The combined accuracy on the branching ratio is estimated as ±15%, and the resulting
branching fraction B(B± → π±µ+µ−) = (1.88+0.32

−0.21)×10−8 is in agreement with the LHCb
data [1]. We have provided partial branching fractions in different ranges of q2, which can
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be compared directly with the data, as and when they become available.
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