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Abstract

We study the consistency of hybrid inflation and moduli stabilization, using the Kallosh–

Linde model as an example for the latter. We find that F-term hybrid inflation is not

viable since inflationary trajectories are destabilized by tachyonic modes. On the other

hand, D-term hybrid inflation is naturally compatible with moduli stabilization due to the

absence of a large superpotential term during the inflationary phase. Our model turns out

to be equivalent to superconformal D-term inflation and it therefore successfully accounts

for the CMB data in the large-field regime. Supersymmetry breaking can be incorporated

via an O’Raifeartaigh model. For GUT-scale inflation one obtains a stringent bound on the

gravitino mass. A rough estimate yields m3/2 & 105GeV, contrary to naive expectation.

http://arxiv.org/abs/1309.3122v1


1 Introduction

Hybrid inflation [1] is an attractive mechanism for generating the cosmological density per-

turbations. It is naturally realized in the framework of grand unified theories (GUTs) and

string theory, as F-term [2,3] or D-term inflation [4, 5] where the GUT scale emerges through

the Fayet-Iliopoulos (FI) term of an anomalous U(1) symmetry. However, the embedding of

hybrid inflation in a UV-complete theory, which has significant effects on GUT-scale inflation,

remains an open question.

The probably best-motivated UV-complete theory for this embedding is string theory. In

this framework, six dimensions have to be compactified on a Calabi–Yau manifold to obtain

a four-dimensional effective theory with N = 1 supersymmetry. In the classical perturbative

four-dimensional theory massless scalar fields, so-called moduli, arise as remnants of the inter-

nal manifold. The stabilization of these moduli has been a widely discussed subject for many

years. In type IIB string compactifications on Calabi–Yau manifolds with D-branes and fluxes,

it has been shown that all complex structure moduli and the axio-dilaton can be stabilized

by fluxes [6]. Kähler moduli, on the other hand, can be stabilized by non-perturbative con-

tributions to the superpotential, such as gaugino condensates on stacks of D-branes [7]. The

latter have been used in a model by Kallosh and Linde (KL) [8], where a single Kähler mod-

ulus is stabilized in a racetrack potential with vanishing vacuum energy in a local minimum.

This setup has the appealing feature of scale separation between the Hubble scale Hinf during

inflation and the gravitino mass, which can be very small compared to Hinf.

In this paper, we study the effects of stabilizing the Kähler modulus in such a racetrack

potential on the dynamics of hybrid inflation. As was pointed out in [9], even a tiny displace-

ment of the modulus field due to its gravitational coupling to the inflaton field can be fatal

for a potential inflationary trajectory, as can be seen explicitly by integrating out the modulus

field. Our work is related to earlier attempts of combining hybrid inflation and moduli stabi-

lization in F-term [9–11] and D-term inflation [12] as well as in chaotic inflation [13]. Here,

we use a specific form of Kähler potential, motivated by the no-scale Kähler potential of the

modulus field and an approximate superconformal symmetry. Similar to [9, 10], we find that

F-term hybrid inflation is spoiled by corrections induced by the modulus sector. In particular,

whenever one direction of the complex inflaton is flat, the other one is tachyonic. However, we

find that D-term hybrid inflation can be successfully combined with moduli stabilization.

The resulting no-scale D-term inflation model has a number of interesting features. Along

the inflationary trajectory it is actually equivalent to the superconformal D-term inflation

model proposed in [14]. As shown in [15], in the large field regime it asymptotically yields

the Starobinsky model [16], which agrees remarkably well with the recently released Planck

data [17]. Supersymmetry breaking can be accomplished by adding a quantum corrected

O’Raifeartaigh model [18] without spoiling moduli stabilization or inflation. For GUT-scale

inflation one obtains a stringent lower bound on the gravitino mass.

This paper is organized as follows. Our scheme of racetrack moduli stabilization and
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its coupling to F-term hybrid inflation is discussed in Section 2. Turning to D-term hybrid

inflation in Section 3, we calculate all relevant corrections to the inflationary dynamics arising

from moduli stabilization, summarize the inflationary predictions, and discuss supersymmetry

breaking in this context. We conclude in Section 4.

2 F-term hybrid inflation

In its simplest form, the superpotential of F-term hybrid inflation in terms of the chiral super-

fields S, φ+, and φ− can be written as [2]

WHI = λS
(

φ+φ− − v2
)

. (2.1)

In this setup, S contains the inflaton and φ± are the so-called waterfall fields, carrying

charge ±q under some local U(1) symmetry, which are responsible for ending inflation. More-

over, v is of the same order as the GUT scale and the coupling λ is chosen to be real.

The slow-roll potential for the inflaton is typically generated by supergravity interactions

and the one-loop Coleman–Weinberg potential. At a critical field value Sc = v the waterfall

fields obtain a tachyonic mass and inflation ends with spontaneous symmetry breaking of the

U(1) symmetry. For a more detailed account of the dynamics and phenomenology of F-term

hybrid inflation in supergravity, see e.g. [19, 20].

2.1 KL moduli stabilization

When hybrid inflation is embedded in a higher-dimensional theory, the question of moduli

stabilization has to be addressed. For simplicity, we consider a scenario in which the overall

volume of the compactified dimensions is parameterized by a single Kähler modulus ρ = σ+iβ.

This case is well understood in type IIB string theory. In particular, it is assumed that the

dilaton and all complex structure moduli have been stabilized by fluxes [6] and only one

Kähler modulus remains massless. This Kähler modulus can be stabilized by non-perturbative

contributions to the superpotential [7, 8] in combination with a no-scale Kähler potential,

K = −3 ln (ρ+ ρ̄) . (2.2)

In case of two non-perturbative terms, the superpotential reads

WKL = W0 +Ae−aρ +Be−bρ . (2.3)

Here, W0, A, and B are determined by fluxes, and the non-perturbative terms in eq. (2.3) are

generated by gaugino condensates on stacks of D-branes. The parameters a and b are given

by 2π
Ni

, i ∈ {a, b}, where Ni are the ranks of the condensed gauge groups.

In the model of Kallosh and Linde [8], W0 is adjusted to produce a supersymmetric

Minkowski vacuum. The minimum of V occurs at β = 0 and

σ ≡ σ0 =
1

a− b
ln

∣

∣

∣

∣

aA

bB

∣

∣

∣

∣

. (2.4)
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This is achieved by choosing

W0 = −A

(

aA

bB

)
a

b−a

−B

(

aA

bB

)
b

b−a

, (2.5)

such that WKL(σ0) = DρWKL(σ0) = V (σ0) = 0. In this setup, the modulus is generically very

heavy,

m2
ρ =

2

9
(a− b)abAB ln

(

aA

bB

)(

aA

bB

)− a+b

a−b

, (2.6)

so that mρ ∼ O
(

10−3 − 10−1
)

in Planck units, for typical parameter values. Note that the

compactified dimensions have to be stabilized at large enough volume V = O(σ
3/2
0 ) to satisfy

both the supergravity approximation and the single-instanton approximation of this analysis.

In particular, it is required that σ0 ≫ 1 and aσ0, bσ0 ≫ 1. In the following, we assume

σ0 = O(10− 100) for typical values of the racetrack parameters.

2.2 Effective scalar potential

Combining the two sectors discussed above to a model with superpotential

W = WKL +WHI , (2.7)

with unspoiled inflation turns out to be a non-trivial task. As pointed out in [9, 10], even

when the modulus mass is larger than the inflationary Hubble scale, supergravity corrections

from the modulus sector generically ruin inflation. During the slow-roll phase the minimum

of the modulus potential is slightly shifted, causing the modulus to move by an amount δρ

during inflation. The back-reaction of this shift generates a large mass for the inflaton so that

η = O(1). This problem persists when using a no-scale Kähler potential with or without a

shift symmetry for the inflaton [10].

However, this η-problem can be overcome using a particular Kähler potential,

K = −3 ln

[

ρ+ ρ̄− 1

3

(

|S|2 + |φ+|2 + |φ−|2
)

− χ

6

(

S2 + S̄2
)

]

≡ −3 lnX , (2.8)

with χ ∈ R, which has approximate no-scale form [21] with an SU(1, 3) symmetry broken only

by the term proportional to χ. As discussed in Section 3.2 this type of Kähler potential is also

well motivated from the underlying superconformal symmetry of supergravity (see, e.g. [22]).

Note that for χ = 1 eq. (2.8) reproduces the standard form of a shift symmetric no-scale Kähler

potential. Using eq. (2.7) and eq. (2.8) the scalar potential during inflation, i.e., at S > v and

φ+ = φ− = 0, reads

V =
1

X2

{

λ2v4 +
1

3

(

X +
1

3
|S + χS̄|2

)

|W ′
KL|2

−
[(

W − 1

3
λv2

(

S̄ + χS
)

)

W ′
KL + c.c.

]

}

, (2.9)
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where primes denote derivatives with respect to ρ. To take the shift of the modulus during

inflation into account we expand eq. (2.9) in the displacement δρ = ρ− σ0, where σ0 denotes

the minimum of the pure KL potential, i.e., the minimum after inflation. Thus, we compute

the effective potential

Veff = V +

(

∂ρV δρ+
1

2
∂2
ρV δρ2 + c.c.

)

+ ∂ρ∂ρ̄V δρδρ̄ +O(δρ3) , (2.10)

and eliminate δρ demanding that Veff be minimized, i.e., ∂δρVeff = ∂δρ̄Veff = 0. At second order

in S this yields

Veff =
λ2v4

8σ3
0

[

2σ0 + χ
(

S2 + S̄2
)

− χ2 + 2

3
|S|2

]

+O(|S|3) . (2.11)

Evidently, there are two possible values of χ which allow for a vanishing mass of ReS and

ImS, respectively, and hence for flat directions suitable for inflation,

χ = ±(3±
√
7) . (2.12)

However, it turns out that for any value of χ, either ReS or ImS has a tachyonic mass, since

m2
ReS = −λ2v4

12σ2
0

(

χ2 − 6χ+ 2
)

, (2.13a)

m2
ImS = −λ2v4

12σ2
0

(

χ2 + 6χ+ 2
)

. (2.13b)

Thus, any possible inflationary trajectory is destabilized. Note that tachyonic masses of this

order cannot be canceled by masses stemming from the Coleman–Weinberg one-loop potential.

Therefore, minimal F-term hybrid inflation appears impossible in this simple setup of moduli

stabilization. This conclusion leads us to consider a model of D-term hybrid inflation, where

the moduli corrections to the inflationary sector are negligible.

3 D-term hybrid inflation

In D-term inflation the picture is quite different from the previously discussed case. It has the

appealing feature that a GUT-scale Fayet–Iliopoulos term1 can be naturally generated from

anomalous U(1) symmetries in certain string compactifications [23,26]. This FI-term, together

with quantum corrections to the scalar potential, drives inflation. Although D-term inflation

is well motivated from string theory, it is necessary to check wether a consistent stabilization

of all moduli is possible2.

The superpotential of D-term hybrid inflation reads

WDI = λSφ+φ− . (3.1)

1The consistency of a constant FI-term in supergravity is a subtle issue [23–25], which we do not address

in this paper. In this context, an interesting approach was used in [12], generating an effective FI-term from

vacuum expectation values in the modulus sector.
2Note that the coupling to a KKLT-type modulus sector using a different Kähler potential has been investi-

gated in [12] along similar lines. For a recent discussion and further references, see [27].
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In pure D-term inflation without moduli stabilization, using a no-scale Kähler potential for the

relevant fields results in an F-term potential equivalent to the one of F-term hybrid inflation

with v = 0. The inflationary trajectory corresponds to a flat direction along φ± = 0. The

D-term potential is generated by the FI-term ξ and the waterfall fields which have non-zero

charges under a U(1) gauge symmetry with coupling g. During inflation, it induces a vac-

uum energy V0 = g2ξ2

2 . For a detailed description of D-term inflation with canonical Kähler

potential, see [4, 5].

3.1 Moduli corrections

In our model the superpotential is given by

W = WKL +WDI , (3.2)

and the Kähler potential is the same as in eq. (2.8). To determine the influence of the modulus

sector on the inflation sector we proceed as in the F-term case, i.e., we expand the potential

in the displacement δρ, minimize it, and investigate the resulting effective potential for S and

φ±. Before integrating out the modulus, the scalar potential is given by V = VF + VD, with

VF =
1

X2

{

λ2|S|2
(

|φ+|2 + |φ−|2
)

+ λ2|φ+φ−|2

+
1

3

[

ρ+ ρ̄+
χ

6

(

S2 + S̄2
)

+
1

3
χ2|S|2

]

|W ′
KL|2

−
[(

WKL − χ

3
λSφ̄+φ̄−

)

W ′
KL + c.c.

]

}

, (3.3a)

VD =
g2

2

[ q

X

(

|φ+|2 − |φ−|2
)

− ξ
]2

, (3.3b)

withX as defined in eq. (2.8). Since Veff is much more complicated than the compact expression

in the F-term scenario, cf. eq. (2.10), we restrict ourselves to providing the moduli corrections

to the most important quantities. These are, in particular, the scalar masses in the inflation

sector.

The inflaton receives a non-zero mass contribution not only from the non-vanishing deriva-

tive of WKL in eq. (3.3a), but also from terms which arise after performing the expansion

eq. (2.10), i.e., from integrating out the modulus. However, the resulting correction is zero to

first order in WKL and W ′
KL and can thus be neglected since WKL, W

′
KL < O(10−6) for typ-

ical values of the racetrack parameters, which renders the corrections much smaller than the

contributions from the Coleman–Weinberg potential. Remember that WKL and its derivative

have to be evaluated at values of ρ slightly shifted from σ0, thus yielding non-zero results. The

same order of suppression applies to the correction of the first derivative of the scalar potential,

proportional to the slow-roll parameter ǫ. This justifies treating S as a flat direction of the

tree-level scalar potential of the combined theory, as in the pure D-term case.

Corrections to the masses of the waterfall fields are small as well. The end of inflation

occurs when one of the waterfall fields obtains a tachyonic mass. Thus, large corrections to
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the waterfall masses can have grave consequences for the inflationary dynamics. Following the

same procedure as for the inflaton mass, we obtain

m2
φ±

= m2
φ±,0 +∆m2

φ±

(

WKL,W
′
KL, ...

)

, (3.4)

where

m2
φ±,0 =

λ2|S|2
X0

∓ g2qξ . (3.5)

The latter, with X0 = 2σ0 − 1
3 |S|2 − χ

6 (S
2 + S̄2) after integrating out the modulus, is the

standard result from pure D-term inflation. The leading order corrections are of the form

∆m2
φ±

=
2Y0W

′
KL − 6WKL

Y0X0W
′′
KL

(

2λ2|S|2
X0

∓ g2qξ

)

+O
(

WKL
2,W ′

KL
2
,WKLW

′
KL, ...

)

, (3.6)

with Y0 = X0+
1
3 |S+χS̄|2. Note that these corrections are parametrically larger than the ones

found in [12], due to effective mass terms stemming from the expansion in δρ. However, since

WKL,W
′
KL ≪ W ′′

KL ∼ m2
ρ, the correction ∆m2

φ±
is still negligibly small and does not influence

the dynamics of inflation significantly. Moreover, there are no corrections which cause φ± to

be stabilized away from the origin.

3.2 Superconformal symmetry and the Starobinsky model

Having identified a promising D-term hybrid inflation model with stabilized moduli, we now

turn to the phenomenological consequences of this model. Interestingly, during inflation this

model is actually equivalent to a model based on a superconformal symmetry [14]. There, the

superpotential is identical to the one in eq. (3.1) and the Kähler potential reads

KSC = −3 ln

(

−1

3
Φ

)

, (3.7)

where

Φ = −3 + |φ+|2 + |φ−|2 + |S|2 + χ

2

(

S2 + S̄2
)

, (3.8)

is the so-called frame function. This type of frame function characterizes a large class of models,

dubbed canonical superconformal supergravity models in [22]. They feature a remarkably

simple structure in the Jordan frame with canonical kinetic terms and a scalar potential which

closely resembles that of global supersymmetry. The superconformal symmetry, which is the

starting point in constructing these models, is explicitly broken by gauge fixing the so-called

compensator field, resulting in the appearance of the Planck scale and the FI-term, and by

the term proportional to χ in eq. (3.8). This particular symmetry breaking structure allows to

keep the attractive features implied by the superconformal symmetry, cf. [14, 22] for details.

In [14] the D-term scalar potential is found to be

VD =
g2

2

[

Ω2q
(

|φ+|2 + |φ−|2
)

− ξ
]2

, (3.9)
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with Ω2 = − 3
Φ . It is straightforward to verify that this is identical to eq. (3.3b) after rescaling

S =
√
ρ+ ρ̄ S′ , φ± =

√
ρ+ ρ̄ φ′

± . (3.10)

The F-term scalar potential is determined by the Kähler functionK+ln |W |2, which is invariant

under the transformation (3.10) since

KSC(S, φ±) = −3 ln
(√

ρ+ ρ̄
)

+ lnΩ−2(S′, φ′
±) ,

ln |W (S, φ±)|2 = +3 ln
(√

ρ+ ρ̄
)

+ ln |W (S′, φ′
±)|2 . (3.11)

Hence, even after rescaling the discussion of Section 3.1 remains valid and the F-term potential

vanishes along the inflationary trajectory, as it does in in the model of [14].

Along the inflationary trajectory, the two models thus feature the same scalar potential,

allowing us to apply the analysis of [14] to the model presented here. Here we merely summarize

the most important results: We find a two-field inflation model with an attractor solution along

the real (imaginary) axis for negative (positive) values of χ. At the end of hybrid inflation,

cosmic strings are formed. The spectral index can be as low as ns ≈ 0.96. However, for generic

values of the gauge coupling g and the U(1) charges ±q of the waterfall fields, this leads to a too

large cosmic string tension, violating the bound obtained from the recent Planck results [28].

This problem can be circumvented by choosing a relatively large value for gq, i.e.,

10& gq & 10
|χ| , cf. [15]. In this case agreement with all Planck results can be achieved, in-

cluding the cosmic string bound [17, 28]. Remarkably, in the large-field regime and for an

inflationary trajectory along the attractor solution, the model is asymptotically equivalent to

the Starobinsky model [16]. In particular, to leading order in 1/N∗, with N∗ the number of

e-folds elapsed after the reference scale of the CMB fluctuations exited the horizon, the scalar

spectral index, the tensor-to-scalar ratio, and the running of the spectral index are given by

ns ≈ 1− 2

N∗
, r ≈ 12

N∗
,

dns

d lnk
≈ − 2

N2∗
, (3.12)

which, for N∗ ≈ 55, describes the Planck data very well [17]. For g2 ≈ 1
2 , as expected for

a GUT gauge coupling, requiring the correct normalization of the scalar contribution to the

primordial fluctuations fixes the FI-term at roughly the GUT scale,
√
ξ ≈ 7.7× 1015 GeV. For

example, for q = 8 this implies a cosmic string tension of Gµ ≈ 3.16 × 10−7, very close the

recent Planck limit Gµ < 3.2 × 10−7 [28]. Future cosmic string searches are thus a promising

way of probing this model.

3.3 Low-energy supersymmetry breaking

During inflation the D-term inflation model under consideration exhibits a positive vacuum

energy V0 = g2ξ2

2 and thus, supersymmetry is broken. After inflation has ended, however,

one of the waterfall fields receives a vacuum expectation value which causes VD to vanish

identically, while the other one and the inflaton are stabilized at the origin. It then follows

that VF = VD = m3/2 = 0 after inflation, i.e., supersymmetry is restored. In view of low-energy
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phenomenology, it is thus necessary to check wether the presented model can be combined

with a separate sector of supersymmetry breaking without spoiling either inflation or moduli

stabilization.

A simple way of breaking supersymmetry is adding a quantum corrected O’Raifeartaigh

model with the following Kähler potential and superpotential for a chiral ‘Polonyi’ field P [18],

KP = |P |2 − |P |4
Λ2

, WP = µ2P . (3.13)

Here, a heavy field of mass Λ ≪ 1 has been integrated out, and µ2 is the scale of supersymmetry

breaking. In addition, to allow for a small or vanishing cosmological constant we tune the

value of W0 away from the KL-value eq. (2.5) by an amount ∆W0. In an underlying string

compactification this is achieved by slightly tuning the flux quanta which determine the vacuum

expectation value of the Gukov–Vafa–Witten potential. As a result, a complete model with

broken supersymmetry can be defined by

K = −3 lnX +KP , W = WKL +WDI +WP +∆W0 . (3.14)

Note that the supersymmetry breaking sector is not of no-scale form. This is phenomeno-

logically required for low-energy supersymmetry breaking [29]. The derivation of this Kähler

potential from a higher-dimensional theory remains an open problem.

The compatibility of this supersymmetry breaking mechanism with moduli stabilization

has been studied in [18, 29, 30]. The constant ∆W0 shifts the Minkowski minimum of the

potential to an AdS minimum with VAdS ≈ −3(∆W0)2

8 σ3
0

at roughly the same value of σ0. The

uplift due to the Polonyi field raises the value of V in the minimum to zero if

∆W0 =
µ2

√
3
, (3.15)

resulting in a Minkowski vacuum with broken supersymmetry. In this vacuum the gravitino

mass is given by

m2
3/2 ≈

µ4

24σ3
0

, (3.16)

at leading order in µ2 and Λ.

In this minimum the Polonyi field is stabilized on the real axis at P0 ≈
√
3
6 Λ2. Moreover, it

is possible to decouple the Polonyi field before the beginning of inflation, i.e., at masses larger

than the inflationary Hubble scale. We can achieve a mass hierarchy

mρ > mP > Hinf ≫ m3/2 , (3.17)

by appropriately choosing µ, Λ, and the parameters in WKL. Specifically, m
2
P in the Minkowski

minimum reads

m2
P ≈ µ4

2σ3
0Λ

2
≫ m2

3/2 . (3.18)
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Notice that we have used σ0 in all of the above expressions because the back-reaction of the

shift δρ on the dynamics of the Polonyi field is negligible. However, it is important to keep in

mind that ρ is still slightly shifted away from σ0 due to the presence of P and ∆W0, so that

WKL,W
′
KL 6= 0. Requiring that mP & Hinf and demanding Λ & µ in the effective theory (3.13)

leads to the lower bounds µ, Λ & 10−5 for typical values of the racetrack parameters3.

Remarkably, as a consequence GUT-scale inflation implies a stringent lower bound on the

gravitino mass. From eqs. (3.16) - (3.18) one obtains

m2
3/2 & 0.1Λ2 H2

inf & 10−25 . (3.19)

Starting from the KL model for moduli stabilization, one may have expected that an arbitrarily

small value of the gravitino mass is possible. However, since both mP and the mass scale Λ

are constrained by the GUT scale, one is driven to a regime of ‘high-scale supersymmetry’

with m3/2 & 105 GeV. Even if the Polonyi field is allowed to be lighter than Hinf but heavier

than the inflaton, thus taking part in the dynamics of inflation, this bound is not significantly

relaxed.

Notice that the choice of parameters in the Polonyi sector only slightly influences the

modulus sector and vice versa. Therefore, in a large portion of parameter space the proposed

mechanism of supersymmetry breaking does not interfere with moduli stabilization. Especially,

even if µ is chosen to be very large compared to the GUT scale, additional tuning of ∆W0 will

always prevent destabilization of the modulus.

Quantifying the impact of the Polonyi field on the inflationary dynamics is slightly more

involved. As in our previous discussion of moduli corrections to the inflaton sector, the impact

on ǫ, the inflaton mass, and the waterfall masses has to be evaluated. In order to consider all

possible terms, we proceed along the lines of Section 3.1 and take a possible shift δP during

inflation into account, as well as corrections resulting from integrating out the modulus. This

results in the following corrections:

• The inflaton receives a non-zero m ass correction of the schematic form

∆m2
S =

µ4

8σ3
0

− (∆W0)
2

4σ3
0

= m2
3/2 , (3.20)

at leading order, where the second equality holds in the Minkowski vacuum defined by

eq. (3.15). The first term in eq. (3.20) stems from the mere presence of the Polonyi

sector, while the second one results from integrating out the modulus field. For µ in

the range considered before, this correction is at least two orders of magnitude smaller

than the squared inflaton mass generated by the Coleman–Weinberg potential, see the

discussion in [14]. The same magnitude of suppression applies to the correction to the

slow-roll parameter ǫ.

• The leading order mass correction to the waterfall fields originates solely from the effective

potential Veff where the modulus has been integrated out, analog to the corrections in

3Here we have used Hinf ∼ 0.1M2
GUT, with MGUT & 10−3.
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eq. (3.6). Specifically,

∆m2
φ±

= −
√
3µ2

2σ2
0W

′′
KL

(

2λ2|S|2
2σ0

∓ g2qξ

)

, (3.21)

in the Minkowski minimum. Depending on the size of µ these corrections can be para-

metrically larger than the ones from the modulus sector, cf. eq. (3.6). However, since µ2

is smaller than W ′′
KL for typical racetrack parameter values, ∆m2

φ±
is still suppressed by

at least two orders of magnitude compared to m2
φ±

.

We conclude that our model can be extended by a simple supersymmetry breaking sector

without spoiling any of its features. In this setup, the gravitino mass is unexpectedly large,

m3/2 & 105 GeV, due to the high scale of inflation.

4 Conclusion

In light of the recent Planck data, slow-roll inflation remains a very successful paradigm for the

earliest stages of our universe. Realizing this paradigm in a concrete UV-completed particle

physics theory, however, faces a number of challenges, including the identification of the particle

physics nature of the inflaton, a possible embedding in string theory and the connection to

supersymmetry breaking after inflation. Here, we propose a model of supersymmetric hybrid

inflation which allows for racetrack moduli stabilization, as employed in certain type IIB string

compactifications, as well as for supersymmetry breaking by means of a quantum corrected

O’Raifeartaigh model, while simultaneously explaining the cosmological parameters measured

by the Planck satellite.

Using the standard no-scale Kähler potential, augmented by a symmetry breaking term,

we find that F-term hybrid inflation is unfeasible. Generically, the inflaton mass receives large

corrections, spoiling slow-roll inflation. While this can be remedied by tuning the symmetry

breaking parameter χ, the presence of a large tachyonic mass destabilizing any potential in-

flationary trajectory is unavoidable. However, supersymmetric D-term hybrid inflation is not

plagued by this problem. Tracking the evolution of the modulus field during inflation and

integrating out the modulus, we find that the corrections to the inflationary dynamics induced

by the modulus sector are small. If the modulus is stabilized before the onset of inflation, i.e.,

mρ > Hinf, we obtain an effective inflation model which, along the inflationary trajectory, is

identical to superconformal D-term inflation.

Concerning the inflationary predictions, i.e., amplitude and spectral indices of the CMB

power spectrum, we find very good agreement with the recent Planck data. Generically, cosmic

strings produced at the end of D-term inflation exhibit a string tension exceeding current

bounds. However, viable regions of parameter space remain, for large values of the waterfall

U(1) charge q. In the large-field regime the scalar potential of the inflaton field is identical to

that of the Starobinsky model.

In order to account for supersymmetry breaking in the Minkowski vacuum after inflation,

we add a quantum corrected O’Raifeartaigh model. We calculate possible interactions between
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the inflation, modulus, and Polonyi field sector. We find that the only displacement of the

modulus minimum resulting in relevant corrections is the one stemming from the slow-roll of

the inflaton. Generically, however, all these corrections turn out to be small, allowing for an

effectively decoupled supersymmetry breaking sector.

In summary, we present a working model of inflation, successfully combined with KL moduli

stabilization and supersymmetry breaking and in accordance with experimental data. Further

interesting questions concern the embedding of our model into a higher-dimensional GUT or

string model, and the implications for low-energy particle phenomenology.
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