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Abstract

We demonstrate that the output radiation characteristics of the European XFEL
sources at nominal operation point can be easily made significantly better than
what is currently reported in the TDRs of scientific instruments and X-ray op-
tics. In fact, the output SASE characteristics of the baseline European XFEL have
been previously optimized assuming uniform undulators at a nominal operating
point of 5 kA peak current, without considering the potential of udulator taper-
ing in the SASE regime. In order to illustrate this point, we analyze the case of
an electron bunch with nominal parameters. Based on start-to-end simulations,
we demonstrate that nonlinear undulator tapering allows one to achieve up to a
tenfold increase in peak power and photon spectral density in the conventional
SASE regime, without modification to the baseline design. The FEL code Genesis
has been extensively used for these studies. In order to increase our confidence in
simulation results, we cross-checked outcomes by reproducing simulations in the
deep nonlinear SASE regime with tapered undulator using the code ALICE.

1 Introduction

The technical note [1] provides an overview of the design considerations
and the general layout of the X-ray instrumentation of the European XFEL
sources, beam transport systems and instruments. Baseline parameters for
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the electron beam have been defined and presented in [2]. These parameters
have been used for simulating FEL radiation characteristics and saturation
lengths relevant to the European XFEL SASE undulators [3]. The defini-
tion of saturation point used throughout [1] is reported here: ”Saturation is
reached at the magnetic length at which the FEL radiation attains maximum
brilliance. Beyond the saturation point, the FEL operates in an over satu-
rated mode where more energy can be extracted from the electron beam at
the expense of FEL parameters, including bandwidth, coherence time, and
degree of transverse coherence”.

An approach based on the exploitation of the baseline electron beam charac-
teristics in [2], together with the definition of the saturation point reported
above and with the notion that the best FEL parameters are found at satu-
ration has been quite useful as a convenient starting point for the analysis
of XFEL sources, beam transport systems and instruments. However, based
on recent advancement in the FEL field, here we argue that there are two
main reasons why such approach should be modified.

First, the above-mentioned approach is based on the baseline parameters
for the electron beam [2] assuming an operation point at 5 kA peak cur-
rent. This choice is subjective. There is a possibility to go well beyond the
nominal peak current level. For example, in order to illustrate the potential
of the European XFEL accelerator complex, in [4] considerations were fo-
cused on an electron bunch with 0.25 nC charge, compressed up to a peak
current of about 50 kA. An advantage of operating at such peak current is
the increase of the X-ray output peak power without of any modification
to the baseline design [5]. The price for using a very high peak current is a
large energy chirp within the electron bunch, yielding in turn a large (about
1%) SASE radiation bandwidth. However, there are very important appli-
cations like bio-imaging, where such extra-pink X-ray beam is sufficiently
monochromatic to be used as a source for experiments without further
monochromatization. The example presented in [5] demonstrates that there
is no universal choice of baseline electron beam parameters: such choice
should be considered, at least, as dependent on the instruments.

Second, the analysis presented in [1] is based on the use of uniform undu-
lators only. A fundamental example showing the limitations of such model
for the analysis of the European XFEL is constituted by undulator taper-
ing effects. In fact, one obvious way to enhance the SASE efficiency is by
properly configuring undulators with variable gap [6]-[15].

Abandoning the assumption of uniform undulators alone has far reaching
consequences. Here we illustrate the potential of undulator tapering in the
SASE regime by still considering an electron bunch with the usual baseline
parameters [2], i.e. the same assumed in [1], and in all the subsequent TDR.
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A significant increase in power is achievable by nonlinear rather than linear
undulator tapering [15]. In particular, in this article we will demonstrate that
nonlinear undulator tapering allows one to achieve up to a tenfold increase
not only in peak power but also in photon spectral density of the output
radiation pulses. In order to illustrate this point we will make an analysis for
the baseline (21 cells) SASE3 undulator at the nominal electron beam energy
14 GeV. We first optimize our setup based on start-to-end simulations for the
electron beam with 0.1 nC, compressed up to 5 kA peak current [2]. In this
way, the SASE saturation power in the uniform undulator could be as large
as 60 GW. Subsequently, in order to generate high-power X-ray pulses we
exploit undulator tapering. Tapering consists in a slow reduction of the field
strength of the undulator in order to preserve the resonance wavelength,
while the kinetic energy of the electrons decreases due to the FEL process.
The undulator taper can be simply implemented as discrete steps from one
undulator segment to the next, by changing the undulator gap. In this way,
the output power of the SASE3 undulator could be increased from the value
of 60 GW in the SASE saturation regime to about 750 GW. One might be
surprised that the photon spectral density increases of about a factor ten as
well (see section 2 for more details).

The analysis of the nonlinear FEL process refers to a problem that can be
solved only numerically. The Genesis code [16] has been extensively used
for our FEL studies. However, an accurate simulation of the deep nonlinear
SASE regime in a tapered undulator remains a challenging problem for
numerical analysis. During the last decade, several additional FEL codes
have been developed around the world. In order to increase our confidence
in the simulation results, we cross-checked them with one of these, the code
ALICE [17].

Summing up, in this article we demonstrate that the performance of Euro-
pean XFEL sources can be significantly improved without additional hard-
ware. The optimization procedure simply consists in the optimization of
the undulator gap configuration for each X-ray beamline. Based on these
findings, we suggest that new baseline radiation parameters be defined, and
that the requirements for the instruments and beam transport systems be
updated.

2 FEL studies

As described in the Introduction, in this paper we focus our attention on
the tremendous increase in SASE efficiency that can be achieved using a
tapering undulator technique. It must be stressed that in actual studies
we let aside our remark concerning the optimization of the electron beam
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Table 1
Parameters for the mode of operation at the European XFEL used in this paper.

Units

Undulator period mm 68

Periods per cell - 73

Total number of cells - 21

Intersection length m 1.1

Energy GeV 14

Charge nC 0.1

nominal working point, and we proceed in the analysis of the benefits
deriving from the application of tapering for the baseline (21 cells) SASE3
undulator at the nominal electron beam energy of 14 GeV, considering a 0.1
nC bunch, compressed up to 5 kA peak current [2]. The main electron and
undulator parameters for simulations are shown in Table 1.

The nominal electron beam characteristics resulting from start-to-end sim-
ulations are shown in Fig. 1 in terms of current, emittance, energy spread
and energy. In addition, Fig. 1 also shows the resistive wake in the SASE3
undulator. Additional energy chirp introduced by resistive wakes in the
SASE1 undulator vacuum chamber are included in our simulations, as well
as quantum diffusion effects.

In this Section we show how proper undulator tapering allows one to in-
crease the peak radiation power of the European XFEL SASE sources from
the 100 GW power-level up to the TW power-level. In order to perform the
undulator tapering optimization we followed the theoretical work done at
DESY [13] and SLAC [15], which was used for self-seeded tapered XFELs,
showing that the baseline undulator greatly benefit of this treatment as well.
To be specific, we used the taper profile in [15]

K(z) = K(z0) , when 0 < z < z0 ,
K(z) = [K(z0) + d] · [1 − a(z − z0)b] ,when z0 < z < Lw , (1)

where K is undulator parameter, z0 indicates the taper starting point, b is the
taper profile order, a is a scale coefficient, and d is the change in undulator
parameter at the tapering start point location. Empirically, the best taper
starting point was found to be located slightly before the initial saturation
point, and the taper profile order is around b ' 1.5. This specification for the
functional dependencies of the undulator parameter allowed us to obtained
the maximum radiation power for the tapered FEL with baseline electron
beam described above by performing multidimensional scans with Genesis
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Fig. 1. Results from electron beam start-to-end simulations at the entrance of SASE3.
(First Row, Left) Current profile. (First Row, Right) Normalized emittance as a
function of the position inside the electron beam. (Second Row, Left) Energy profile
along the beam. (Second Row, Right) Electron beam energy spread profile. (Bottom
row) Resistive wakefields in the SASE3 undulator.

SASE simulations over the following four parameters z0, a, b, and d. Such
optimization resulted in the tapering law graphically shown in Fig. 2, for
radiation emitted at 2 keV. Additionally, as originally proposed in [15], we
assumed a linear change, along the undulator longitudinal coordinate z, in
the strength of the quadrupole field, Fig. 3 (left) leading to the evolution of
the electron bunch transverse dimensions shown in Fig. 3 (right).

All simulations were performed using the code Genesis 1.3 [16] running
on a parallel machine. Results are presented for the SASE3 FEL line of the
European XFEL, based on a statistical analysis consisting of 100 runs, and
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Fig. 2. Taper configuration for high-power mode of operation at 0.6 nm.
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Fig. 3. Left plot: linear increase in the magnetic field quadrupole gradient assumed
in this paper. Left plot: consequent evolution of the horizontal and vertical dimen-
sions of the electron bunch as a function of the distance inside the SASE3 undulator.
The plot refers to the longitudinal position inside the bunch corresponding to the
maximum current value.

comparing the SASE regime at saturation with the tapered SASE regime.

Fig. 4 shows a comparison of power and spectrum produced in the standard
SASE mode at saturation (and, therefore, without tapering) and power and
spectrum produced in the standard SASE mode including post-saturation
tapering. What is important to notice here, is that a tenfold increase in the
shot-to-shot averaged spectral energy density can be seen by inspection.
Fig. 5 shows the evolution of the output energy in the photon pulse and of
the variance of the energy fluctuation as a function of the distance inside
the output undulator, including tapering.

Finally, in Fig. 6 we show a comparison of radiation beam size and diver-
gences for the SASE operation mode in saturation, and for the tapered SASE
mode. If one considers, as an example, the case when pink light is delivered
to the Small Quantum Systems (SQS) station, the only optics encountered
by the SASE3 beam transport line is a pair of horizontal offset mirrors. This
mirror system can be adjusted between 6 mrad and 20 mrad incidence angle.
After the offset is introduced, the beam can be directly transported to the
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Fig. 4. Top row: Power and spectrum produced in the standard SASE mode at
saturation (and, therefore, without tapering). Bottom row: Power and spectrum
produced in the standard SASE mode including post-saturation tapering. Scales
of spectral energy density are the same for both cases. Grey lines refer to single
shot realizations, the black line refers to the average over a hundred realizations.
A tenfold increase in the shot-to-shot averaged spectral energy density can be seen
by inspection.
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Fig. 5. Evolution of the output energy in the photon pulse and of the variance of
the energy fluctuation as a function of the distance inside the output undulator,
with tapering. Grey lines refer to single shot realizations, the black line refers to the
average over a hundred realizations.
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Fig. 6. Top row: Distribution of the radiation pulse energy per unit surface and
angular distribution at saturation. Bottom row: Distribution of the radiation pulse
energy per unit surface and angular distribution at the exit of the setup.

SQS instrument [18]. The offset mirrors are placed about 300 m behind the
source point. Since one needs to minimize diffraction from the optics aper-
ture and to preserve the radiation wavefront, any optical element should
ideally have an aperture size large enough to accept at least 4σ times the
beam size. In our simulation study, the FWHM divergence of the FEL beam
in the tapered undulator case is of the order of 12 µrad at 2 keV (see Fig. 6).
Therefore, the lateral aperture of the radiation at the offset mirrors position
turns out to be about 6 mm (or 3.6 mm FWHM) for our case of interest.

The lateral aperture of the radiation which is accepted by the mirror is
limited by the grazing angle and the length of the mirror. More specifically,
we can estimate the transverse clear aperture of a grazing-incidence mirror
as Lθ, L being the mirror clear aperture, and θ being the grazing incidence
angle. The X-ray optics and transport group is planning to implement offset
mirrors with a clear aperture of 800 mm (see e.g. [19]). With 9 mrad reflection
angle we obtain a transverse clear aperture of 7.2 mm, which is in principle
enough to fulfill the 4σ requirement.

Finally, the transmission for the pair of offset mirrors for 9 mrad incidence
angle calculated, for B4C coating is about 90% at a photon energy of 2 keV
[19].
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Fig. 7. Comparison between Genesis and ALICE predictions for the output power
as a function of the position inside the undulator in the steady state regime. The FEL
configuration considered here refer to the SASE3 undulator line operating at 14 GeV.
The photon energy chosen for the comparison is 2 keV. Electron beam characteristics
refer to the longitudinal position, inside the 0.1 nC bunch, corresponding to the
maximum current value. The undulator magnetic field file corresponds to the
optimum for the SASE tapering regime (see above in this section)
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Fig. 8. Comparison between Genesis and ALICE predictions for the output power
as a function of the position inside the electron bunch in time-dependent case for
seeded FEL amplifier regime, including tapering. The FEL configuration considered
here refer to the SASE3 undulator line operating at 14 GeV. The photon energy
chosen for the comparison is 2 keV. Input electron beam and undulator magnetic
files are the same as in Fig. 4, bottom row.

3 Cross-checking of Genesis simulations

While the code Genesis has had an undiscussed success to reproduce re-
sults from LCLS experiments and has been thoroughly benchmarked, next
generation FEL codes like ALICE [17] recently began to appear, which take
advantage of more and more advanced algorithms. In ALICE, the equa-
tions of motion for the particles are integrated with a symplectic ”leap-frog”
scheme. The parabolic field equation is solved with the help of an implicit
Neumann finite difference scheme, based on azimuthal expansion. Addi-
tionally, open boundary conditions with the help of the Perfectly Matched
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Fig. 9. Comparison between Genesis and ALICE predictions in the time-dependent
case for SASE regime, including tapering. The FEL configuration considered here
refer to the SASE3 undulator line operating at 14 GeV. The photon energy chosen
for the comparison is 2 keV. Left plot: output power for a typical single shot. Right
plot: energy per pulse. Since codes are not identical, SASE initial conditions are not
the same, and we can expect some difference within results. Because of this reason,
codes can be considered in very good agreement.

Layer (PML) method for parabolic equations were implemented. The code
is parallelized and allows one to use full three dimensional models for both
the electron beam and the radiation field.

In order to increase the confidence in our simulation results, we cross-
checked them with ALICE. In Fig. 7, Fig. 8 and Fig. 9 we show comparisons
of simulations obtained with these two codes, for undulator configurations
similar to those considered in this section. The agreement in the steady state
regime and in the time-dependent seeded FEL amplifier regime is perfect. In
the SASE regime the agreement is reasonably good. Despite the simulation
of deep nonlinear SASE regime is the challenging problem for numerical
analysis and codes adopted different numerical methods, the pulse energy
differs by only 10%. Differences in the output are well within an rms of shot-
to-shot fluctuations (see Fig. 9). The SASE process is driven by the intrinsic
shot noise in the electron beam current, and a random generator is used in
each code to fill-in the initial particle distribution. Therefore, differences in
the SASE regime are ascribed to different initial SASE signals.

4 Conclusions

In this article we demonstrated that the output characteristics of the Euro-
pean XFEL in SASE mode can be substantially improved, without any ad-
ditional hardware installation. At variance with previous numerical studies
for the European XFEL, in this work we included energy chirp, wakefields
and undulator tapering effects for a segmented undulator with intersections,
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and we assumed realistic distributions for the electron beam current, for the
energy spread and for the emittance in the horizontal and vertical direction
along the bunch. The importance of realistic models in XFEL simulations is
amply demonstrated in this paper. In order to take into consideration wake-
field effects and to examine the impact of undulator tapering on radiation
properties, electron bunches are treated on the basis of start-to-end simula-
tions and the undulator includes intersections with phase shifters. In order
to obtain optimal performance, both undulator gap and phase shifters had
to be tuned. It has been shown that the taper provides an additional factor
of ten increase in spectral density and output power (up to the TW-level)
for a baseline electron beam parameter set. We anticipate that, mainly by
increasing the peak current of the driving electron beam beyond the base-
line value of 5 kA it will be possible to achieve a further increase of x-ray
power beyond the TW-level. The European XFEL uses a superconducting
L-band linac to accelerate electron beams, which can be compressed up to
extremely high peak currents of about 50 kA, with still a reasonable electron
bunch quality [4]. The maximal electron beam energy at the European XFEL
is 17.5 GeV. It is worthwhile to mention that 50 kA peak current at 20 GeV
beam energy corresponds to 1 PW peak power of electron beam. In [5] we
demonstrated that with a PW power level of driving electron beam and
a long enough, high K-value undulator it would possible to achieve a 10
TW-level X-ray beam at the European XFEL without additional hardware.
For a long time, such unique feature will be available only at the European
XFEL.
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