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Constraining the primordial power spectrum from SNIa lensing dispersion
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The (absence of detecting) lensing dispersion of Supernovae type Ia (SNIa) can be used as a novel
and extremely efficient probe of cosmology. In this preliminary example we analyze its consequences
for the primordial power spectrum. The main setback is the knowledge of the power spectrum in the
non-linear regime, 1 Mpc−1 <∼ k <∼ 102 − 103 Mpc−1 at redshift of about unity. By using the lensing
dispersion and conservative estimates in this regime of wavenumbers, we show how the current upper
bound σµ(z = 1) < 0.12 on existing data gives strong indirect constraints on the primordial power
spectrum. The probe extends our handle on the spectrum to a total of 12 − 15 inflation e-folds.
These constraints are so strong that they are already ruling out a large portion of the parameter
space allowed by PLANCK for running α ≡ dns/d ln k and running of running β ≡ d2ns/d ln k2.
The bounds follow a linear relation to a very good accuracy. A conservative bound disfavours
any enhancement above the line β(k0) = 0.032 − 0.41α(k0) and a realistic estimate disfavours any
enhancement above the line β(k0) = 0.019 − 0.45α(k0).

PACS numbers: 98.80.-k, 98.62.Sb, 98.80.Cq

Introduction: Cosmology is becoming a precise sci-
ence, most notably due to increasing number and quality
of measurements. Utilizing several probes is crucial in
breaking degeneracies between cosmological parameters.
The combination of CMB, large scale structure (LSS) and
Type Ia Supernovae (SNIa) has lead to the emergence of
the “concordance model” of cosmology. The SNIa owe
their success to the small intrinsic dispersion around their
mean luminosity. By observing supernovae at cosmo-
logical distances, we can measure the luminosity-redshift
relation dL(z) and infer cosmological parameters from
the mean luminosity. However, the intrinsic dispersion
of SNIa luminosities is not the only source of scatter in
the data. Photons arriving from these ‘Standard Can-
dles’ are affected by the inhomogeneous matter distri-
bution between the source and observer. This induces
an additional scatter in the luminosity-redshift relation,
making it a stochastic observable with mean, dispersion,
etc. Therefore, by disentangling this cosmic dispersion
from the intrinsic scatter, we can potentially probe back-
ground parameters like Ωm0 or fluctuations, i.e. the
power spectrum. Our main interest will be the lensing
contribution, dominating at z >∼ 0.3.

We suggest to use the lensing dispersion of SNIa as
an additional probe of cosmology. The now operational
Dark Energy Survey [2] will measure thousands of SNIa,
up to redshift z ∼ 1.2 and LSST [3] will measure millions
of SNIa. This will reduce statistical errors considerably
and increase the chance for detection since the lensing
dispersion grows with the redshift at z ∼ 1 [4–6]. With
future data, it has been suggested to use the lensing dis-
persion to constrain the present matter density Ωm0 and
σ8 [4, 7, 8].

In this preliminary note we analyze the implications of

the lensing dispersion σµ on the primordial power spec-
trum. The distance modulus,

µ = 5 log10

(
dL(z)

10pc

)
, (1)

is a function of the luminosity distance dL(z) to the
source at redshift z. Existing data analysis has not de-
tected lensing dispersion with enough statistical signifi-
cance, but has placed an upper bound of σµ ≤ 0.12 for
the redshift of up to unity [9–13] at 95% CL.

In principle, the primordial power spectrum is not
limited to a specific parameterization. In practice, the
primordial power spectrum is typically parametrized as
Pk = As(k/k0)ns(k0)−1, where k0 is a suitable “pivot
scale”. A common, more general form, is when the spec-
tral index ns(k) is scale dependent, and then expanded
around the pivot scale k0,

Pk = As

(
k

k0

)ns(k0)− 1 +
α(k0)

2
ln

k

k0
+
β(k0)

6
ln2 k

k0 ,

(2)

where α is typically dubbed the “running” of the spec-
tral index, and β, the “running of running”. The best
constraints on α, β with k0 = 0.05 Mpc−1, ns(k0) ' 0.96
are given by PLANCK [1]. More generally, CMB and
LSS observations only give a direct measurement for wave
numbers in the range H0 ≤ k <∼ 1 Mpc−1. In terms of
inflation, the direct measurement of k <∼ 1 Mpc−1 corre-
sponds to about 8 e-folds of inflation, leaving most of the
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FIG. 1: Log-Log plot of the “transfer functions” (9) at redshift
z = 1, z∗ = 0.5 multiplied by c = 1 (solid black), c = 0.5
(dashed grey), c = 0.1 (dashed red) c = 0.01(dashed green).
Solid blue, cyan and purple curves are the step functions in
(10) with b = 3, kNL = 1 Mpc−1; b = 10, kNL = 2 Mpc−1;
b = 50, kNL = 15 Mpc−1, respectively.

power spectrum of ∼ 60 e-folds out of reach1. Therefore,
even after PLANCK there is still an enormous space of
inflationary models allowed. It is therefore of crucial im-
portance to infer as much of the spectrum as possible to
rule out chunks of models, and single out preferred ones.
Due to Silk damping, beyond the scale of k <∼ 1 Mpc−1,
CMB anisotropies stop being a useful probe. Instead,
we have indirect bounds such as the absence of primor-
dial black holes and Ultracompact Minihalos or prospects
of measuring spectral distortions of the CMB blackbody
spectrum [14–19] with PIXIE/PRISM [20, 21]. Consid-
eration of the lensing dispersion, gives access to 2 − 3
more decades of the spectrum, because the dispersion
involves an integral over the power spectrum, see below.
These 2−3 decades correspond to additional 4−7 e-folds,
yielding a total of 12−15 e-folds. Albeit degenerate with
other cosmological parameters, it surpasses the previous
methods by actually cutting into the allowed parameter
space allowed by PLANCK, using existing data only. In
a separate publication [22], we analyze the case where
the power spectrum takes a different “non-slow-roll” pa-
rameterization such as in cases analyzed in [18].

Method: We start from the full dispersion expres-
sion of the luminosity distance, calculated in the light-
cone average approach up to second order in the Poisson
(longitudinal) gauge, [6, 23–26], and recently confirmed
in [27]. The dominant contribution of the dispersion at
z >∼ 0.3, comes from the lensing contribution. For ΛCDM
this has been computed to a good approximation:

1 In principle, it is possible that primordial perturbations have
been generated only during these 8 e-folds. However, to solve the
homogeneity and horizon problem, one usually requires about 60
or at least several tens of e-folds. Shutting down the generation
of perturbations during these e-folds is rather tuned.

σµ(z) =
2.5

ln 10

√√√√∫ dΩ

4π

∫ ηo

η
(0)
s

2∏
i=1

dηi
∆η

ηi − η(0)
s

ηo − ηi
∆2Ψ|ri=ηo−ηi ,

(3)

where ηo is the observer conformal time and η
(0)
s is the

conformal time of the source with unperturbed geometry,
see [6] for technical terms and explanations. Considering
the ensemble and light-cone average then give:

σµ(z) ' 5

ln 10

√∫
dk

k
PΨ(k, η(z))

(k∆η(z))3

15
Si(k∆η(z))

' 0.7

√∫
dk

k
PΨ(k, z)

(
k

H0

)3

∆̃η(z)3 , (4)

where ∆η = η
(0)
s − ηo ≡ ∆̃η/H0, Si(x) =

∫ x

0

sin q

q
dq,

∆̃η(z) =

∫ z

0

dy√
Ωm0(1 + y)3 + ΩΛ0

, (5)

and PΨ is the linear or non-linear power spectrum of the
gravitational potential2. We will be mostly interested in
the dispersion at z = 1 where sufficient data is available
and because up to the redshift of a few, the dispersion
grows approximately linearly [6, 12, 13, 28], so the best
constraints can be given at the maximal available red-
shift. Substituting z = 1, and PLANCK most likelihood
values of H0,Ωm0,ΩΛ0 gives:

σµ(z = 1) ' 0.47

√∫
dk k2PΨ(k, 1) ≡ 0.47

√
T2(P ) (6)

in the linear case. As discussed in [6], one can treat
the complicated numerical integrals over redshift and
wavenumber of the non-linear power spectrum efficiently
and to an accuracy of∼ 10% if one substitutes PΨ(k, z) '
(g(z)/g(z∗))2PΨ(k, z∗), where g ' 5

2g∞Ωm

{
Ω

4/7
m −ΩΛ +

(1 + Ωm/2)(1 + ΩΛ/70)
}−1

is the so-called linear growth

factor and z∗ = z/2, but it is not particularly sensitive
to that choice. The corresponding dispersion in this case
will be

σ∗µ(z = 1) ' 0.49

√∫
dk k2P ∗Ψ(k, 0.5) ≡ 0.49

√
T ∗2 (P )

(7)

2 A similar formula can be derived for any perturbed FLRW cos-
mology in which photons fulfill the geodesic equations of general
relativity, such as dark energy models. The only change is the
time dependent behaviour of the gravitational potential Ψ.
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We shall use both estimates σµ, σ
∗
µ.

Hence, the lensing dispersion of supernovae is a direct
measurement of the integrated late-time power spectrum.
Given the bound σµ < 0.12 gives the prediction that the
second moment of the power spectrum at z = 1 is at
most T2(P ) ≡

∫
dk k2PΨ(k, 1) <∼ 0.065. At the most

basic level, this can be used to constrain parameteriza-
tions of the late-time power spectrum, or cosmological
parameters such as Ωm0, σ8 or w(z). The k2 enhance-
ment, makes it a much more sensitive probe to small
scales of the power spectrum than σ8.

Assuming the standard ΛCDM evolution the disper-
sion probes the primordial power spectrum. There is of
course a degeneracy between the power spectrum and
cosmological parameters such as H0,Ωm0,ΩΛ0 or even
w(z), and a full statistical analysis is necessary. This is
beyond the scope of this paper, but the current param-
eters are rather well constrained already to the order of
10%, and their effect on the final outcome is limited to
that 3. Here we simply take PLANCK’s maximal likeli-
hood values for them in the presence of non-zero running
α(k0) and “running of running”, β(k0).

The above formula for the dispersion is both IR and
UV finite. Modes with k ≤ H0 are obviously subdomi-
nant because of the (k/H0)3 factor so we neglect them.
On the UV tail, the dispersion converges as long as the
spectrum decays at least as kν , ν < −3. To the best
of our knowledge, all simulations or analytical considera-
tions fulfill this condition. The main limitation is, there-
fore, the validity of the spectrum, and there is some sen-
sitivity to the actual cut-off taken. For k � H0 at some
redshift dependent point standard cosmological pertur-
bation theory breaks down, and one has to resort to nu-
merical simulations to get an approximate fitting formula
for the power spectrum, like the HaloFit model, [29–31].
The fitting formula reaches kUV = 30hMpc−1 with 10%
accuracy and kUV = 320hMpc−1, where accuracy drops
to 20%. The dispersion with kUV = 30hMpc−1 is about
15% smaller than kUV = 320hMpc−1 and integrating out
to infinity only an induces additional 10% enhancement.
Therefore we take kUV = 320hMpc−1 as our UV cut-off,
and our results are accurate to about 20%. Considering
enough running, or running of running, the HaloFit fit-
ting formula stops being useful because it is sensitive to
the initial conditions. It is nevertheless obvious that the
non-linear evolution causes clustering and enhances the
power spectrum. For example, at redshift z = 1, the ratio
between the HaloFit formula, PNL(k, z), with standard
initial conditions (ns ' 0.96., α = β = 0) and the lin-
ear power spectrum PNL(k, z∗)(g(z)/g(z∗))2/PL(k, z) is
the solid, thick, black curve plotted in Fig. 1. Already at

3 For example, WMAP9 most likelihood values give a 10% smaller
σµ(z = 1) = 0.077 than PLANCK σµ(z = 1) = 0.085 .

k = 1 Mpc−1 the non-linear power spectrum is a factor of
a few larger than the linear one, and for k >∼ 10 Mpc−1, it
behaves as a power law with a scaling exponent of nearly
1/2. We therefore utilize this ratio in the standard case
of ns = const. to define a “transfer function”,

F (k, z) ≡ PNL(k, z)

PL(k, z)
, (8)

F ∗(k, z, z∗) ≡ PNL(k, z∗)(g(z)/g(z∗))2

PL(k, z)
, (9)

where PNL is the non-linear power spectrum, PL =
(3/5)2PkT

2(k)g2(z) is the linear spectrum and T (k) is
the Eisenstein and Hu transfer function with baryons
[32], all taken in the standard scenario with ns '
0.96, α = β = 0. We take the enhancement into account
in two simple ways. The first method is by a Heaviside
function Θ(k). Here we are not limited to the HaloFit
formula, so we can use T2(P ):

T2(P ) =

∫ kUV

H0

dk k2PL(1 + bΘ(k − kNL)) , (10)

and we evaluate T2(P ) for b = 0, 3, 10, 50 with corre-
sponding kNL = 1, 1, 2, 15 Mpc−1, at z = 1, such that
the step function is always underestimating the transfer
function F ∗. At z = 1, z∗ = 0.5, F ∗(k, z, z∗) < F (k, z)
so using only steps smaller than F ∗ is an even more con-
servative estimate. The step functions are the solid blue,
cyan and purple lines in Fig. 1. The second method, is
by using F ∗ of the HaloFit model, such that

T ∗2 (P ) =

∫ kUV

H0

dk k2PL(k)(1− c+ cF ∗(k, z, z∗)) , (11)

Again we will evaluate T ∗2 (P ) at z = 1, z∗ = 0.5. In both
methods b = 0 or c = 0 correspond to computing the
dispersion with the linear power spectrum only.
c = 1 corresponds to exactly following the HaloFit en-

hancement pattern. Except c = 1 all the second method
values of c are underestimates as well. The resulting en-
hancement is plotted in Fig. 1 as green, red and grey
dashed lines.
Results: In Fig. 2 we show the constraints on running

and running of running from the non-detection of lens-
ing dispersion overlaid on PLANCK likelihood contours.
In the left panel, the values b = 0, 3, 10, 50 with corre-
sponding kNL = 1, 1, 2, 15 Mpc−1 are considered. The
right panel considers c = 0, 0.01, 0.1, 0.5, 1. In both pan-
els, coloured regions give σµ ≥ 0.12 and are disfavoured.
We expect that simulations with initial conditions that
include non-zero α, β will give result similar to the latter
case of c = 1.

We wish to note that there are additional factors which
make our analysis an underestimate. First of all, the
light-cone average is integrating over the whole sky (2-
sphere, at fixed redshift on the past light-cone). Partial
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FIG. 2: Regions of allowed parameters combined with PLANCK data. The ellipses are the 68% and 95% CL contours from [1].
In the coloured regions σµ > 0.12 and are disfavoured for b = 0, 1, 3, 10, 50 (right panel) and c = 0, 0.01, 0.1, 0.5, 1 (left panel)

sky coverage is expected to increase dispersion [5]. Sec-
ond, the bound σµ ≤ 0.12 in some analyses refers to the
total dispersion, which includes additional contributions
such as intrinsic dispersion, that might actually domi-
nate the dispersion. Third, SNIa at higher redshift have
already been detected and used for cosmological param-
eter inference. The monotonicity of σµ(z) ensures that
considering, for instance, σµ(z = 1.2), would have given
even more stringent bounds.

Conclusions and Outlook: From Fig. 2, it is ob-
vious that the lensing dispersion, or its absence is an
extremely powerful cosmological probe. Even if a scale
dependent spectral index induces clustering which is an
order of magnitude smaller than the standard constant
ns scenario, some of the parameter space allowed by
PLANCK is ruled out. Moreover, the analysis discusses
the spectrum up to k ∼ 320hMpc−1, more than two or-
ders of magnitude beyond PLANCK’s lever arm (∼ 5
e-folds more) irrespective of whether models are ruled in
or out. It can be treated as a prediction of inflationary
models. In the more realistic case where the enhance-
ment is similar to the HaloFit model, such as c = 0.5, 1
or b = 50 one gets strong bounds on the allowed param-
eters, that can be expressed as a linear relation:

β(k0) ≤ 0.036− 0.42α(k0), b = 50 (12)

β(k0) ≤ 0.032− 0.41α(k0), c = 0.5 (13)

β(k0) ≤ 0.019− 0.45α(k0), c = 1 (14)

Allowing α, β 6= 0, PLANCK got α(k0) = 0+0.016
−0.013 and

β(k0) = 0.017+0.016
−0.014. This results nicely matches the re-

alistic case of β(k0) ≤ 0.019. Any improvement such
as reducing the bound to σµ ≤ 0.1, or reducing the er-
ror bars will obviously tighten the constraints. In fact,
all analyses (data, statistical, theoretical and numeri-
cal) [6, 11–13, 28, 33] point to a lower value of the dis-
persion, at most σµ ' 0.093z, practically disfavouring
even a larger portion of the parameter space allowed by

PLANCK. This will really turn the lensing signal into a
cosmological probe, similar to CMB lensing.

It is very appealing to add the lensing dispersion con-
straint to the likelihood analysis of the PLANCK data.
We believe that numerical simulations with initial con-
ditions as suggested here, α(k0), β(k0) 6= 0 which will
give a more accurate late time power spectrum will yield
similar results, thus strengthening our argument. Last,
we have suggested using the (absence of) dispersion to
constrain the primordial power spectrum. Since the dis-
persion depends on several cosmological parameters, it
can be useful in constraining other fundamental cosmo-
logical parameters as well.
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