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We present results for certain classes of diagrams contributing to the
anomalous magnetic moment of the muon at five-loop order. Our method
is based on first constructing an approximating function for the vacuum
polarization function of the photon at four loop order which later can be
numerically integrated to obtain the anomalous magnetic moment of the
muon.

1. Introduction

The anomalous magnetic moments of electron and muon are some of the
best measured and theoretically predicted quantities. The QED corrections
have recently been calculated numerically up to five loops in [1, 2]. Up to
next-to-next-to-leading order complete analytical results are available [3, 4].
At four-loop order only partial results exist, contributions from corrections
to the vacuum polarization function of the photon have been calculated in
[5], contributions due to light lepton loops in [6] and due to heavy leptons
in [7]. Recently, in Ref. [8] some five-loop corrections have been calculated
by using the leading term in the high-energy expansion of the vacuum po-
larization function of the photon. Since this approach lead to a surprisingly
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large deviation from the numerical result, the method has been improved in
Ref. [9]. In the following we will review the main ingredients of the analysis
in Ref. [9] and discuss the results.

2. Setup of the Calculation and Results

The QED corrections to the anomalous magnetic moment aµ can be
calculated in perturbation theory and can thus be written in form of a
power series in the fine structure constant α

aµ =
∞
∑

k=1

(α

π

)k

a(2k)µ , (1)

where a
(2k)
µ can be further decomposed – following the conventions in Ref. [1]

– as

a(2k)µ = A
(2k)
1 +A

(2k)
2 (me/mµ) +A

(2k)
2 (mτ/mµ) +A

(2k)
3 (me/mµ,mτ/mµ) .

(2)

A
(2k)
1 contains the universal contributions, which in case of the muon anoma-

lous magnetic moment only contain muon loops. The diagrams contributing

to A
(2k)
2 (me/mµ) and A

(2k)
2 (mτ/mµ) have at least one electron or tau loop,

respectively. In A
(2k)
3 (me/mµ,mτ/mµ) contributions from diagrams with

both electron and tau loops are collected. In this paper we are mainly

interested in contributions to A
(2k)
2 (me/mµ) without any muon loops.

The contributions to the anomalous magnetic moment of the muon due
to photon polarization effects can be calculated (cf. Fig. 1) by using [10]

aµ =
α

π

∫ 1

0
dx(1− x)

1

1 + Π(sx)
, sx = − x2

1− x
m2

µ , (3)

where Π denotes the vacuum polarization function as defined in Eq. (4).
This formula can be obtained by considering the one-loop result for g − 2
for the case of a heavy photon in combination with the dispersion relation
for Π(q2). The classes of diagrams accessible by this method are shown in
Fig. 2. Thus, we have to find a suitable approximation for Π(q2) which in
turn can be integrated to obtain aµ.

We define the vacuum polarization function Π(q2) as usual by

(qµqν − q2gµν)Π(q2) = ie2
∫

dx 〈0|eiqxTjµ(x)jν(0)|0〉 , (4)
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Fig. 1. Prototype diagram
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Fig. 2. Classes of diagrams accessible by the used method.

with the current jµ = ψ̄γµψ and write it as an expansion in the fine-
structure constant α

Π(q2) =
α

π
Π(1)(q2)+

(α

π

)2
Π(2)(q2)+

(α

π

)3
Π(3)(q2)+

(α

π

)4
Π(4)(q2)+O(α5) .

(5)

In the following we will collect the available results for the low- and high-
energy region and the threshold region, which will later be used to construct
an approximating function. For details on the calculation of the listed re-
sults, please refer to Ref. [9]. In the following nh and si label contributions
from lepton loops and singlet diagrams.

In the low-energy limit the polarization function can be expanded in a
power series in z = q2/(4m2

q) < 1

Π
(n)
le =

∞
∑

k=1

Π
(n)
le,kz

k . (6)

For Π
(4)
le one obtains

Π
(4)
le = z

(

n2h(0.066 si+ 0.571) + 0.112n3h + 0.834nh
)

+ z2
(

0.025n3h + n2h(0.140 si+ 0.366) + 2.230nh
)

+ z3
(

0.012n3h + n2h(0.126 si+ 0.277) + 3.396nh
)

.
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In the high-energy region we write the result in the form

Π
(n)
he =

∞
∑

k=0

Π
(n)
he,kz

−k (7)

with

Π
(4)
he = n3h

(

− 0.009 log3(−4z) + 0.019 log2(−4z)− 0.076 − 0.086 log(−4z)

)

+ n2h

(

− 0.021 log2(−4z) + log(−4z)(0.496 si− 0.258)

+ (0.638 − 1.619 si)

)

+ nh(0.180 log(−4z)− 1.972)

+

[

n2h

(

(−2.546 si− 0.015) + 0.188 log3(−4z)− 0.938 log2(−4z)

+ 2.414 log(−4z)

)

+ n3h

(

− 0.028 log3(−4z) + 0.181 log2(−4z)

− 0.666 log(−4z) + 0.684

)

+ nh

(

0.141 log2(−4z) − 0.281 log3(−4z)

+ 1.265 − 2.048 log(−4z)

)]

/z

The polarization function in the threshold region can be written as

Π
(n)
thr = 16π2

∞
∑

k=2−n

Π
(n)
thr,k

(√
1− z

)k
. (8)

with the four-loop contribution

Π
(4)
thr =

14.640nh
1− z

+
−184.800nh − 70.130nh log(1− z)√

1− z
+ 8.278nh log

2(1− z)

+ log(1− z)
(

−185.400nh − 3.553n2h
)

− 6.220nh log
3(1− z) + C ,

where C denotes an unknown constant.
To obtain an interpolation between these regions a Padé approximation

has been used. We show the result for the approximating function in Fig. 3,
where the envelope together with the relative error is displayed. Insert-
ing the approximation for Π(4) in Eq. (3) the results shown in Tab.1 are
obtained.

The results listed for classes I(a)–I(c) are exact since we numerically
integrated the known one- and two-loop results for the vacuum polarization
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Fig. 3. Padé approximation for Π(4)
(

− x
2

1−x
m2

µ

)

. We show in the top half the

approximants and in the bottom half the relative error with respect to the local

mean of all approximants obtained.

this work Ref. [8] Refs. [11, 12, 13, 14]

I(a) 20.142 813 20.183 2 20.142 93(23) [11]
I(b) 27.690 061 27.718 8 27.690 38(30) [11]
I(c) 4.742 149 4.817 59 4.742 12(14) [11]
I(d)+I(e) 6.241 470 6.117 77 6.243 32(101)(70) [11]
I(e) -1.211 249 -1.331 41 -1.208 41(70) [11]

I(f)+I(g)+I(h) 4.446 8+6
−4 4.391 31 4.446 68(9)(23)(59) [11, 12]

I(i) 0.074 6 +8
−19 0.252 37 0.087 1(59) [13]

I(j) -1.246 9+4
−3 -1.214 29 -1.247 26(12) [14]

Table 1. Results for A
(10)
2 (me/mµ) with pure electronic insertions. The errors

listed in the second column are estimated from the spread between different Padé

approximants, which is negligible for classes I(a)–I(e). Please note that the authors

of Ref. [8] only used the asymptotic form of Π(s) and did not provide any error

estimate.

function. Classes I(d) and I(e) are calculated using highly constrained Padé
approximants, which have been constructed using 30 terms in the low- and
high-energy expansion. Due to the vast amount of information, the results
for g-2 using different approximants have very little spread and the final
result is thus very precise. The situation is quite different for classes I(f)-I(j)
which require the knowledge of Π(q2) at four-loop order. Since there is only a
limited number of terms in the relevant expansions, the Padé approximation
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is less precise and the precision of our result for g-2 is limited. In general
we find good agreement with the results from Refs. [11, 12, 13, 14], but for
some classes a certain tension remains.

3. Conclusions

We calculated the contribution to the anomalous magnetic moment of
the muon arising from corrections to the vacuum polarization function of
the photon at five-loop order. To this end we constructed an approximation
of the vacuum polarization function of the photon at four-loop order based
on expansion in the low- and high-energy and the threshold region. We find
good agreement with the results presented in Refs. [11, 12, 13, 14].
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