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demonstrate the close connection between Regge pole and Regge cut contributions: in a

selected class of kinematic regions (Mandelstam regions) the usual factorizing Regge pole

formula develops unphysical singularities which have to be absorbed and compensated by

Regge cut contributions. This leads, in the corrections to the BDS formula, to conformal

invariant ’renormalized’ Regge pole expressions in the remainder function. We compute

these renormalized Regge poles for the 2 → 5 scattering amplitude.
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1 Introduction

It is now well established that the Bern-Dixon-Smirnov (BDS) conjecture [1] for the MHV

n-point scattering amplitude in the planar limit of the N = 4 SYM theory is incomplete

for n ≥ 6. One of the first indications for this was found in [2, 3]. Corrections to the BDS-

formula have been named ’remainder functions’, R(n), and in recent years major efforts have

been made for determining these remainder functions. For n = 6, the remainder function

R(6) has been calculated for two, and three loops [4–15]. Beyond this loop expansion, it has

turned out to be useful to consider a special kinematic limit, the multi-Regge limit. For the

n = 6 point amplitude the comparison of the BDS conjecture with the leading logarithmic
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approximation which extends over all orders of the coupling constant, has shown that the

remainder function consists of a Regge cut contribution which vanishes in the euclidean

region and in the physical region where all energies are positive, and it is nonzero only in

special kinematic regions, named ’Mandelstam regions’: these are physical regions where

some of the energy variables are positive, others negative (’mixed regions’: the precise

definition will be given later on). These results have been generalized also beyond the

leading logarithmic approximation, and there is no doubt that the multi-Regge limit plays

a key role for the determination of the remainder functions.

In the comparison of the multi-Regge formula with the BDS conjecture in [2, 3, 16]

it was crucial to make use of the analytic structure of the 2 → 4 scattering amplitude

in the multi-Regge limit. It is well known that in non-abelian gauge theories the gauge

bosons reggeize, and in the leading approximation the 2 → n + 1 production amplitudes

can be written in a simple factorizing form with the exchange of reggeized gluons in all

t-channels. Beyond the leading approximation this factorizing form of the Regge-pole

contribution remains valid in the region of all energies being positive, but the production

vertices become complex-valued functions, in agreement with the results of Regge theory

derived from dual models [17–19] or scalar theories [20]. But in [2, 16] in was also shown

that the simple factorized form of the Regge pole contributions is valid only in the physical

region with all energy variables being positive (and also in the euclidean region), but it

takes a quite different form in all other regions, in particular in the Mandelstam regions

mentioned before: in the expression for the Regge pole contribution a new term appears

which contains an unphysical singularity and should be cancelled by other terms.

This representation of the Regge poles is equivalent to another representation, in which

the scattering amplitude is written as a sum of kn different terms, each of them belonging to

a distinct set of non-vanishing simultaneous energy discontinuities: in this representation

the agreement with the Steinmann relation is explicit. For the case of n = 6, there are

five terms, i.e. k6 = 5; for n > 6 the number increases rapidly: k7 = 14, k8 = 42 etc.

As discussed in [2, 3], the perturbative analysis of Yang-Mills theories shows that some of

these terms contain, in addition to the Regge poles, also Regge cut singularities. For the

2 → 4 case, this applies to two terms: in the notation of [2, 3], to W3 and W4. In the

physical region where all energies are positive, the phase factors in front W3 and W4 are

such that the Regge cut contributions in W3 and W4 cancel, whereas in the Mandelstam

region they add up to a nonzero result. Both the discussions of the Regge cut contributions

and of Regge poles have made it clear that a complete analysis of the analytic structure of

scattering amplitudes must include the investigation of all physical regions.

The analysis of [16] for the 2 → 4 amplitude has shown that there is an important

connection between the Regge poles and Regge cuts which has not been seen in earlier

analysis of Regge pole models [19]. First, it was observed that the Regge cut appears in

exactly the same kinematic regions in which the Regge pole expression contains the terms

with the unphysical singularities. Furthermore, both this singular Regge pole piece and the

Regge cut term have the same complex phase structure: this allows to absorb the singular

Regge pole piece into the Regge cut contribution, leading to a ’renormalized’ Regge pole

which is free from unphysical divergences, and to a modified Regge cut definition. The
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existence of Regge cuts therefore resolves the problem connected with appearance of the

singular pieces of the Regge poles. Conversely, without Regge cuts the standard factorizing

Regge pole expression appears to be problematic.

For the determination of the conformal invariant remainder function in N = 4 SYM

it is necessary to perform a careful analysis of the content of the BDS formula. In [2, 3,

16] it was shown that, in multi-Regge kinematics, the BDS formula does not agree with

the analytic structure outlined above in two respects: (i) the Regge pole contribution is

correctly described in the region of positive energies and in the euclidean region, but not

in the Mandelstam region; (ii) in these Mandelstam regions the Regge cut contributions

are contained only in the one loop approximation, but not to all orders. This implies that

the conformal invariant remainder function must (i) correct the Regge pole contribution in

all kinematic regions and (ii) provide the all-loop Regge cut contribution. In view of the

described interdependence between Regge pole and Regge cut contributions, there must

be a close connection between the solutions to both problems. It looks reasonable to start

with the Regge pole part: here the main task is the subtraction of the singular pieces by

Regge cut contributions. To be more concrete, one can attempt to use the known phase

structure of the Regge pole terms in all kinematic regions to constrain the phases of the

Regge cuts in such a way that they can absorb all singular terms of the Regge poles. In

this subtraction, most powerful constraints follow from the conformal invariance of the

remainder function: after absorbing the singular Regge pole pieces (which by themselves

are not conformal invariant) into the Regge cut contributions, the remaining ’renormalized’

Regge poles and the modified Regge cut terms must be conformal invariant.

In this paper we describe this subtraction procedure for the 2 → 4 and for 2 → 5

cases. For the former case, most the work has been done already in earlier publications:

so we only briefly review and complete our previous studies and then generalize to the

2 → 5 case. In the first part (section 2) we analyze the general factorization formula

of Regge pole contributions in all physical regions. Starting from the region of positive

energies where factorization holds, we continue to other regions and derive the existence

of terms with unphysical pole singularities which have to be compensated by Regge cut

contributions. Particular attention will be given to the phase structure which is important

in determining the phase structure of Regge cut contributions in N = 4 SYM. We present

explicit results for 2 → 4 and 2 → 5, but our analysis can also be generalized to the general

case 2 → n+ 1. In the second part (section 3) we present an analysis of the BDS formula

in multi-Regge kinematics in all physical regions. This analysis is general and applies to

the case 2 → n + 1. In the third part (section 5) we carry out the program described at

the end of the previous paragraph. We first compute, for the case 2 → 5, phases of Regge

cut contributions which allow to absorb the unphysical terms of the Regge poles calculated

in the first part. We then define subtraction schemes for absorbing these pieces into the

Regge cuts, leaving conformal invariant expressions for the Regge poles. In the final part of

this section we combine these results with our findings of the BDS amplitude obtained in

section 3, and we present predictions for the remainder function. It should be emphasized

that, in this paper, we do not yet address the second part of the program, the construction

of the conformal invariant Regge cut contributions. This will be left for a separate paper.
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2 The Regge Pole framework

2.1 Factorizing Regge poles

We begin with the factorized form of the fully signatured 2 → n+1 production amplitude

(Fig.1). The produced particles will be labelled by a1, ..., an−1, and they can have positive

or negative energies.

Figure 1: Notations for the 2 → n− 2 amplitude

We want to describe all physical channels of these amplitudes in the multiregge kinematics

s ≫ |s1|, ..., |sn| ≫ −t1, ...,−tn. We introduce, for each t-channel ti, the signature label

τi which takes the values τi = +1 or τi = −1. For τi = +1(−1) the scattering amplitude

is even (odd) under twisting the ti channel, i.e. under the crossing of the corresponding

energy variables (for the simplest case, the 2 → 2 scattering, ’twisting the t-channel’ is the

same as s ↔ u crossing). For our present discussion it is sufficient to consider signatured

amplitudes as sums and differences of planar untwisted and twisted amplitudes. Denoting

a twist by a simple cross, a signatured 2 → 2 scattering amplitude has the form

A = X

Figure 2: The signatured 2 → 2 amplitude

where the cross indicates the change of sign of the energies of the particles B and B′.

Generalizing this to arbitrary n, we write down the amplitude for the 2 → n + 1

production amplitude in the following form

A
τiτj ...τn
2→n+1

Γ(t1)Γ(tn)
= |s1|

ω1ξ1V
τ1τ2;a1 |s2|

ω2ξ2V
τ2τ3;a2 |s3|

ω3ξ3 × ...

×|sn−1|
ωn−1ξn−1V

τn−1τn;an−1 |sn|
ωnξn, (2.1)

where

ξi = e−iπωi − τi ; ξij = e−iπωij + τiτj ; ξji = e−iπωji + τiτj (2.2)

with

ωij = ωi − ωj (2.3)
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denote the signature factors, and

V τiτj ;aj =
ξij
ξi

cij;aiR +
ξji
ξj

cij;aiL (2.4)

stands for the complex-valued production vertex.

As an example, for the case 2 → 3, the one particle production amplitude has a simple

structure [16, 18]:

Aτ1τ2
2→3

Γ(t1)|s1|ω1 |s2|ω2Γ(t2)
= ξ1V

τ1τ2;a1ξ2 = ξ12ξ2c
12;a1
R + ξ21ξ1c

12;a1
L ≡ Ṽ τ1τ2;a1 , (2.5)

where Γ(t) is the Regge pole residue and cR and cL the reggeon-reggeon-particle vertices.

Similarly, the production of two particles has the form [16, 18]:

Aτ1τ2τ3
2→4

Γ(t1)|s1|ω1 |s2|ω2 |s3|ω3Γ(t3)
= ξ1V

τ1τ2;a1ξ2V
τ2τ3;a2ξ3. (2.6)

In order to arrive at a symmetric factorizing expression, we insert, for the t2 channel, an

additional signature factor and write

Aτ1τ2τ3
2→4

Γ(t1)|s1|ω1 |s2|ω2 |s3|ω3Γ(t3)
= Ṽ τ1τ2;a1 1

ξ2
Ṽ τ2τ3;a2 , (2.7)

where

Ṽ τ1τ2;a1 = ξ1V
τ1τ2;a1ξ2. (2.8)

Generalizing to the case 2 → n + 1, we see that for each ’inner’ ti-channel, t2, ..., tn−1, we

need an extra ’propagator’ 1/ξi. With this rule Eq.(2.1) can be written in the convenient

form

A
τiτj ...τn
2→n+1

Γ(t1)|s1|ω1 |s2|ω2 ...|sn|ωnΓ(tn)
= Ṽ τ1τ2;a1 1

ξ2
Ṽ τ2τ3;a2 1

ξ3
...

1

ξn−1
Ṽ τn−1τn;an−1 . (2.9)

It will be useful to write this formula as an expansion in monomials of signatures τi. In such

an expansion, terms without any τi can be identified as the planar approximation in the

kinematic region where all energies are positive. For the case of n = 6, terms proportional

to τ1τ3 correspond to the planar amplitude where the particles a1 and a2 have become

incoming: this is one of the Mandelstam regions where, according to the analysis in [2, 3],

the Regge cut contribution will appear.

In order to obtain this representation we observe that the production vertex, Eq.(2.5),

can be expanded as:

Ṽ τ1τ2;a = e−iπω1c12;a1R + e−iπω2c12;a1L − τ1e
−iπω1

(

e−iπω1c12;a1R + e−iπω2c12;a1L

)

−τ2e
−iπω2

(

e−iπω1c12;a1R + e−iπω2c12;a1L

)

+ τ1τ2

(

e−iπω2c12;a1R + e−iπω1c12;a1L

)

, (2.10)

and the propagator can be written in the form:

1

ξ2
=

1

e−iπω2 − τ2
=

e−iπω2 + τ2
−2i sin(πω2)e−iπω2

. (2.11)

Note the appearance of the nonphysical poles ∼ 1/ sin(πω2) which should be cancelled by

the Regge cut contributions.

With these ingredients it is straightforward to find the expansion in monomials for the

general 2 → n+ 1 amplitude.
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2.2 Generating Function approach for the Regge Pole formula

To be definite, let us from now on concentrate on planar N = 4 SYM. It will be convenient

to define a generating function for the pole-term coefficients. Let us briefly introduce the

idea behind it. We are interested in the analytical continuation of the planar scattering

amplitude to arbitrary kinematic regions in multi-Regge kinematics. During such a con-

tinuation, various factors and phases may appear. As explained above, each particular

kinematic region can be reached by a sequence of twists (crosses) of t-channels, and each

such twist is denoted by a corresponding factor τ1. Thus, it is instructive to have a list

of all possible phases and factors that appear due to continuation for each appropriate

kinematic configuration. One may also think of a different point of view on the scatter-

ing amplitude. Instead of having one analytical function of kinematic invariants and then

continuing to arbitrary physical and non-physical kinematic regions, one can introduce a

generating function, P2→n, which is given as a sum of amplitudes in all physical regions.

As a simple example, consider such a generating function of the 2 → 3 scattering process

Fig.3:

Figure 3: The generating function for the 2 → 3 scattering process written in terms of

monomials of τ1, τ2

Turning now to the BDS formula, applied to the 2 → 3 amplitude [2], we have for the

reggeon vertices in (2.4):

cii+1;a
R = |Γi,i+1|

sin(πωi − πωa)

sin(πωi − πωi+1)
; cii+1;a

L = |Γi,i+1;a|
sin(πωi+1 − πωa)

sin(πωi+1 − πωi)
. (2.12)

Here i labels the t-channel (for the 2 → 3 case we have i = 1 only), a denotes the produced

particle. Going to the physical region where all energies are positive, this allows to write

the Reggeon-Reggeon-Gluon vertex Γi,j;a (see Eq.(19-22) [16]) in the form:

Γi,i+1;a(ln(κa − iπ)) = |Γi,i+1;a|e
iπωa . (2.13)

Here the expansions in powers of a = g2Nc

8π2 are given by:

ωi = −
γK
4

ln
|qi|

2

λ2
, γK = 4a+O(a2), (2.14)

where γK is the cusp anomalous dimension and λ2 ≡ µ2e1/ǫ for D = 4− 2ǫ with ǫ → 0−,

ωa = −
γK
8

ln
|qi|

2|qi+1|
2

|kai+1
|2λ2

(2.15)

1It should be clear that, from now on, τ is no longer related to signature but simply denotes kinematic

regions
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with kai+1
= qi − qi+1, and

ln |Γi,i+1| =
γK
4

(

−
1

4
ln2

|qi − qi+1|
2

λ2
−

1

4
ln2

|qi|
2

|qi+1|2
+

1

2
ln

|qi|
2|qi+1|

2

λ4
ln

|qi − qi+1|
2

µ2
+

5

4
ζ(2)

)

.

(2.16)

Let us now return to the generating functions P2→n, to the sum of amplitudes in all

kinematic regions. It is convenient to divide by factors which are common to all kinematic

regions. Beginning with the case 2 → 3, Namely, using the explicit form Eq.(2.5) with

Eq.(2.12) one arrives at

P2→3 =
A2→3

Γ(t1)|s1|ω1 ||Γ1,2||s2|ω2Γ(t2)

= Ṽ τ1τ2;a
red (2.17)

= e−iπ(ω1+ω2−ωa) − e−iπ(ω2−ωa)τ1 − e−iπ(ω1−ωa)τ2 + e−iπωaτ1τ2.

Here we have defined a reduced vertex by

Ṽ τ1τ2;a
red =

Ṽ τ1τ2;a

|Γ1,2|
= e−iπ(ω1+ω2−ωa) − e−iπ(ω2−ωa)τ1 − e−iπ(ω1−ωa)τ2 + e−iπωaτ1τ2, (2.18)

which consists of phases only.

As the next example we calculate, from Eq.(2.7), the six-point generating function

(cf.([16]):

P2→4 =
A2→4

Γ(t1)|s1|ω1 |Γ1,2||s2|ω2 |Γ2,3||s3|ω3Γ(t3)

= Ṽ τ1τ2;a
red

1

ξ2
Ṽ τ2τ3;b
red

= e−iπ(ω1+ω2+ω3−ωa−ωb)

− e−iπ(ω2+ω3−ωa−ωb)τ1 − e−iπ(ω1+ω3−ωa−ωb)τ2 − e−iπ(ω1+ω2−ωa−ωb)τ3

+ e−iπ(ω3+ωa−ωb)τ1τ2 + e−iπ(ω1−ωa+ωb)τ2τ3

+ e−iπω2

{

cos(πωab) + i

(

sin(πωa + πωb)− 2eiπω2
sin(πωa) sin(πωb)

sin(πω2)

)}

τ1τ3 +

−

{

cos(πωab)− i

(

sin(πωa + πωb)− 2e−iπω2
sin(πωa) sin(πωb)

sin(πω2)

)}

τ1τ2τ3,

(2.19)

where ωab = ωa − ωb. The careful reader may notice that this expression has a mirror

symmetry with respect to right and left (a ↔ b) exchange. This fact will be important in

the future.

Concluding this part, on can write a general expression for the generating function for

an arbitrary number of produced particles 2 → n+ 1:

P2→n+1 =
A2→n+1

Γ(t1)|s1|ω1 |Γ1,2||s2|ω2 ...|Γn−1,n||sn|ωnΓ(tn)

= Ṽ τ1τ2;a1
red

1

ξ2
Ṽ τ2τ3;a2
red

1

ξ3
...

1

ξn−1
Ṽ

τn−1τn;an−1

red

= a0 + a1τ1 + a2τ2 + a12τ1τ2 + ...+ a1..nτ1...τn. (2.20)
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The r.h.s. can be written as a polynomial in the τi, and the coefficients consist of phases

and trigonometric functions. In the Appendix A we list, for the cases 2 → 3, 2 → 4, and

2 → 5, all coefficients of the generating function.

2.3 Rules: a few particular cases

It will be useful to extract, from the particular cases given above, a few general rules. Let

us begin with the case n = 5. As we have said before, the term without any τ belongs

to the planar amplitude in the physical region with all positive energies. On the rhs of

Eq.(2.17) we have:

eiπωae−iπ(ω1+ω2). (2.21)

As expected, the amplitude has the simple factorized form, with phase factors for the

produced particle, eiπωa , and for the exchange channels, e−iπω1 and e−iπω2 . As to the

remaining three terms for n = 5 we observe the following pattern: each t channel without

a twist comes with a phase factor e−iπωi , each t-channel with a twist carries the factor −1:

• twisted propagator: → −1

• untwisted propagator in channel ti: → e−iπωi

An illustration is given in the two figures below

X

 e i i

i i

Figure 4: Two types of propagators in channel i.

Turning to n = 6, all but two terms are of the form which we have just described: phase

factors for the propagators and for the production vertices. It is important to note that in

all these terms the pole ∼ 1/ sin(πω2) from the propagator of the t2 channel cancels. New

features appear for τ1τ3 and τ1τ2τ3, namely terms where the poles ∼ 1/ sin(πω2) from the

propagator (2.11) remain. The term proportional to τ1τ3 belongs to the planar amplitude

continued into the physical regions where particles a and b are incoming:

XX =

a b

Figure 5: Illustration of the term τ1τ3
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This kinematic region is the one in which the Regge cut appears [2, 3]. For this term we

find from the rhs of Eq.(2.19)

= e−iπω2

[

cos(π(ωa − ωb)) + i sin(π(ωa + ωb))− 2i
cos(πω2) sin(πωa) sin(πωb)

sin(πω2)

]

. (2.22)

which we rewrite as:

Eq.(2.22) = e−iπω2

[

eiπ(ωa+ωb) − 2ieiπω2
sin(πωa) sin(πωb)

sin(πω2)

]

. (2.23)

Here the first term is of the same form as discussed before, whereas the second term is

new: it has an unphysical pole in sin(πω2).

The important observation made in [16] is that the last two terms can be included in

the Regge cut contribution, because they have the same phase structure as the Regge cut.

This is the simplest example of the general feature that a Regge pole amplitude which, for

positive energies, has the factorizing form, after analytic continuation, exhibits unphysical

poles (in our case: ∼ 1/ sin(πω2)). From [2, 3] we know that, in Yang-Mills theories, the

2 → 4 amplitude contains a Regge cut contribution with the same phase ie−iπω2 , which

can absorb the singular piece in Eq.(2.22) of the Regge pole contribution.

An analogous discussion applies also to the term proportional to τ1τ2τ3. Note, however,

that in this case the first term (see Appendix A) is of the form

− e−iπ(ωa+ωb). (2.24)

As expected, there are no phases from t-channel propagators, but for the production vertices

we have e−iπωa instead of eiπωa .

Moving on to n = 7, we again note the appearance of pole terms: the coefficient of

τ1τ3 is illustrated below:

XX =

a b c

Figure 6: Illustration of the term τ1τ3

It has the form (Appendix A)

e−iπ(ω2+ω4)eiπωc

[

eiπ(ωa+ωb) − 2ieiπω2
sin(πωa) sin(πωb)

sin(πω2)

]

. (2.25)

It is easily obtained from the analogous term of the 2 → 4 amplitude by multiplication with

eiπωc (for the additional vertex of particle c) and by e−iπω4 (for the untwisted propagator

of the t4 channel). The pole term ∼ 1/ sin(πω2) belongs to the t2-channel, and later on we

will show that it can be combined with the Regge cut contribution in the same t-channel.
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An analogous discussion holds for the coefficient of τ2τ4. Next let us consider the coefficient

of τ1τ4 :

XX =

a b c

Figure 7: Illustration of the term τ1τ4

The corresponding term on the r.h.s. of Eq.(2.20) is (see Appendix A):

[

eiπ(ωa+ωb+ωc)e−iπ(ω2+ω3) − 2i
sin(πωa) sin(πωb) sin(πωc)

sin(πω2) sin(πω3)

]

. (2.26)

Again, the first term is of the same form as the cases discussed above, whereas the double

pole term belongs to the t2 and t3 channels and has to be combined with the Rege cut

contribution extending over these two channels.

Finally, we look at the coefficient of τ1τ2τ3τ4:

XX =

a b c

X X

Figure 8: Illustration of the term τ1τ2τ3τ4

It has the form:
[

eiπ(ωb−ωa−ωc) − 2i
sin(πω2 − πωa) sin(πωb) sin(πω3 − πωc)

sin(πω2) sin(πω3)

]

, (2.27)

and there is again a double pole which has to absorbed by the Rege cut contribution

extending over the t2 and t3-channels. The first term deviates from the previous cases:

for the production vertex of particle b we have eiπωb , whereas particles a and c come the

complex conjugate.

In Appendix A we present, for the cases 2 → 3, 2 → 4, and 2 → 5, a complete list

of all coefficients of the generating function. In all cases we first find a term with a pure

phase. For the ’generalized Mandelstam regions’, there are, in addition, terms with simple,

double, ... poles of the form ∼ 1/ (sin(πωi) sin(πωj)... sin(πωk)). A closer inspection shows

a one-to-one correspondence between these singular terms and Regge cut contributions:

we will explicitly study the case n = 7 and show that these Regge cut pieces can be used

to absorb all singular terms.
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2.4 The general case: recurrence relations

In order to analyze the structure for the general case it is useful to make use of recurrence

relations. To begin with, consider the generating function of the five point amplitude,

P τ1τ2
2→3 (Eq.(2.17)). Due to the factorization property Eq.(2.20), we can obtain the 6-point

generating function by applying a recurrence operator K̃:

P2→4 = Ṽ τ1,τ2;a
red

1

ξ2
Ṽ τ2,τ3;b
red = Ṽ τ1,τ2;a

red K̃(τ2, τ3; b) (2.28)

with

K̃(τ2, τ3; b) =
1

ξ2
Ṽ τ2,τ3
red . (2.29)

Explicitly:

K̃(τ2, τ3; b) = e−iπ(ω3−ωb) −
sin(πω2 − πωb)

sin(πω2)
τ3 +

sin(πωb)

sin(πω2)
τ2τ3. (2.30)

Note that K̃ is not symmetric with respect to the monomial representation. In particular, it

does not contain a term proportional to τ2. Nevertheless, the resulting generating function,

P2→n+1,

P2→n+1 = Ṽ τ1,τ2;a1
red K̃(τ2, τ3; a2)...K̃(τn−1.τn; an−1) (2.31)

is symmetric.

In the Appendix B we present a more general discussion of the coefficients of different

configuration of τ ’s. Here we only discuss one special case which corresponds to two

crosses in the first (left) and in the last (right) channel Fig.9. As before, we consider the

case 2 → n + 1 with n t-channels (t1, ..., tn) and (ω1, ...ωn), and n − 1 produced particles

labelled by a1, ..., an−1:

Figure 9: Initial configuration τ1τn

and we want to prove, by induction, that the coefficient of τ1τn in P2→n+1 is given by
{

e−iπ(ω2+ω3+...ωn−1)eiπ(ωa1
+ωa2

+...+ωan−1)

−2i
sin(πωa1) sin(πωa2)... sin(πωan−1

)

sin(πω2) sin(πω3)... sin(πωn−1)

}

τ1τn. (2.32)

– 11 –



For this we also need to show that the coefficient proportional to τ1 is
{

e−iπ(ω2+ω3+...ωn)eiπ(ωa1
+ωa2

+...+ωan−1)
}

τ1. (2.33)

To begin with the simplest case, 2 → 4, we have for the coefficient τ1τ3 (Eq.(2.23) or

Appendix A):

e−iπω2eiπ(ωa1
+ωa2

) − 2i
sin(πωa1) sin(πωa2)

sin(πω2)
, (2.34)

whereas the coefficient of τ1 is:

e−iπ(ω2+ω3)eiπ(ωa1
+ωa2). (2.35)

Let us now prove, by induction, our assertion. In order to go from the case 2 → n+ 1

to the case 2 → n+ 2, we multiply P2→n+1 with the kernel K̃(τn, τn+1; an):

K̃(τn, τn+1; an) = e−iπωn+1eiπωan −
sin(πωn − πωan)

sin(πωn)
τn+1 +

sin(πωan)

sin(πωn)
τnτn+1. (2.36)

Within this product, the relevant terms are:

P→n+1 · K̃(τn, τn+1; an) =
[

{...}τ1 + {...}τ1τn
]

·
[

1{...} + {...}τn+1 + {...}τ1τn+1

]

, (2.37)

where, by assumption, in the first square bracket we use Eq.(2.32) and Eq.(2.33), and the

second bracket is given in Eq.(2.36).

We immediately see that, on the rhs, the coefficient of τ1 comes from the product of

the first terms in each square bracket and equals:

e−iπ(ω2+...+ωn+1)eiπ(ωa1
+...+ωan). (2.38)

This proves the second part of our assertion. Next, in order to calculate, the contribution

proportional to τ1τn+1, one should take into account two terms: the product of the term

∼ τ1τn in the first bracket with the term τnτn+1 in the second bracket, and the product of

the term τ1 in the first bracket with the term τn+1 in the second bracket. When combining

these two contributions, the following identity is useful:

sin(πωan)

sin(πωn)
+ e−iπωn

sin(πωn − πωan)

sin(πωn)
= e−iπωneiπωan . (2.39)

One arrives at:
{

e−iπ(ω2+ω3+...ωn)eiπ(ωa1
+ωa2

+...+ωan)

−2i
sin(πωa1) sin(πωa2)... sin(πωan)

sin(πω2) sin(πω3)... sin(πωn)

}

τ1τn+1, (2.40)

which proves the first part our assertion.

Concluding this part, according to Eq.(2.31), each coefficient of the τ expansion in

Eq.(2.20) can be calculated recursively, by multiplying the iterative kernel Eq.(2.36) with

the initial expression Ṽ τ1,τ2;a1
red .2

2 Although it is possible to calculate each coefficient in the expansion by using these recurrence relations,

practically it is more efficient to use simple code with Mathematica, which generates these coefficients

immediately. The simplest implementation might be iterative multiplication with the kernel K̃.
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3 Generating function for the BDS amplitudes in the multi-Regge kine-

matics

3.1 Motivation

In order to determine the remainder function in each physical region for the pole and cut

combinations, let us now find the phase structure of the BDS amplitude [1] in the different

kinematic regions. Again, we find it convenient to define a generating function:

ABDS = a0 + a1τ1 + a2τ2 + ...+ anτn + a12τ1τ2 + a13τ1τ3 + ...a1..nτ1τ2...τn. (3.1)

In this expansion, each monomial of the twists τi...τj defines a kinematic region, and the

coefficient ai...j is the BDS prediction for this region. As before, each term in the expansion

corresponds to a diagram of the type

X X X

0 1 2 3 4 5

Figure 10: Example of a diagram with twists in the channels 1, 2, and 4. In Eq.(3.1) it

corresponds to the term τ1τ2τ4.

The following discussion of the BDS formula will be similar to the previous study of the

Regge pole model, but the results all be quite different.

The meaning of the ”twist” or ”crossed line” is the same as before. By twist we mean

that the diagram is rotated around the direction of the exchanged momenta to the right

of the cross (”X”) sign. For example if one twists the diagram with respect to channel 1

(corresponding to ω1), the result is

X

0 1 2 3 4 0 1 2 3 4

Figure 11: Example of diagram with a twist in channel 1, which in the expansion Eq.(3.1)

corresponds to the term τ1.

We can generalize the twisting of the diagram in order to reach other channels. For example,

in Fig.12 we rotated twice. We move from left to right. The first twist brings the diagram

similar to presented in Fig.11 and the second twist (cross in channel 3) rotates back the

rest of the diagram to the right of the cross sign. It is important to stress that despite the

fact that we rotate the diagram, it remains planar.
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X

0 1 2 3 4 0 1 2 3 4

X

Figure 12: Example of double twisted diagram with twists in the channels 1 and 3, which

in the expansion Eq.(3.1) corresponds to the term τ1τ3.

The diagram in Fig.12 corresponds to the following kinematic region:

s1 < 0, s2 > 0, s3 < 0, s4 > 0; s012 < 0, s123 < 0, s234 < 0; s0123 > 0, s1234 < 0; s > 0.

(3.2)

3.2 BDS predictions: examples

Let us begin with a brief review of the five point and the six point functions in the multiregge

kinematics. As shown in [2], for the 2 → 3 amplitude in the region of positive energies (no

τ factors) we have the simple exponential form:

MBDS
2→3

Γ(t1)|s1|ω1 |Γ1,2||s2|ω2Γ(t2)
= e−iπω1eiπωae−iπω2 . (3.3)

Analogous expressions hold for the other regions. The exponents resemble those which we

have discussed in the previous section. However, in contrast to our discussion of the Regge

pole framework, for the BDS amplitudes we can formulate simple rules which also fix the

signs of the exponents of the production vertices. Let us next consider the 2 → 4 case in

the region belonging to the coefficient τ1τ3 (Mandelstam region). From [2, 16] we have

MBDS
2→4

Γ(t1)|s1|ω1 |Γ1,2||s2|ω2 ||Γ2,3||s3|ω3Γ(t3)
= Ce−iπω2eiπ(ωa+ωb). (3.4)

Here C is the new phase factor, related to the one loop approximation of the Regge cut

C = e
iπ

(

γK
4

ln
|q1|

2|q3|
2

|ka+kb|
2λ2

)

(3.5)

with ka + kb = q1 − q3. The remaining parts of the phases are obtained from the rules of

Section 2. It has been noticed in [16] that when combining this phase with the two vertex

factors one arrives at a conformal invariant phase

Ce−iπ(ωa+ωb) = eiδ (3.6)

with

δ = π
γK
4

ln
|q1||q2||ka||kb|

|ka + kb|2|q2|2
. (3.7)

It is important to recall the origin of the phase factor C: the BDS formula for the 2 →

4 amplitude contains three Li2 functions (dilogarithms) which depend upon the three

– 14 –



independent anharmonic cross ratios. In the multi-Regge limit, one of these anharmonic

cross ratios is a phase factor

Φ =
(−s2)(−s)

(−s012)(−s123)
, (3.8)

with

Φ− 1 =
|ka + kb|

2

s2
, (3.9)

whereas the remaining two ratios go to zero. The dilogarithm depending upon the phase

Φ appears in the combination

R(Φ) = −
1

4
ln2 Φ−

1

2
lnΦ

(

ln
(−t1)(−t3)

(−s2)µ2
−

1

ǫ

)

−
1

2
Li2(1− Φ). (3.10)

It is easy to see that

R(Φ = 1) = 0, (3.11)

whereas for Φ = e±2iπ the argument of the dilogarithm passes through a cut and

Li2(1− Φ) → ∓2πi ln(1− Φ) (3.12)

with ln(1−Φ) being real-valued. Concluding, one can see that the analytical continuation of

the combination of the Li2 function with the appropriate logarithms produces a logarithmic

phase factor

R(|Φ|e∓2πi) = ±iπ

(

ln
|qi|

2|qj |
2

|qi − qj|2λ2

)

, (3.13)

which corresponds to the Mandelstam cut in the one loop approximation.. There is an

overall factor γK/4 in front of the logarithm, which was omitted during the computation

of R and should be restored in the final expression.

For the 2 → 5 amplitude there are three phases which have to be rotated. We first

consider the kinematic region belonging to the coefficient of τ1τ3. Here we rotate only

Φ1 =
(−s12)(−s0123)

(−s012)(−s123)
(3.14)

with

Φ1 − 1 =
|ka + kb|

2

s12
, (3.15)

whereas the two other phases are kept fixed. The BDS prediction is

MBDS
2→5

Γ(t1)|s1|ω1 |Γ1,2||s2|ω2 |Γ2,3||s3|ω3 |Γ3,4||s4|ω4Γ(t4)
= C13e

−iπ(ω2+ω4)eiπ(ωa+ωb+ωc) (3.16)

with

C13 = e
iπ

(

γK
4

ln
|q1|

2|q3|
2

|ka+kb|
2λ2

)

; |ka + kb|
2 = |q1 − q3|

2. (3.17)

We introduce the conformal invariant phase δ13:

C13e
−iπ(ω2+ω4)eiπ(ωa+ωb+ωc) = e−iπ(ω2+ω4)eiπωceiδ13 , (3.18)
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where

δ13 = π
γK
4

ln
|q1||q3||ka||kb|

|ka + kb|2|q2|2
. (3.19)

The coefficient of τ2τ4 (with the rotating phase Φ2) is obtained from symmetry consid-

erations. Next the region belonging to τ1τ4. The relevant phase which rotates to e−2iπ

is

Φ̃ =
(−s123)(−s)

(−s0123)(−s1234)
; Φ̃− 1 =

|ka + kb + kc|
2

s123
, (3.20)

and the corresponding Li2-function yields the phase factor

C14 = e
iπ

(

γK
4

ln
|q1|

2|q4|
2

|ka+kb+kc|2λ2

)

; |ka + kb + kc|
2 = |q1 − q4|

2. (3.21)

The prediction of the BDS formula for this kinematic region is

MBDS
2→5

Γ(t1)|s1|ω1 |Γ1,2||s2|ω2 |Γ2,3||s3|ω3 |Γ3,4||s4|ω2Γ(t4)
= C14e

−iπ(ω2+ω3)eiπ(ωa+ωb+ωc).

(3.22)

We write this as

C14e
−iπ(ω2+ω3)eiπ(ωa+ωb+ωc) = e−iπ(ω2+ω3)eiπωbeiδ14 (3.23)

with the conformal invariant phase

δ14 = π
γK
4

ln
|q1||q4||ka||kc|

|ka + kb + kc|2|q2||q3|
. (3.24)

One can spot that the contribution for a single Li2-function belonging to a Mandelstam

cut is given by the simple exponential expression (cf.(3.13))

Cij = e
iπ

(

γK
4

ln
|qi|

2|qj |
2

|qi−qj |
2λ2

)

. (3.25)

The composite state of several single coefficients Cij consists of a product of C’s with

appropriate signs of exponents, in accordance with the direction of the rotation of the

analytical continuation.

Finally the coefficient of τ1τ2τ2τ4. Now we rotate Φ̃ by e−2iπ and Φ1 and Φ2 by e+2iπ.

In terms of a single coefficient Cij, the composite coefficient C1234 will be:

C1234 = C+
14C

−
13C

−
24, (3.26)

where C14 corresponds to the rotation of Φ̃, Φ1, and Φ2 respectively. ± corresponds to the

sign in front of iπ in the exponent. We obtain

MBDS
2→5

Γ(t1)|s1|ω1 |Γ1,2||s2|ω2 |Γ2,3||s3|ω3 |Γ3,4||s4|ω4Γ(t4)
= C1234e

−iπ(ωa+ωb+ωc) (3.27)

with

C1234 = e
−iπ

(

γK
4

ln
|q2|

2|q3|
2|ka+kb+kc|

2

|ka+kb|
2|kb+kc|2λ2

)

(3.28)
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and

C1234e
iπ(ωa+ωc) = eiδ1234 with δ1234 = π

γK
4

ln
|q1||q4||ka + kb|

2|kb + kc|
2

|ka + kb + kc|2|ka||kc||q2||q3|
. (3.29)

In general, the definition of the phases δij... is not unique. It depends upon which ver-

tex factors are combined with the phases resulting from the Li2 functions. We will fix

these phases at the end of section 5.3, after we have defined our renormalized Regge pole

contributions.

3.3 Propagators, Vertices, and Li2 functions

In order to generalize this discussion, we introduce ’Feynman rules’ for the calculation of

the terms in the generating function. From the previous discussion it follows that there are

three building blocks: propagators, vertices, and phases resulting from the Li2 functions.

Beginning with the propagators, there are two types of propagators: one corresponds to

untwisted t-channel lines, the other one to a twisted line (Fig.13). For each untwisted

propagator one should put e−iπωi , and for the twisted propagator, one puts −τi.

X

 e i i

i i

Figure 13: Two types of propagators in channel i.

The second ingredient is the production vertex for the particle ai with the phase πωai . We

denote the produced momenta as ka1 , ka2 , ka3 , .... There are four types of vertices. Three

vertices are simple - with at most only one twisted propagator line (upper line in Fig 14),

and the rule is eiπωai . For the ”doubly-twisted” vertex (the lower line in the Fig 14) we

have the conjugated rule e−iπωak :

Figure 14: Four types of vertices for the production of a particle with momentm kai .

For completeness we recapitulate the expressions for the different ω’s presented here. The

propagator in Fig.13 corresponds to the Regge trajectory, which is given by

ωi = −
γK
4

ln
|qi|

2

λ2
, (3.30)
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while the vertex function ωai corresponds to

ωai = −
γK
8

ln

(

|qi|
2|qj|

2

|qi − qj|2λ2

)

; (j = i+ 1), (3.31)

where qi − qj = kai .

The final ingredient is the phase resulting from the Li2 functions. It depends on the

kinematic regions, and it is convenient to find graphical rules for deriving these contribution.

The idea of twisting the diagram is equivalent to changing the kinematic regions of energy

variables sij..k. Consider the diagram in Fig.15:

Figure 15: Rules for obtaining the Li2 functions for a particular kinematic region (see

text).

We connect crosses by lines. Each connecting line - except for those which embrace a

single production vertex - corresponds to a phase (anharmonic cross ratio) which has been

rotated: Φ → e±2πi, and for each rotated phase the corresponding Li2 function has to be

analytically continued and produces a non vanishing phase. The sign in the exponent can

be determined by counting the number of crosses embraced by the line: if the number is

even, we have Φ → e−2πi, otherwise Φ → e+2πi. A simple example has already been given

above, the case 2 → 4:

Figure 16: Example for the relation between connecting lines and kinematic regions

For the coefficient τ1τ3 (left part of Fig.16) there is only one such line which corresponds

to the phase Φ = (−s)(−s2)
(−s012)(−s1223)

(Eq.(3.8)), and there is no cross (’zero cross’) inside the

line. This phase is rotated by Φ → e−2πi. The analytic continuation of the Li2-function
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leads to the expression Eq.(3.13) which we denote by the ’potential’ V13:

eiπV13 = e
iπ

γK
4

ln
|q1|

2|q3|
2

|q1−q3|
2λ2 . (3.32)

If we apply the same discussion to the coefficient of τ1τ2τ3 (right part of Fig.16), we have

one cross inside the line, the phase is rotated by Φ → e+2πi, and the analytic continuation

of the Li2-function gives

e−iπV13 = e
−iπ

γK
4

ln
|q1|

2|q3|
2

|q1−q3|
2λ2 (3.33)

We generalize the notion of a ’potential’ for the interaction between two crosses in the

ti-channel and the tj-channel:

Vij =
γK
4

ln
|qi|

2|qj|
2

|qi − qj|2λ2
. (3.34)

Returning to the production vertices ωai , it is convenient to extend the notion of the

’potential’ also to neighboring lines which encircle not more than one production vertex:

Vii+1 = −2ωai . (3.35)

With this definition we modify our rules for the production vertex: instead of writing

e±iπωai (depending on whether we have crosses on both sides of the produced particle ai)

we adopt the following rule: for each vertex we write the unique factor e+iπωa , and for

production vertices with crosses on both sides we include the additional factor

eiπVii+1 . (3.36)

This allows to include into our rules, in Fig.15, also the short line around the vertex a1:

now each line which connects crosses in the ti and the tj channel obtains a factor

e±iπVij . (3.37)

If the channels i and j are adjacent (i.e. j = i + 1 and they enclose a production vertex)

the sign is always positive. Otherwise the counting rules of crosses inside the lines apply:

X X

even number of X

e ij

i j

ji
X X

odd number of X

e ij

Figure 17: Sign of the phase depending on the number of crosses ”X” between two twists

i and j.
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Concluding everything, we formulate ’Feynman’-like rules for the calculation of the coeffi-

cients in the monomial expansion of the amplitude ABDS (Eq.(3.1)). Each coefficient ai..j
will be written in the form

ai..j = ±|ai..j|e
iϕi...jeiδi...j , (3.38)

and for the overall sign and for the sum of the phases in the exponent we have the following

rules:

• for each t-channel we write a propagator (twisted and untwisted) according to the

rules:

– twisted propagator: → −1

– untwisted propagator in channel ti: → e−iπωi

• write the product of phase factors of vertices for all produced particles: eiπ(ωa1
+ωa2

+...)

• write all pairwise interactions e±iπVij , i 6= j with the sign (−1)n in the exponent.

Here n is the number of crosses encircled by the pair (ij).

These rules uniquely define the sum of all phases. For our purposes, however, we go one

step further and divide this sum into two terms, i(ϕi...j + δi...j). Examples have been given

in section 3.2 for the case 2 → 4. The first part, iϕi...j, contains all the propagators, and

it may contain some of the production vertices. The second part has to be conformal

invariant. From these requirements alone, we do not find a unique separation into the two

terms, i(ϕi...j + δi...j). We will come back to this quetion in our final section 4.4. As an

example of applying these rules, we return to the diagram in Fig.15:

• propagators: (−)(−)e−iπω3(−)e−iπω5(−)

• vertices: eiπ(ωa1
+ωa2

+ωa3
+ωa4

+ωa5)

• potentials: eiπ(V12−V14+V16+V24−V26+V46)

The final expression for Fig.15 becomes:

eiπ(ωa1
+ωa2

+ωa3
+ωa4

+ωa5)e−iπ(ω3+ω5)eiπ(V12−V14+V16+V24−V26+V46)τ1τ2τ4τ6. (3.39)

The logarithmic form of the potential Eq.(3.34), together with the exponential form of

the coefficient of the monomial in Eq.(3.39), allow an interesting analogy. Namely, we can

interpret Vij as a two dimensional Coulomb potential of the interaction of two point charges

i and j, derived from the Polyakov string action. In more detail, we consider the product

of k vertex operators, i.e. correlators of the form

〈0|eiπ
∑k

r=1 cr[φ(~ρr)−φ(~ρ0)]|0〉, (3.40)

where the averaging is done with the free action

ei
1

2

∫

d2~ρ[∂σφ(~ρ)]
2

(3.41)
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and cr = (−1)r is the charge. It is convenient to introduce the following currents:

π

k
∑

r=1

cr [φ(~ρr)− φ(~ρ0)] = π

∫

d2~ρφ(~ρr)

k
∑

r=1

cr

(

δ(2)(~ρ− ~ρr)− δ(2)(~ρ− ~ρ0)
)

=

=

∫

d2~ρφ(~ρ)J(~ρ), (3.42)

with

J(~ρ) = π

k
∑

r=1

cr

(

δ(2)(~ρ− ~ρr)− δ(2)(~ρ− ~ρ0)
)

. (3.43)

One can calculate the gaussian integral of the neutral system

Z[J ] =

∫

ei
∫

d2~ρ[ 12 (∂σφ(~ρ)
2+φ(~ρ)J(~ρ)]Dφ (3.44)

by using the inverse of the two dimensional Laplacian:

∂2
σφ̃(~ρ) = J(~ρ) → φ̃(~ρ) =

1

4π

∫

d2~ρ′J(ρ′) log
(

|~ρ− ~ρ′|2
)

(3.45)

and by shifting the field variables: φ = φ′ + φ̃. One obtains:

∫

d2~ρ

[

1

2
(∂σφ(~ρ))

2 + φ(~ρ)J(~ρ)

]

=

=
1

8π

∫ ∫

d2~ρd2~ρ′J(~ρ) log
(

|~ρ− ~ρ′|2
)

J(~ρ′) +
1

2

∫

d2~ρ
(

∂σφ
′
)2

. (3.46)

From this expression one derives, for the correlator (3.40), an exponential of the form:

Vij =
π

8

k
∑

r,r′=1

cr cr′
[

log |~ρr − ~ρ′r|
2 − log |~ρr − ~ρ0|

2 − log | ~ρr′ − ~ρ0|
2 + log | ~ρ00|

2
]

. (3.47)

In the first term one recognizes the logarithmic part of the ‘potential’ Vij between two

crosses defined in (3.34). In particular, we notice the universal short range interaction

between two adjacent crosses:

Vi,i+1 ∼ log |~ρi − ~ρri+1
|2. (3.48)

Finally, returning to the generating function introduced at the beginning of this section:

ABDS = a0 + a1τ1 + a2τ2 + ...+ anτn + a12τ1τ2 + a13τ1τ3 + ...a1...nτ1τ2...τn,

we can interpret this expression also as a partition function, where each terms represents

one of the correlators described above. For the rest of this paper, we will not pursue this

analogy any further.
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4 Subtractions from Regge pole contributions

In the previous sections we have seen that the Regge pole formula, based upon factorization

and the analytic decomposition into 5 terms (for the case 2 → 4) or 14 terms (for the case

2 → 5), exhibits, when continued into different kinematic regions with positive and negative

energies, terms with unphysical singularities. At the end of section 3 we have indicated

that Regge cut terms are needed in order to compensate these unwanted singularities. The

subsequent analysis of the BDS predictions, on the other hand, has shown that the BDS

formula is not in agreement with the Regge pole structure, because it contains contributions

from the Li2 functions. As a consequence, depending on the kinematic region, it contains

phases which, in the 2 → 4 case [2], have been understood as a signal of the beginning of

Regge cut contributions. In this final section we concentrate on the case n = 7, and we

show that Regge cut contributions can be determined which satisfy the two conditions:

1. the terms with Regge cuts have the correct phase structure for absorbing the un-

wanted pole terms,

2. after absorbing the unphysical pole pieces of the Regge poles into the Regge cut

terms, we are left with conformal invariant Regge pole contributions.

To be definite, our construction proceeds as follows. Initially we have the Regge pole terms

which, as we have stated, factorize in the kinematic region of positive energies but, when

analytically continued, lead to unphysical singularities. They have to be absorbed into

Regge cut contributions. Schematically we therefore write:

A = Apole +Acut, (4.1)

where the pole contributions are listed in Appendix A, and the phase structure of the cut

contributions have to be discussed in the following. Their contributions to the scattering

amplitude depend upon the kinematic region: they vanish for positive energies (and in

the euclidean region), and they are nonzero in exactly those kinematic regions where the

Regge poles exhibit the unphysical singularities. After having fixed the subtractions we

will arrive at modified expressions:

A = A′
pole +A′

cut, (4.2)

where the primes indicate that, in each physical region with Regge cuts and singular Regge

pole pieces, the unphysical singular pieces have been absorbed by the Regge cuts. In this

new representation the amplitude, for each region τi...τj , will be written in the form:

A = ABDSR, (4.3)

where ABDS contains the phase factors ϕi...j and δi...j calculated in the previous section

3.3, and the conformal invariant remainder function R is of the form:

Reiδ = conformal pole + conformal Regge cut. (4.4)
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For illustration we return, once more, very briefly to the 2 → 4 case [16]. As shown in

[2, 3], the Regge cut piece has the phase ie−iπω2 . To see this we remind that, in the

decompositon of the 2 → 4, amplitude, the Regge cut appears in two of the five terms.

Their phase structure follows from the energy factors which, in the notation of [2, 3], is

W3 ∼ (−s2)
ω21(−s012)

ω13(−s)ω3Vcut

W4 ∼ −(−s2)
ω23(−s123)

ω31(−s)ω1Vcut. (4.5)

The coefficient Vcut is the same in both terms, and there is relative minus sign between

the two partial waves. From this structure one derives easily that the sum of these two

contributions vanishes in the physical region where all energies are positive (a phase factor

e−iπ form each energy), in the euclidean region (all energies negative, i.e. all phases reduce

to unity), and also in the region where only one energy is negative. In contrast to this, in

the region s, s2 > 0, s012, s123 < 0, the sum is proportional to ie−iπω2 . On the other hand,

the Regge pole, when continued into this kinematic region, takes the form Eq.(2.22), i.e.

we have one term proportional to e−iπω2 , and two terms proportional to ie−iπω2 . The latter

ones have the same phase structure as the Regge cut contribution, and thus they can be

combined with the Regge cut: we can remove them by a special contribution (’subtraction’)

inside the Regge cut. What is then left is the first term of the Regge pole contribution

e−iπω2 cos π(ωa − ωb). (4.6)

Here the argument of the cos is conformal invariant. Therefore, this expression defines,

for this kinematic region, a ’conformal’ Regge pole contribution. The amplitude can be

written as

A = ABDSR, (4.7)

where ABDS contains the phase factor e−iπω2 , and

Reiδ = cos π(ωa − ωb) + i ReggeCut. (4.8)

The new Regge cut contribution is expected to be conformal invariant.

4.1 Analytic structure of the 2 → 5 scattering amplitude

In the following we will extend this analysis to the 2 → 5 case. We now have three different

Regge cut contributions. They are illustrated in the following figure:
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Figure 18: Regge cut contributions for the 2 → 5 scattering amplitude

In addition to the t-channels where the Regge cuts appear, we have also indicated a few

kinematic regions in which these Regge cut contribute. In the generating functional, these

kinematic regions correspond to the coefficients of τ1τ3, τ2τ4, τ1τ4, and τ1τ2τ3τ4. The

analytic representation of the 2 → 5 amplitude contains 14 different terms. They are

illustrated below:

1 2 3 4

A B

0

Figure 19: Terms without Regge cuts
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Figure 20: Terms which contain Regge cut contributions: two doublets (a) and (b), and

two triplets (c) and (d)

Here each term is written as a multiple Sommerfeld Watson integral over ω variables, and

the integrand comes as a product of energy factors which contain all the phases and a real-

valued partial wave. For simplicity, we will disregard the ω-integration in the rest of our

paper.. The analytic structure of these terms is in agreement with the Steinmann relations,

i.e. each of these 14 terms has a maximal set of energy discontinuities in non-overlapping

channels (denoted by dashed lines).

Only ten of these 14 terms contain Regge cut contributions: they can be arranged as

two doublets a, b and two triplets c, d. The ’short’ Regge cut in the t3 channel (Fig.18b)

is contained in the first doublet a1 and a2 and in the first triplet, c1, c2, and c3. Similarly,

the ’short’ Regge cut in the t2 channel (Fig.18a) is contained in the second doublet, b1 and

b2, and in the second triplet, d1, d2, and d3. Finally, the ’long’ cut in Fig.18c1 and Fig.18c1
appears in the first two terms of both triplets. In each term, these Regge cut contributions

are additive. As an example, the first two terms of the triplets are sums of two terms, each

of a ’short’ cut and of the ‘long’ cut.

Next we are interested in the phase structure of these terms: it follows from the energy
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factors which we list in the following. For the doublets we have:

a1 = (−s1)
ω12 (−s3)

ω34 (−s234)
ω42 (−s)ω2 (4.9)

a2 = (−s1)
ω12 (−s3)

ω32 (−s0123)
ω24 (−s)ω4

and

b1 = (−s2)
ω21 (−s012)

ω13 (−s4)
ω43 (−s)ω3 (4.10)

b2 = (−s2)
ω23 (−s4)

ω43 (−s1234)
ω31 (−s)ω1 .

Similarly for the two triplets:

c1 = (−s3)
ω32 (−s123)

ω21 (−s0123)
ω14 (−s)ω4 (4.11)

c2 = (−s3)
ω32 (−s123)

ω24 (−s1234)
ω41 (−s)ω1

c3 = (−s3)
ω34 (−s234)

ω42 (−s1234)
ω21 (−s)ω1

and

d1 = (−s2)
ω23 (−s123)

ω34 (−s1234)
ω41 (−s)ω1 (4.12)

d2 = (−s2)
ω23 (−s123)

ω31 (−s0123)
ω14 (−s)ω4

d3 = (−s2)
ω21 (−s012)

ω13 (−s0123)
ω34 (−s)ω4 .

It should be noted that in these expressions, for simplicity, we have disregarded κ factors

as well as energy scales. As an example, the complete form of d1 from Eq.(4.12) which

includes these coefficients has the form [2, 3]:

d1 =

(

−s2
µ2

)ω23
(

−s123κ23
µ4

)ω34
(

−s1234κ23κ34
µ6

)ω41
(

−sκ12κ23κ34
µ8

)ω1

,

where

κii+1 =
sisi+1

si−1ii+1
= |qi − qi+1|

2 , and the usual convention: si ≡ si−1i. (4.13)

As a result of these κ-factors, all energy factors d1 etc. can be written in the common form

d1 = phase factor ×

(

|s1|

µ2

)ω1
(

|s2|

µ2

)ω2
(

|s3|

µ2

)ω3
(

|s4|

µ2

)ω4

(4.14)

In the following, our interest will first be devoted to the phase factors derived from Eqs.(4.9)

- (4.12): they depend upon the kinematic regions. In the next step, we will determine the

coefficients that accompany the phase factors; they are real-valued and do not depend upon

the kinematic region we are considering.
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4.2 Determination of the coefficients of the partial waves

As we have said before,the kinematic regions in which the Regge pole expressions (listed in

Appendix A) contain poles of the type 1/ sin(πωi) are the same regions for which we also

have Regge cut contributions 3. For each such region we write schematically:

f = fpole + fcut. (4.15)

In this notation, f denotes the sum of all those terms which contribute to this region, and

it contains both the energy (and phase) factors and their real-valued coefficient, the partial

waves. As a consequence, the form of the f will be different in different kinematic regions.

In general, the Regge cut piece will a sum of several terms: for example, the coefficient of

τ1τ2τ3τ4 contains the two ’short’ cuts and the ’long’ cut:

fcut = fω2
+ fω3

+ fω2ω3
. (4.16)

In this paper we will not address the full structure of these Regge cut terms. Instead,

we will concentrate on the overall phases, fphase
cut , and only those pieces of the Regge cuts

which absorb the ’unwanted’ pieces of the Regge pole contributions, i.e. those terms which

have the unphysical poles of the form 1/ sin(πωi): δfcut, namely:

fωi
= Nωi

fphase
ωi

δfωi
. (4.17)

We therefore have to keep in mind that the fcut which we discuss in the following contain

only the subtraction terms but not the full Regge cut terms. We will name this procedure

’subtraction’, in analogy to the removal of ultraviolet divergences in the renormalization

of quantum field theory.

In more detail, for the two doublets and for the two triplets, we will find a set of

coefficients which should satisfy the following requirements:

(i) the Regge cuts contribute only in specific kinematic regions where the so-called Mandel-

stam conditions are fulfilled. In particular, Regge cuts do not contribute to the euclidean

region or to the physical region where all energies are positive.

(ii) Phases of the Regge cut contributions have to match the ’unwanted’ pieces of the

Regge pole contributions, i.e. those terms which have the unphysical poles of the form

1/ sin(πωi).

(iii) After having absorbed these ’unwanted’ pole terms into the Regge cut terms, the

remaining Regge pole contributions have to be conformal invariant.

Let us begin with the ’short’ Regge cut in the t3 which appears in the terms labelled

by a1, a2, c1, c2, and c3. We are searching for real-valued coefficients of theses terms which,

for the sum of all five terms, lead to correct phases in all kinematic regions. First we notice

that, in the region of all energies being positive, all ci have the common phase e−iπω3 ,

and all ai the common phase e−iπ(ω1−ω2+ω3). The absence of the Regge cut in this region

implies that the sum of the terms a1, a2 and the sum of the terms c1, c2, c3 must be zero

separately. This alone does not fix the coefficients of the ci. We make the ansatz (which

3Conditions for the existence of the Regge cuts have been formulated in the appendix of [21]
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will be justified in a moment) and chose, for the coefficients of c1, c2, and c3, the relative

weights 1
2 ,

1
2 , and −1, resp. Similarly, for the coefficients of a1 and a2 the relative weights

are +1 and −1, resp. In order to determine the common factors of the ci, we go to the

region τ2τ4: here the terms c1 and c2 have the common phase e−iπω3e−iπ(ω4−ω2), whereas

c3 has the phase e−iπω3e−iπ(ω2−ω4). Taking into account the relative weights given above,

the sum of the terms ci gives the phase e−iπω32i sin π(ω2 − ω4). In the same way, the sum

of a1 and a2 lead to the factor e−iπ(ω3+ω1−ω22i sin π(ω4 − ω2). Combining the sum of the

ci-terms with the sum of the ai terms we still have the freedom to chose coefficients: with

the choice sin(πω2a) and sin(πω1a) we have, again for the region τ2τ4, the result:

sin(πω2a)

{

1

2
c1 +

1

2
c2 − c3

}

+ sin(πω1a) {a1 − a2}

= 2i sin(πω12) sin(πω34)e
−iπω1eiπωae−iπω3 . (4.18)

The phases are in agreement with what one expects from Regge factorization: the Regge

cut in the t3 channel has the same phase in the 2 → 4 amplitude: ie−iπω3 , and the phase

of the t1 channel together with the production vertex of particle a factorizes: e−iπω1eiπωa .

However, this is not yet the final answer for the cut in the ω3 channel. Namely, when

going to the region τ1τ4, we find the phases:

a1 − a2 = e−iπω32i sin(πω24) (4.19)

1

2
(c1 + c2)− c3 = e−iπω3i sin(πω14). (4.20)

Together with the prefactors sin(πω1a), sin(πω2a), these terms cannot be combined to arrive

at the the expected phase e−iπ(ω2+ω3). As a solution, we chose to completely cancel this

contribution by adding a term proportional to c1 − c2. In the region τ1τ4 we have:

c1 − c2 = e−iπω32i sin(πω14), (4.21)

and with the following coefficients we arrive at our final answer for the ‘short’ cut in the

ω3-channel:

Nω3
fphase
ω3

= sin(πω2a)

{

1

2
c1 +

1

2
c2 − c3

}

+ sin(πω1a) {a1 − a2} − (4.22)

−
1

sin(πω14)

(

1

2
sin(πω14) sin(πω2a) + sin(πω42) sin(πω1a)

)

{c1 − c2} .

We make sure that, by analytically continuing this function fω3
into different kinematic

regions, we find correct answers. In detail, the results are the following: non-zero values

appear only in the four kinematic regions τ2τ4, τ1τ2τ3τ4, τ1τ2τ4 and τ2τ3τ4:
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Figure 21: Analytical continuation of fω3
.

In all other kinematic regions fphase
ω3

vanishes. The common factor Nω3
is found to be:

Nω3
= 2 sin(πω24) sin(πω21)

(

|s1|

µ2

)ω1
(

|s2|

µ2

)ω2
(

|s3|

µ2

)ω3
(

|s4|

µ2

)ω4

. (4.23)

A comment is in place about the second line in (4.22) which is proportional to c1 − c2. As

we will show in a few moments, the combination c1 − c2 belongs to the ‘long’ cut in the

ω2 and ω3 channel. The fact that this combination also participates in our calculations of

the ‘short’ cut hints at the fact that the ‘long’ cut contribution may contain terms which

have the ω-plane singularity structure of the ‘short’ cuts, i.e. there is a mixing between

the different Regge cuts. We will come back to this question in a forthcoming paper.

An analogous discussion applies to the ’short’ cut in the fω2
channel:

Nω2
fphase
ω2

= sin(πω3c)

{

1

2
d1 +

1

2
d2 − d3

}

+ sin(πω4c) {b1 − b2} − (4.24)

−
1

sin(πω41)

(

1

2
sin(πω41) sin(πω3c) + sin(πω13) sin(πω4c)

)

{d1 − d2} .

We continue the function fphase
ω2 to those four different kinematic regions where it is non-

zero:
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Figure 22: Analytical continuation of fω2
.

with the common factor

Nω2
= 2 sin(πω31) sin(πω34)

(

|s1|

µ2

)ω1
(

|s2|

µ2

)ω2
(

|s3|

µ2

)ω3
(

|s4|

µ2

)ω4

. (4.25)

In all other kinematic regions we have fphase
ω2

= 0.

Next we turn to the ’long’ Regge cut in the ω2 and ω3 channels simultaneously. This

cut is contained in the first two terms of the triplets - c1, c2, d1, d2 of Fig.20 with the

corresponding phases c1, c2, d1, and d2 in Eq.(4.11) and Eq.(4.12). Repeating our line

of arguments, we first consider the region where all energies are positive: since all ci are

proportional to e−iπω3 , all di proportional to e−iπω2 , the coefficient of c1 has to be opposite

equal to that c2, and similarly for d1 and d2. Turning to the region τ1τ2τ3τ4, the phases of

c1 − c2 are

c1 − c2 = 2ie−iπω2 sin(πω14). (4.26)

We take the following linear combination:

sin(πω3x) {c1 − c2}+ sin(πω2x) {d1 − d2} = 2ie−iπωx sin(πω14) sin(πω32) (4.27)

with x = a, b, c. Obviously, xb would be a symmetric choice; however the singular term in

the Regge pole contribution (Appendix A) has no phase e−iπωb , and therefore this ansatz

for the Regge cut cannot be used to subtract for the subtraction. Instead, we take the

linear combination of two contributions:

Nω2ω3
fa;phase
(ω2ω3)

= sin(πω3a) {c1 − c2}+ sin(πω2a) {d1 − d2} (4.28)

and

Nω2ω3
f c;phase
(ω2ω3)

= sin(πω3c) {c1 − c2}+ sin(πω2c) {d1 − d2} , (4.29)

and in the combination Afa;phase
(ω2ω3)

+ Cf c;phase
(ω2ω3)

we will determine real valued coefficients

A = δfa
ω2ω3

and C = δf c
ω2ω3

which subtract the singular part of the Regge pole contribution.
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Let us first study the other kinematic regions. The functions fa;phase
ω2ω3

and f c;phase
ω2ω3

have

non-zero values in four particular kinematic regions:

Figure 23: Analytical continuation of fa:phase
ω2ω3

.

and

Figure 24: Analytical continuation of f c;phase
ω2ω3

.

The common factor is the same for fa;phase
ω2ω3

and for f c;phase
ω2ω3

:

Nω2ω3
= 2 sin(πω14) sin(πω32)

(

|s1|

µ2

)ω1
(

|s2|

µ2

)ω2
(

|s3|

µ2

)ω3
(

|s4|

µ2

)ω4

. (4.30)

For all other possible configuration of analytical continuation, the result is zero. Thus, the

’long’ cut contributes only to these four particular kinematic regions. We combine these

two terms

∆fω2ω3
= δfa

ω2ω3
fa;phase
ω2ω3

+ δf c
ω2ω3

f c;phase
ω2ω3

(4.31)
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with real coefficients δfa
ω2ω3

and δf c
ω2ω3

, and we find for the different regions:4

Figure 25: Analytical continuation of ∆fω2ω3
.

It is remarkable that the square bracket is the same in all four cases, up to complex

conjugation of the phases. Below we will determine the coefficients δfa
ω2ω3

and δf c
ω2ω3

.

Summarizing this subsection, we have determined coefficients of the partial waves a1, ...d3
which, for all those kinematic region which contains Regge cuts, can be combined to give

a ’good’ phase structure. Returning to Eq.(4.17), we have determined the normalization

factors N and the phases fphase
ω . In the following we still have to calculate the coefficients

δfω, and we have to show that our ansatz matches the phases of the singular pieces of the

Regge pole terms (studied in section 2) and thus allows to absorb these singularities by the

Regge cuts.

4.3 Redefinitions of Regge pole terms: subtractions

Let us now turn to the subtraction procedure. Figs.21, 22, 25 show the kinematic regions in

which the different Regge cuts, fω3
, fω2

, and fω2ω3
, contribute. There are two regions (τ2τ4

and τ2τ3τ4) in which only fω3
contributes, two regions (τ1τ3 and τ1τ2τ3) where only fω2

is

nonzero, and one region (τ1τ4) where only the ‘long’ cut appears. In the remaining three

regions we have combinations of several Regge cuts. In particular, the region τ1τ2τ3τ4
sees all cut contributions. We begin with the ‘short’ cut fω3

: from the region τ2τ4 we

determine the subtraction δfω3
which then fixes the subtractions in all regions listed in

Fig.21. Similarly, δfω2
is obtained from the region τ1τ3 and will be used in all regions

listed in Fig.22. Finally, in the region τ1τ2τ3τ4 we can fix the remaining subtraction,

δfω2ω3
.

We begin with the region τ2τ4 where only the ‘short’ cut in the t3 channel contributes.

From Appendix A we read off the Regge pole contribution in the region τ2τ4:

f τ2τ4
pole = e−iπ(ω1+ω3)eiπωa

(

cos(πωbc) +

[

eiπ(ωb+ωc) − cos(πωbc)− 2ieiπω3
sin(πωb) sin(πωc)

sin(πω3)

])

.

(4.32)

4We omitted the subscript ‘ω2ω3’ of the δfa,c in the figure for the sake of simplicity.
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The square bracket expression on the rhs can also be written as (Eq.(2.22) and Eq.(2.23))

[...] = +i sin(π(ωb + ωc))− 2i
cos(πω3) sin(πωb) sin(πωc)

sin(πω3)
, (4.33)

which shows that it is purely imaginary and can also be written as

[...] = −

[

e−iπ(ωb+ωc) − cos(πωbc) + 2ie−iπω3
sin(πωb) sin(πωc)

sin(πω3)

]

. (4.34)

Thus the phase structure of the second part of Eq.(4.32) is the same as that of the cut

contribution fphase
ω3

in the first line of Fig.21, and we define the subtraction term as follows:

δfω3
= i

[

eiπ(ωb+ωc) − cos(πωbc)− 2ieiπω3
sin(πωb) sin(πωc)

sin(πω3)

]

= −i

[

e−iπ(ωb+ωc) − cos(πωbc) + 2ie−iπω3
sin(πωb) sin(πωc)

sin(πω3)

]

= −

[

sin(π(ωb + ωc))− 2
cos(πω3) sin(πωb) sin(πωc)

sin(πω3)

]

. (4.35)

Having fixed the subtraction δfω3
in the τ2τ4 region, we know the subtraction for all

kinematic regions in which the ω3-cut appears (these regions are listed in Fig.21). In our

generating function we therefore have the following contributions5

−
[

τ2τ4e
−iπ(ω1+ω3)eiπωa − τ1τ2τ4e

−iπω3eiπωa

]

[

eiπ(ωb+ωc) − cos(πωbc)− 2ieiπω3
sin(πωb) sin(πωc)

sin(πω3)

]

+
[

−τ2τ3τ4e
−iπω1eiπωa + τ1τ2τ3τ4e

−iπωa
]

[

e−iπ(ωb+ωc) − cos(πωbc) + 2ie−iπω3
sin(πωb) sin(πωc)

sin(πω3)

]

.

(4.36)

For the regions τ2τ4 and τ2τ3τ4 this are the only subtractions, and by subtracting the

corresponding parts of Eq.(4.36) from their Regge pole terms (Appendix A), all unwanted

singular terms must cancel. Indeed, for the region τ2τ4 we find

f τ2τ4
ren;pole = f τ2τ4

pole + ie−iπ(ω1+ω3)eiπωaδfω3

= e−iπ(ω1+ω3)eiπωa cos(πωbc), (4.37)

which consists of a phase factor and a conformal invariant expression: the latter will be

called ’conformal Regge pole’. Similarly the region τ2τ3τ4: together with the Regge pole

contribution from Appendix A which we write as

f τ2τ3τ4
pole = −e−iπω1eiπωa

(

cos(πωbc) +

[

e−iπ(ωb+ωc) − cos(πωbc) + 2ie−iπω3
sin(πωb) sin(πωc)

sin(πω3)

])

(4.38)

5Note that here we follow our convention that terms promotional to an odd number of factors τ receive

an additional minus sign.
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we obtain

f τ2τ3τ4
ren;pole = f τ2τ3τ4

pole − ie−iπω1eiπωaδfω3

= −e−iπω1eiπωa cos(πωbc). (4.39)

This defines our renormalized pole contribution in the region τ2τ3τ4. The other two regions,

τ1τ2τ4 and τ1τ2τ3τ4 receive contributions also from the ‘long’ cut: they will be discussed

further below.

A similar discussion applies to the symmetric region τ1τ3 which is used to calculate

the subtraction contained in fω2
:

δfω2
= i

[

eiπ(ωa+ωb) − cos(πωab)− 2ieiπω2
sin(πωa) sin(πωb)

sin(πω2)

]

= −i

[

e−iπ(ωa+ωb) − cos(πωab) + 2ie−iπω2
sin(πωa) sin(πωb)

sin(πω2)

]

= −

[

sin(π(ωa + ωb))− 2
cos(πω2) sin(πωa) sin(πωb)

sin(πω2)

]

.

(4.40)

From Fig.22 it follows that the same subtraction contributes also to the regions τ1τ2τ3,

τ1τ3τ4, and τ1τ2τ3τ4. The analogue of Eq.(4.36) reads:

−
[

τ1τ3e
−iπ(ω2+ω4)eiπωc − τ1τ3τ4e

−iπω2eiπωc

]

[

eiπ(ωa+ωb) − cos(πωab)− 2ieiπω2
sin(πωa) sin(πωb)

sin(πω2)

]

+
[

−τ1τ2τ3e
−iπω1eiπωc + τ1τ2τ3τ4e

−iπωc
]

[

e−iπ(ωa+ωb) − cos(πωab) + 2ie−iπω2
sin(πωa) sin(πωb)

sin(πω2)

]

,

(4.41)

and the renormalized Regge poles in the regions τ1τ3 and τ1τ2τ3 have the form:

f τ1τ3
ren;pole = f τ1τ3

pole + ie−iπ(ω2+ω4)eiπωcδfω2

= e−iπ(ω2+ω4)eiπωc cos(πωab), (4.42)

and

f τ1τ2τ3
ren;pole = f τ1τ2τ3

pole − ie−iπω4eiπωcδfω2

= −e−iπω4eiπωc cos(πωab). (4.43)

Finally we turn to the contributions of the ‘long’ cut which contributes to the regions listed

in Fig.25. We start with the region τ1τ2τ3τ4: in this region all three cuts contribute. The

subtractions contained in the two ‘short’ cuts have already been determined before, and

we can use these results for fixing the subtraction due to the ‘long’ cut. We again begin

with the Regge pole expression (from the Appendix A):

f τ1τ2τ3τ4
pole = eiπ(−ωa+ωb−ωc) − 2i

sin(πω2a) sin(πωb) sin(πω3c)

sin(πω2) sin(πω3)
. (4.44)
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The subtractions from the ‘short’ cuts, δfω3
and δfω2

, have been defined above: δfω3
in

Eq.(4.35) and Eq.(4.36), and δfω2
in Eq.(4.40) and Eq.(4.41). Before the subtraction due

to the ‘long’ cut we have:

f τ1τ2τ3τ4
pole − ie−iπωcδfω2

− ie−iπωaδfω3
(4.45)

which contains a double pole term ∼ 1/ (sin(πω2) sin(πω3)) (from f τ1τ2τ3τ4
pole in Eq.(4.44)) and

single poles ∼ 1/ sin(πωi) (i=1,2) (from δfω3
and δfω2

). We now use the freedom of having

another subtraction connected with the ‘long’ cut, fa,c
ω2ω3

: we chose these remaining sub-

tractions δfa,c
ω2ω3

in such a way that they remove all double poles ∼ 1/ (sin(πω2) sin(πω3)),

all single poles ∼ 1/ sin(πωi) (i=1,2), and makes the resulting expression conformally in-

variant. This leads to:

∆fω2ω3
=

{

−2
sin(πω2a) sin(πωb) sin(πω3c)

sin(πω2) sin(πω3)
−

−e−iπωai

[

e−iπ(ωb+ωc) − cos(πωbc) + 2ie−iπω3
sin(πωb) sin(πωc)

sin(πω3)

]

−

−e−iπωci

[

e−iπ(ωa+ωb) − cos(πωab) + 2ie−iπω2
sin(πωa) sin(πωb)

sin(πω2)

]}

.(4.46)

Here we remind that, according to Eq.(4.33), the square brackets in the second and third

rows are purely imaginary. The first term can also be written in the form

− 2
sin(πω2a) sin(πωb) sin(πω3c)

sin(πω2) sin(πω3)
= (4.47)

(

e−iπωa
sin(πωc)

sin(πωac)
+ e−iπωc

sin(πωa)

sin(πωca)

)

2
sin(πω2a) sin(πωb) sin(πω3c)

sin(πω2) sin(πω3)
.

Inserting this into Eq.(4.46) one sees that, in fact, ∆fω2ω3
can be written as:

∆fω2ω3
= δfa

ω2ω3
e−iπωa + δf c

ω2ω3
e−iπωc (4.48)

with real coefficients δfa
ω2ω3

and δf c
ω2ω3

.

Having fixed the subtractions due to the ‘long’ cut, δfa
ω2ω3

and δf c
ω2ω3

, we must show

that in all four kinematic regions in which the ‘long’ cut is nonzero (Fig.25), the unphysical

singularities of the Regge pole contributions cancel. We collect these subtractions by
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writing it as part of the partition function:
{

eiπ(ωa+ωb+ωc)e−iπ(ω2+ω3) − 2i
sin(πωa) sin(πωb) sin(πωc)

sin(πω2) sin(πω3)

}

τ1τ4 (4.49)

{

eiπ(−ωa+ωb−ωc) − 2i
sin(πω2a) sin(πωb) sin(πω3c)

sin(πω2) sin(πω3)
−

−e−iπωa

[

e−iπ(ωb+ωc) − cos(ωbc) + 2ie−iπω3
sin(πωb) sin(πωc)

sin(πω3)

]

−e−iπωc

[

e−iπ(ωa+ωb) − cos(ωab) + 2ie−iπω2
sin(πωa) sin(πωb)

sin(πω2)

]}

τ1τ2τ3τ4

−

{

eiπ(−ωa+ωb+ωc)e−iπω3 − 2i
sin(πω2a) sin(πωb) sin(πωc)

sin(πω2) sin(πω3)
−

− e−iπω3eiπωa

[

eiπ(ωb+ωc) − cos(ωbc)− 2ieiπω3
sin(πωb) sin(πωc)

sin(πω3)

]}

τ1τ2τ4

−

{

eiπ(ωa+ωb−ωc)e−iπω2 − 2i
sin(πωa) sin(πωb) sin(πω3c)

sin(πω2) sin(πω3)
−

− e−iπω2eiπωc

[

eiπ(ωa+ωb) − cos(ωab)− 2ieiπω2
sin(πωa) sin(πωb)

sin(πω2)

]}

τ1τ3τ4.

(4.50)

It is now a matter of straightforward algebra to calculate the conformal Regge poles

for the four different kinematic regions. For the region τ1τ2τ3τ4 we return to Eq.(4.45) and

find:

f τ1τ2τ3τ4
ren;pole = f τ1τ2τ3τ4

pole − ie−iπωcδfω2
− ie−iπωaδfω3

+ i∆fω2ω3

= eiπ(−ωa+ωb−ωc). (4.51)

Here the ’conformal Regge pole’ equals unity. In the same way we find for the other regions:

f τ1τ4
ren;pole = f τ1τ4

pole + ieiπ(ω2+ω3)∆fω2ω3

= e−iπ(ω2+ω3)eiπωb cos(πωac), (4.52)

f τ1τ2τ4
ren;pole = f τ1τ2τ4

pole + ie−iπω3δfω3
− ie−iπω3∆fω2ω3

= −e−iπω3eiπωc cos(πωab), (4.53)

and

f τ1τ3τ4
ren;pole = f τ1τ3τ4

pole − ie−iπω2δfω2
− ie−iπω2∆fω2ω3

= −e−iπω2eiπωa cos(πωbc). (4.54)

4.4 Predictions for the remainder function of the 2 → 5 amplitude

Let us summarize our results for those eight kinematic regions for which the Regge pole

terms need to be renormalized. This are also the regions which contain Regge cuts. We

again use our notation of a generating function and write for the scattering amplitude A:

A = A0 +A1τ1 + ...+A12τ1τ2 + ...+A1234τ1τ2τ3τ4. (4.55)
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Here each term proportional to τi...τj is written as a product of the BDS prediction and a

remainder function:

Ai..j = ABDS;i..jRτi...τj , (4.56)

and in section 3 it has been shown that the BDS amplitude ABDS;i..j can be written as

product of a real part, a kinematic phase factor, and a second phase factor eiδi...j , where

the conformal invariant δi...j result from the Li2 functions and represent the one-loop

approximations to Regge cut contributions:

ABDS;i..j = ±|ABDS;i..j|e
iϕi...jeiδi...j . (4.57)

In the following Fig.26 we list the phase factors eiϕi...j :

Figure 26: Phase factors ϕi...j of the 2 → 5 amplitude.
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Next, we collect the phases δi...j:

δ14 = π
γK
4

ln

(

|ka||kc||q1||q4|

|ka + kb + kc|2|q2||q3|

)

(4.58)

δ24 = π
γK
4

ln

(

|kb||kc||q2||q4|

|kb + kc|2|q3|2

)

δ13 = π
γK
4

ln

(

|ka||kb||q1||q3|

|ka + kb|2|q2|2

)

δ124 = π
γK
4

ln

(

|ka + kb + kc|
2|ka||q2|

2|q3|

|kb + kc|2|kb||q1|3

)

δ134 = π
γK
4

ln

(

|ka + kb + kc|
2|kc||q2||q3|

2

|ka + kb|2|kb||q4|3

)

δ123 = π
γK
4

ln

(

|ka||kb||q1||q3|

|ka + kb|2|q2|2

)

δ234 = π
γK
4

ln

(

|kb||kc||q2||q4|

|kb + kc|2|q3|2

)

δ1234 = π
γK
4

ln

(

|ka + kb|
2|kb + kc|

2|q1||q4|

|ka + kb + kc|2|ka||kc||q2||q3|

)

.

Finally, we collect the conformal invariant Regge pole and cut terms which have

been calculated in the previous subsection and represent the main results of section 4.

They define our predictions for the remainder function R, more precisely for the products

Rτi...τje
iδij :

τ1τ4 : cos(πωac) + i
(

eiπωbafa
ω2ω3

+ eiπωbcf c
ω2ω3

)

(4.59)

τ2τ4 : cos(πωbc) + i fω3

τ1τ3 : cos(πωac) + i fω2

τ1τ2τ4 : − cos(πωab)− i eiπωacfω3
− i eiπωacfa

ω2ω3
− i f c

ω2ω3

τ1τ3τ4 : − cos(πωbc)− i eiπωcafω2
− i fa

ω2ω3
− i eiπωcaf c

ω2ω3

τ1τ2τ3 : − cos(πωab)− i fω2

τ2τ3τ4 : − cos(πωbc)− i fω3

τ1τ2τ3τ4 : eiπωbaeiπωbc − i eiπωbafω3
− i eiπωbcfω2

+ i eiπωbafa
ω2ω3

+ i eiπωbcf c
ω2ω3

The conformal invariant Regge cut terms fω2
, fω3

, fa,c
ω2ω3

contain, in addition to the sub-

traction terms δfω2
, δfω3

, δfa,c
ω2ω3 , resp., which we have discussed in subsection 4.3, the

terms with Regge cut singularities. In this paper, we have not addressed yet the general

structure of these amplitudes. This will be the subject of a forthcoming paper.

5 Conclusions

In this paper we have addressed different aspects of scattering amplitudes in the multi-

Regge region: starting from Regge pole models which factorize in the kinematic region of

positive energies we have seen that, after analytic continuation to other kinematic regions,

– 38 –



terms with unphysical poles appear which need to be compensated by other terms. Spe-

cializing to the planar approximation of the conformal N = 4 SYM theory, we have studied

the cases 2 → 4 and 2 → 5, and we have shown that it is possible to compute, in agreement

with the analytic structure dictated by the Steinmann relations, coefficients of Regge cut

contributions which match the singular Regge pole pieces and thus can be used to absorb

the singularities. We have outlined a ’renormalization scheme’ which consistently removes

the singularities and leads to conformal invariant.

Since most of this has been motivated by the goal of determining the remainder function

R(n) in N = 4 SYM theory, we have systematically studied the predictions of the BDS

formula in multi-regge kinematics for the different kinematic regions, and compared them

with our results for Regge pole models and Regge cuts. This has lead us to the definition of

a remainder function which contains, apart from the Regge cut contribution, a conformal

invariant Regge pole term. In this paper, we have not addressed the detailed structure of

the Regge cut terms; this will be the content of a separate paper.

In a future study we will extend our study to the case 2 → 6 which is expected to

contain a new form of the Regge cut consisting of three reggeized gluons.
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A Explicit results of the τ expansion for the n = 5, 6, 7 point amplitudes

In this part we summarize the explicit coefficients of the τ expansions, P2→n, for the cases

2 → 3, 2 → 4, 2 → 5, and 2 → 6. We start with the simplest case of n = 5 amplitude and

list all terms:

P2→3 = eiπωae−iπ(ω1+ω2) (free term)

−eiπωae−iπω2 τ1

−eiπωae−iπω1 τ2

e−iπωa τ1τ2

Table 1: All terms of the production amplitude P2→3.

Next we summarize the n = 6 amplitude:

P2→4 = eiπ(ωa+ωb)e−iπ(ω1+ω2+ω3) (free term)

−eiπ(ωa+ωb)e−iπ(ω2+ω3) τ1

−eiπ(ωa+ωb)e−iπ(ω1+ω3) τ2

−eiπ(ωa+ωb)e−iπ(ω1+ω2) τ3

eiπ(ωb−ωa)e−iπω3 τ1τ2

eiπ(ωa−ωb)e−iπω1 τ2τ3

e−iπω2

[

eiπ(ωa+ωb) − 2ieiπω2
sin(πωa) sin(πωb)

sin(πω2)

]

τ1τ3

−
[

e−iπ(ωa+ωb) + 2ie−iπω2
sin(πωa) sin(πωb)

sin(πω2)

]

τ1τ2τ3

Table 2: All terms of the production amplitude P2→4.

– 40 –



Finally, the coefficients of n = 7 amplitude:

P2→5 = eiπ(ωa+ωb+ωc)e−iπ(ω1+ω2+ω3+ω4) (free term)

−eiπ(ωa+ωb+ωc)e−iπ(ω2+ω3+ω4) τ1

−eiπ(ωa+ωb+ωc)e−iπ(ω1+ω3+ω4) τ2

−eiπ(ωa+ωb+ωc)e−iπ(ω1+ω2+ω4) τ3

−eiπ(ωa+ωb+ωc)e−iπ(ω1+ω2+ω3) τ4

e−iπ(ωa−ωb−ωc)e−iπ(ω3+ω4) τ1τ2

e−iπ(ω2+ω4)eiπωc

[

eiπ(ωa+ωb) − 2ieiπω2
sin(πωa) sin(πωb)

sin(πω2)

]

τ1τ3

[

eiπ(ωa+ωb+ωc)e−iπ(ω2+ω3) − 2i sin(πωa) sin(πωb) sin(πωc)
sin(πω2) sin(πω3)

]

τ1τ4

eiπ(ωa−ωb+ωc)e−iπ(ω1+ω4) τ2τ3

e−iπ(ω1+ω3)eiπωa

[

eiπ(ωb+ωc) − 2ieiπω3
sin(πωb) sin(πωc)

sin(πω3)

]

τ2τ4

eiπ(ωa+ωb−ωc)e−iπ(ω1+ω2) τ3τ4

−e−iπω4eiπωc

[

e−iπ(ωa+ωb) + 2ie−iπω2 sin(πωa) sin(πωb)
sin(πω2)

]

τ1τ2τ3

−
[

eiπ(−ωa+ωb+ωc)e−iπω3 − 2i sin(πω2a) sin(πωb) sin(πωc)
sin(πω2) sin(πω3)

]

τ1τ2τ4

−
[

eiπ(ωa+ωb−ωc)e−iπω2 − 2i sin(πωa) sin(πωb) sin(πω3c)
sin(πω2) sin(πω3)

]

τ1τ3τ4

−e−iπω1eiπωa

[

e−iπ(ωb+ωc) + 2ie−iπω3
sin(πωb) sin(πωc)

sin(πω3)

]

τ2τ3τ4

[

eiπ(−ωa+ωb−ωc) − 2i sin(πω2a) sin(πωb) sin(πω3c)
sin(πω2) sin(πω3)

]

τ1τ2τ3τ4

Table 3: All terms of the production amplitude P2→5.

B Recurrence relations for the coefficients of the expansion in the Regge

framework

Consider a configuration of k crosses (”twists”) on the left side and one cross on the right

side n (Fig.27)

(−1)kτi1τi2 ...τik
{

An
i1i2...ik

}

and (−1)k+1τi1τi2 ...τikτn
{

Bn
i1i2...ik

}

; (n > ik + 1)

(B.1)
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Figure 27: Diagrams which correspond to An
i1i2...ik

(up) and Bn
i1i2...ik

(bottom) configura-

tion.

the recurrence relation reads as

Bn+1
i1...ik

= Bn
i1...ik

sin(πωan)

sin(πωn)
+An

i1...ik

sin(πωn − πωan)

sin(πωn)
(B.2)

This (Eq.(B.2)) can be rewritten, using Eq.(2.39):

Bn
i1...ik

= bni1...ik + ani1...ik (B.3)

with

An
i1...ik

= e−iπωnani1...ik (B.4)

as

bn+1
i1...ik

= bni1...ik
sin(πωan)

sin(πωn)
and an+1

i1...ik
= ani1...ike

−iπωneiπωan (B.5)

with initial conditions

Aik+1
i1...ik

= e−iπωik+1e
iπωaikAik

i1...ik
and Bik+1

i1...ik
= bik+1

i1...ik
+ eiπωik+1Aik+1

i1...ik
. (B.6)

Let us generalize for the case ik < n− 2, n+ 1 produced particles

(−1)kτi1τi2 ...τikτn−1τnB̃
n
i1i2...ik

From the recurrence relation we have:

B̃n+1
i1i2...ik

=
sin(πωan)

sin(πωn)
An

i1...ik
+

sin(πωn − πωan)

sin(πωn)
Bn

i1...ik
(B.7)

with

Bn
i1i2...ik

= bni1i2...ik + ani1i2...ik

An
i1i2...ik

= e−iπωnani1i2...ik

ani1i2...ik = e−iπωneiπωanani1i2...ik . (B.8)
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We obtain using the ansatz:

B̃n
i1i2...ik

= b̃n+1
i1i2...ik

+ ãni1i2...ik , (B.9)

with

ãni1i2...ik = eiπωnani1i2...ik . (B.10)

The result is:

b̃ni1i2...ik =
sin(πωn − πωan)

sin(πωn
bni1i2...ik

ãn+1
i1i2...ik

= e−iπωan ani1i2...ik = e−iπωne−iπωan ãni1i2...ik . (B.11)

Now we consider the most general case Fig.28:

Figure 28: Configuration with r-crosses on the most right hand side and some arbitrary

configuration on the left (grey blob).

(−1)k+rτi1τi2 ...τikτn−rτn−r+1...τnB
n
r for ik < n− r − 1, (B.12)

Then the recurrence relation becomes the three-term relation for Bn
r :

Bn+1
r+1 = e−iπ(ωn−ωan−1

) sin(πωan)

sin(πωn)
Bn−1

r−1 +
sin(πωn − πωan)

sin(πωn)
Bn

r , (B.13)

with the initial conditions:

Bn
1 = Bn

i1i2...ik
and Bn

2 = B̃n
i1i2...ik

. (B.14)

The recurrence relation for B̃n
i1i2...ik

and Bn
i1i2...ik

are given in above (really, B̃n
i1i2...ik

) is

expressed in terms of Bn
i1i2...ik

and Bn
i1i2...ik

satisfies two-term recurrence relation and is

expressed again in terms of Bn
r ). Therefore, we can construct everything in terms of

very simple recurrence relations. Consider a case (−1)k+rτi1τi2 ...τik ..τn−rτn−r+1...τnB
n
r we

obtain the recurrence relation:

Bn+1
r+1 =

sin(πωan)

sin(πωn)
e−iπωne−iπωan−1Bn−1

r−1 +
sin(πωn − πωan)

sin(πωn)
Bn

r . (B.15)

In particular,

Bn+2−r
2 =

sin(πωan+1−r
)

sin(πωn+1−r)
e−iπωn+1−re−iπωan−rBn−r

0 +
sin(πωn+1−r − πωan+1−r

)

sin(πωn+1−r)
Bn+1−r

1

,(B.16)
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where we can write:

B2 = b2 + a2; Bn
1 = bn1 + an1 ; a1 = eiπωan−1Bn−1

0 ; bn+1
2 =

sin(πωn − πωan)

sin(πωn)
bn1

(B.17)

and

br+1
1 = b21

sin(πωar)

sin(πωr)
; ar+1

1 = ar1e
−iπωreiπωar . (B.18)

We have:

Bn+1
1 =

sin(πωan)

sin(πωn)
Bn

1 +
sin(πωn − πωan)

sin(πωn)
An

1 ; with An
1 = e−iπωnan1 . (B.19)

Indeed,

an+1
1 =

[

sin(πωan) + e−iπωn sin(πωn − πωan)

sin(πωn)

]

an1 = e−iπωneiπωanan1 .

(B.20)

Concluding this part, one can see a clear recurrence relation for arbitrary number of crosses

and ”holes” (untwisted propagators). Thus, more complicated configurations might be

reduced to the more simple ones using the recurrence relations formulated in above.
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