
Experiences with OpenMP in tmLQCD

A. Deuzeman
Albert Einstein Center for Fund. Physics, University of Bern, CH-3012 Bern, Switzerland
E-mail: albert.deuzeman@gmail.com

K. Jansen
NIC, DESY, Zeuthen, Platanenallee 6, D-15738 Zeuthen, Germany
E-mail: karl.jansen@desy.de

B. Kostrzewa∗
Humboldt Universität zu Berlin, Institut für Physik, Newstonstr. 15, 12489 Berlin, Germany
NIC, DESY, Zeuthen, Platanenallee 6, D-15738 Zeuthen, Germany
E-mail: bartosz.kostrzewa@desy.de

C. Urbach
HISKP (Theory), Rheinische Friedrich-Wilhelms Universität Bonn, Germany
E-mail: urbach@hiskp.uni-bonn.de

An overview is given of the lessons learned from the introduction of multi-threading using
OpenMP in tmLQCD. In particular, programming style, performance measurements, cache
misses, scaling, thread distribution for hybrid codes, race conditions, the overlapping of commu-
nication and computation and the measurement and reduction of certain overheads are discussed.
Performance measurements and sampling profiles are given for different implementations of the
hopping matrix computational kernel.

HU-EP-13/60, DESY 13-217, SFB/CPP-13-93

31st International Symposium on Lattice Field Theory - LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

ar
X

iv
:1

31
1.

45
21

v1
 [

he
p-

la
t]

 1
8

N
ov

 2
01

3

mailto:albert.deuzeman@gmail.com
mailto:karl.jansen@desy.de
mailto:bartosz.kostrzewa@desy.de
mailto:urbach@hiskp.uni-bonn.de

Experiences with OpenMP in tmLQCD B. Kostrzewa

The tmLQCD software suite [1] is a collection of programs for gauge configuration genera-
tion and Dirac matrix inversion for various types of Wilson fermions, most notably including the
twisted mass term [2]. For an overview of recently added features, please see [3], presented at this
conference. In the following the source-code will be referred to frequently and the interested reader
is encouraged to download or browse it on github. 1

The hopping matrix can be found in operator/Hopping_Matrix.c, which includes
the files operator/halfspinor_body.c and operator/hopping_body_dbl.c using
’Weyl-type’ spinors with overlapping communication and computation and full four-component
spinors without overlapping respectively, for a more complete explanation, see contribution [3] at
this conference. Unless mentioned otherwise, all measurements are done on 32 nodes of Blue-
Gene/Q with 1 process per node and 64 threads per process with a node-local lattice volume of 124

using the tmLQCD benchmark application.

1. Introducing OpenMP into tmLQCD

In the period leading up to the installation of the BlueGene/Q machine (BG/Q), JuQueen, at
JSC Juelich, it was concluded that a multi-threaded version of tmLQCD was essential for good
performance in the near future. In the following, a summary of the lessons that were learned
through the process of introducing OpenMP across the entire code-base will be attempted.
Using Scoping Rules – Specifying thread-local and thread-global data in OpenMP is usually
achieved through the directives shared, private and others which allow for more fine-grained
control. In C/C++, one can exploit variable scoping rules to automate the process by defining
thread-local variables only inside parallel sections and thread-global variables only outside
of them. This way one can avoid potential bugs resulting from forgetting to update the variable
lists as the code evolves. As will be seen further below, while simplifying, this approach could
however render it more difficult to introduce coarsened parallelism as an approach to reducing
thread-management overhead through so-called orphaned [4] directives. It can also be argued that
the explicit listing of thread-private and thread-global variables aids in understanding, but in a
language where variable scope is a central concept, this may be judged as a weak argument.

2. Optimizing the Hopping Matrix

Performance Measurements – The hopping matrix was the first function to be multi-threaded
and performance measurements were carried out on multi-core Intel R© CPUs, the results of which
are shown in figure 1. It was found that for a problem that fits into cache on a single node of
this machine, the OpenMP version of both the full-spinor and the half-spinor hopping matrices
outperforms the pure MPI version with a corresponding number of processes. Once multiple nodes
are required, however, the pure MPI version outperforms the hybrid OpenMP/MPI implementation
on this architecture. The authors believe that this regression originates from the loss of symmetry
and additional thread synchronization required when the communication is dispatched by one of
the threads. This suspicion is supported by the measurement of the half-spinor hybrid code with

1The version of the software with the overlapping kernel using MPI or SPI communication is currently found in the
repository "github.com/urbach/tmLQCD" in the "InterleavedNDTwistedClover" branch.

2

Experiences with OpenMP in tmLQCD B. Kostrzewa

(8) OpenMP (full−spinor, 1 node)
(7) OpenMP (half−spinor, 1 node)

(6) Hybrid (full−spinor, 8 nodes)
(5) MPI (full−spinor, 8 nodes)

(4) Hybrid (half−spinor, 8 nodes)
(3) MPI (half−spinor, 8 nodes)

(2) MPI (full−spinor, 1 node)
(1) MPI (half−spinor, 1 node)

GFlop/s per node
10 15 20 25 30 35 40 45

Figure 1: Performance of the tmLQCD hopping matrix on a dual-socket Intel Xeon X5560 Infiniband cluster with a
lattice volume per node of 16×83. The lighter bars show performance with communication routines explicitly disabled.
Hybrid refers to 2 processes per node and uses a kernel which attempts to overlap communication and computation.

communication disabled (light bar 4) but all the OpenMP structure still in place. It is possible that
optimization of MPI parameters might produce higher performance because the message size is
clearly larger for the hybrid version than for the pure MPI version. The various overheads will be
discussed in detail below.

Although not studied in depth for these cases, the performance regression persists on Cray
XC30 but appears to be quite mild on SuperMUC, allowing scaling to larger machine partitions
through the usage of the hybrid code there. As will be discussed in more detail below, on BG/Q
the hybrid version consistently outperforms the MPI-only implementation because overlapping of
communication and computation works very well on this machine.

An important conclusion that can be taken away from these results is that for hybrid par-
allelizations, measurements need to be carried out on each target platform taking into account
different compilers, communication libraries and even the problem size as will be discussed below.
Cache Misses – During these initial measurements it was noticed through the usage of the Intel R©

VTune
TM

Performance Analyzer that in the full-spinor version, a large number of cache misses and
resulting thread idling occurred from lookups of neighbourhood lattice indices which are stored
in two-dimensional arrays g_iup[x][mu] and g_idn[x][mu]. While a direct lookup like
xp1=g_iup[x][1] did not pose a problem, the compiler could not optimize access to a double
lookup like xm0p1=g_iup[g_idn[x][0]][1].

A dedicated array of indices was added, precomputed during program initialization, which
contains the lattice indices in the order required by the hopping matrix and which is accessed in
this way: ix=g_hi[16*x+n], where n is a constant integer depending on the operation in this
line. This simple optimization resulted in a performance boost of almost 20%.
Scaling with Thread Distribution – The performance of the hopping matrix as a function of the
total number of threads and their distribution across processes was studied on BG/Q, the results are
shown in figure 2. Note that the more efficient SPI communication was not used for these tests.

One conclusion which can drawn from these measurements is that for local lattice volumes
which fill the L2 cache close to maximally, a configuration with 1 process per node and 64 threads
is fastest. On the other hand, when the L2 cache is not fully exploited, configurations with 4 threads
per process or 32 threads in total seem to be beneficial. Comparing in panel (b) performance with
communication for L = 12 for 16 and 32 threads per process, MPI seems to benefit from using
fewer processes per node as the pure floating point performance is comparable. On the other hand,
for the L = 8 measurement, performance without communication is severely degraded, suggesting
inefficiencies in multi-threading. It is conceivable, therefore, that for small local lattice volumes
with optimized task placement, fewer threads per process and more processes are optimal.

The reason for this situation seems clear: when there are many threads per process the OpenMP

3

Experiences with OpenMP in tmLQCD B. Kostrzewa

16 24 32 40 48 56 64

10
15
20
25
30
35
40
45
50

OpenMP threads

G
fl

op
/

s
pe

r
no

d
e

●
●

●
●

● ● ●
● ●

● ● ●●●●●

●
●

●

●

● ●
●

●
●

●
●

●●●●●

●L=8 L=12 L=16 No Comms

(a) 1 process per node and increasing numbers of
threads.

0 8 16 24 32 40 48 56 64
0

10

20

30

40

50

60

OpenMP threads per process

G
fl

op
/

s
pe

r
no

d
e

●● ● ● ●

● ●

●

● ●

●

● ●
●

●L=8 L=12 L=16 No Comms

(b) The number of threads times the number of pro-
cesses per node is kept constant at 64.

Figure 2: Performance on 32 nodes of BG/Q in GFlop/s per node using an overlapping OpenMP/MPI hopping matrix
for different node-local lattice volumes L4. Empty symbols correspond to inter-process communication being disabled.

overhead is very large and this can only be mitigated by a large workload for each thread, allowing
scaling (a) with the number of threads for L = 12 which is not seen for L = 8. By contrast, when
the local lattice volume is very small (L = 8), it makes sense to absolutely minimize the OpenMP
overhead, as shown by the significant loss of pure floating point performance as the number of
threads per process is increased in panel (b).
Race conditions and Memory Locking – Algorithms such as the hopping matrix can be effi-
ciently implemented in a "push-style" fashion where a loop over the volume "pushes" computation
results to neighbouring lattice sites. When the work loop is shared amongst threads, as any lattice
site is the neighbour of 8 other lattice sites, multiple threads can potentially attempt to write the
same memory location, thus requiring some form of memory locking. This is usually done through
critical directives or by updating memory "atomically" using the atomic directive. While the
former approach is safe, it results in extreme overheads [5] which are unacceptable in a lattice QCD
code. The usage of atomic directives seems to have low overhead, but correctness is not guar-
anteed [6, pp.380-390] when there are multiple writing and reading threads and the same memory
location could be accessed from several atomic statements on different source-code lines (which
would be the case for the hopping matrix, for example). Further, the set of operations which can be
carried out atomically is very limited.

Figure 3: Pictorial representation
of the concept of "halo memory".

An alternative to locking is the addition of "halo memory"
for each lattice point as pictorially depicted in figure 3. Because
each lattice point now has independent neighbourhood memory,
the conflict situation discussed above cannot occur. This imple-
mentation, however, requires significantly more memory and the
results for the different halos need to be accumulated in a second
loop over the volume. Since the tmLQCD half-spinor hopping
matrix was already implemented in this manner even before the introduction of threads, no perfor-
mance comparison has been carried out.

In the computation of the fermionic derivative during Hybrid Monte Carlo integration, tm-
LQCD does not use halo memory but the atomic directive when updating the components of the
real-valued derivative field. Very high statistics comparisons of serial and multi-threaded HMC
runs have shown that there seems to be no noticeable effect of the danger discussed in [6]. A ded-
icated study of the potential for errors from this kind of set of atomic statements is planned, as
well as a test of halo memory for this operation.

4

Experiences with OpenMP in tmLQCD B. Kostrzewa

(11) Pure MPI (64 proc/node)
(10) OpenMP/MPI (no overlap)

(9) Pure MPI (32 proc/node)
(8) OpenMP/MPI (start/wait)

(7) OpenMP/MPI (start+wait, static)
(6) OpenMP/MPI (start+wait, guided)

(5) OpenMP/SPI (no overlap)
(4) OpenMP/SPI (start+wait, static)

(3) OpenMP/SPI (start+wait, guided)
(2) OpenMP/SPI (start/wait)

(1) OpenMP/SPI (orphaned, start/wait)

GFlop/s per node
20 30 40 50 60

Figure 4: Performance measurements for different versions of the hopping matrix. The lighter bar shows measurements
without communication. Unless noted otherwise, the hybrid kernel attempts to overlap communication and computation.

Overlapping Communication and Computation – The instructions for tackling this problem
are usually as follows: compute the data which is to be communicated (the "surface"), start the
communication using non-blocking communicators, perform the part of the computation which
does not depend on communicated data (the "body"), call MPI_Wait(all) and finally compute the
remaining results. Unfortunately it seems that in the cases that were tested by the authors (using
MPI_Isend/recv), all the communication is done during MPI_Wait(all), no matter how much time
is spent in the body computation, thereby completely defeating the purpose of attempting to overlap
in the first place.

In a hybrid application, however, one could instruct one (or multiple) thread(s) to initiate the
communication in a section with a nowait directive and then immediately call MPI_Wait(all),
thereby actually starting the communication. When static thread scheduling is used in the body
loop, this however results in a loss of performance as the other threads have to wait for the com-
municating thread(s) to rejoin after doing its (their) work on the body computation. It was found
that employing guided,32 scheduling in the body computation significantly increases perfor-
mance. In addition, this implementation theoretically benefits from smaller overhead because it
requires one fewer synchronization as the communicating thread(s) is (are) ’caught’ by the implicit
OpenMP barrier at the end of the body loop.

An overview of the structure of the "start→compute→wait" and "start+wait→compute" im-
plementations is shown in figure 5, with the time spent in each sub-part sampled using SCALASCA
[7]. It must be noted here that the difference in overheads between static and guided scheduling
discussed above is only marginally reflected in the respective SCALASCA samplings (note: only
guided shown here!), although the effect on performance is apparently substantial.

A summary of performance measurements on BG/Q using different implementations of an
overlapping kernel is shown in figure 4. The hybrid code without overlapping (10) is only marginally
faster than the pure MPI code (11). A code which attempts to overlap following the ’usual’ instruc-
tions is somewhat faster (8). The implementation using only one single section is faster still
(7) but only through the optimization of the thread scheduling is performance improved signifi-
cantly (6). Note that performance without communication drops (compare the light bars in 6 and
7), because guided scheduling is less efficient. These relationships between the different hybrid
implementations persist on different machines like the Cray XC30 or SuperMUC, with the caveat
that the performance benefit from overlapping is only around 100 MFlop/s per core and the pure
MPI version without overlapping outperforms all of them, at least on the machine partitions that
were tested.

This picture is complicated by the fact that when using SPI for communication, the "naive"

5

Experiences with OpenMP in tmLQCD B. Kostrzewa

comm. start/wait

0.0

0.2

0.4

0.6

0.8

1.0

Hoppin
g_M

atr
ix

om
p par

all
el

om
p fo

r s
urfa

ce

om
p si

ngle
1 (

co
m

m
 st

ar
t)

om
p fo

r b
ody

om
p si

ngle
2 (

co
m

m
 w

ait
)

om
p fo

r p
ost

omp parallel
Hopping_Matrix self

omp parallel ibarrier
omp for post
omp single 2 (comm wait)
omp for body
omp single 1 (comm start)
omp for surface
omp parallel self

omp for surface ibarrier
omp for surface self

xchange_halffield
omp single 1 self

omp for body ibarrier
omp for body self

omp single 2 ibarrier
wait_halffield
omp single 2 self

omp for post ibarrier
omp for post self

(a)

comm. start+wait

0.0

0.2

0.4

0.6

0.8

1.0

Hoppin
g_M

atr
ix

om
p par

all
el

om
p fo

r s
urfa

ce

om
p si

ngle
(co

m
m

 st
ar

t+
wait

)

om
p fo

r b
ody

om
p fo

r p
ost

omp parallel
Hopping_Matrix self

omp parallel ibarrier
omp for post
omp for body
omp single
omp for surface
omp parallel self

omp for surface ibarrier
omp for surface self

xchange_halffield
omp single self

omp for body ibarrier
omp for body self

omp for post ibarrier
omp for post self

(b)
Figure 5: SCALASCA samplings of time spent in the sub-parts of the half-spinor hopping matrix in the tmLQCD
benchmark application. The legend gives the division of each bar where the qualifier "self" refers to time spent in a
given part which is not spent in any of its sub-parts. Panel (a) shows the distribution in the function where non-blocking
communicators are called before and MPI_Waitall is called after the body loop. Panel (b) shows the situation when the
same thread is used to start and wait for communication, with implicit synchronization at the end of the body loop.

implementation using two single sections is faster than the one discussed above as shown by bars
2 and 3. The authors assume that using SPI for Remote Direct Memory Access (RDMA) actually
launches the communication without requiring many CPU cycles. The loss of performance from
guided scheduling in the body then causes overall performance to drop more (compare light bars
in 4 and 3), than is gained by the removal of one extra synchronization (compare light bars in 4 and
2). An RDMA implementation using one-sided MPI communicators was not attempted yet.

3. Measuring and Reducing Overheads

The OpenMP overhead in the hopping matrix can be estimated by comparing pure floating
point performance (with communication routines explicitly disabled) using 64 processes per node
and the respective performance when using 1 process and 64 threads. Comparing thus the light bars
of 11 and 7 in figure 4, one can estimate that the OpenMP overhead impacts pure floating point
performance per node by around 11 GFlop/s on BG/Q.

A breakdown of the overhead can be estimated from the SCALASCA samplings shown in
figure 5, for instance by looking at the "self" contribution to omp parallel sections. Further
overheads are found in the implicit barriers marked "ibarrier" at the end of loops and single

sections without nowait. For loops, the "self" measurement represents the actual "work" done.
One surprising result from these measurements is that when the tmLQCD inverter is sampled

using SCALASCA, it records a significant overhead for thread forking even though thread recy-
cling should be taking place. This is not seen in samplings of the tmLQCD benchmark application,
which simply calls the Hopping_Matrix function many times. This suggests that when parallel
sections in the same function occur repeatedly, this overhead drops out.

Still, the "self" contribution to omp parallel (which can be seen to reflect the thread man-
agement overhead), constitutes a significant portion of total runtime. It can be significantly reduced
through the usage of orphaned directives, e.g. omp pragma for directives inside functions

6

Experiences with OpenMP in tmLQCD B. Kostrzewa

which are not syntactically enclosed in a parallel section. Instead, threads are launched one
(or several) level(s) further up, for example when a solver is called. This has been tested for the
hopping matrix benchmark, resulting in measurement 1 in figure 4. The underwhelming result with
communication stems from a recent network performance regression on JuQueen, but the light bar
indicates a significant reduction of the overhead discussed above. Managing this kind of parallelism
using OpenMP can be very demanding because thread-local and thread-global data now needs to be
tracked over several function hierarchies. Perhaps in this situation it might be beneficial to state the
locality of variables using private and shared directives instead of relying on scoping rules.

BG/Q

0.0

0.2

0.4

0.6

0.8

1.0

sc
ala

r_
pro

d_r

om
p par

all
el

om
p fo

r

SuperMUC

0.0

0.2

0.4

0.6

0.8

1.0

sc
ala

r_
pro

d_r

om
p par

all
el

om
p fo

r

MPI_Allreduce
omp parallel
scalar_prod_r self

omp parallel ibarrier
omp for
omp parallel self

omp for ibarrier
omp for self

Figure 6: SCALASCA sampling of the sclar_prod_r func-
tion on 512 (256) nodes of BG/Q (SuperMUC), using 1 (2)
tasks per node and 64 (8) threads per process during an in-
version on a lattice volume of 483×96.

Finally, it is worthwhile to look at over-
heads on different machines and for different
types of functions. A SCALASCA sampling
of the (real) scalar product of two spinor
vectors is shown in figure 6. This compu-
tationally simple function suffers from sub-
stantial thread management overhead and a
significant amount of time is spent in the
barrier at the end of the for loop. Whether
optimization would result in measurable im-
provement seems to depend strongly on the
architecture and number of threads, as shown
by the comparison between BG/Q and Su-
perMUC, where the latter is dominated completely by the collective MPI communication. More
fine-grained measurements of these and other overheads are planned through SCALASCA event
tracing.

Acknowledgements

B.K. acknowledges full financial support by the National Research Fund, Luxembourg under
AFR Ph.D. grant 27773315. This work is supported in part by DFG and NSFC (CRC 110). This
talk was part of a coding session sponsored partially by the PRACE-2IP project, grant: RI-283493.

References

[1] K. Jansen and C. Urbach. Comput.Phys.Commun. (2009). vol. 180:2717–2738

[2] R. Frezzotti and G. C. Rossi. Journal of High Energy Physics (2004). vol. 2004(08):007

[3] A. Abdel-Rehim et al. In: 31st International Symposium on Lattice Field Theory, no. 414 in
PoS(LATTICE 2013)

[4] O. Tatebe et al. In: M. Valero et al. (editors), High Performance Computing, vol. 1940 of Lecture Notes
in Computer Science, pp. 471–481 (Springer Berlin Heidelberg) (2000)

[5] J. M. Bull. In: Proceedings of First European Workshop on OpenMP, vol. 8 (1999) p. 49

[6] G. Bronevetsky and B. Supinski. International Journal of Parallel Programming (2007).
vol. 35(4):335–392

[7] M. Geimer et al. Concurrency Computat.: Pract. Exper. (2010). vol. 22:702–719

7

