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1. Introduction

Supersymmetric quiver gauge theories participate in several interesting areas of physics,

for example, in string theory and quantum integrable systems. In string theory, one can

summarize the field content of the supersymmetric Yang–Mills (SYM) on the p-brane using

a “quiver diagram.” One specific example of this is the role played by the three-dimensional

N = 4 supersymmetric quiver gauge theories in type IIB brane constructions of Hanany-

Witten type [1]. In the case of quantum integrable systems, one example would be the

two-dimensional N = (2, 2) supersymmetric quiver gauge theories. These theories can

be related to quantum integrable systems such as spin chains through the Gauge/Bethe

correspondence [2, 3].

This paper is devoted to detailing the constructions of several classes of supersymmetric

quiver gauge theories possessing four and eight supercharges on two- and three-dimensional
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Euclidean spacetime lattices. These lattice theories preserve a subset of the continuum su-

persymmetries exactly at finite lattice spacing. It is important to have a nonperturbative

regularization of supersymmetric quiver gauge theories when we are interested in investi-

gating the strong coupling regimes of these theories. A lattice formulation of these theories

would indeed complement the search to unravel the rich structure of the above mentioned

physics systems.

There has been a lot of progress in the recent past to write down the actions of

supersymmetric gauge theories on a Euclidean spacetime lattice. In this work we focus

on supersymmetric quiver gauge theories with extended supersymmetries on the lattice.

Our starting point would be the lattice constructions of Yang–Mills theories possessing

extended supersymmetries.1 There are two distinct formulations immediately available to

us to construct extended supersymmetric Yang–Mills theories on a lattice while maintaining

a subset of the continuum supersymmetries [8, 9, 10, 11, 12, 13, 14, 15, 16]. These lattice

theories preserve supersymmetry exactly on the lattice, on the contrary to other approaches

where supersymmetry only emerges in the continuum limit [17, 18]. See [19, 20, 21, 22, 23,

24, 25, 26, 27] for other recent complementary approaches to the problem of exact lattice

supersymmetry.

The first approach is known as the method of orbifolding. It is based on an orbifold

projection of a supersymmetric matrix model. An appropriate projection of the matrix

model generates the desired lattice theory, which preserves a subset of the supersymmetries

of the target theory. The second approach, the method of topological twisting, utilizes the

twists of Witten type [28] along with Dirac–Kähler fermions. The continuum action is

rewritten in a twisted form and then the theory is discretized by keeping a subset of the

twisted supersymmetries exact on the lattice. The twisted fermions form components of

Dirac–Kähler fields and they have a geometric realization on the lattice as entities living

on p-cells of the lattice.

We use the latter approach to construct supersymmetric quiver gauge theories on a

Euclidean spacetime lattice. These two formulations appear different from the starting

point but the lattices they ultimately generate are identical [29, 30, 6]. The reason for this

is that in the twisting approach the fields are decomposed as representations of the twisted

symmetry group, which is the diagonal subgroup of the product of the Euclidean rotation

and R-symmetry groups. In the orbifold approach, the same diagonal subgroup plays a

crucial role – the orbifold projected variables are charged under this diagonal subgroup and

these charges determine the placement of orbifold projected variables on the lattice.

Though we use the method of topological twisting in writing down the lattice actions

of supersymmetric quiver gauge theories in this paper, we expect that one could construct

the same family of lattice theories from the method of orbifold projection.

Supersymmetric lattice gauge theories with extended supersymmetries have been con-

structed mostly for supersymmetric Yang–Mills theories.2 There have been a few extensions

of these formulations by incorporating matter fields in the adjoint and fundamental repre-

1For a set of recent reviews see refs. [4, 5, 6, 7].
2It includes the well known theory, the four-dimensional N = 4 SYM. It has been the subject of a few

numerical studies [31, 32, 33, 34, 35], with more in progress.
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sentations [36, 37, 38, 39, 40]. In this paper, we detail the constructions of supersymmetric

quiver lattice gauge theories in two and three dimensions possessing four and eight su-

percharges. These theories contain adjoint fields living on the nodes and bi-fundamental

matter fields with legs placed on the nodes of the quiver. Two-dimensional quiver gauge

theories with four supercharges were constructed by Matsuura in ref. [39] while formulat-

ing four supercharge lattice gauge theories with fundamental matter. Similar construction

in three dimensions has been carried out in ref. [40]. There, lattice quiver gauge theories

with eight supercharges have been constructed while formulating three-dimensional eight

supercharge lattice gauge theories with fundamental matter fields. In this paper, we de-

tail these quiver gauge theory constructions in a coherent way and also we complete the

lattice quiver theory constructions in two and three dimensions with the addition of two-

dimensional lattice quiver gauge theories possessing eight supercharges. In two dimensions,

we also construct lattice quiver gauge theories with circular topology, possessing arbitrary

number of nodes in the quiver.

The quiver lattice gauge theories detailed in this paper are constructed using a general

procedure. We begin with a Euclidean SYM theory possessing appropriate number of

supercharges. The theory is then topologically twisted to make it lattice compatible. It is

dimensionally reduced to three or two dimensions in the next step. To make it a quiver

gauge theory, we replicate the theory and then make an appropriate subset of the field

content of the resulting theory bi-fundamental. The replicated theories form a quiver

gauge theory with fields living on the nodes transforming as adjoints. The bi-fundamental

fields live on the links connecting the nodes of the quiver. Changing the representation of

the fields from adjoint to bi-fundamental breaks some of the supersymmetries and thus the

resulting quiver gauge theories will always have lower number of supersymmetries compared

to that of their parent theories.

These continuum quiver theories are then discretized on a Eulcidean spacetime lattice

using the method of geometric discretization. The nodes of the quiver theory become

lattice spacetimes with same dimensionalities and the bi-fundamental fields of the quiver

theory have legs placed on adjacent spacetime lattices.

The organization of this paper is as follows. In section 2 we provide a brief description

of the method of topological twisting for SYM theories with extended supersymmetries in d

Euclidean spacetime dimensions. In section 3 we discuss the constructions of a few classes

of twisted supersymmetric Yang–Mills theories in the continuum. This include the two-

dimensional N = (2, 2) SYM, three-dimensional N = 4 SYM and four-dimensional N = 4

SYM. We then detail the constructions of twisted supersymmetric quiver gauge theories

in section 4. The continuum twisted quiver theories constructed in this section are four

and eight supercharge theories in two dimensions, including a circular quiver with eight

supercharges and in three dimensions a twisted quiver theory with eight supercharges.

In section 5 we discuss the lattice implementation supersymmetric quiver theories. We

conclude with some discussions and prospects in section 6.
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2. SYM theories and topological twisting

In this section we briefly discuss the twisting process of SYM theories with extended su-

persymmetries on flat Euclidean spacetime. The process of twisting can only be defined

when the theories have Euclidean signature. We can always return to Lorentz signature,

if the theory is constructed on a manifold of type M = R×W , by simply taking Lorentz

signature on R, which would be the cases we are focusing on in this paper.

A necessary condition for twisting is that the parent SYM theories should possess

extended supersymmetries. Among the set of extended SYM theories, we focus on a special

class of SYM theories that can be maximally twisted.

SYM theories with extended supersymmetries in d Euclidean spacetime dimensions

contain a spacetime rotation group SO(d)E and an R-symmetry group GR. For a theory

to undergo maximal twisting, its R-symmetry group must contain SO(d) as a subgroup.

That is,

SO(d)E × SO(d)R ⊂ SO(d)E ×GR. (2.1)

To construct the twisted theory, we embed a new rotation group SO(d)′ into the diagonal

sum of SO(d)E × SO(d)R and declare this SO(d)′ as the new Lorentz symmetry of the

theory.

After twisting, the fermions of the original theory transform as integer spin representa-

tions of the twisted rotation group SO(d)′. They still preserve their Grassmann odd nature

but now transform as irreducible antisymmetric tensors. They can be expressed as a direct

sum of p-forms with p = 0, · · · , d. The gauge bosons of the untwisted theory transform

as a vector under SO(d)′. Among the scalars of the untwisted theory, under SO(d)′, d of

them combine to form a vector and the rest of them remain as scalars.

The supercharges also take new forms under the twisted rotation group. They also

transform like twisted fermions, in integer spin representations of the twisted rotation

group. Another important feature of twisting is that in the twisted supersymmetry algebra

the subalgebra containing the 0-form supercharge Q is nilpotent

Q2 = 0. (2.2)

The twisted supersymmetry algebra also implies that the momentum Pm,m = 1, · · · , d,

is the Q-variation of something. That is, it is Q-exact. This fact renders it plausible that

the entire energy momentum tensor could be written in a Q-exact form in twisted theories.

This, in turn, implies that the entire action of the theory could be expressed in a Q-exact

form say, S = QΛ. (In some cases, for example, the N = 4 SYM in four dimensions, the

twisted action can be expressed as a sum of Q-exact and Q-closed terms.) We also note

that the subalgebra Q2 = 0 of the twisted supersymmetry algebra does not produce any

spacetime translations. This makes it possible for the twisted theory to be transported

easily on to the lattice.

It should be noted that the process of twisting is just a change of variables on flat

Euclidean spacetime and indeed the twisted theory is physically equivalent to its untwisted

cousin.
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Although the twisted formulation of supersymmetry goes back to Witten [28] in the

construction of topological field theories, this formulation had been anticipated in earlier

lattice work using Dirac–Kähler fields [41, 42, 43, 44, 45]. The precise connection between

Dirac–Kähler fermions and topological twisting was discovered by Kawamoto and collabo-

rators [46, 47, 48]. They observed that the 0-form supercharge that arises after twisting is

a nilpotent scalar and constitutes a closed subalgebra of the twisted superalgebra. It is this

scalar supersymmetry that can be made manifest in the lattice theory [49, 12, 13, 15, 6].

In order to construct supersymmetric quiver gauge theories on the lattice we use twisted

SYM theories in two, three and four Euclidean spacetime dimensions possessing four, eight

and sixteen supercharges, respectively. To make our discussion more self-contained, we

briefly go through the continuum twisted formulations of these theories in the next section.

3. Twisted SYM theories in the continuum

3.1 Two-dimensional N = (2, 2) SYM

The two-dimensional N = (2, 2) Euclidean SYM can be obtained by dimensional reduc-

tion of four-dimensional N = 1 Euclidean SYM. The four-dimensional theory has global

symmetry group SO(4)E × U(1), where SO(4)E is the Euclidean Lorentz symmetry and

U(1) is the chiral symmetry. After dimensional reduction, the symmetry group splits into

the following form

SO(2)E × SO(2)R1
× U(1)R2

. (3.1)

Here, SO(2)E is the two-dimensional Euclidean Lorentz symmetry; SO(2)R1
is rotational

symmetry along reduced dimensions and U(1)R2
is the chiral U(1) symmetry of the original

theory. We twist this theory by declaring a new rotational symmetry group SO(2)′, which

is the diagonal subgroup of the product of the Lorentz rotation SO(2)E and the SO(2)R1

symmetry

SO(2)′ = diag
(
SO(2)E × SO(2)R1

)
. (3.2)

The untwisted theory contains four fermionic and four bosonic degrees of freedom.

There are four real supercharges in this theory. The fermions and supersymmetries of

the original theory transform as integer spin representations of the twisted rotation group.

Under SO(2)′, the fermionic degrees of freedom of the twisted theory are p-forms with

p= 0, 1, 2. We label them as {η, ψa, χab}. The twisted supercharges are packaged in the

set of p-forms {Q,Qa,Qab}.

The two scalars of the untwisted theory combine to form a vector Ba under the twisted

rotation group. Since there are two vector fields in the twisted theory, Aa and Ba, and

they both transform the same way under SO(2)′, it is natural to combine them to form a

complexified gauge field Aa and write down the twisted theory in a compact way. Thus

there are two complexified connections in the twisted theory:

Aa ≡ Aa + iBa, Aa ≡ Aa − iBa. (3.3)
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The theory contains complexified covariant derivatives and they are defined by

Da · = ∂a ·+ [Aa, · ] = ∂a ·+ [Aa + iBa, · ], (3.4)

Da · = ∂a ·+ [Aa, · ] = ∂a ·+ [Aa − iBa, · ]. (3.5)

The complexification of gauge fields also results in complexified field strengths Fab =

[Da,Db] and Fab = [Da,Db]. All fields take values in the adjoint representation of the gauge

group U(N). Although the theory contains complexified gauge fields and field strengths,

it possesses only the usual U(N) gauge-invariance corresponding to the real part of the

complexified connection.

The scalar supercharge Q form a nilpotent subalgebra of the twisted supersymmetry

algebra. It acts on the twisted fields in the following way

QAa = ψa, QAa = 0, (3.6)

Qψa = 0, Qχab = −[Da,Db], (3.7)

Qη = d, Qd = 0, (3.8)

where d is an auxiliary field introduced for the off-shell completion of the twisted super-

symmetry algebra. It has the equation of motion

d =
∑

a

[Da,Da], a = 1, 2. (3.9)

The action of the twisted theory can be expressed in a Q-exact form

S
N=(2,2),d=2
SYM =

1

g22
Q

∫
d2x Tr Λ, (3.10)

where g2 is the coupling constant of the theory and

Λ = χabFab + η[Da,Da]−
1

2
ηd. (3.11)

After performing the Q-variation and integrating out the field d we have the action

S
N=(2,2),d=2
SYM =

1

g22

∫
d2x Tr

(
−FabFab +

1

2
[Da,Da]

2 − χabDaψb − ηDaψa

)
. (3.12)

It is easy to see that the twisted action is Q-invariant by construction. We have

QS
N=(2,2),d=2
SYM = Q2Λ = 0.

3.2 Three-dimensional N = 4 SYM

The three-dimensional Euclidean N = 4 SYM can be obtained by dimensional reduction of

six-dimensional Euclidean N = 1 SYM. The six-dimensional theory has a gauge field and

two independent Weyl spinors, with all fields transforming in the adjoint representation of

the gauge group. After reducing to three dimensions the Weyl spinors split into two inde-

pendent four-component complex spinors and the gauge field reduces to a three-dimensional

gauge field and three real scalars. This theory contains eight real supercharges. The global
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symmetry group of the three-dimensional theory is SU(2)E × SU(2)R × SU(2)N , where

SU(2)E is the Euclidean rotation group in three dimensions, SU(2)R is the R-symmetry

group of the six-dimensional theory and SU(2)N is the internal Euclidean rotation group

arising from the decomposition SO(6) → SU(2)E × SU(2)N .

We twist this theory by declaring a new rotation group SU(2)′ as the diagonal subgroup

of SU(2)E and SU(2)N ,

SU(2)′ = diag
(
SU(2)E × SU(2)N

)
. (3.13)

This particular twist of the theory is known as the Blau–Thompson twist [50]. After

twisting, the field content of the original theory becomes representations of the twisted

rotation group SU(2)′.

The twisting process gives rise to the following spectrum of the twisted theory: a

three-dimensional gauge field Am, m = 1, 2, 3; a vector Bm composed of three scalars

of the untwisted theory; and eight p-form fermions, p = 0, 1, 2, 3, which we conveniently

represent as {η, ψm, χmn, θmnr}. The supercharges also undergo a decomposition similar

to that of the fermions. They are packaged in the set {Q,Qm,Qmn,Qmnr}.

The twisted action of the three-dimensional N = 4 SYM takes the following form in

the continuum

S
N=4,d=3
SYM = SQ−exact + SQ−closed, (3.14)

where

SQ−exact =
1

g23
Q

∫
d3x Tr

(
χmn[Dm,Dn] + η

[
Dm,Dm

]
+

1

2
ηd

)
, (3.15)

and

SQ−closed = −
1

g23

∫
d3x Tr θmnrDrχmn, (3.16)

with g3 the coupling constant of the theory. Here also the twisted theory contains two

vector fields, Am and Bm, and we have combined them to form a complex gauge field

Am = Am + iBm. Thus the degrees of freedom of the twisted theory are just the twisted

fermions {η, ψm, χmn, θmnr} and the complex gauge field Am. The field d is an auxil-

iary field introduced to render the scalar supersymmetry Q nilpotent off-shell. It has the

equation of motion

d =
∑

m

[Dm,Dm], m = 1, 2, 3. (3.17)

The scalar supersymmetry acts on the twisted fields the following way

QAm = ψm, (3.18)

QAm = 0, (3.19)

Qη = d, (3.20)

Qd = 0, (3.21)

Qψm = 0, (3.22)

Qχmn = −[Dm,Dn], (3.23)

Qθmnr = 0. (3.24)
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After performing the Q-variation and integrating out the auxiliary field, the action of

the three-dimensional theory becomes

S
N=4,d=3
SYM =

1

g23

∫
d3x Tr

(
−FmnFmn +

1

2
[Dm,Dm]2 − χmnDmψn

− ψmDmη − θmnrDrχmn

)
. (3.25)

It is easy to show that the three-dimensional twisted action is invariant under the

scalar supersymmetry: QSN=4,d=3
SYM = 0. The Q-exact piece vanishes due to the nilpotent

nature of Q and the Q-closed piece vanishes due to the Bianchi identity for the complex

covariant derivatives.

3.3 Four-dimensional N = 4 SYM

The four-dimensional N = 4 Euclidean SYM can be obtained by dimensional reduction of

ten-dimensional N = 1 Euclidean SYM theory. The four-dimensional theory contains four

Majorana fermions, a gauge field and six scalars transforming in the adjoint representation

of the gauge group. It has a Euclidean Lorentz rotation group SO(4)E and an internal

symmetry group SO(6)R. We can maximally twist the four-dimensional N = 4 SYM (this

particular twist of the theory is known as the Marcus twist [51]) to obtain a twisted theory

that can be easily transported on to the lattice. The twist is carried out by declaring a

new rotation group SO(4)′, which is the diagonal subgroup of SO(4)E ×SO(6)R and then

rewriting the fields and supersymmetries of the original theory under the twisted rotation

group.

The twisted theory contains fermions and supercharges transforming as integer spin

representations of the twisted rotation group. They transform as p-forms, p = 0, · · · , 4. We

can conveniently parametrize the sixteen fermions of the theory as {η, ψµ, χµν , θµνρ, κµνρσ}.

A similar decomposition, {Q,Qµ,Qµν ,Qµνρ,Qµνρσ}, can be applied to the sixteen super-

charges of the theory.

The four gauge bosons of the untwisted theory transform as a vector, Aµ, under the

twisted rotation group. Among the six scalars, four of them are now elevated to form a

vector, Bµ, under SO(4)′. The two other scalars remain as singlets and we label them as

φ and φ̄.

The action of the twisted N = 4 SYM can be written as a linear combination of

Q-exact and Q-closed terms. We have the action

S
N=4,d=4
SYM = SQ−exact + SQ−closed, (3.26)

where

SQ−exact =
1

g24
Q

∫
d4x Tr Λ, (3.27)

with

Λ =
(
χµν [Dµ,Dν ]−

1

3!
ǫµνλρθνλρDµφ+ η[Dµ,Dµ] + η[φ, φ]−

1

2
ηd

)
, (3.28)
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and

SQ−closed = −
1

g24

∫
d4x Tr

(1
4
ǫµνλρχµν [φ, χλρ] +

1

3!
ǫνσλρǫναβδθαβδDσχλρ

)
. (3.29)

Here g4 is the four-dimensional coupling and d is an auxiliary field with the equation of

motion

d =
∑

µ

[Dµ,Dµ] + [φ, φ], µ = 1, · · · , 4. (3.30)

After applying the Q-variation on the Q-exact piece, the action of the theory takes the

following form

S
N=4,d=4
SYM =

1

g24

∫
d4x Tr

(
− [Dµ,Dν ][Dµ,Dν ]− 2(Dµφ)(Dµφ) +

1

2

(
[Dµ,Dµ] + [φ, φ]

)2

− χµνDµψν + 2
1

3!

1

4!
ǫµαβδǫσνλρθαβδDµκσνλρ − 2

1

3!
ǫµνλρθνλρ[φ,ψµ]

− ηDµψµ −
1

4!
ǫαβδση[φ, καβδσ ]−

1

4
ǫµνλρχµν [φ, χλρ]

−
1

3!
ǫνσλρǫναβδθαβδDσχλρ

)
. (3.31)

The scalar supercharge acts on the twisted fields of the theory the following way

QAµ = ψµ, Qψµ = 0, (3.32)

QAµ = 0, Qφ = 0, (3.33)

Qχµν = −[Dµ,Dν ], Qφ =
1

4!
ǫµνλρκµνλρ, (3.34)

Qκµνλρ = 0, Qθαβδ = ǫλαβδDλφ, (3.35)

Qη = d, Qd = 0. (3.36)

It can be easily shown that the twisted action isQ-invariant by construction: QSN=4,d=4
SYM =

0. The Q-exact piece in the action vanishes due to the nilpotent nature of the scalar su-

percharge while the Q-closed piece of the action vanishes due to Bianchi identity.

4. Twisted supersymmetric quiver gauge theories

In this section we write down the actions for twisted supersymmetric quiver gauge theo-

ries with bi-fundamental matter in two and three dimensions. Such theories can easily be

obtained by dimensional reductions of the three- and four-dimensional constructions dis-

cussed in the previous section. In this section, for convenience, we label the quiver gauge

theories according to their number of real supercharges Q.

4.1 Two-dimensional twisted quiver gauge theories

4.1.1 The Q = 4 quiver gauge theory

We can dimensionally reduce the eight supercharge theory in three dimensions, given in

section (3.2), to obtain an eight supercharge theory with adjoint matter in two dimen-

sions. We obtain the following form of the action for the two-dimensional theory after
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dimensionally reducing eq. (3.25) to two dimensions,

S = S
N=(2,2),d=2
SYM + Sadj matter, (4.1)

where the first piece of the action is the twisted action of the two-dimensional N = (2, 2)

SYM given in eq. (3.12). The second piece includes matter fields {φ, φ, η, ψa, χab} in the

adjoint representation of the gauge group U(N). It is given by

Sadj matter =
1

g22

∫
d2x Tr

(
− 2(Daφ)(Daφ) + [Da,Da][φ, φ]− χabDbψa

+ ηDaψa − ψa[φ,ψa]− η[φ, η]−
1

2
χab[φ, χab] +

1

2
[φ, φ]2

)
. (4.2)

The fields of this two-dimensional theory respect the following scalar supersymmetry

transformations

QAa = ψa, QAa = 0, (4.3)

Qψa = 0, Qχab = −[Da,Db], (4.4)

Qη = [Da,Da] + [φ, φ], Qχab = 0, (4.5)

Qφ = η, Qφ = 0, (4.6)

Qη = 0, Qψa = Daφ. (4.7)

We can construct a two-dimensional quiver gauge theory with Q = 4 supersymmetry

from the above theory. We are interested in constructing a quiver gauge theory with two

nodes. For that we double the number of fields of the original theory and then change

the representations of a subset of the fields from adjoint to bi-fundamental. This results

in two interacting gauge theories with a product gauge group U(N1) × U(N2) possessing

Q = 4 supersymmetry. The SYM multiplets of this quiver gauge theory transform in the

adjoint representation of the product gauge group and they live on the nodes of the quiver.

The two theories interact via matter multiplets in the bi-fundamental representation of

U(N1) × U(N2). (See figure 1.) The action of the four supercharge quiver gauge theory

can be decomposed in the following way

S
Q=4,d=2
quiver = SSYM

(adj,1) + SSYM
(1,adj) + Smatter

(�,�)
+ Smatter

(�,�)
, (4.8)

with the field content of the quiver theory {Aa, Aa, η, ψa, χab}, {Âa, Âa, η̂, ψ̂a, χ̂ab}, {φ,

φ̂, η, ψ̂a, χab} and {φ̂, φ, η̂, ψa, χ̂ab} transforming respectively as (adj,1), (1,adj), (�,�)

and (�,�) under the gauge group U(N1)× U(N2).

The pieces of the four supercharge quiver gauge theory action are given below

SSYM
(adj,1) =

1

g22

∫
d2x Tr

(
−FabFab +

1

2
[Da,Da]

2 − χabDaψb − ηDaψa

)
, (4.9)

SSYM
(1,adj) =

1

g22

∫
d2x Tr

(
− F̂abF̂ab +

1

2
[D̂a, D̂a]

2 − χ̂abD̂aψ̂b − η̂D̂aψ̂a

)
, (4.10)
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⑦ ⑦
U(N1) U(N2)

Figure 1: A quiver diagram for U(N1) × U(N2) gauge theory. The U(N1) and U(N2) theories

interact via bi-fundamental fields (the blue line). The adjoint fields of the theory live on the nodes

of the quiver (the red disks).

Smatter
(�,�)

=
1

g22

∫
d2x Tr

(
2φ̂DaDaφ̂+ [Da,Da](φ̂φ̂− φφ)− χabDbψa

+ ψ̂aDaη̂ − ψa(φψa − ψ̂aφ̂)− η(φ̂η̂ − ηφ)

−
1

2
χab(φ̂χ̂ab − χabφ) +

1

2
(φ̂φ̂− φφ)2

)

and

Smatter
(�,�)

=
1

g22

∫
d2x Tr

(
2φDaDaφ+ [Da,Da](φφ− φ̂φ̂)− χ̂abDbψ̂a

+ ψaDaη − ψ̂a(φ̂ψ̂a − ψaφ)− η̂(φη − η̂φ̂)

−
1

2
χ̂ab(φχab − χ̂abφ̂) +

1

2
(φφ− φ̂φ̂)2

)
. (4.11)

There are two types of covariant derivatives appearing in the above expressions, act-

ing respectively on adjoint and bi-fundamental fields. The covariant derivatives for the

adjoint fields are given in eqs. (3.4) - (3.5). For a generic bi-fundamental field φ in the

representation (�,�) we have the action of the covariant derivative

Daφ = ∂aφ+Aaφ− φÂa, (4.12)

with Aa and Âa the gauge fields for U(N1) and U(N2) respectively. The gauge transfor-

mation rule for the field φ, under (G,H) ∈ U(N1)× U(N2), is given by φ→ GφH†. For a

field φ̂ in the representation (�,�) we have the action of the covariant derivative

Daφ̂ = ∂aφ̂+ Âaφ̂− φ̂Aa, (4.13)

with the rule for gauge transformation: φ̂→ Hφ̂G†.

4.1.2 The Q = 8 quiver gauge theory

To construct a quiver gauge theory with Q = 8 supersymmetry in two dimensions we begin

by dimensionally reducing the four-dimensional sixteen supercharge twisted SYM given in

section (3.3). We obtain the following form of the action for the two-dimensional sixteen

supercharge theory after dimensional reduction

S = S
N=(4,4),d=2
SYM + Sadj matter, (4.14)
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where the first piece of the action is the twisted action of the two-dimensional N = (4, 4)

SYM. It is

S
N=(4,4),d=2
SYM =

1

g22

∫
d2x Tr

(
−FabFab +

1

2
[Da,Da]

2 − ηDaψa − χabDaψb

− 2(Daπ)(Daπ) + [Da,Da][π, π] + λDaωa − σabDbωa

− η[π, λ]− ψa[π, ωa]−
1

2
χab[π, σab] +

1

2
[π, π]2

)
. (4.15)

It contains two complexified bosons {Aa,Aa}, two scalars {π, π} and eight twisted fermions

{η, ψa, χab, λ, ωa, σab} transforming in the adjoint representation of gauge group U(N).

Note that this piece of the action can be obtained from dimensionally reducing the three-

dimensional eight supercharge theory, given in section (3.2), down to two dimensions.

The second piece includes matter fields {φ, φ, ϕ, ϕ, η, ψa, κab, ρ, τa, ξab} in the adjoint

representation of the gauge group U(N). The matter action is

Sadj matter =
1

g22

∫
d2x Tr

[
− 2(Daϕ)(Daϕ)− 2(Daφ)(Daφ)

+ [Da,Da]([ϕ,ϕ] + [φ, φ])

+ ηDaψa − ρDaτa − κabDaψb − 2ξabDaτ b

− η[φ, η]− 3ǫabη[ϕ, ξab] + ρ[π, η] + τa[π, ψa] +
1

2
ξab[π, κab]

+
3

2
ǫabσab[ϕ, η]− ψa[φ,ψa]− λ[φ, ρ]−

1

2
ǫabλ[ϕ, κab]

+ ǫabψa[ϕ, τ b] + 2ǫabωa[ϕ,ψb] + ǫabχab[ϕ, ρ]

−
1

2
χab[φ, κab]− ωa[φ, τa]−

3

2
σab[φ, ξab]

− 2[π, ϕ][π, ϕ] − 2[π, φ][π, φ] − 2[ϕ, φ][ϕ, φ]

+
1

2

(
[ϕ,ϕ] + [φ, φ]

)2
+ [π, π]([ϕ,ϕ] + [φ, φ])

]
. (4.16)

The fields of this two-dimensional sixteen supercharge theory respect the following

scalar supersymmetry transformations

QAa = ψa, QAa = 0, (4.17)

Qη = [Da,Da] + [π, π] + [ϕ,ϕ] + [φ, φ], Qψa = 0, (4.18)

Qχab = −[Da,Db], Qϕ =
1

2
ǫabξab, (4.19)

Qϕ = 0, Qφ = η, (4.20)

Qφ = 0, Qπ = λ, (4.21)

Qπ = 0, Qλ = 0, (4.22)

Qη = 0, Qρ = [π, φ], (4.23)

Qωa = Daπ, Qψa = Daφ, (4.24)

Qτa = ǫabDbϕ, Qσab = 2ǫab[ϕ, φ], (4.25)

Qκab = ǫab[π, ϕ], Qξab = 0. (4.26)
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In order to construct a two-dimensional quiver gauge theory with Q = 8 supersym-

metry we replicate the action given in eq. (4.14) and make a subset of the fields bi-

fundamental. In this case, we have sufficient number of fields and supersymmetries to

construct different types of quiver theories. We begin with the construction of a quiver

theory with two nodes. The procedure is the same as that of the two-dimensional four

supercharge quiver theory construction detailed in the previous section. Thus we have

two interacting gauge theories with gauge group U(N1) × U(N2). The quiver theory has

adjoint fields living on the nodes and bi-fundamental fields living on the links connecting

the nodes. The action of the quiver gauge theory is

S
Q=8,d=2
quiver = SSYM

(adj,1) + SSYM
(1,adj) + Smatter

(�,�)
+ Smatter

(�,�)
. (4.27)

The quiver theory contains the following sets of fields grouped according to their transfor-

mation properties under U(N1) × U(N2). The set of fields {Am, Am, π, π, η, ψm, χmn,

λ, ωa, σab} transforms as (adj,1), {Âm, Âm, π̂, π̂, η̂, ψ̂m, χ̂mn, λ̂, ω̂a, σ̂ab} transforms as

(1,adj), {φ̂, φ, ϕ, ϕ̂, η̂, ψa, κ̂ab, ρ, τ̂a, ξab} transforms as (�,�) and {φ, φ̂, ϕ̂, ϕ, η, ψ̂a,

κab, ρ̂, τa, ξ̂ab} transforms as (�,�) under the gauge group U(N1)× U(N2).

The pieces of the quiver gauge theory action are given below

SSYM
(adj,1) =

1

g22

∫
d2x Tr

(
−FabFab +

1

2
[Da,Da]

2 − ηDaψa − χabDaψb

− 2(Daπ)(Daπ) + [Da,Da][π, π] + λDaωa − σabDbωa

− η[π, λ]− ψa[π, ωa]−
1

2
χab[π, σab] +

1

2
[π, π]2

)
, (4.28)

SSYM
(1,adj) =

1

g22

∫
d2x Tr

(
− F̂abF̂ab +

1

2
[D̂a, D̂a]

2 − η̂D̂aψ̂a − χ̂abD̂aψ̂b

− 2(D̂aπ̂)(D̂aπ̂) + [D̂a, D̂a][π̂, π̂] + λ̂D̂aω̂a − σ̂abD̂bω̂a

− η̂[π̂, λ̂]− ψ̂a[π̂, ω̂a]−
1

2
χ̂ab[π̂, σ̂ab] +

1

2
[π̂, π̂]2

)
, (4.29)
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Smatter
(�,�)

=
1

g22

∫
d2x Tr

[
2ϕ̂DaDaϕ̂+ 2φDaDaφ

+ [Da,Da](ϕ̂ϕ̂− ϕϕ+ φφ− φ̂φ̂)

+ ηDaψa − ρ̂Daτ̂a − κ̂abDaψ̂b − 2ξabDaτ b

+ ρ(π̂η − ηπ) + τ̂a(π̂ψ̂a − ψ̂aπ) +
1

2
ξab(π̂κab − κabπ)

− η(φη − η̂φ̂)− 3ǫabη(ϕ̂ξ̂ab − ξabϕ) +
3

2
ǫabσab(ϕη − η̂ϕ̂)

− ψa(φ̂ψ̂a − ψaφ)− λ(φ̂ρ̂− ρφ)−
1

2
ǫabλ(ϕκab − κ̂abϕ̂)

− ǫabψb(ϕτ a − τ̂aϕ̂)− 2ǫabωb(ϕ̂ψ̂a − ψaϕ)

+ ǫabχab(ϕ̂ρ̂− ρϕ)−
1

2
χab(φκab − κ̂abφ̂)− ωa(φτa − τ̂aφ̂)

−
3

2
σab(φ̂ξ̂ab − ξabφ)− 2(πϕ− ϕπ̂)(π̂ϕ− ϕπ)

− 2(πφ− φπ̂)(π̂φ− φπ)− 2(ϕ̂φ̂− φϕ)(ϕφ− φ̂ϕ̂)

+
1

2

(
ϕ̂ϕ̂− ϕϕ+ φφ− φ̂φ̂

)2
+ [π, π]

(
ϕ̂ϕ̂− ϕϕ+ φφ− φ̂φ̂

)]
, (4.30)

and

Smatter
(�,�)

=
1

g22

∫
d2x Tr

[
2ϕDaDaϕ+ 2φ̂DaDaφ̂

+ [Da,Da](ϕϕ− ϕ̂ϕ̂+ φ̂φ̂− φφ)

+ η̂Daψ̂a − ρDaτa − κabDaψb − 2ξ̂abDaτ̂ b

+ ρ̂(πη̂ − η̂π̂) + τa(πψa − ψaπ̂) +
1

2
ξ̂ab(πκ̂ab − κ̂abπ̂)

− η̂(φ̂η̂ − ηφ)− 3ǫabη̂(ϕξab − ξ̂abϕ̂) +
3

2
ǫabσ̂ab(ϕ̂η̂ − ηϕ)

− ψ̂a(φψa − ψ̂aφ̂)− λ̂(φρ− ρ̂φ̂)−
1

2
ǫabλ̂(ϕ̂κ̂ab − κabϕ)

− ǫabψ̂b(ϕ̂τ̂a − τaϕ)− 2ǫabω̂b(ϕψa − ψ̂aϕ̂)

+ ǫabχ̂ab(ϕρ− ρ̂ϕ̂)−
1

2
χ̂ab(φ̂κ̂ab − κabφ)− ω̂a(φ̂τ̂a − τaφ)

−
3

2
σ̂ab(φξab − ξ̂abφ̂)− 2(π̂ϕ̂− ϕ̂π)(πϕ̂− ϕ̂π̂)

− 2(π̂φ̂− φ̂π)(πφ̂− φ̂π̂)− 2(ϕφ− φ̂ϕ̂)(ϕ̂φ̂− φϕ)

+
1

2

(
ϕϕ− ϕ̂ϕ̂+ φ̂φ̂− φφ

)2
+ [π̂, π̂]

(
ϕϕ− ϕ̂ϕ̂+ φ̂φ̂− φφ

)]
. (4.31)

4.1.3 The Q = 8 circular quiver gauge theory

We can extend the two-dimensional Q = 8 quiver gauge theory discussed in the previous

section to a quiver theory with circular topology. In this case, the gauge group of the
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Figure 2: A quiver gauge theory with circular topology. The theory contains k nodes with gauge

group U(Ni), 1 ≤ i ≤ k with the identification U(Nk+1) ≡ U(N1). The U(Ni) theories interact via

bi-fundamental fields (the blue lines) which form a circular chain. The adjoint fields of the theory

live on the nodes of the quiver (the red disks).

theory is U(N1) × U(N2) × · · · × U(Nk) with U(Nk+1) identified with U(N1). The SYM

multiplets of this quiver theory transform in the adjoint representation of the gauge group

U(N1) × U(N2) × · · · × U(Nk). The matter fields of this theory transform in the bi-

fundamental representation of each consecutive pair of the gauge groups U(Ni)×U(Ni+1)

where 1 ≤ i ≤ k with the convention that U(Nk+1) ≡ U(N1). (See figure 2.)

The construction of a circular quiver gauge theory with Q = 8 supersymmetry is as

follows. On the node i of the quiver theory we place the adjoint fields {Am, Am, π, π, η,

ψm, χmn, λ, ωa, σab}. On the node i+1 we place the adjoint fields {Âm, Âm, π̂, π̂, η̂, ψ̂m,

χ̂mn, λ̂, ω̂a, σ̂ab}. On the node i− 1 we place the following set of adjoint fields {Ȧm, Ȧm,

π̇, π̇, η̇, ψ̇m, χ̇mn, λ̇, ω̇a, σ̇ab}. The bi-fundamental fields connecting the adjacent nodes are

distributed in the following way. For the nodes i and i+1 we have the bi-fundamental fields

{φ, φ̂, η, ψ̂a, κab} transforming in the representation (�,�) while the set of fields {φ̂, φ, η̂,

ψa, κ̂ab} transforming in the representation (�,�). The bi-fundamental fields connecting

the nodes i and i− 1 are distributed in the following way. The set of bi-fundamentals {ϕ,

ϕ̇, ρ, τ̇a, ξab} transforms as (�,�) while the set of fields {ϕ̇, ϕ, ρ̇, τa, ξ̇ab} transforms as

(�,�).

4.2 Three-dimensional Q = 8 quiver gauge theory

To construct a quiver gauge theory with Q = 8 supersymmetry in three dimensions we

begin by dimensionally reducing the four-dimensional sixteen supercharge twisted SYM

given in section (3.3). We obtain the following form of the action for the three-dimensional

theory after dimensional reduction

S = S
N=4,d=3
SYM + Sadj matter, (4.32)
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where the first piece of the action is the twisted action of the three-dimensional N = 4

SYM. It is

S
N=4,d=3
SYM =

1

g23

∫
d3x Tr

(
−FmnFmn +

1

2
[Dm,Dm]2 − ηDmψm

− χmnDmψn − θmnrDrχmn

)
. (4.33)

The adjoint matter part of the action is given by

Sadj matter =
1

g23

∫
d3x Tr

[
− 2(Dmϕ)(Dmϕ)− 2(Dmφ)(Dmφ)

+ [Dm,Dm]
(
[ϕ,ϕ] + [φ, φ]

)

+ ηDmψm + κmnDmψn +
1

2
θmnrDmκnr

−
1

2
ǫmnrψr[ϕ, κmn] + ǫmnrθmnr[ϕ, η]− ψm[φ,ψm]− θmnr[φ, θmnr]

− ǫmnrη[ϕ, θmnr]− η[φ, η]−
1

2
χmn[φ, κmn] + ǫmnrχmn[ϕ,ψr]

+
1

2

(
[ϕ,ϕ] + [φ, φ]

)2
− 2[ϕ, φ][ϕ, φ]

]
. (4.34)

The fields of this three-dimensional theory respect the following scalar supersymmetry

transformations

QAm = ψm, QAm = 0, (4.35)

Qη = [Dm,Dm] + [ϕ,ϕ] + [φ, φ], Qψm = 0, (4.36)

Qχmn = −[Dm,Dn], Qθmnr = ǫmnr[ϕ, φ], (4.37)

Qφ = η, Qφ = 0, (4.38)

Qϕ =
1

3!
ǫmnrθmnr, Qϕ = 0, (4.39)

Qη = 0, Qψm = Dmφ, (4.40)

Qκmn = ǫmnrDrϕ, Qθmnr = 0. (4.41)

We can rewrite the above action, such that the theory becomes a three-dimensional

quiver gauge theory with N = 4 supersymmetry. There are two interacting U(N) gauge

theories within the quiver. The SYM multiplets of this quiver gauge theory transform in

the adjoint representation of the gauge group U(N1) × U(N2). The two theories interact

via matter multiplets in the bi-fundamental representation of U(N1)×U(N2). The action

of the quiver gauge theory has the following form

S = SSYM
(adj,1) + SSYM

(1,adj) + Smatter
(�,�)

+ Smatter
(�,�)

, (4.42)

where

SSYM
(adj,1) =

1

g23

∫
d3x Tr

(
−FmnFmn +

1

2
[Dm,Dm]2 − ηDmψm

− χmnDmψn − θmnrDrχmn

)
, (4.43)
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SSYM
(1,adj) =

1

g23

∫
d3x Tr

(
− F̂mnF̂mn +

1

2
[D̂m, D̂m]2 − η̂D̂mψ̂m

− χ̂mnD̂mψ̂n − θ̂mnrD̂rχ̂mn

)
, (4.44)

Smatter
(�,�)

=
1

g23

∫
d3x Tr

[
2ϕ̂DmDmϕ̂+ 2φDmDmφ+ [Dm,Dm]

(
ϕ̂ϕ̂− ϕϕ+ φφ− φ̂φ̂

)

+ ηDmψm − κ̂npDpψ̂n +
1

2
θmnrDmκnr

−
1

2
ǫmnrψr(ϕκmn − κ̂mnϕ̂) + ǫmnrθmnr(ϕη − η̂ϕ̂)

− ψm(φ̂ψ̂m − ψmφ)− θmnr(φ̂θ̂mnr − θmnrφ)

− ǫmnrη(ϕ̂θ̂mnr − θmnrϕ)− η(φη − η̂φ̂)

−
1

2
χmn(φκmn − κ̂mnφ̂) + ǫmnrχmn(ϕ̂ψ̂r − ψrϕ)

+
1

2

(
ϕ̂ϕ̂− ϕϕ+ φφ− φ̂φ̂

)2
− 2(ϕ̂φ̂− φϕ)(ϕφ − φ̂ϕ̂)

]
(4.45)

and

Smatter
(�,�)

=
1

g23

∫
d3x Tr

[
2ϕDmDmϕ+ 2φ̂DmDmφ̂+ [Dm,Dm]

(
ϕϕ− ϕ̂ϕ̂+ φ̂φ̂− φφ

)

+ η̂Dmψ̂m − κnpDpψn +
1

2
θ̂mnrDmκ̂nr

−
1

2
ǫmnrψ̂r(ϕ̂κ̂mn − κmnϕ) + ǫmnrθ̂mnr(ϕ̂η̂ − ηϕ)

− ψ̂m(φψm − ψ̂mφ̂)− θ̂mnr(φθmnr − θ̂mnrφ̂)

− ǫmnrη̂(ϕθmnr − θ̂mnrϕ̂)− η̂(φ̂η̂ − ηφ)

−
1

2
χ̂mn(φ̂κ̂mn − κmnφ) + ǫmnrχ̂mn(ϕψr − ψ̂rϕ̂)

+
1

2

(
ϕϕ− ϕ̂ϕ̂+ φ̂φ̂− φφ

)2
− 2(ϕφ− φ̂ϕ̂)(ϕ̂φ̂− φϕ)

]
, (4.46)

with the field content {Am, Am, η, ψm, χmn, θmnr}, {Âm, Âm, η̂, ψ̂m, χ̂mn, θ̂mnr},

{φ̂, φ, ϕ, ϕ̂, η̂, ψm, κ̂mn, θmnr} and {φ, φ̂, ϕ̂, ϕ, η, ψ̂m, κmn, θ̂mnr} transforming respectively as

(adj,1), (1,adj), (�,�) and (�,�) under U(N1)× U(N2).

5. Lattice formulation of supersymmetric quiver theories

The twisted supersymmetric gauge theories and their quiver cousins described in the pre-

vious sections can be discretized on a Euclidean spacetime lattice in a straightforward

manner. We use the method of geometric discretization developed in refs. [30, 52, 53].

The continuum complex gauge fields Am(x) at every spacetime point are mapped to ap-

propriate complexified Wilson links Um(n). These complex link fields are taken to be
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associated with unit length vectors in the coordinate directions ν̂m from the site denoted

by the integer vector n on a hypercubic lattice. Supersymmetric invariance then implies

that the components of the 1-form fermion field ψm(n) live on the same oriented links as

that of their bosonic superpartners, Um(n), running from n → n+ ν̂m. The scalar fermion

η(n) is associated with the site n of the lattice. The components of the 2-form field χmn(n)

are placed on a set of diagonal face links, running from n+ ν̂m+ ν̂n → n. The 3-form field

θmnr(n) is placed on the body diagonal, along the direction n → n+ ν̂m + ν̂n + ν̂r.

In general, the prescription for geometric discretization of topologically twisted field

theories is the following: lattice variables Um(n), Um(n), {f
(+)
m1···mp(n)}, {f

(−)
m1···mp(n)}

should be associated with the links (n,n + ν̂m), (n + ν̂m,n), (n,n + ν̂m1
+ · · · + ν̂mp

)

and (n+ ν̂m1
+ · · ·+ ν̂mp

,n), respectively. A site variable f(n) should be associated with

a degenerate link (n,n).

We can write down the gauge transformation rules for the adjoint lattice fields respect-

ing the p-cell and orientation assignments on the lattice. For G(n) ∈ U(N), we have the

following gauge transformation prescriptions [54, 53]

Um(n) → G(n)Um(n)G†(n+ ν̂m), (5.1)

Um(n) → G(n + ν̂m)Um(n)G†(n), (5.2)

{f
(+)
m1···mp(n)} → G(n){f

(+)
m1 ···mp(n)}G

†(n+ ν̂m1
+ · · ·+ ν̂mp

), (5.3)

{f
(−)
m1···mp

(n)} → G(n + ν̂m1
+ · · · + ν̂mp

){f
(−)
m1···mp

(n)}G†(n). (5.4)

We need to describe how continuum covariant derivatives are to be replaced by co-

variant difference operators. The covariant derivatives Dm (Dm) in the continuum become

forward and backward covariant differences D
(+)
m (D

(+)
m ) and D

(−)
m (D

(−)
m ), respectively on

the lattice. The forward covariant difference operators act on the lattice fields f
(±)
m1···mp(n)

in the following way

D(+)
n f

(+)
m1···mp

(n) ≡ Un(n)f
(+)
m1···mp

(n+ ν̂n)− f
(+)
m1···mp

(n)Un(n+ ν̂), (5.5)

D(+)
n f

(−)
m1···mp(n) ≡ Un(n+ ν̂)f

(−)
m1···mp(n+ ν̂n)− f

(−)
m1···mp(n)Un(n), (5.6)

D
(+)
n f

(+)
m1···mp

(n) ≡ f
(+)
m1···mp

(n+ ν̂n)Un(n+ ν̂)− Un(n)f
(+)
m1···mp

(n), (5.7)

D
(+)
n f

(−)
m1···mp

(n) ≡ f
(−)
m1···mp

(n+ ν̂n)Un(n)− Un(n+ ν̂)f
(−)
m1···mp

(n), (5.8)

where we have defined ν̂ =
∑p

i=1 ν̂mi
.

The action of the backward covariant difference operators on the lattice fields is given

by

D(−)
n f

(±)
m1···mp

(n) ≡ D(+)
n f

(±)
m1···mp

(n− ν̂n), (5.9)

D
(−)
n f

(±)
m1···mp(n) ≡ D

(+)
n f

(±)
m1···mp(n− ν̂n). (5.10)

These expressions are determined by the two requirements that they reduce to the

corresponding continuum results for the adjoint covariant derivative in the naive continuum

limit and that they transform under gauge transformations like the corresponding lattice
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link field carrying the same indices. As a result, the terms in the lattice action correspond

to gauge-invariant closed loops.

The lattice field strength is given by the expression Fmn(n) = D
(+)
m Un(n). We see that

it is automatically antisymmetric in its indices and also it transforms like a lattice 2-form.

We also need to define the action of the covariant difference operators on the lattice

fields transforming in the bi-fundamental representations. In the lattice constructions of

the quiver gauge theories with gauge group U(N1)×U(N2) we have two spacetime lattices

with same dimensionalities, corresponding to the two nodes of the quiver, which we label

as the N1-lattice and N2-lattice, respectively. We denote the position on the N1-lattice

by an integer valued vector n while the same position on the N2-lattice is denoted by the

vector n. The fields on the N1-lattice transform as (adj,1) while those on the N2-lattice

transform as (1,adj) under the gauge group U(N1) × U(N2). The action of the forward

and backward covariant difference operators on adjoint fields living on N1- and N2-lattices

is summarized in eqs. (5.5) - (5.10).

The bi-fundamental matter fields of the lattice quiver theory live on the links connect-

ing the N1- and N2-lattice spacetimes. They transform in the bi-fundamental representa-

tions of U(N1)× U(N2). We have the following set of rules for the action of the covariant

derivatives on bi-fundamental fields.

For lattice variables in the representation (�,�) the covariant forward difference op-

erators act on them the following way

D(+)
n f

(+)
m1···mp

(n,n) ≡ Un(n)f
(+)
m1···mp

(n+ ν̂n,n+ ν̂n)− f
(+)
m1···mp

(n,n)Ûn(n), (5.11)

D(+)
n f

(−)
m1···mp

(n,n) ≡ Un(n+ ν̂)f
(−)
m1···mp

(n+ ν̂n,n+ ν̂n)− f
(−)
m1···mp

(n,n)Ûn(n), (5.12)

D
(+)
n f

(+)
m1···mp(n,n) ≡ f

(+)
m1···mp(n+ ν̂n,n+ ν̂n)Ûn(n)− Un(n)f

(+)
m1···mp(n,n), (5.13)

D
(+)
n f

(−)
m1···mp

(n,n) ≡ f
(−)
m1···mp

(n+ ν̂n,n+ ν̂n)Ûn(n)− Un(n+ ν̂)f
(−)
m1···mp

(n,n), (5.14)

while the covariant backward difference operators act on the fields according to the rules

D(−)
n f

(±)
m1···mp(n,n) ≡ D(+)

n f
(±)
m1···mp(n− ν̂n,n− ν̂n), (5.15)

D
(−)
n f

(±)
m1···mp

(n,n) ≡ D
(+)
n f

(±)
m1···mp

(n− ν̂n,n− ν̂n). (5.16)

For lattice variables in the representation (�,�) we have the following set of rules for

the covariant difference operators

D(+)
n f

(+)
m1···mp(n,n) ≡ Ûn(n)f

(+)
m1···mp(n+ ν̂n,n+ ν̂n)− f

(+)
m1···mp(n,n)Un(n), (5.17)

D(+)
n f

(−)
m1···mp

(n,n) ≡ Ûn(n+ ν̂)f
(−)
m1···mp

(n+ ν̂n,n+ ν̂n)− f
(−)
m1···mp

(n,n)Un(n), (5.18)

D
(+)
n f

(+)
m1···mp(n,n) ≡ f

(+)
m1···mp(n+ ν̂n,n+ ν̂n)Un(n)− Ûn(n)f

(+)
m1···mp(n,n), (5.19)

D
(+)
n f

(−)
m1···mp

(n,n) ≡ f
(−)
m1···mp

(n+ ν̂n,n+ ν̂n)Un(n)− Ûn(n+ ν̂)f
(−)
m1···mp

(n,n), (5.20)

and

D(−)
n f

(±)
m1···mp(n,n) ≡ D(+)

n f
(±)
m1···mp(n− ν̂n,n− ν̂n), (5.21)

D
(−)
n f

(±)
m1···mp

(n,n) ≡ D
(+)
n f

(±)
m1···mp

(n− ν̂n,n− ν̂n). (5.22)
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Figure 3: The unit cell of the two-dimensional Q = 4 lattice SYM with orientation assignments for

the twisted fermions. The complexified bosons Ua follow the same orientations and link assignments

as that of their superpartners ψa.

We also note that the method of geometric discretization maps the continuum fields

on to the lattice one-to-one and thus the lattice theories constructed this way are free from

fermion doubling problem [55, 56, 57, 54]. Now that we have the rules for implementing

quiver gauge theories on the lattice we move on to the lattice constructions of quiver gauge

theories discussed in the previous sections.

5.1 Two-dimensional Q = 4 lattice quiver gauge theory

The two-dimensional Q = 4 lattice quiver gauge theory with gauge group U(N1)× U(N2)

contains two two-dimensional lattice spacetimes (N1- and N2-lattice) corresponding to each

node of the quiver. The unit cell is a square lattice. For the N1-lattice, the adjoint fermion

fields, η(n), ψa(n) and χab(n), with gauge group U(N1), live on the site, edge and diagonal

link, respectively, of the unit cell. The complexified Wilson links Ua(n) and Ua(n) also

live on the edges of the unit cell. The placement and orientations of the twisted fields on

the lattice respect the scalar supersymmetry and gauge symmetry of the lattice theory.

The unit cell of the two dimensional lattice theory is given in figure 3. The other set of

adjoint fields, decorated with hats, live on the N2-lattice and transform as adjoints under

the gauge group U(N2).

The action of the two-dimensional Q = 4 lattice quiver gauge theory has the form

S = SSYM
(adj,1) + SSYM

(1,adj) + Smatter
(�,�)

+ Smatter
(�,�)

, (5.23)
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N1-lattice

N2-lattice

Ua(n),

Ua(n),

η(n),

ψa(n),

χab(n)

Ûa(n),

Ûa(n),

η̂(n),

ψ̂a(n),

χ̂ab(n)

φ(n), φ̂(n),

η(n), ψ̂a(n), χab(n)

φ̂(n), φ(n),

η̂(n), ψa(n), χ̂ab(n)

Figure 4: Schematic sketch of the lattice construction of two-dimensional Q = 4 quiver gauge

theory. The lattice variables {Ua(n), Ua(n), η(n), ψa(n), χab(n)} live on the two-dimensional N1-

lattice spacetime and {Ûa(n), Ûa(n), η̂(n), ψ̂a(n), χ̂ab(n)} live on the two-dimensional N2-lattice

spacetime. The matter fields {φ(n), φ̂(n), η(n), ψ̂
a
(n), χ

ab
(n)} and {φ̂(n), φ(n), η̂(n), ψ

a
(n),

χ̂ab(n)} live on the links connecting the two lattice spactimes.

where

SSYM
(adj,1) =

1

g22

∑

n

Tr
{(

U b(n+ ν̂a)Ua(n)− Ua(n+ ν̂b)U b(n)
)

×
(
Ua(n)Ub(n+ ν̂a)− Ub(n)Ua(n+ ν̂b)

)

+
1

2

(
Ua(n)Ua(n)− Ua(n− ν̂a)Ua(n− ν̂a)

)2

+
1

2
(δaqδbr − δarδbq)χab(n)

(
Uq(n)ψr(n+ ν̂q)− ψr(n)Uq(n+ ν̂r)

)

+ η(n)
(
ψa(n)Ua(n)− Ua(n− ν̂a)ψa(n− ν̂a)

)}
, (5.24)

SSYM
(1,adj) =

1

g22

∑

n

Tr
{(

Û b(n+ ν̂a)Ûa(n)− Ûa(n+ ν̂b)Û b(n)
)

×
(
Ûa(n)Ûb(n+ ν̂a)− Ûb(n)Ûa(n+ ν̂b)

)

+
1

2

(
Ûa(n)Ûa(n)− Ûa(n− ν̂a)Ûa(n− ν̂a)

)2

+
1

2
(δaqδbr − δarδbq)χ̂ab(n)

(
Ûq(n)ψ̂r(n+ ν̂q)− ψ̂r(n)Ûq(n+ ν̂r)

)

+ η̂(n)
(
ψ̂a(n)Ûa(n)− Ûa(n− ν̂a)ψ̂a(n− ν̂a)

)}
, (5.25)
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Smatter
(�,�)

=
1

g22

∑

n

Tr
{
2φ̂(n,n)D

(−)
a D(+)

a φ̂(n,n)

+
(
D

(−)
a Ua(n)

)(
φ̂(n,n)φ̂(n,n)− φ(n,n)φ(n,n)

)

− χab(n,n)D
(+)
b ψa(n,n) + ψ̂a(n,n)D

(+)
a η̂(n,n)

− ψa(n,n)
(
φ(n,n)ψa(n,n)− ψ̂a(n,n)φ̂(n,n)

)

− η(n,n)
(
φ̂(n,n)η̂(n,n)− η(n,n)φ(n,n)

)

−
1

2
χab(n,n)

(
φ̂(n,n)χ̂ab(n,n)− χab(n,n)φ(n,n)

)

+
1

2
(φ̂(n,n)φ̂(n,n)− φ(n,n)φ(n,n))2

}
(5.26)

and

Smatter
(�,�)

=
1

g22

∑

n

Tr
{
2φ(n,n)D

(−)
a D(+)

a φ(n,n)

+
(
D

(−)
a Ua(n)

)(
φ(n,n)φ(n,n)− φ̂(n,n)φ̂(n,n)

)

− χ̂ab(n,n)D
(+)
b ψ̂a(n,n) + ψa(n,n)D

(+)
a η(n,n)

− ψ̂a(n,n)
(
φ̂(n,n)ψ̂a(n,n)− ψa(n,n)φ(n,n)

)

− η̂(n,n)
(
φ(n,n)η(n,n)− η̂(n,n)φ̂(n,n)

)

−
1

2
χ̂ab(n,n)

(
φ(n,n)χab(n,n)− χ̂ab(n,n)φ̂(n,n)

)

+
1

2
(φ(n,n)φ(n,n)− φ̂(n,n)φ̂(n,n))2

}
. (5.27)

In figure 4 we provide a schematic sketch of the two-dimensional Q = 4 lattice quiver

gauge theory with the placement of adjoint and bi-fundamental fields.

5.2 Two-dimensional Q = 8 lattice quiver gauge theory

The two-dimensional Q = 8 lattice quiver gauge theory with gauge group U(N1)× U(N2)

also contains two two-dimensional lattice spacetimes (N1- and N2-lattice) corresponding

to each node of the quiver. The unit cell is a square lattice and the twisted fermions are

distributed on the unit cell in multiplets of two. For the N1-lattice, the adjoint fermion

fields, η(n) and λ(n) live on a site, ψa(n) and ωa(n) live on a link and χab(n) and σab(n)

live on a diagonal link of the unit cell. They all transform in the adjoint representation

of the gauge group U(N1). The complexified Wilson links Ua(n) and Ua(n) reside on the

edges of the unit cell. The unit cell of the two dimensional Q = 8 lattice theory is given

in figure 5. The set of adjoint fields that are decorated with hats live on the N2-lattice

spacetime and transform as adjoints under the gauge group U(N2).

The action of the two-dimensional Q = 8 lattice quiver gauge theory has the following

form

S = SSYM
(adj,1) + SSYM

(1,adj) + Smatter
(�,�)

+ Smatter
(�,�)

, (5.28)
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Figure 5: The unit cell of the two-dimensional Q = 8 lattice SYM with orientation assignments

for twisted fermions. The complexified bosons Ua follow the same orientations and link assignments

as that of their superpartners ψa and ωa. The scalar fields π(n) and π(n) are placed at the origin

of the unit cell along with η(n) and λ(n).

where

SSYM
(adj,1) =

1

g22

∑

n

Tr
{(

U b(n+ ν̂a)Ua(n)− Ua(n+ ν̂b)U b(n)
)

×
(
Ua(n)Ub(n+ ν̂a)− Ub(n)Ua(n+ ν̂b)

)

+
1

2

(
Ua(n)Ua(n)− Ua(n− ν̂a)Ua(n− ν̂a)

)2

+ 2π(n)D
(−)
a D(+)

a π(n) +
(
D

(−)
a Ua(n)

)
[π(n), π(n)]

+
1

2
[π(n), π(n)]2 − η(n)D

(−)
a ψa(n)− χab(n)D

(+)
a ψb(n)

+ λ(n)D(−)
a ωa(n)− σab(n)D

(+)
b ωa(n)− η(n)[π(n), λ(n)]

− ψa(n)[π(n), ωa(n)] −
1

2
χab(n)[π(n), σab(n)]

}
, (5.29)

SSYM
(1,adj) =

1

g22

∑

n

Tr
{(

Û b(n+ ν̂a)Ûa(n)− Ûa(n+ ν̂b)Û b(n)
)

×
(
Ûa(n)Ûb(n+ ν̂a)− Ûb(n)Ûa(n+ ν̂b)

)

+
1

2

(
Ûa(n)Ûa(n)− Ûa(n− ν̂a)Ûa(n− ν̂a)

)2

+ 2π̂(n)D̂
(−)

a D̂(+)
a π̂(n) +

(
D̂

(−)

a Ûa(n)
)
[π̂(n), π̂(n)]

+
1

2
[π̂(n), π̂(n)]2 − η̂(n)D̂

(−)

a ψ̂a(n)− χ̂ab(n)D̂
(+)
a ψ̂b(n)

+ λ̂(n)D̂(−)
a ω̂a(n)− σ̂ab(n)D̂

(+)

b ω̂a(n)− η̂(n)[π̂(n), λ̂(n)]

− ψ̂a(n)[π̂(n), ω̂a(n)]−
1

2
χ̂ab(n)[π̂(n), σ̂ab(n)]

}
, (5.30)
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Smatter
(�,�)

=
1

g22

∑

n

Tr
{
2ϕ̂(n,n)D

(−)
a D(+)

a ϕ̂(n,n) + 2φ(n,n)D
(−)
a D(+)

a φ(n,n)

+
(
D

(−)
a Ua(n)

)(
ϕ̂(n,n)ϕ̂(n,n)− ϕ(n,n)ϕ(n,n) + φ(n,n)φ(n,n)

−φ̂(n,n)φ̂(n,n)
)
+ η(n,n)D(−)

a ψa(n,n)− ρ̂(n,n)D
(−)
a τ̂a(n,n)

−κ̂ab(n,n)D
(+)
a ψ̂b(n,n)− 2ξab(n,n)D

(+)
a τ b(n,n)

+ρ(n,n)
(
π̂(n,n)η(n,n)− η(n,n)π(n,n)

)
+ τ̂a(n,n)

(
π̂(n,n)ψ̂a(n,n)

−ψ̂a(n,n)π(n,n)
)
+

1

2
ξab(n,n)

(
π̂(n,n)κab(n,n)− κab(n,n)π(n,n)

)

−η(n,n)
(
φ(n,n)η(n,n)− η̂(n,n)φ̂(n,n)

)
− 3ǫabη(n,n)

(
ϕ̂(n,n)ξ̂ab(n,n)

−ξab(n,n)ϕ(n,n)
)
+

3

2
ǫabσab(n,n)

(
ϕ(n,n)η(n,n)− η̂(n,n)ϕ̂(n,n)

)

−ψa(n,n)
(
φ̂(n,n)ψ̂a(n,n)− ψa(n,n)φ(n,n)

)
− λ(n,n)

(
φ̂(n,n)ρ̂(n,n)

−ρ(n,n)φ(n,n)
)
−

1

2
ǫabλ(n,n)

(
ϕ(n,n)κab(n,n) − κ̂ab(n,n)ϕ̂(n,n)

)

−ǫabψb(n,n)
(
ϕ(n,n)τa(n,n)− τ̂a(n,n)ϕ̂(n,n)

)
− 2ǫabωb(n,n)

(
ϕ̂(n,n)ψ̂a(n,n)

−ψa(n,n)ϕ(n,n)
)
+ ǫabχab(n,n)

(
ϕ̂(n,n)ρ̂(n,n)− ρ(n,n)ϕ(n,n)

)

−
1

2
χab(n,n)

(
φ(n,n)κab(n,n)− κ̂ab(n,n)φ̂(n,n)

)
− ωa(n,n)

(
φ(n,n)τ a(n,n)

−τ̂a(n,n)φ̂(n,n)
)
−

3

2
σab(n,n)

(
φ̂(n,n)ξ̂ab(n,n)− ξab(n,n)φ(n,n)

)

−2
(
π(n,n)ϕ(n,n)− ϕ(n,n)π̂(n,n)

)(
π̂(n,n)ϕ(n,n)− ϕ(n,n)π(n,n)

)

−2
(
π(n,n)φ(n,n)− φ(n,n)π̂(n,n)

)(
π̂(n,n)φ(n,n)− φ(n,n)π(n,n)

)

−2
(
ϕ̂(n,n)φ̂(n,n)− φ(n,n)ϕ(n,n)

)(
ϕ(n,n)φ(n,n)− φ̂(n,n)ϕ̂(n,n)

)

+
1

2

(
ϕ̂(n,n)ϕ̂(n,n)− ϕ(n,n)ϕ(n,n) + φ(n,n)φ(n,n)− φ̂(n,n)φ̂(n,n)

)2

+[π, π](n,n)
(
ϕ̂(n,n)ϕ̂(n,n)− ϕ(n,n)ϕ(n,n) + φ(n,n)φ(n,n)

−φ̂(n,n)φ̂(n,n)
)}
, (5.31)

and
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Smatter
(�,�)

=
1

g22

∑

n

Tr
{
2ϕ(n,n)D

(−)
a D(+)

a ϕ(n,n) + 2φ̂(n,n)D
(−)
a D(+)

a φ̂(n,n)

+
(
D̂

(−)

a Ûa(n)
)(
ϕ(n,n)ϕ(n,n)− ϕ̂(n,n)ϕ̂(n,n) + φ̂(n,n)φ̂(n,n)

−φ(n,n)φ(n,n)
)
+ η̂(n,n)D(−)

a ψ̂a(n,n)− ρ(n,n)D
(−)
a τa(n,n)

−κab(n,n)D
(+)
a ψb(n,n)− 2ξ̂ab(n,n)D

(+)
a τ̂ b(n,n)

+ρ̂(n,n)
(
π(n,n)η̂(n,n)− η̂(n,n)π̂(n,n)

)
+ τa(n,n)

(
π(n,n)ψa(n,n)

−ψa(n,n)π̂(n,n)
)
+

1

2
ξ̂ab(n,n)

(
π(n,n)κ̂ab(n,n)− κ̂ab(n,n)π̂(n,n)

)

−η̂(n,n)
(
φ̂(n,n)η̂(n,n)− η(n,n)φ(n,n)

)
− 3ǫabη̂(n,n)

(
ϕ(n,n)ξab(n,n)

−ξ̂ab(n,n)ϕ̂(n,n)
)
+

3

2
ǫabσ̂ab(n,n)

(
ϕ̂(n,n)η̂(n,n)− η(n,n)ϕ(n,n)

)

−ψ̂a(n,n)
(
φ(n,n)ψa(n,n)− ψ̂a(n,n)φ̂(n,n)

)
− λ̂(n,n)

(
φ(n,n)ρ(n,n)

−ρ̂(n,n)φ̂(n,n)
)
−

1

2
ǫabλ̂(n,n)

(
ϕ̂(n,n)κ̂ab(n,n)− κab(n,n)ϕ(n,n)

)

−ǫabψ̂b(n,n)
(
ϕ̂(n,n)τ̂ a(n,n)− τa(n,n)ϕ(n,n)

)
− 2ǫabω̂b(n,n)

(
ϕ(n,n)ψa(n,n)

−ψ̂a(n,n)ϕ̂(n,n)
)
+ ǫabχ̂ab(n,n)

(
ϕ(n,n)ρ(n,n)− ρ̂(n,n)ϕ̂(n,n)

)

−
1

2
χ̂ab(n,n)

(
φ̂(n,n)κ̂ab(n,n)− κab(n,n)φ(n,n)

)
− ω̂a(n,n)

(
φ̂(n,n)τ̂ a(n,n)

−τa(n,n)φ(n,n)
)
−

3

2
σ̂ab(n,n)

(
φ(n,n)ξab(n,n)− ξ̂ab(n,n)φ̂(n,n)

)

−2
(
π̂(n,n)ϕ̂(n,n)− ϕ̂(n,n)π(n,n)

)(
π(n,n)ϕ̂(n,n)− ϕ̂(n,n)π̂(n,n)

)

−2
(
π̂(n,n)φ̂(n,n)− φ̂(n,n)π(n,n)

)(
π(n,n)φ̂(n,n)− φ̂(n,n)π̂(n,n)

)

−2
(
ϕ(n,n)φ(n,n)− φ̂(n,n)ϕ̂(n,n)

)(
ϕ̂(n,n)φ̂(n,n)− φ(n,n)ϕ(n,n)

)

+
1

2

(
ϕ(n,n)ϕ(n,n)− ϕ̂(n,n)ϕ̂(n,n) + φ̂(n,n)φ̂(n,n)− φ(n,n)φ(n,n)

)2

+[π̂, π̂](n,n)
(
ϕ(n,n)ϕ(n,n)− ϕ̂(n,n)ϕ̂(n,n) + φ̂(n,n)φ̂(n,n)

−φ(n,n)φ(n,n)
)}
. (5.32)

In figure 6 we provide a schematic sketch of the two-dimensional Q = 8 lattice quiver

gauge theory with the placement of adjoint and bi-fundamental fields.

5.3 Two-dimensional Q = 8 lattice circular quiver gauge theory

The construction of two-dimensional Q = 8 lattice circular quiver gauge theory with gauge

group U(N1)×U(N2)×· · ·×U(Nk) is similar to the construction mentioned in the previous

section. In this case there are k number of two-dimensional lattice spacetimes, which we

label as N1-, N2-, · · · , Nk-lattice and they correspond to each node of the circular quiver.
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Ûa(n), ̂Ua(n),

π̂(n), π̂(n),

η̂(n), ̂λ(n),

ψ̂a(n), ω̂a(n),

χ̂ab(n), σ̂ab(n)

φ(n), ̂φ(n), ϕ̂(n), ϕ(n),

η(n), ̂ψa(n), κab(n),

ρ̂(n), τa(n),̂ξab(n)

φ̂(n), φ(n), ϕ(n), ϕ̂(n),

η̂(n), ψa(n), κ̂ab(n),

ρ(n), τ̂a(n), ξab(n)

Figure 6: Schematic sketch of the lattice construction of two-dimensional Q = 8 quiver gauge

theory. The lattice variables {Ua(n), Ua(n), π(n), π(n), η(n), ψa(n), χab(n), λ(n), ωa(n), σab(n)}

live on the two-dimensional N1-lattice spacetime and {Ûa(n), Ûa(n), π̂(n), π̂(n), η̂(n), ψ̂a(n),

χ̂ab(n), λ̂(n), ω̂a(n), σ̂ab(n)} live on the two-dimensional N2-lattice spacetime. The matter fields

{φ(n), φ̂(n), ϕ̂(n), ϕ(n), η(n), ψ̂a(n), κab(n), ρ̂a(n), τa(n), ξ̂ab(n)} and {φ̂(n), φ(n), ϕ(n), ϕ̂(n),

η̂(n), ψa(n), κ̂ab(n), ρa(n), τ̂a(n), ξab(n)} live on the links connecting the two lattice spactimes.

TheNk+1 lattice spacetime is identified with theN1-lattice spacetime. The unit cell is again

a square lattice and the twisted fermions are distributed on the unit cell in multiplets of

two. Focusing on the three consecutive lattice spacetimes labeled as i − 1, i and i + 1,

we have the following placement for the adjoint fields. On the node i of the lattice quiver

theory we place the adjoint fields {Aa(n), Aa(n), π(n), π(n), η(n), ψa(n), χab(n), λ(n),

ωa(n), σab(n)}. On the node i+ 1 we place the adjoint fields {Âa(n), Âa(n), π̂(n), π̂(n),

η̂(n), ψ̂a(n), χ̂ab(n), λ̂(n), ω̂a(n), σ̂ab(n)}. On the node i − 1 we place the following set

of adjoint fields {Ȧa(n), Ȧa(n), π̇(n), π̇(n), η̇(n), ψ̇a(n), χ̇ab(n), λ̇(n), ω̇a(n), σ̇ab(n)}.

The bi-fundamental fields connecting the adjacent lattice spacetimes are distributed in the

following way. For the nodes i and i + 1 we have the bi-fundamental fields {φ(n), φ̂(n),

η(n), ψ̂a(n), κab(n)} transforming in the representation (�,�) while the set of fields {φ̂(n),

φ(n), η̂(n), ψa(n), κ̂ab(n)} transforming in the representation (�,�). The bi-fundamental

fields connecting the the lattice spacetimes i and i− 1 are distributed in the following way.

The set of bi-fundamentals {ϕ(n), ϕ̇(n), ρ(n), τ̇a(n), ξab(n)} transforms as (�,�) while

the set of fields {ϕ̇(n), ϕ(n), ρ̇(n), τa(n), ξ̇ab(n)} transforms as (�,�).

5.4 Three-dimensional Q = 8 lattice quiver gauge theory

The three-dimensional Q = 8 lattice quiver gauge theory with gauge group U(N1)×U(N2)

can be constructed in a way similar to the constructions mentioned above. The lattice

theory contains two three-dimensional lattice spacetimes (N1- and N2-lattice) correspond-

ing to each node of the quiver. The unit cell is a cubic lattice. The orientations and

placements of the twisted fermions η(n), ψm(n), χmn(n) and θmnr(n) are illustrated in

figure 7. They all transform in the adjoint representation of the gauge group U(N1). The

complexified Wilson links Um(n) have the same orientations and placements as that of

their superpartners ψm(n). The fields Um(n) have the same placements but opposite ori-

entations compared to Um(n). The placements and orientations of the twisted fields on the
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Figure 7: The unit cell of three-dimensional Q = 8 lattice SYM with orientation assignments for

the twisted fermions. The complexified bosons Um follow the same orientations and link assignments

as that of their superpartners ψm.

lattice respect gauge-invariance and scalar supersymmetry of the lattice theory. The set of

adjoint fields that are decorated with hats live on the N2-lattice spacetime and transform

as adjoints under the gauge group U(N2).

The action of the three-dimensional Q = 8 lattice quiver gauge theory has the following

form

S = SSYM
(adj,1) + SSYM

(1,adj) + Smatter
(�,�)

+ Smatter
(�,�)

, (5.33)

where

SSYM
(adj,1) =

1

g23

∑

n

Tr
{(

Un(n+ ν̂m)Um(n)− Um(n+ ν̂n)Un(n)
)

×
(
Um(n)Un(n+ ν̂m)− Un(n)Um(n+ ν̂n)

)

+
1

2

(
Um(n)Um(n)− Um(n− ν̂m)Um(n− ν̂m)

)2

+
1

2
(δmqδnr − δmrδnq)χmn(n)

(
Uq(n)ψr(n+ ν̂q)− ψr(n)Uq(n+ ν̂r)

)

+ η(n)
(
ψm(n)Um(n)− Um(n− ν̂m)ψm(n− ν̂m)

)

+
1

3
(δmrδneδqf + δqrδmeδnf + δnrδqeδmf )

× θref(n)
(
χre(n+ ν̂f )Uf (n)− Uf (n+ ν̂r + ν̂e)χre(n)

)}
, (5.34)
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SSYM
(1,adj) =

1

g23

∑

n

Tr
{(

Ûn(n+ ν̂m)Ûm(n)− Ûm(n+ ν̂n)Ûn(n)
)

×
(
Ûm(n)Ûn(n+ ν̂m)− Ûn(n)Ûm(n+ ν̂n)

)

+
1

2

(
Ûm(n)Ûm(n)− Ûm(n− ν̂m)Ûm(n− ν̂m)

)2

+
1

2
(δmqδnr − δmrδnq)χ̂mn(n)

(
Ûq(n)ψ̂r(n+ ν̂q)− ψ̂r(n)Ûq(n+ ν̂r)

)

+ η̂(n)
(
ψ̂m(n)Ûm(n)− Ûm(n− ν̂m)ψ̂m(n− ν̂m)

)

+
1

3
(δmrδneδqf + δqrδmeδnf + δnrδqeδmf )

× θ̂ref(n)
(
χ̂re(n+ ν̂f )Ûf (n)− Ûf (n+ ν̂r + ν̂e)χ̂re(n)

)}
, (5.35)

Smatter
(�,�)

=
1

g23

∑

n

Tr
{
2ϕ̂(n,n)D

(−)
m D(+)

m ϕ̂(n,n) + 2φ(n,n)D
(−)
m D(+)

m φ(n,n)

+
(
D

(−)
m Um(n)

)(
ϕ̂(n,n)ϕ̂(n,n)− ϕ(n,n)ϕ(n,n) + φ(n,n)φ(n,n)

− φ̂(n,n)φ̂(n,n)
)
+ η(n,n)D(−)

m ψm(n,n)− κ̂np(n,n)D
(+)
p ψ̂n(n,n)

+
1

2
θmnr(n,n)D

(+)
m κnr(n,n)−

1

2
ǫmnrψr(n,n)

(
ϕ(n,n)κmn(n,n)

− κ̂mn(n,n)ϕ̂(n,n)
)
+ ǫmnrθmnr(n,n)

(
ϕ(n,n)η(n,n)

− η̂(n,n)ϕ̂(n,n)
)
− ψm(n,n)

(
φ̂(n,n)ψ̂m(n,n)− ψm(n,n)φ(n,n)

)

− θmnr(n,n)
(
φ̂(n,n)θ̂mnr(n,n)− θmnr(n,n)φ(n,n)

)

− ǫmnrη(n,n)
(
ϕ̂(n,n)θ̂mnr(n,n)− θmnr(n,n)ϕ(n,n))

− η(n,n)(φ(n,n)η(n,n)− η̂(n,n)φ̂(n,n)
)
−

1

2
χmn(n,n)

(
φ(n,n)κmn(n,n)

− κ̂mn(n,n)φ̂(n,n)
)
+ ǫmnrχmn(n,n)

(
ϕ̂(n,n)ψ̂r(n,n)− ψr(n,n)ϕ(n,n)

)

+
1

2

(
ϕ̂(n,n)ϕ̂(n,n)− ϕ(n,n)ϕ(n,n) + φ(n,n)φ(n,n)− φ̂(n,n)φ̂(n,n)

)2

− 2(ϕ̂(n,n)φ̂(n,n)− φ(n,n)ϕ(n,n))(ϕ(n,n)φ(n,n)− φ̂(n,n)ϕ̂(n,n))
}
, (5.36)

and

– 28 –



Smatter
(�,�)

=
1

g23

∑

n

Tr
{
2ϕ(n,n)D

(−)
m D(+)

m ϕ(n,n) + 2φ̂(n,n)D
(−)
m D(−)

m φ̂(n,n)

+
(
D

(−)
m Um(n)

)(
ϕ(n,n)ϕ(n,n)− ϕ̂(n,n)ϕ̂(n,n) + φ̂(n,n)φ̂(n,n)

− φ(n,n)φ(n,n)
)
+ η̂(n,n)D(−)

m ψ̂m(n,n)− κnp(n,n)D
(+)
p ψn(n,n)

+
1

2
θ̂mnr(n,n)D

(+)
m κ̂nr(n,n)−

1

2
ǫmnrψ̂r(n,n)

(
ϕ̂(n,n)κ̂mn(n,n)

− κmn(n,n)ϕ(n,n)
)
+ ǫmnrθ̂mnr(n,n)

(
ϕ̂(n,n)η̂(n,n)

− η(n,n)ϕ(n,n)
)
− ψ̂m(n,n)

(
φ(n,n)ψm(n,n)− ψ̂m(n,n)φ̂(n,n)

)

− θ̂mnr(n,n)
(
φ(n,n)θmnr(n,n)− θ̂mnr(n,n)φ̂(n,n)

)

− ǫmnrη̂(n,n)
(
ϕ(n,n)θmnr(n,n)− θ̂mnr(n,n)ϕ̂(n,n)

)

− η̂(n,n)
(
φ̂(n,n)η̂(n,n)− η(n,n)φ(n,n)

)
−

1

2
χ̂mn(n,n)

(
φ̂(n,n)κ̂mn(n,n)

− κmn(n,n)φ(n,n)
)
+ ǫmnrχ̂mn(n,n)

(
ϕ(n,n)ψr(n,n)− ψ̂r(n,n)ϕ̂(n,n)

)

+
1

2

(
ϕ(n,n)ϕ(n,n)− ϕ̂(n,n)ϕ̂(n,n) + φ̂(n,n)φ̂(n,n)− φ(n,n)φ(n,n)

)2

− 2(ϕ(n,n)φ(n,n)− φ̂(n,n)ϕ̂(n,n))(ϕ̂(n,n)φ̂(n,n)− φ(n,n)ϕ(n,n))
}
. (5.37)

In figure 8 we provide a schematic sketch of the three-dimensional Q = 8 lattice quiver

gauge theory with the placement of adjoint and bi-fundamental fields on the lattice quiver.

6. Discussions and prospects

In this paper, we have detailed the constructions of several classes of twisted supersym-

metric quiver gauge theories in the continuum and also on the lattice. These theories live

on two and three Euclidean spacetime dimensions and possess four and eight supercharges.

The process of twisting allows us to easily transport these theories on to the lattice by

preserving a subset of supersymmetries exact at finite lattice spacing. We used the method

of geometric discretization to implement these theories on the lattice. The lattice theories

constructed this way are gauge-invariant, doubler free and retain at least one supercharge

exact on the lattice. In two dimensions we have discussed the constructions of lattice

quiver gauge theories possessing four and eight supercharges. We have also constructed

two-dimensional eight supercharge lattice quiver gauge theory with circular topology. We

have also provided the continuum and lattice constructions of three-dimensional quiver

gauge theory possessing eight supercharges. These quiver theories contain adjoint fields

living on the nodes and bi-fundamental matter fields linking between the nodes. It is inter-

esting to note that we can also construct lattice gauge theories with fundamental matter

fields, from these quiver gauge theories, by retaining one node of the lattice quiver the-

ory and freezing the rest of the nodes. This process of freezing the degrees of freedom is
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Ûm(n),

Ûm(n),
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Figure 8: Schematic sketch of the lattice construction of three-dimensional Q = 8 quiver gauge

theory. The lattice variables {Um(n), Um(n), η(n), ψm(n), χmn(n), θmnr(n)} live on the three-

dimensional N1-lattice spacetime and {Ûm(n), Ûm(n), η̂(n), ψ̂m(n), χ̂mn(n), θ̂mnr(n)} live on the

three-dimensional N2-lattice spacetime. The matter fields {φ(n), φ̂(n), ϕ̂(n), ϕ(n), η(n), ψ̂m(n),

κmn(n), θ̂mnr(n)} and {φ̂(n), φ(n), ϕ(n), ϕ̂(n), η̂(n), ψm(n), κ̂mn(n), θmnr(n)} live on the links

connecting the two lattice spactimes.

not in conflict with supersymmetry. Such constructions have been carried out for the two

dimensional N = (2, 2) case in ref. [39] and the three-dimensional N = 4 case in ref. [40].

The construction of two-dimensional four supercharge lattice quiver gauge theory has

the realization as a system of intersecting branes. In the lattice quiver theory there are two

lattice spacetimes and the bi-fundamental matter fields are the lattice variables living on

links connecting them. The two-dimensional four supercharge lattice quiver gauge theory

could be realized as a system of intersecting branes in type IIA string theory [58]. There are

D2 branes stretching between two NS5 branes. The brane configurations are arranged in

such a way that they preserve 4 out of the 32 supercharges of type IIA string theory. Open

strings stretching between the D2 branes located between parallel NS5 branes correspond

to the adjoint fields in the N = (2, 2) sector, while open strings stretching between two

separate stacks of D2 branes correspond to bi-fundamental fields of the quiver theory.

The two dimensionalN = (2, 2) supersymmetric quiver gauge theories can be related to

quantum integrable systems, such as spin chains, through the Gauge/Bethe correspondence.

One can use the correspondence to map the supersymmetric ground states of the gauge

theory directly to the Bethe spectrum of the integrable model [58].

We can also look at the three-dimensional eight supercharge (N = 4) lattice quiver

gauge theory in the context of intersecting branes. Three-dimensional N = 4 quiver gauge

theories admit realization as low-energy limit brane configurations of Hanany-Witten type

[1] in type IIB string theory. The string theory contains D3 branes that are stretched

between NS5 and D5 branes such that the fivebranes have two common world-volume

directions and one common transverse direction. The D3 brane is wrapped on the two
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common world-volume directions and the common transverse direction. In the field theory

limit and at energy scales below the scale set by the interval between the NS5 branes,

the world-volume theories on the D3 branes become three-dimensional U(N) N = 4 SYM

gauge theories, giving rise to the desired quiver. Three-dimensional N = 4 gauge theories

also play an important role in our understanding of dualities. First examples of three-

dimensional mirror symmetry [59, 1, 60, 61, 62] were provided by such theories and we hope

that the lattice theory constructed here would be useful for non-perturbative investigations

related to such dualities.
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