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Abstract
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PROGRAM SUMMARY

Title of program: HYPERDIRE

Version: 1.0.0 Release: 1.0.0 Catalogue number :

Program obtained from https://sites.google.com/site/loopcalculations/home:

E-mail: bvv@jinr.ru

Licensing terms : GNU General Public License

Computers : all computers running Mathematica

Operating systems : operating systems running Mathematica

Programming language: Mathematica

Keywords : multivariable Lauricella functions, Horn functions, Feynman integrals.

Nature of the problem: Reduction of hypergeometric functions FD and FS to set of basis
functions.

Method of solution: Differential reduction

Restriction on the complexity of the problem: none

Typical running time: Depending on the complexity of problem.
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LONG WRITE-UP

1 Introduction

The study of solutions of linear partial differential equations (PDEs) of a few variables in
terms of multiple series, i.e., a multivariable generalization of Gauss hypergeometric func-
tion [1], was started a long time ago [2]. Following the Horn definition 1, a multiple series is
called Horn-type hypergeometric function [4], if around some point ~z = ~z0, there are series
representations

H(~z) =
∑

~m

C(~m)~z ~m,

where ~m is a set of integers and the ratio of two coefficients can be represented as a ratio of
two polynomials:

C(~m+ ~ej)

C(~m)
=

Pj(~m)

Qj(~m)
, (1)

where ~ej = (0, · · · , 0, 1, 0, · · · , 0), is the jth unit vector. The coefficients C(~m) of such a
series are expressible as product/ratio of Gamma-functions (up to some factors irrelevant
for our consideration) [5]:

C(~m) =

p
∏

j=1

Γ (
∑r

a=1 µjama + γj)

q
∏

k=1

Γ (
∑r

b=1 νkbmb + σk)

, (2)

where µja, νkb, σj, γj ∈ Z and ma are elements of ~m.
The Horn-type hypergeometric function, Eq. (1), satisfies the following system of differ-

ential equations:

0 = Dj(~z)H(~z) =

[

Qj

(

r
∑

k=1

zk
∂

∂zk

)

1

zj
− Pj

(

r
∑

k=1

zk
∂

∂zk

)]

H(~z) , (3)

where j = 1, . . . , r. The degree of polynomials Pi and Qi is pi and qi, respectively. The
largest of these numbers, r = max{pi, qj}, is called the order of the hypergeometric series.

Any Horn-type hypergeometric function is a function of two kind of variables, continuous
variables, z1, z2, · · · , zr and discrete variables: {Ja} := {γk, σr}, where the latter can change
by integer numbers and are often referred to as the parameters of the hypergeometric func-
tion. For any Horn-hypergeometric function, there are linear differential operators changing
the value of the discrete variables by one unit:

RK(~z)
∂K

∂~z
H( ~J ; ~z) = H( ~J ± eK ; ~z) , (4)

1The modern approach to hypergeometric functions has been presented in [3].
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where RK(~z) are polynomial (rational) functions. In Refs. [6, 7] it was shown that there is
algorithmic solution for the construction of inverse linear differential operators:

BL(~z)
∂L

∂~z
H( ~J ; ~z) = H( ~J ∓ eL; ~z) , (5)

or, expressed in another form,

BL(~z)
∂L

∂~z

(

RK(~z)
∂K

∂~z

)

H( ~J ; ~z) = H( ~J ± eK ∓ eL; ~z) . (6)

Applying the direct or inverse differential operators to the hypergeometric function, the
value of parameters can be changed by an arbitrary integer numbers:

S(~z)H( ~J + ~m; ~z) =
r
∑

j=0

Sj(~z)
∂j

∂~z
H( ~J ; ~z) , (7)

where ~m is a set of integers, S and Sj are polynomials and r is the holonomic rank (the
number of linearly independent solutions) of the system of differential equations, Eq. (3).
Additionally, the construction of inverse differential operators defined by Eq. (5) (or by
Eq. (6)) allows to

(i) find a set of exceptional parameters for any hypergeometric function, and this set coin-
cides with the condition of reducibility of the monodromy group of the corresponding
hypergeometric functions (see discussion in [8]);

(ii) convert the system of linear PDEs, Eq. (3), into Pfaff form for any hypergeometric
functions, including functions with Puiseux monomials as one of the solution, see
details in [9].

The interest of physicists in hypergeometric functions is related with

(i) the necessity of an analytical evaluation of multiple series generated by multiple residues
of Mellin-Barnes integrals [10];

(ii) the restricted set of values of parameters of hypergeometric functions or multiple series,
where the algorithms [11, 12, 14, 16] are applicable;

(iii) the complicated analytical structure of one-loop massive Feynman diagrams, where,
nevertheless, a simple hypergeometric representation exist [17, 18, 20].

It was pointed out in [21] that the differential reduction algorithm, defined as a full system
of differential operators, Eqs. (3), (4), (5), can be applied to the construction of analytical
coefficients of the so-called ε-expansions of hypergeometric functions about any rational
values of parameters via the direct solution of the linear systems of differential equations.

This is the motivation for creating a package for the manipulation of the parameters of
Horn-type hypergeometric functions of several variables.
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In the previous publications the algebraic reduction of 2F1 functions has been consid-
ered [22], the program pfq, for the manipulation of hypergeometric functions, p+1Fp (p ≥
1) [8], the program AppellF1F4, for the manipulation of Appell hypergeometric functions,
F1, F2, F3 and F4 [23], the programHorn, for the manipulation of Horn-hypergeometric func-
tions of two variables (30 hypergeometric functions in addition to four Appell functions) [9].

The aim of this paper is to present a further extension of the Mathematica [24] based
packageHYPERDIRE for the differential reduction of the Horn-type hypergeometric func-
tion with arbitrary values of parameters to a set of basis functions. The current version
consists of two parts: one, FdFunction, for the manipulation of Lauricella hypergeometric
functions, FD, of r variables, and the second one, FsFunction, for the manipulation with
Lauricella-Saran hypergeometric functions FS with three variables.

2 The structure of hypergeometric functions related

with one-loop off-shell Feynman diagrams

A generic scalar one-loop N -point function is defined by the following integral in d space-time
dimensions

I
(d)
N ;a1,··· ,aN

=
∫

ddl

(2π)d
1

((l − p1)2 −m2
12)

a1 . . . ((l − (p1 + . . . pN−1))2 −m2
N−1,N )

aN−1 (l2 −m2
N,1)

aN
, (8)

where l is the loop momentum to be integrated, pi are the external momenta and m2
i,j the

masses of the internal propagators, i, j = 1, . . . , N . Energy-momentum conservation enforces
∑

i pi = 0.

2.1 Massive case

In accordance with algorithm described in [25], one-loop N -point diagrams with all powers
of propagators equal to unity, i.e., all ai = 1 in Eq. (8), satisfy to the following difference
equation

I
(d)
N = bN (d) +

N
∑

k=1

(

∂k∆N

2∆N

) ∞
∑

r=0

(

d−N + 1

2

)

r

(

GN−1

∆N

)r

k−I
(d+2r)
N , (9)

where I
(d)
N ≡ I

(d)
N ;a1,··· ,aN

, (a)k is a Pochhammer symbol, (a)k = Γ(a+ k)/Γ(a). d is dimension
of space-time, bN(d) is a some function of space-time dimension, and we are working in
Euclidean space-time, which is the source of the sign “+” instead of “-” as it was defined
in [25], GN is a Gram determinant, ∆N is a Cayley determinant for the N -point diagram
and ∂k∆N = ∂

∂m2

k

∆N . For details we refer to [17,25]. Eq. (9) can be solved iteratively [17,25]

and the result for the one-loop N -point diagram in an arbitrary dimension d can be written
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as linear combinations of the following hypergeometric functions:

I
(d)
N≥2 ∼

N
∏

j=2

(

∂kj∆j

2∆j

)

×

∞
∑

r1,r2,r3,··· ,rN−1=0

(

−m2
N−1,N

GN−1

∆N

)rN−1

· · ·

(

−m2
12

G1

∆2

)r1

×
Γ
(

d−N+1
2

+rN−1

)

Γ
(

d−N+1
2

) · · ·
Γ
(

d−4
2
+r4 · · ·+rN−1

)

Γ
(

d−4
2
+r5 · · ·+rN−1

)

Γ
(

d−3
2
+r3+r4 · · ·+rN−1

)

Γ
(

d−3
2
+r4 · · ·+rN−1

)

×
Γ
(

d−2
2
+r2+r3 · · ·+rN−1

)

Γ
(

d−2
2
+r3 · · ·+rN−1

)

Γ
(

d−1
2
+r1+r2 · · ·+rN−1

)

Γ
(

d−1
2
+r2 · · ·+rN−1

)

Γ
(

d
2

)

Γ
(

d
2
+r1+r2 · · ·+rN−1

)

+

N
∑

j=3

bj(d)cj(d) , (10)

where m2
i,j are some masses, cf., Eq. (8). In accordance with Proposition 1 of [26] 2, the

system of differential equations for the last terms in Eq. (10) has the same order as another
terms. Dropping all irrelevant factors, the hypergeometric function related with one-loop
N -point off-shell massive Feynman diagram is (it has a simpler form in contrast to the results
of [27]):

H
(d)
N≥2 =

∞
∑

r1,r2,r3,··· ,rN−1=0

Γ
(

d−1
2
+r1+r2 · · ·+rN−1

)

Γ
(

d
2
+r1+r2 · · ·+rN−1

)

×
Γ
(

d−2
2
+r2+r3 · · ·+rN−1

)

Γ
(

d−1
2
+r2 · · ·+rN−1

)

Γ
(

d−3
2
+r3+r4 · · ·+rN−1

)

Γ
(

d−2
2
+r3 · · ·+rN−1

)

×
Γ
(

d−4
2
+r4 · · ·+rN−1

)

Γ
(

d−3
2
+r4 · · ·+rN−1

) · · ·
Γ
(

d−N+1
2

+rN−1

)

Γ
(

d−N+2
2

+rN−1

)zr11 zr22 · · · z
rN−1

N−1 . (11)

For the lowest values of N = 2, 3, 4, 5, Eq. (11) has the following form:

H
(d)
2 =

∑

r1

(

d−1
2

)

r1
(

d
2

)

r1

zr11 , (12)

H
(d)
3 =

∑

r1,r2

(

d−1
2

)

r1+r2

(

d−2
2

)

r2
(

d
2

)

r1+r2

(

d−1
2

)

r2

zr11 zr22 , (13)

H
(d)
4 =

∑

r1,r2,r3

(

d−1
2

)

r1+r2+r3

(

d−2
2

)

r2+r3

(

d−3
2

)

r3
(

d
2

)

r1+r2+r3

(

d−1
2

)

r2+r3

(

d−2
2

)

r3

zr11 zr22 zr33 , (14)

H
(d)
5 =

∑

r1,r2,r3,r4

(

d−1
2

)

r1+r2+r3+r4

(

d−2
2

)

r2+r3+r4

(

d−3
2

)

r3+r4

(

d−4
2

)

r4
(

d
2

)

r1+r2+r3+r4

(

d−1
2

)

r2+r3+r4

(

d−2
2

)

r3+r4

(

d−3
2

)

r4

zr11 zr22 zr33 zr44 . (15)

2 For completeness, we recall it here: A multiple Mellin-Barnes integrals can be presented as a linear
combination of Horn-type hypergeometric functions about some point. Therefore, the holonomic rank of the
corresponding system of linear differential equations related with the Mellin-Barnes integral is equal to the
holonomic rank of any hypergeometric function in the corresponding hypergeometric representation.
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In accordance with Eq. (3), the order of differential equations of hypergeometric functions
Eq. (11), increase with number of external legs:

P j
N

Qj
N

= j ,

where the index j is the same as the summation index rj and j + 1 is equal to the number
of external legs of the Feynman diagrams, cf., Eq. (8). To reduce the order of differen-
tial equations of the hypergeometric function Eq. (11), we apply recursively the following
transformation:

∞
∑

r=0

Γ (A+r)

Γ (B+r)
zr =

Γ (A)

Γ (B)
2F1

(

1, A
B

z

)

=
1

1− z

Γ (A)

Γ (B)
2F1

(

1, B−A
B

z

z − 1

)

=
1

1− z

Γ (A)

Γ (B−A)

∞
∑

r=0

(

z

z − 1

)r
Γ (B−A+r)

Γ (B+r)
. (16)

Let us introduce new variables:

xi = −
zi

1− zi
, zi = −

xi

1− xi

, 1− zi =
1

1− xi

. (17)

The recursive application of the linear-fractional transformation, Eq. (16), to Eq. (11) gives
rise to the following hypergeometric function:

N−1
∏

k=1

(1− zk)H
(d)
N≥2 =

=

∞
∑

r1,r2,r3,r4,··· ,rN−1=0

Γ
(

d
2

)

Γ
(

d
2
+r1+· · ·+rN−1

)

N−1
∏

i=1

xri
i

[

Γ
(

i
2
+r1+· · ·+ri

)

Γ
(

i
2
+r1+· · ·+ri−1

)

]

. (18)

For completeness, we present explicitly the hypergeometric terms defined by Eq. (18) for
the first few values of N = 2, 3, 4, 5: 3

H
(d)
2 =

∑

r1

(

1
2

)

r1
(

d
2

)

r1

xr1
1 , (19)

H
(d)
3 =

∑

r1,r2

(

1
2

)

r1

(

d−2
2

)

r2
(

d
2

)

r1+r2

xr1
1 zr22 , (20)

=
∑

r1,r2

(

1
2

)

r1
(1)r1+r2

(1)r1
(

d
2

)

r1+r2

xr1
1 xr2

2 , (21)

3For our discussion we drop all irrelevant factors, like (1− zi)
±1 and assume, wherever it does not cause

any problems, that Γ
(

d

2
± k + ~r

)

≡
(

d

2
± k
)

~r
with k being integer.
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H
(d)
4 =

∑

r1,r2,r3

(

1
2

)

r1

(

d−2
2

)

r2+r3

(

d−3
2

)

r3
(

d
2

)

r1+r2+r3

(

d−2
2

)

r3

xr1
1 zr22 zr33 (22)

=
∑

r1,r2,r3

(

1
2

)

r1
(1)r1+r2

(

d−3
2

)

r3

(1)r1
(

d
2

)

r1+r2+r3

xr1
1 xr2

2 zr33 (23)

≡
∑

r1,r2,r3

(

1
2

)

r1
(1)r1+r2

(

3
2

)

r1+r2+r3

(1)r1
(

3
2

)

r1+r2

(

d
2

)

r1+r2+r3

xr1
1 xr2

2 xr3
3 , (24)

where the xi are defined in Eq. (17). As follows from Eq. (20) and Eq. (21), the vertex
diagrams are described by the Appell hypergeometric functions F3 or F1 [28]. For the
pentagon (N = 5), the hypergeometric function has the following form:

H
(d)
5 =

∞
∑

r1,r2,r3,r4

(

1
2

)

r1

(

d−2
2

)

r2+r3+r4
(

d
2

)

r1+r2+r4

(

d−3
2

)

r3+r4
(

d−2
2

)

r3+r4

(

d−4
2

)

r4
(

d−3
2

)

r4

xr1
1 zr22 zr33 zr44 , (25)

=
∞
∑

r1,r2,r3,r4=0

(

1
2

)

r1
(1)r1+r2

(1)r1

(

d−3
2

)

r3+r4
(

d
2

)

r1+r2+r3+r4

(

d−4
2

)

r4
(

d−3
2

)

r4

xr1
1 xr2

2 zr33 zr44 , (26)

=

∞
∑

r1,r2,r3,r4=0

(

1
2

)

r1
(1)r1+r2

(1)r1

(

3
2

)

r1+r2+r3
(

3
2

)

r1+r2

(

d−4
2

)

r4
(

d
2

)

r1+r2+r3+r4

xr1
1 xr2

2 xr3
3 zr44 , (27)

=
∑

r1,r2,r3,r4

(

1
2

)

r1
(1)r1+r2

(

3
2

)

r1+r2+r3

(

4
2

)

r1+r2+r3+r4

(1)r1
(

3
2

)

r1+r2

(

4
2

)

r1+r2+r3

(

d
2

)

r1+r2+r3+r4

xr1
1 xr2

2 xr3
3 xr4

4 . (28)

After the linear-fractional transformation, Eq. (16), the order of the differential equation
for the hypergeometric function related to the box diagram is reduced from three to two,
see Eqs. (22) and (23), [17]. The pentagon, Eq. (26), corresponds to a hypergeometric
function satisfying a differential equation of order two 4. As follows from Eqs. (11) and (18),
the massive hexagon is expressible in terms of hypergeometric functions of five variables
satisfying a differential equations of order three. However, since the difference between
parameters of hypergeometric functions, Eqs. (11) or (18), are integer or half-integer, these
functions possess extended symmetries with respect to non-linear transformations of their
arguments [29] (multivariable generalizations of quadratic transformations related to Gauss
hypergeometric functions) 5. It is still open question, whether or not is it possible, to reduce
the order of differential equations with the help of non-linear transformations.

4 At present, a full classification of Horn-type hypergeometric functions of four variables does not exist [4].
5 All hypergeometric functions, defined by Eqs. (12)-(28), belong to the class of multiple Gauss hyperge-

ometric functions [4]: the series representation can be written as infinite sum(s) with respect to the index
of summation over the parameters of 2F1 hypergeometric functions: in Eqs. (21), (24), (28) the Gauss hy-
pergeometric functions enter via last index of summation; in Eq. (22) via summation over r1; in Eq. (23)
via summation over r2 or r3; in Eq. (25) via summation over r1 or r2; in Eq. (26) via summation over r2

or r3; in Eq. (27) via summation over r3. Exploring the transformation properties of Gauss hypergeometric
functions, see Eq. (16) for an example, the transformation of hypergeometric functions, Eqs. (12)-(28), can
be performed.
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2.2 Off-shell massless case

Let us consider an off-shell massless one-loop N -point diagram, for where, for some i, we
have {p2i } 6= 0, cf., Eq. (8). In these kinematics, the three-point diagram (vertex) is not

algebraically reducible to a simpler diagram. The I
(d)
2 integral can be written (up to some

irrelevant normalization) as

I
(d)
2 =

1

Γ
(

d−1
2

) , (29)

and the iterative solution of Eq. (9) is

H
(d)
N≥3

∣

∣

∣

{p2i }6=0
=

∞
∑

r1,r2,r3,··· ,rN−2=0

Γ
(

d−2
2
+r1+r2 · · ·+rN−2

)

Γ
(

d−1
2
+r1+r2 · · ·+rN−2

)

×
Γ
(

d−3
2
+r2+r3 · · ·+rN−2

)

Γ
(

d−2
2
+r2+r3 · · ·+rN−2

)

Γ
(

d−4
2
+r3+r4 · · ·+rN−2

)

Γ
(

d−3
2
+r3+r4 · · ·+rN−2

)

×
Γ
(

d−5
2
+r4 · · ·+rN−2

)

Γ
(

d−4
2
+r4 · · ·+rN−2

) · · ·
Γ
(

d−N+1
2

+rN−2

)

Γ
(

d−N+2
2

+rN−2

)zr11 zr22 · · · z
rN−2

N−2 . (30)

From Eqs. (11) and (30) we see, that the structure of hypergeometric functions related with
off-shell massive and off-shell massless integrals is related as follows [20]:

H
(d)
N+1

∣

∣

∣

{p2i }6=0
∼ H

(d−1)
N , (31)

where d is the dimension of space-time and N denotes the number of external legs. The
symbol ∼ in Eq. (31) indicates that this relation is valid for hypergeometric functions related
with the corresponding Feynman diagram. Eq. (31) is also valid for hypergeometric functions,
Eq. (18), after application of the linear-fractional transformation, Eq. (16).

3 Differential reduction of Horn-type hypergeometric

functions of three variables

3.1 System of differential equations

Let us consider the system of linear differential operators of second order Lj for the hyper-
geometric functions ω(~z):

Liω(~z) : θ2i ω(~z) =

[

∑

j;j 6=i

Pijθjθi +
∑

m

Rimθm + Si

]

ω(~z) , i = 1, · · · , 3, (32)

where ~z = (z1, z2, z3) with z1, z2, z3 being variables, {Pi,j, Ri,ab, Sj} are rational functions,
θj = zj∂zj for j = 1, 2, 3, and θi1···ik = θii · · · θik . Taking the derivative, θkLiω(~z), we finally
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obtain from Eq. (32):

θkLiω(~z) :

[

(1− PikPki) θkθ
2
i −

3
∑

J 6=k 6=i=1

(PiJ + PikPkJ) θiθkθJ

]

ω(~z)

=

{

[PikRkiPik +RikPki +Rii + PikRkk + (θkPik)] θik

+
3
∑

J 6=k 6=i=1

[PikRkiPiJ + PikRkJ + (θkPiJ)] θiθJ +
3
∑

J 6=i 6=k=1

[RikPkJ +RiJ ] θkθJ

+
3
∑

m=1

[PikRkiRim +RikRkm + (θkRim)] θm + PikSkθi + Siθk

+PikRkiSi +RikSk + (θkSi)

}

ω(~z) . (33)

For a function of three variables the sum
∑

J 6=k 6=i can be replaced by the index j, where
j 6= i 6= k. The conditions of complete integrability are defined via the relations:

θi [θjLk]ω(~z) = θj [θiLk]ω(~z) , i, j = 1 · · · 3. (34)

The number of independent solutions of the system of differential equations, Eq. (32), of
three variables is defined by coefficients in l.h.s. of Eq. (33) and the validity of Eq. (34).
When the coefficients

(1− PikPki) , {i, k} = 1, 2, 3 , (35)

and

(PiJ + PikPkJ) , J 6= i, k , {J, i, k} = 1, 2, 3 , (36)

are not equal to zero for all i, j, k, Eqs. (32) and (33) can be reduced to the Pfaff system of
eight independent differential equations:

d~f = R~f , (37)

where ~f = (ω(~z), θ1ω(~z), θ2ω(~z), θ3ω(~z), θ12ω(~z), θ13ω(~z), θ23ω(~z), θ123ω(~z)) . When some of
the coefficients in Eq. (35) are zero, the coefficients in front of the terms θ123ω(~z), defined
by Eq. (36), start to play a role. For non-zero values of Eq. (36), the terms θ123ω(~z) can
be excluded, and the rank of differential system is reduced to seven independent functions.
When for some i and k both coefficients, defined by Eq. (35) and Eq. (36) are zero, a further
simplification can be performed, so that the rank of system is reduced to six or to an even
smaller number.

The locus of singularities Lij of the linear system of differential equations of second order
of three variables defined by Eq. (32) follows from singularities of higher rank differential
operators in the l.h.s. of Eq. (32) and Eq. (33):

Lij = ∪3
i=1{zi} ∪

3
i,k=1 {P

−1
ik } ∪3

i,k=1 {(1−PikPki)
−1} ∪3

i,j,k=1 {(Pij−PikPkj)
−1} . (38)
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3.2 Lauricella hypergeometric function FD

3.2.1 General consideration

Let us consider the F
(r)
D functions of r variables, defined around xi = 0 as

F
(r)
D (a; b1, · · · , bk; c; z1, · · · , zr) =

∞
∑

m1,··· ,mr=0

(a)|~m|

(c)~|m|

r
∏

j=1

(bj)mj

zm1

1

m1!
· · ·

zmr

k

mr!
, (39)

For r = 1 this functions coincides with the Gauss hypergeometric function, for r = 2, it
coincides with Appell function F1 [30]. As follows from the definition, Eq. (39), this function
is symmetric with respect to the transformation

bi ⇔ bj , zi ⇔ zj .

Generally, FD functions and their properties have been analyzed in detail in many refer-
ences [6, 31]. The differential operators for FD hypergeometric function, Eq. (3), are given
by

DiF
(r)
D : ∂i

(

c− 1+

r
∑

j=1

θj

)

F
(r)
D =

(

a+

r
∑

j=1

θj

)

(bi + θi)F
(r)
D ,

i = 1, · · · , r. (40)

where
FD ≡ F

(r)
D (a; b1, · · · , br; c; z1, · · · , zr) . (41)

They can be written in canonical form, cf. Eq. (32):

LiFD : θ2i FD =

[

−θi
∑

j;j 6=i

θj +
(a+ bi)zi−(c−1)

1−zi
θi +

bizi
1−zi

∑

j;j 6=i

θj +
abizi
1− zi

]

FD ,

i = 1, · · · , r. (42)

From these equations we have:

Pij = Pji = −1 , Si =
abizi
1− zi

≡ aPi ,

Rii =
(a+ bi)zi − (c− 1)

1− zi
≡ Ri , Rim =

bizi
1− zi

≡ Pi , m 6= i . (43)

Upon substitution of these values for Pij, Rab, Si into Eq. (33), we obtain

(

[Pk−Pi+Ri−Rk] θiθk−[RkiRim−RikRkm]

r
∑

m=1

θm−Skθi+Siθk−PkSi+PiSk

)

FD = 0 . (44)
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Eq. (44) can be simplified with the help of Eq. (43) by taking into account that the sum of
the last two terms in Eq. (44), PiSk − PkSi, is equal to zero, and by splitting the sum over
m into i, k, j 6= i 6= k. In this way, we get

(

Rk−Pk−Ri+Pi

)

θiθkFD =

(

Pk [Pi −Ri − a] θi − Pi [Pk − Rk − a] θk

)

FD , (45)

where

Ri − Pi ≡ Rii − Rik =
azi − (c− 1)

1− zi
. (46)

Eq. (45) can be rewritten in a more familiar form, see [31]:

[(zi − zj)θiθj − bjzjθi + biziθj ]FD = 0 . (47)

After factorization of zi, zj , Eq. (47) can be expressed as follows,

[(zi − zj) ∂ij + bi∂j − bj∂i]FD = 0. (48)

In this way, all second derivatives of an FD function are expressible in terms of the corre-
sponding first derivatives and function, see Eqs. (42) and (47). As consequence, there are
only r+1 linearly independent solutions of linear differential equations, Eq. (40). The locus
of the singularities Lij of an FD function is defined from the singularities of the differential
equations, Eqs. (42) and (47):

Lij = ∪r
i=1{zi = 0} ∪1=i<j=r {zi − zj = 0} ∪r

i=1 {zi = 1} .

The Pfaff system for an FD hypergeometric function has the following form:

dω(~z) =

(

∑

i<j

Aijd log(zi − zj)

)

ω(~z) ,

where ω(~z) = {FD, θjFD} and the matrices Aij have been constructed explicitly in [31].

3.2.2 Differential reduction of FD

The direct differential operators are the following:

aF
(r)
D (a+ 1; b1, · · · , br; c; z1, · · · , zr) =

(

a+

r
∏

i=1

θi

)

FD ,

biF
(r)
D (a; b1, · · · , bi + 1, · · · , br; c; z1, · · · , zr) = (bi+θi)FD ,

(c−1)F
(r)
D (a; b1, · · · , br; c− 1; z1, · · · , zr) =

(

c−1+
r
∏

i=1

θi

)

FD , (49)
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and FD is defined by Eq. (41). The inverse differential operators have been constructed
in [6]:

(c−a)F
(r)
D (a−1; b1, · · · , br; c; z1, · · · , zr) =

[

r
∑

j=1

(1− zj)θj−
r
∑

j=1

bjzj+c−a

]

FD , (50)

(c−

r
∑

j=1

bj)F
(r)
D (a; b1, · · · , bi−1, · · · , br; c; z1, · · · , zr) =

[

zi

r
∑

j=1

(1−zj)∂j−azi+c−

r
∑

j=1

bj

]

FD , (51)

(c−a)(c−

r
∑

j=1

bj)F
(r)
D (a; b1, · · · , br; c+1; z1, · · · , zr) =

c

[

r
∑

j=1

(1− zj)∂j+c−a−

r
∑

j=1

bj

]

FD ,

(52)

where FD is defined by Eq. (41). In this case, the results of the differential reduction, Eq. (7),
have the following form

S(~z)FD((a;~b; c) + ~m; ~z) = S0(~z)FD((a;~b; c)s; ~z) +

r
∑

i=1

Si(~z)
∂

∂zi
F

(r)
D (a;~b; c; ~z) , (53)

where ~m is a set of integers and S, Sj are polynomials.

3.3 Hypergeometric function FS

3.3.1 General consideration

The Lauricella-Saran hypergeometric function of three variables FS [32] (F7 in notations
of [2]) is defined around the point z1 = z2 = z3 = 0 as follows

FS(a1; a2; b1, b2, b3; c; z1, z2, z3) =

∞
∑

m1,m2,m3=0

(a1)m1
(a2)m2+m3

(c)m1+m2+m3

3
∏

j=1

(bj)mj

zm1

1 zm2

2 zm3

3

m1!m2!m3!
. (54)

It is one of the 14 functions of three variables of order two 6, introduced by Lauricella [2].
In this case, the differential operators, Eq. (3), are

D1FS : ∂1

(

c−1+
3
∑

j=1

θj

)

FS = (a1+θ1) (b1+θ1)FS , (55)

6The complete set of programs for the differential reduction for other functions from the Lauricella-
Srivastava list [4] will be presented in separate publication.
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DiFS : ∂i

(

c− 1+
3
∑

j=1

θj

)

FS = (a2+θ2+θ3) (bi+θi)FS , i = 2, 3 , (56)

where
FS = FS(a1, a2; b1, b2, b3; c; z1, z2, z3) . (57)

The canonical form of these differential equations are the following:

L1FS : θ21FS =

[

−
1

1− z1
θ1 (θ2+θ3) +

(a1 + b1)z1 − (c− 1)

1− z1
θ1 +

a1b1z1
1− z1

]

FS , (58)

L2FS : θ22FS =

[

−θ2θ3−
1

1−z2
θ2θ1+

(a2+b2)z2−(c−1)

1−z2
θ2+

b2z2
1−z2

θ3+
a2b2z2
1−z2

]

FS , (59)

L3FS : θ23FS =

[

−θ3θ2−
1

1−z3
θ3θ1+

(a2+b3)z3−(c−1)

1−z3
θ3+

b3z3
1−z3

θ2+
a2b3z3
1−z3

]

FS . (60)

These equations define the values of functions Pij, Rab, Si entering in Eq. (32):

R12 = R13 = R21 = R31 = 0 , P23 = P32 = −1 ,

P12 = P13 = −
1

1− z1
, P21 = −

1

1 − z2
, P31 = −

1

1− z3
,

R11 =
(a1+b1)z1−(c− 1)

1− z1
, Rii =

(a2+bi)zi−(c− 1)

1− zi
, i = 2, 3 ,

R23 =
b2z2
1− z2

, R32 =
b3z3
1− z3

, S1 =
a1b1z1
1− z1

, Si = a2
bizi

1− zi
, i = 2, 3 . (61)

With the substitution of these values of Pij into Eq. (33) and, since 1 − P23P32 = 0, we
can express the third mixing derivatives of hypergeometric function, θ123ω(~z), via second
derivatives of hypergeometric function.

The series representation of the hypergeometric function FS can be rewritten in the
following form:

FS(a1, a2, a2; b1, b2, b3; c, c, c; z1, z2, z3)

=

∞
∑

m1=0

(a1)m1
(b1)m1

(c)m1

zm1

1

m1!
F1(a2; b2, b3; c+m1; z2, z3) , (62)

where F1(a; b1, b2; c; z1, z2) is the Appell function of two variables: F1 ≡ F
(2)
D . From this

represenation it is easy to get the following relation:

[(z2 − z3)θ23]FS = (b3z3θ2 − b2z2θ3)FS . (63)

Eq. (33) allows us to express all higher derivatives of hypergeometric functions FS in terms
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of second derivatives only. In particular,

θ2L1 :

(

1−
1

(1− z1)(1− z2)

)

θ112FS

=

{

(P12R22+R11)θ12+P12R23θ13+P12S2θ1+S1θ2

}

FS

=

{

(

(a1+b1)z1 − (c−1)

1−z1
−

(a2+b2)z2 − (c−1)

(1−z1)(1−z2)

)

θ12

−
b2z2

(1−z1)(1−z2)
θ13−

a2b2z2
(1−z1)(1−z2)

θ1+
a1b1z1
1− z1

θ2

}

FS , (64)

θ3L1 :

(

1−
1

(1− z1)(1− z3)

)

θ113FS

=

{

(P13R33 +R11)θ13 + P13R32θ12 + P13S3θ1 + S1θ3

}

FS

=

{

(

(a1+b1)z1 − (c−1)

1−z1
−

(a2+b3)z3 − (c−1)

(1−z1)(1−z3)

)

θ13

−
b3z3

(1−z1)(1−z3)
θ12−

a2b3z3
(1−z1)(1−z3)

θ1+
a1b1z1
1− z1

θ3

}

FS , (65)

θ3L2 = −θ2L3 :

(z3 − z2)

(1− z2)(1− z3)
θ123FS =

{

P21R32θ12 − P31R23θ13

− (R22−R23+R32−R33)
1

z2 − z3
(b3z3θ2−b2z2θ3)

−R23 (a2+R33−R32) θ3 +R32 (a2+R22−R23) θ2

}

FS

=

{

b2z2
(1− z2)(1− z3)

θ13 −
b3z3

(1− z2)(1− z3)
θ12

}

FS , (66)

where Eq. (66) follows from Eq. (63). The remaining two differential equations we can write
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in the following form:

θ1L2 :

(

1−
1

(1− z1)(1− z2)

)

θ122FS = −

(

1−
1

(1− z1)(1− z2)

)

θ123FS

+

{

(P21R11 +R22) θ12 +R23θ13 + P2S1θ2 + S2θ1

}

FS

= −

(

1−
1

(1− z1)(1− z2)

)

θ123FS

+

{

(

(a2+b2)z2 − (c−1)

1−z2
−

(a1+b1)z1 − (c−1)

(1−z1)(1−z2)

)

θ12

+
b2z2

(1−z2)
θ13−

a1b1z1
(1−z1)(1−z2)

θ2+
a2b2z2
1− z2

θ1

}

FS , (67)

θ1L3 :

(

1−
1

(1− z1)(1− z3)

)

θ133FS = −

(

1−
1

(1− z1)(1− z3)

)

θ123FS

+ {(P31R11+R33) θ13 + R32θ12 + P31S1θ3 + S3θ1}FS

= −

(

1−
1

(1− z1)(1− z2)

)

θ123FS

+

{

(

(a2+b3)z3 − (c−1)

1−z3
−

(a1+b1)z1 − (c−1)

(1−z1)(1−z3)

)

θ13

+
b3z3

(1−z3)
θ12−

a1b1z1
(1−z1)(1−z3)

θ3+
a2b3z3
1− z3

θ1

}

FS , (68)

where the mixed derivative θ123FS is defined by Eq. (66). In this way, we have proven:
Theorem 1:
The Lauricella-Saran hypergeometric function FS of three variables, Eq. (54), has six linearly
independent solutions around the points z1 = z2 = z3 = 0.

The locus of singularities Lij of the hypergeometric function FS follows from the singu-
larities of the differential operators, Eqs. (58)-(60), (66)-(68):

Lij = ∪3
i=1{zi = 0} ∪ {z2 − z3 = 0} ∪3

i=1 {zi = 1} .

3.3.2 Differential reduction of FS

The direct differential operators are the following:

a1FS(a1 + 1, a2;~b; c; ~x) = (a1+θ1)FS ,

a2FS(a1, a2 + 1;~b; c; ~x) = (a2+θ2+θ3)FS ,

biFS(a1, a2; · · · , bi + 1, · · · ; c; ~x) = (bi+θi)FS ,

(c−1)FS(~a;~b; c− 1; ~x) =

(

c−1+

3
∏

j=1

θj

)

FS . (69)
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and FS is defined by Eq. (57). The corresponding inverse differential operators we define for
parameters a1, a2, b1, b2, b3 as follows:

FS(Index{a1,a2,b1,b2,b3}; ~z) =
[

AIndex,F s
+BIndex,F s

θ1+CIndex,F s
θ2+DIndex,F s

θ3+EIndex,F s
θ12+FIndex,F s

θ13

]

×FS(Index{a1,a2,b1,b2,b3}+1; ~z) , (70)

and for parameter c:

FS(a1, a2; b1, b2, b3; c; ~z) =

[Ac,F s+Bc,F sθ1+Cc,F sθ2+Dc,F sθ3+Ec,F sθ12+Fc,F sθ13]FS(a1, a2; b1, b2, b3; c− 1; ~z) . (71)

The full list of inverse differential operators are the following:

Aa1,F s =
a21 + a1(b1z1+D1+D3−2b1) + a2(b1z1+D2−a1) + (b1z1−c+1)(D2−a1)

D0D2
,

Ba1,F s =
(z1 − 1)(a2+D2)

D0D2

, Ca1,F s =
b1z1(z2−1)

z2D0D2

, Da1,F s =
b1z1(z3−1)

z3D0D2

,

Ea1,F s = −
z1+z2−z1z2
z2D0D2

, Fa1,F s = −
z1+z3−z1z3
z3D0D2

, (72)

Aa2,F s =
(b2z2+b3z3+D1)(a1+D1)−b1D1

D0D1

, Ba2,F s =
(z1−1)(b2z2+b3z3)

z1D0D1

,

Ca2,F s =
(z2−1)(b1+D0)

D0D1
, Da2,F s =

(z3−1)(b1+D0)

D0D1
,

Ea2,F s = −
z1 + z2 − z1z3

z1D0D1
, Fa2,F s = −

z1 + z3 − z1z3
z1D0D1

, (73)

Ac,F s = −
(c− 1)

D0D1D2D3

[

a1(a2 +D3)(D1+D3) +D1(D2+a2−a1)D3

]

, (74)

Bc,F s = −
(c− 1)(z1 − 1) (a2(D1+D2)+D2D3)

z1D0D1D2D3
,

Cc,F s =
(c− 1)(1− z2) (a1(D1+D2)+D1D3)

z2D0D1D2D3

,

Dc,F s =
(c− 1)(1− z3) (a1(D1+D2)+D1D3)

z3D0D1D2D3
,

Ec,F s =
(c− 1)(z1 + z2 − z1z2)(D1 +D2)

z1z2D0D1D2D3
, Fc,F s =

(c− 1)(z1 + z3 − z1z3)(D1 +D2)

z1z3D0D1D2D3
,
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Ab1,F s =
a2(a1z1 +D3) + (a1z1 +D1 − a2)D3

D1D3
, Bb1,F s =

(z1 − 1)(a2 +D3)

D1D3
,

Cb1,F s =
a1z1(z2 − 1)

z2D1D3

, Db1,F s =
a1z1(z3 − 1)

z3D1D3

,

Eb1,F s = −
z1 + z2 − z1z2

z2D1D3

, Fb1,F s = −
z1 + z3 − z1z3

z3D1D3

, (75)

Ab2,F s =
a1(a2z2 +D3) +D3(a2z2 +D3 − b1)

D2D3
, Bb2,F s =

a2(z1 − 1)z2
z1D2D3

,

Cb2,F s =
(z2 − 1)(a1 +D3)

D2D3
, Db2,F s =

z2(z3 − 1)(a1 +D3)

z3D2D3
,

Eb2,F s = −
z1 + z2 − z1z2

z1D2D3

, Fb2,F s = −
z2(z1 + z3 − z1z3)

z1z3D2D3

. (76)

Ab3,F s =
a1(a2z3 +D3) +D3(a2z3 +D3 − b1)

D2D3
, Bb3,F s =

a2(z1 − 1)z3
z1D2D3

,

Cb3,F s =
(z2 − 1)z3(a1 +D3)

z2D2D3
, Db3,F s =

(z3 − 1)(a1 +D3)

D2D3
,

Eb3,F s = −
z3(z1 + z2 − z1z2)

z1z2D2D3

, Fb3,F s = −
z1 + z3 − z1z3

z1D2D3

, (77)

where

D0 = a1 + a2 − (c− 1) , (78)

D1 = a2 + b1 − (c− 1) , (79)

D2 = a1 + b2 + b3 − (c− 1) , (80)

D3 = b1 + b2 + b3 − (c− 1) , (81)

and
D1 +D2 = D0 +D3 . (82)

The results of the differential reduction, Eq. (7), have the following form in this case:

S(~z)FS((~a;~b; c) + ~m; ~z) =

S0(~z)FS(~a;~b; c; ~z) +

3
∑

i=1

Si(~z)
∂

∂zi
FS(~a;~b; c; ~z) +

3
∑

j=2

S1j(~z)
∂2

∂z1∂zj
FS(~a;~b; c; ~z) , (83)

where ~m is a set of integers, S, Sj and Sij are polynomials.
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F
(r)
D {a, bj, c−a, c−

∑r

j=1bj} ∈ Z

FS {a1, a2, bj, c−a1−a2, c−b1−b2−b3, a1+b2+b3−c, a2+b1−c} ∈ Z

Table 1: Exceptional set of parameters for the hypergeometric functions F
(r)
D and FS .

3.4 Exceptional values of parameters: FD and FS

It was pointed out in [8], that the subset of parameters for which the results of the differential
reduction, Eqs. (53) and (83), have simpler forms, can be defined from the conditions

(i) that the hypergeometric function entering the l.h.s. of Eqs. (50)–(52), (72)–(77), is

expressible in terms of simpler hypergeometric functions (F
(r−1)
D for F

(r)
D and 2F1, F1

or F3 for FS hypergeometric function);

(ii) that some of the coefficients entering the inverse differential relations are equal to zero
(infinity).

For the hypergeometric functions FD and FS, the exceptional sets of parameters are listed
in Table 1.

4 Mathematica based program for the differential re-

duction of FD and FS hypergeometric functions

In this section, we will present the Mathematica based programs FdFunction and FsFunc-
tion for the differential reduction of Horn-type hypergeometric functions FD of r variables
and FS of three variables 7. In particular, in application to Lauricella functions FD, the
reduction algorithm, Eq. (7), has the following form:

R(x, y)F
(r)
D (a+ma;~b+ ~mb; c+mc; ~z) = [P0(~z)+P1(~z)θz1+. . .+Pr(~z)θzr ]F

(r)
D (a;~b; c; ~z) , (84)

where ~mb, ma, mc are sets of integers and ~b , a, c denote the set of parameters. R,Pi are
some polynomial and θzi = zi∂zi . The differential reduction algorithm in application to the
Lauricella-Saran function FS is:

R(~z)FS(~a+ ~ma;~b+ ~mb; c+mc; ~z) =

[P0(~z) + P1(~z)θz1 + P2(~z)θz2 + P3(~z)θz3 + P12(~z)θz1θz2 + P13(~z)θz1θz3 ]FS(~a;~b; c; ~z) , (85)

where, again, ~ma, ~mb, mc denote sets of integers, ~a ,~b, c sets of parameters, and R, {Pj}, {Pij}
some polynomials.

The program is freely available from [34] subject to the license conditions specified. The
current version, 1.0, deals with non-exceptional values of a parameters only.

7The programs have been tested for Mathematica version 8.0.
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4.1 Package FdFunction

The package can be loaded in the standard way:

<< ”FdFunction.m”

and it includes the following basic routines:

FdIndexChange[changingVector, parameterVector], (86)

and
FdDiffSeries[. . . ] ,FdSeries[. . . ] (87)

The list ”changingVector” in Eq. (86) provides the set of integers by which the values of
parameters of Lauricella function FD are to be changed, i.e., the vector ma, {~mb}, mc in
Eqs. (84). The set of initial parameters of FD function are defined in the list ”parameterVector”

corresponding to the vector a+ma;~b+ ~mb, c+mc and arguments ~z in the l.h.s. of Eqs. (84).
The structure of the output of FdIndexChange[] is the following:

{{A1, A2, . . . , Ar+1}, {parameterVectorNew}}, (88)

where

(i) ”parameterVectorNew” is the set of new parameters of F
(r)
D hypergeometric function;

(ii) A1, A2, . . . , Ar+1 are the rational functions corresponding to the ratios of P0/R, P1/R,
P2/R . . . of functions entering in Eq. (84).

The functions FdDiffSeries[] and FdSeries[] are designed for the numerical evaluation
of FD hypergeometric functions. They return the Taylor series of FD in its derivatives,
respectively:

FdDiffSeries[numberOfvariable, vectorInit, numbSer] , (89)

FdSeries[vectorInit, numbSer] , (90)

where

(i) ”numberOfvariable” is the list of variable numbers for differentiation;

(ii) ”vectorInit” is the set of Fd parameters;

(iii) ”numbSer” is the number of terms in Taylor expansion.

Let us present a number of examples for the usage8

8 All functions in the package HYPERDIRE generate output without additional simplification. This is
done for the maximum efficiency of the algorithm. To bring the output into a simpler form, we recommend to
use in addition the command Simplify. All examples considered here have been treated with the command
Simplify[. . . ]. subsequent to the call of HYPERDIRE.
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Example 1. Differential reduction of the hypergeometric function F
(2)
D of two variables 9.

FdIndexChange[{−1,{1,0},1}, {a,{b1,b2},c,{z1,z2}}]

{{

c(−1 + z2)− b2z2 + z1(−1 + a+ b1(−1 + z2) + z2 − az2 + b2z2)

c(−1 + z2)
,

1− z2 − b2z2 + z1(−1 + b1(−1 + z2) + z2 + b2z2) + a(−1 + z1 + z2 − z1z2)

(−1 + a)c(−1 + z2)
,

1− a(1 + z1(−2 + z2))− b2z2 + cz2 + z1(−2− c+ b1(−1 + z2) + z2 + b2z2)

(−1 + a)c(−1 + z2)
,

{−1 + a, {1 + b1, b2}, 1 + c, {z1, z2}

}}

(91)

In an explicit form:

F
(2)
D (a; b1, b2, c; z1, z2) =
[

c(−1 + z2)− b2z2 + z1(−1 + a+ b1(−1 + z2) + z2 − az2 + b2z2)

c(−1 + z2)

+
1− z2 − b2z2 + z1(−1 + b1(−1 + z2) + z2 + b2z2) + a(−1 + z1 + z2 − z1z2)

(−1 + a)c(−1 + z2)
θ1

+
1− a(1 + z1(−2 + z2))− b2z2 + cz2 + z1(−2 − c+ b1(−1 + z2) + z2 + b2z2)

(−1 + a)c(−1 + z2)
θ2

]

×F
(2)
D (a− 1; b1 + 1, b2, c+ 1; z1, z2). (92)

Example 2. Reduction of the hypergeometric function F
(3)
D of three variables.

FdIndexChange[{−1,{1,−1,0},0}, {a,{b1,b2,b3},c,{z1,z2,z3}}]

{{ z1−1
z2−1

, z1−1
(a−1)(z2−1)

, z1(a−c+(b2−1)z2)−(a−c+b2−1)z2
(a−1)(b2−1)(z2−1)z2

, z1−1
(a−1)(z2−1)

},

{a− 1, {b1 + 1, b2 − 1, b3} , c, {z1, z2, z3}}}

9 When r = 2, the Lauricella function FD coincides with the Appell function F1 and the package Ap-
pellF1F4 [8] can be used for the differential reduction.

21



This has the explicit form:

F
(3)
D (a; b1, b2, b3; c; z1, z2, z3) =
[

z1 − 1

z2 − 1
+

z1 − 1

(a− 1) (z2 − 1)
θ1 +

z1 (a− c+ (b2 − 1) z2)− (a− c+ b2 − 1) z2
(a− 1) (b2 − 1) (z2 − 1) z2

θ2

+
z1 − 1

(a− 1) (z2 − 1)
θ3

]

F
(3)
D (a− 1; b1 + 1, b2 − 1, b3; c; z1, z2, z3). (93)

Example 3. Reduction of hypergeometric function F
(5)
D of five variables.

FdIndexChange[{−1,{0,1,0,0,−1},0}, {a,{b1,b2,b3,b4,b5},c,{z1,z2,z3,z4,z5}}]

{{ z2−1
z5−1

, z2−1
(a−1)(z5−1)

, z2−1
(a−1)(z5−1)

, z2−1
(a−1)(z5−1)

, z2−1
(a−1)(z5−1)

, z2(a+(b5−1)z5−c)−z5(a+b5−c−1)
(a−1)(b5−1)(z5−1)z5

},

{a− 1, {b1, b2 + 1, b3, b4, b5 − 1} , c, {z1, z2, z3, z4, z5}}}

This has the explicit form:

F
(5)
D (a; b1, b2, b3, b4, b5; c; z1, z2, z3, z4, z5) =
[

z2 − 1

z5 − 1
+

z2 − 1

(a− 1) (z5 − 1)
θ1 +

z2 − 1

(a− 1) (z5 − 1)
θ2 +

z2 − 1

(a− 1) (z5 − 1)
θ4

+
z2 (a+(b5−1) z5−c)−z5 (a+b5−c−1)

(a−1) (b5−1) (z5−1) z5
θ5

]

F
(5)
D (a−1; b1+1, b2−1, b3; c; z1, z2, z3, z4, z5).

The hypergeometric function FD is not built into the current version of Mathematica.
The series representation of the hypergeometric function F

(r)
D , Eq. (39), is implemented in

our package. The functions FdDiffSeries[] and FdSeries[] allow to make numerical cross-
checks of the results of the differential reduction. The corresponding examples for using
these functions are all collected in the file example-FdFunction.m, which is available in [34].

4.2 Package FsFunction

Again, the program can be loaded in a standard way:

<< ”FsFunction.m”

and its structure and output are similar to the FdFunction package. The packageFsFunction
includes the following basic routines:

FsIndexChange[changingVector, parameterVector], (94)

Here, again, ”changingVector” is the list of integers by which the values of the parameters
of function FS are to be changed, i.e., the vectors ~ma, ~mb, mc in Eq. (85), while the set of
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initial parameters of the function FS is defined in the list ”parameterVector” corresponding
to the vector ~a+ ~ma;~b+ ~mb, c+mc and the arguments ~z in the l.h.s. of Eq. (85).

The structure of the output of FsIndexChange[] is the following:

{A,B,C,D,E, F}, {parameterVectorNew}}, (95)

where

(i) ”parameterVectorNew” is the set of new parameters of function FS;

(ii) A,B,C,D,E, F are the rational functions corresponding to the ratios of P0/R P1/R,
P2/R, P3/R, P12/R and P13/R entering Eq. (85).

Example 4: Reduction of FS.

FsIndexChange[{−1,1,0,0,0,0}, {a1,a2,b1,b2,b3,c,z1,z2,z3}]

{{

a1 + b1z1 + b2 + b3 − c+ 1

a1 + b2 + b3 − c+ 1
,−

1− z1
a1 + b2 + b3 − c+ 1

,

−
z2 (−a1 − b2 − b3 + c− 1)− b1z1 (z2 − 1)

(a2 − 1) z2 (a1 + b2 + b3 − c+ 1)
,

−
z3 (−a1 − b2 − b3 + c− 1)− b1z1 (z3 − 1)

(a2 − 1) z3 (a1 + b2 + b3 − c+ 1)
,

−
z2 − z1 (z2 − 1)

(a2 − 1) z2 (a1 + b2 + b3 − c+ 1)
,−

z3 − z1 (z3 − 1)

(a2 − 1) z3 (a1 + b2 + b3 − c+ 1)

}

,

{

a1 + 1, a2 − 1, b1, b2, b3, c, z1, z2, z3

}}

(96)

This has the explicit form:

FS(a1, a2; b1, b2, b3; c; z1, z2, z3) =
[

a1 + b1z1 + b2 + b3 − c+ 1

a1 + b2 + b3 − c+ 1
−

1− z1
a1 + b2 + b3 − c+ 1

θ1

−
z2 (−a1 − b2 − b3 + c− 1)− b1z1 (z2 − 1)

(a2 − 1) z2 (a1 + b2 + b3 − c+ 1)
θ2

−
z3 (−a1 − b2 − b3 + c− 1)− b1z1 (z3 − 1)

(a2 − 1) z3 (a1 + b2 + b3 − c+ 1)
θ3

−
z2 − z1 (z2 − 1)

(a2 − 1) z2 (a1 + b2 + b3 − c+ 1)
θ1θ2 −

z3 − z1 (z3 − 1)

(a2 − 1) z3 (a1 + b2 + b3 − c + 1)
θ1θ3

]

×FS(a1 + 1, a2 − 1; b1, b2, b3; c; z1, z2, z3). (97)
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Example 5: Reduction of FS

FsIndexChange[{1,0,0,0,1,2}, {a1,a2,b1,b2,b3,c,z1,z2,z3}]

{{− b1z1(z2−1)(−a2z3−a1+c)−z2(a2(z3(b3−c)+b2(z3−1))+c(c+1))+a2b3z3−a2cz3+c2+c

c(c+1)(z2−1)
, z1(a2z3+a1−c)−a2z3+c

c(c+1)
,

− z2(a2−b2z3−b3z3+b2+cz3−2c−1)−a2z3−b1z1(z2−1)(z3−1)+b3z3+c+z3
c(c+1)(z2−1)

,
z2(z3(b3−c)+b2(z3−1)+c)+b1z1(z2−1)(z3−1)−b3z3+cz3−c

c(c+1)(z2−1)
, (z1(z2−1)−z2)(z3−1)

c(c+1)(z2−1)
,−−z3z1+z1+z3

c2+c
},

{a1 + 1, a2, b1, b2, b3 + 1, c+ 2, z1, z2, z3}}

This has the explicit form:

FS(a1, a2; b1, b2, b3; c; z1, z2, z3) =
[

−
b1z1 (z2 − 1) (−a2z3 − a1 + c)− z2 (a2 (z3 (b3 − c) + b2 (z3 − 1)) + c(c+ 1))

c(c+ 1) (z2 − 1)

+
a2b3z3 − a2cz3 + c2 + c

c(c+ 1) (z2 − 1)
+

z1 (a2z3 + a1 − c)− a2z3 + c

c(c+ 1)
θ1

−
z2 (a2 − b2z3 − b3z3 + b2 + cz3 − 2c− 1)− a2z3 − b1z1 (z2 − 1) (z3 − 1)

c(c+ 1) (z2 − 1)
θ2

+
b3z3 + c+ z3

c(c+ 1) (z2 − 1)
θ2

+
z2 (z3 (b3 − c) + b2 (z3 − 1) + c) + b1z1 (z2 − 1) (z3 − 1)− b3z3 + cz3 − c

c(c+ 1) (z2 − 1)
θ3

(z1 + (z2 − 1)− z2) (z3 − 1)

c(c+ 1) (z2 − 1)
θ1θ2 −

−z3z1 + z1 + z3
c2 + c

θ1θ3

]

×FS(a1 + 1, a2; b1, b2, b3 + 1; c+ 2; z1, z2, z3). (98)

Also the hypergeometric function FS is not built into the current version of Mathematica,
whereas our package implements the series representation of the hypergeometric function
FS, Eq. (54). Again, this series representation is suitable for numerical checks of the re-
sults of the differential reduction and the corresponding examples are gathered in the file
example-FsFunction.m available from [34].

5 Conclusion

The differential-reduction algorithm for Horn-type hypergeometric functions allows one to
compare different functions in this class whose values for the parameters differ by integers.
This proceeds in an entirely algorithmic manner suitable for automation in a computer alge-
bra system. In this paper, we have presented the Mathematica-based programs FdFunction
and FsFunction for the differential reduction of the generalized hypergeometric function
FD of r variables and the Lauricella-Saran hypergeometric function FS of three variables.
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Both functions are related with one-loop massive Feynman diagrams and both belong to the
class of Horn-type hypergeometric function of order two.
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J. Ablinger, J. Blümlein, C. Schneider, J. Math. Phys. 52 (2011) 102301.

25

http://arxiv.org/abs/1309.2806


[13] S. Weinzierl, Comput. Phys. Commun. 145 (2002) 357;
S. Moch, P. Uwer, Comput. Phys. Commun. 174 (2006) 759.

[14] C. Anzai, Y. Sumino, arXiv:1211.5204 [hep-th].

[15] Z.W. Huang, J. Liu, Comput. Phys. Commun. 184 (2013) 1973 ;
D. Greynat, J. Sesma, arXiv:1302.2423 [math-ph];
D. Greynat, J. Sesma, G. Vulvert, arXiv:1310.7700 [math-ph].

[16] O. Veretin, private communication.

[17] J. Fleischer, F. Jegerlehner, O.V. Tarasov, Nucl. Phys. B 672 (2003) 303.

[18] A.I. Davydychev, R. Delbourgo, J. Math. Phys. 39 (1998) 4299.

[19] C. Anastasiou, E.W.N. Glover, C. Oleari, Nucl. Phys. B 572 (2000) 307.

[20] B.A. Kniehl, O.V. Tarasov, Nucl. Phys. B 820 (2009) 178; Nucl. Phys. B 833 (2010)
298.

[21] M.Yu. Kalmykov, B.F.L. Ward, S. Yost, J. High Energy Phys. 02 (2007) 040; J. High
Energy Phys. 11 (2007) 009;
M.Yu. Kalmykov, B.A. Kniehl, Nucl. Phys. B 809 (2009) 365;
S.A. Yost et al., arXiv:1110.0210 [math-ph];
V.V. Bytev, M.Yu. Kalmykov, B.A. Kniehl, PoS LL 2012 (2012) 029.

[22] M.Yu. Kalmykov, J. High Energy Phys. 04 (2006) 056.

[23] V.V. Bytev, M.Yu. Kalmykov, B.A. Kniehl, Comput. Phys. Commun. 184 (2013) 2332

[24] http://www.wolfram.com/

[25] O.V. Tarasov, Phys. Rev. D 54 (1996) 6479.

[26] M.Yu. Kalmykov, B.A. Kniehl, Phys. Lett. B 714 (2012) 103.

[27] A.I. Davydychev, J. Math. Phys. 32 (1991) 1052; J. Math. Phys. 33 (1992) 358.

[28] O.V. Tarasov, Nucl. Phys. Proc. Suppl. 89 (2000) 237.

[29] O.V. Tarasov, Phys. Lett. B 670 (2008) 67; Phys. Part. Nucl. Lett. 8 (2011) 419.
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