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We revisit mass determination techniques for the minimum symmetric event topology, namely X
pair production followed by X → `N , where X and N are unknown particles with the masses to
be measured, and N is an invisible particle. We consider separate scenarios, with different initial
constraints on the invisible particle momenta, and present a systematic method to identify the
kinematically allowed mass regions in the (mN ,mX) plane. These allowed regions exhibit a cusp
structure at the true mass point, which is equivalent to the one observed in the mT2 endpoints
in certain cases. By considering the boundary of the allowed mass region we systematically define
kinematical variables which can be used in measuring the unknown masses, and find a new expression
for the mT2 variable as well as its inverse. We explicitly apply our method to the case that X is
pair produced from a resonance, and as a case study, we consider the process pp → A → χ̃+

1 χ̃
−
1 ,

followed by χ̃±
1 → `ν̃, in the minimal supersymmetric standard model and show that our method

provides a precise measurement of the chargino and sneutrino masses, mX and mN , at 14 TeV LHC
with 300 fb−1 luminosity.

PACS numbers:

INTRODUCTION

The new physics search program at the Large Hadron
Collider (LHC) is soon to enter its second phase. If new
physics is observed at the LHC, the masses of the Beyond
the Standard Model (BSM) particles will be one of the
first observables to be measured. The strategy for mea-
suring the masses of these particles is in general strongly
dependent on the event topology but, interestingly, one
particular case is predicted in a range of BSM models:
the pair production of BSM particles, each of which sub-
sequently decays, through cascade decay chains, to an
invisible particle. So far, most studies have focused on
relatively long (2 – 4 steps) 2–body cascade chains or a
short 3–body decay chains, initiated by the production
of coloured BSM particles [1–19]1. However, the mass of
coloured BSM particles is now strongly constrained by
the null results of the BSM searches at the LHC. In the
context of the Minimal Supersymmetric Standard Model
(MSSM), the observation of a Higgs–like particle with
mH ' 126 GeV may also indicate that the gluino and
squarks are heavier than the LHC reach [21, 22].

On the other hand, constraints on colour–singlet BSM
particles are much weaker. However, as the decay chain is
in this case typically a short, one–step process, namely X
pair production followed by X → `N (see Fig. 1), where
N is an invisible particle, measuring the two masses mN

and mX is particularly challenging.

1 See also [20] for a review.
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FIG. 1: One–step decay chain of a pair produced and semi–
invisibly decaying particle X.

At a hadron collider, this event topology yields the
“minimal” set of constraints

Φmin :


m̃2
X = (pµ`1 + pµN1

)2 = (pµ`2 + pµN2
)2

m̃2
N = p2

N1
= p2

N2

p/T = pTN1
+ pTN2

(1)

where (m̃N , m̃X) need not coincide with the true mass
values mtrue ≡ (mN ,mX), as they are a priori unknown.
This set of constraints restricts the possible values of m̃N

and m̃X and identifies a kinematically allowed region in
the (m̃N , m̃X) plane on an event–by–event basis. Fur-
thermore, it is known [23] that the boundary of this al-
lowed region under the Φmin constraints coincides with
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the mT2 variable [24]

m̃min
X;Φmin

(m̃N ) = mT2(m̃N ) ≡ (2)

min∑
i p

T
Ni

=p/T

{
max

[
mT (pµ`1 ,p

T
N1
, m̃N ),mT (pµ`2 ,p

T
N2
, m̃N )

]}
where mT is the transverse mass [25]. In particular, the
region with m̃X(m̃N ) < mT2(m̃N ) is excluded in the zero
width limit and for perfect detector resolution.

If the system is boosted in the transverse direction
by e.g. hard initial state radiation (ISR), a collection
of these m̃X(m̃N ) boundary curves from a large num-
ber of events exhibits a cusp structure [13, 14, 23, 26].
Fig. 2 shows the density of the boundary curves pro-
jected onto the (m̃2

X − m̃2
N , m̃

2
N ) plane, for the process

pp → q̃q̃∗, q̃ → qχ̃+
1 , χ̃+

1 → `+ν̃`, with (mq̃,mχ̃,mν̃) =
(1500, 200, 100) GeV, and neglecting finite width effects
and detector resolution. The combination of all the
event–by–event kinematically allowed regions provides a
“global” allowed region, corresponding to the right hand
side white region in Fig. 2. Indeed, we find that the
decay of the heavy squarks provides a “kick” to the di–
X system, and a large boost in the transverse direction
is achieved. Consequently, a cusp structure at the true
mass point is observed. However, the population of the
boundary curves around the cusp is very low and the cusp
structure is not very distinct, even in this ideal case. In
practice, the observation of this cusp is made even more
difficult due to momentum mis–measurement and poten-
tial background contamination2.

FIG. 2: Density plot of Φmin boundary curves for 104 pp →
q̃q̃∗ → χ̃+

1 χ̃
−
1 qq̄ →

(
e+ν̃e

) (
e−ν̃∗e

)
qq̄ LHC (

√
s = 14 TeV)

events with (mq̃,mχ̃,mν̃) = (1500, 200, 100) GeV, at the gen-
erator level.

2 For studies along these lines, see [27, 28].

If one adds extra constraints to Φmin, the kinemati-
cally allowed mass region is further restricted. Since the
true mass point mtrue sits on the boundary of the global
allowed region, adding such constraints will sharpen the
cusp structure, and may make a simultaneous (mN ,mX)
measurement possible. A minimum and interesting pos-
sibility to extend Φmin is to add the constraint

Φs : m2
A = (pµ`1 + pµN1

+ pµ`2 + pµN2
)2 , (3)

which is relevant to the case that the particle X is pair
produced in the decay of a known resonance A (see
Fig. 3).
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FIG. 3: Di–X production from a resonance A, followed by
semi–invisible decays.

One of the goals of this paper is to develop a method
to extract mN and mX from event samples with the
topology shown in Fig. 3. As a benchmark scenario, we
will investigate the LHC process pp → A → χ̃+

1 χ̃
−
1 →

(l+ν̃l) (l−ν̃∗l ), where A is the CP–odd Higgs boson of the
MSSM, and demonstrate that one can measure mχ̃ and
mν̃ with good accuracy at 14 TeV LHC with 300 fb−1.

In Fig. 4, we show a density plot for the boundary
curves of the event–by–event allowed mass regions for
this process. For concreteness, we take (mA,mχ̃,mν̃) =
(500, 200, 100) GeV. One can see that the kinematically
allowed region, given by the lower white triangle (we note
that the allowed region for each event lies below the corre-
sponding boundary curve, and so the upper white region
is excluded) is more restricted with respect to the Φmin

case of Fig. 2 and that the cusp structure at the true
mass point is more pronounced and more easily identi-
fied, reflecting the additional information which has been
included, namely Φs.

Another way to extend Φmin is to assume that all
four components of the missing momentum are known,
namely by adding the constraint

Φz : p/z = pzN1
+ pzN2

. (4)

Notice that Φmin + Φs + Φz ≡ Φmax is equivalent to Φmin

with the last condition promoted to the Lorentz four–
vector level p/µ = pµN1

+ pµN2
.
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FIG. 4: Density plot of the Φmin + Φs boundary curves for
104 pp → A → χ̃+

1 χ̃
−
1 →

(
l+ν̃l

) (
l−ν̃∗l

)
LHC (

√
s = 14 TeV)

events with (mA,mχ̃,mν̃) = (500, 200, 100) GeV, at the gen-
erator level

This situation would be realised in a central exclusive
process (CEP) with forward proton tagging at the LHC,
pp → XX + pp, X → `N , or in the case of lepton col-
liders; a technique for extracting the masses (mN ,mX)
in these cases has been studied previously in [29, 30].
Notice that while at a lepton collider the invariant mass
of the studied process is fixed by the center of mass en-
ergy of the collision, in the CEP case it is not a pri-
ori fixed but directly measured via proton tagging de-
tectors. Assuming the set of constraints Φmax, the global
allowed region reduces to a straight line between the true
mass point (m2

X −m2
N ,mN ) and (m2

X −m2
N , 0), as can

be seen in Fig. 5, allowing for a precise simultaneous
(mN ,mX) measurement. In Fig. 5 we have shown equiv-
alent density plots for a semi–invisible decay process at
the ILC, namely e+e− → ẽ+ẽ− →

(
e+χ̃0

1

) (
e−χ̃0

1

)
with

(
√
s,mẽ,mχ̃) = (500, 200, 100) GeV.

The paper is organized as follows. In the next sec-
tion we will describe the kinematic variables used for the
mass determination in our study. We will focus on their
analytical form and their relation with other known kine-
matical variables such as mT2. Furthermore we will clar-
ify how their distribution for a large number of events
could provide a simultaneous (mN ,mX) mass measure-
ment in a model–independent way. In the Results sec-
tion we will then apply our method to the specific case
of chargino and LSP mass measurement in events where
two charginos are pair produced from the decay of the
CP–odd Higgs A. Finally, we will summarize our results
in the Conclusions.

FIG. 5: Density plot of Φmin + Φs + Φz ≡ Φmax boundary
curves of 104 e+e− → ẽ+ẽ− →

(
e+χ̃0

1

) (
e−χ̃0

1

)
ILC events

with (
√
s,mẽ,mχ̃) = (500, 200, 100) GeV, at the generator

level.

MASS DETERMINATION METHOD

The use of the Φmin + Φs + Φz ≡ Φmax constraints to
develop a mass determination method [29, 30] serves as a
starting point for our discussion on the implementation
of the Φmin + Φs constraints. In particular, the purpose
of the method described in [29, 30] was to determine all
possible mass hypotheses m̃ ≡ (m̃N , m̃X) consistent with
the mass–shell constraints, and when all four components
of p/µ are known. We will begin with a summary of the
method applied in [29, 30], before considering the Φmin +
Φs case.

In general, any pµN1
and pµN2

satisfying p/µ = pµN1
+ pµN2

can be parametrised as

pµN1/N2
=

1∓ a
2

p/µ ± b

2
pµ`1 ∓

c

2
pµ`2 ± dP

µ , (5)

where a, b, c, d are dimensionless constants, and Pµ is a
space–like vector defined by Pµ ≡ εµνρσp/νpρ`1p

σ
`2

. Clearly
we have pµX1/X2

= pµN1/N2
+ pµ`1/`2 . With this parametri-

sation, the remaining Φmax constraints are given by

m̃2
X = p2

X1
= p2

X2
, m̃2

N = p2
N1

= p2
N2
, (6)

where again m̃ are test mass values which need not co-
incide with the true masses mtrue. For a given m̃, the
above four mass–shell conditions uniquely determine the
coefficients a, b, c (see [30] for the explicit forms) and yield
the equation

λN =
ca

4M
λ2

∆ +
cb

2M
λ∆ +

cc
4M

+ d2λ2
P , (7)

where λN ≡ m̃2
N/(p`1 ·p`2), λ∆ ≡ (m̃2

X − m̃2
N )/(p`1 ·p`2),

and ca, cb, cc and M are functions of p`1 , p`2 and p/ [30].
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A hypothesis m̃ is said to be consistent if the corre-
sponding λ∆, λN lead to d2 > 0, in order to obtain four–
momenta pµi with real components (5). In other words,
in the (m̃N , m̃X) plane, the region which leads to d2 > 0
corresponds to kinematically consistent mass hypothe-
ses, while the boundary of this region is identified from
eq. (7) by setting d = 0. Furthermore, one can show that
ca/4M < 0 [30], and thus the shape of the boundary is
a parabola with negative curvature, containing the true
mass point mtrue below its apex in the (m̃2

X − m̃2
N , m̃

2
N )

plane.
As can be seen in Fig. 4 and Fig. 5, the sharp cusp

structure observed in the (m̃2
X − m̃2

N , m̃
2
N ) plane for the

Φmin+Φs and Φmax cases would allow us to determine the
true mass point by identifying the location of the cusps.
Alternatively, one could define several single observables,
whose distributions have endpoints at mX or mN . Such
observables would be more useful in handling background
contamination, detector effects, experimental uncertain-
ties and so on. We first define the global maximum of
m̃X and m̃N along the boundary, which can be expressed
analytically as

(m̃max
X;Φmax

)2 =
p`1 · p`2

4M

[
cc −

(cb + 2M)2

ca

]
,

(m̃max
N ;Φmax

)2 =
p`1 · p`2

4M

[
cc −

c2b
ca

]
. (8)

Other interesting variables which can be constructed are
the extremal values of m̃X along the boundary, for a

given hypothesis on m̃N , denoted as m̃
max/min
X;Φmax

(m̃N ), and

vice–versa m̃
max/min
N ;Φmax

(m̃X). Their analytical form is given
by [

m̃
max/min
X;Φmax

(m̃N )
]2

=
p`1 · p`2
ca

[
CX ±

√
DX

]
,[

m̃
max/min
N ;Φmax

(m̃X)
]2

=
p`1 · p`2
ca

[
CN ±

√
DN

]
(9)

where

CN = caλX + 2M+ cb,

CX = caλN − cb,
DN = (2M+ cb)

2 + ca(4MλX − cc),
DX = c2b + ca(4MλN − cc) (10)

with λX ≡ m̃2
X/(p`1 · p`2). Note that the ± in eq. (9)

depends on the sign of (p`1 · p`2)/ca, i.e. in order to give
a real solution for the max/min masses. The consistent
mass region for a “typical” event, and the new kinematic
variables which can be extracted are shown in Fig. 6.

By definition, the boundary variables defined above
possess the following properties:

m̃max
X;Φmax

≥ m̃max
X;Φmax

(mN ) ≥ mX ,

m̃min
X;Φmax

≤ m̃min
X;Φmax

(mN ) ≤ mX , (11)

m̃max
N

m̃max
X

(mN , mX)

m̃min
X (mN)

mN

d2 < 0

d2 > 0

[m̃N ]

[m̃
X
]

m̃max
X (mN)

FIG. 6: Consistent (m̃N , m̃X) region for a “typical” event,
defined by the four–momenta (p`1 , p`2 , p/). The (d2 > 0) con-
sistent mass region contains by definition the true mass point
(mN ,mX). m̃max

N,X are the maximum m̃N/m̃X values, while

m̃min,max
X (mN ) is the minimal/maximal value of m̃X given

mN .

with similar relations for N . This observation has been
used in [29, 30] to show that the distributions of m̃max

N ;Φmax

and m̃max
X;Φmax

exhibit a sharp endpoint structure at the
corresponding true masses in the case of CEP process
and e+e− colliders, allowing for a precise simultaneous
(mN , mX) measurement.

We will now consider the Φmin +Φs case. Here, the en-
ergy and longitudinal components of p/ are unknown, re-
flecting the normal situation at the LHC, where a signifi-
cant and unknown proportion of the energy of the incom-
ing hadrons in each event escapes down the beam pipe,
and therefore the longitudinal and energy components of
the missing momentum are not determined. However, as
the right hand side of eq. (9) is a function of these un-
knowns, p/0 and p/z, the boundary curve for the Φmin +Φs

case and the corresponding kinematic variables can now
be obtained by scanning over p/0 and p/z under the con-
straint Φs, that is

m̃max
X (m̃N ) = max

{p/0,p/z};Φs

[
m̃max
X;Φmax

(m̃N )
]
,

m̃min
X (m̃N ) = min

{p/0,p/z};Φs

[
m̃min
X;Φmax

(m̃N )
]
, (12)

with similar expressions for the N case. The global max-
imum variables can be obtained as

m̃max
X = max

{p/0,p/z};Φs

[
m̃max
X;Φmax

]
,

m̃max
N = max

{p/0,p/z};Φs

[
m̃max
N ;Φmax

]
. (13)

By definition, analogous relations as in eq. (11) are valid
in this case

m̃max
X/N ≥ m̃

max
X/N (mN/X) ≥ mX/N ,

m̃min
X/N ≤ m̃

min
X/N (mN/X) ≤ mX/N . (14)
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We will see in the following section that the kinematic
variables m̃max

N and m̃min
X (m̃N ) in fact possess the best

discriminant power for a simultaneous (mN ,mX) mea-
surement in the Φmin + Φs case.

We now consider the relation of our kinematic variables
to the mT2 variable. In analogy with the Φmin case (2),
the kinematically allowed region under the Φmin + Φs

constraints is in general bounded by mT2

m̃min
X (m̃N ) ≥ mT2(m̃N ) , (15)

where the inequality reflects the fact that additional in-
formation is provided by the Φs constraint, further re-
stricting m̃X(m̃N ). At the true invisible mass mN the
endpoint of the mT2(m̃N = mN ) distribution coincides
with the true mass mX [13, 14]. Therefore, to draw a
comparison and a cross–check of our method, for each
event we have also evaluated the variable mT2(m̃N ), and
studied its distribution for a large number of events.

Finally, we briefly return to the Φmin case. The
boundary of the allowed mass region can be obtained
in the same way as discussed above for the Φmin + Φs

case, namely by scanning over p/0 and p/z and taking the
maximum or minimum depending on the variables. In
Fig. 2, one can see that the allowed region is opened
to m̃X → ∞, that is the variables m̃max

X;Φmin
(m̃N ) and

m̃min
N ;Φmin

(m̃X) are not defined. Knowing that the bound-
ary curve in the Φmin case is given by mT2(m̃N ) (2), we
arrive at a new expression of the mT2 variable

mT2(m̃N ) = min
{p/0,p/z}

[
mmin
X;Φmax

(m̃N )
]
. (16)

In the same way, an expression for the inverse mT2 func-
tion can be written down

m−1
T2(m̃X) = max

{p/0,p/z}

[
mmax
N ;Φmax

(m̃X)
]
. (17)

This function has the following properties

m−1
T2(mX) ≥ mN , (18)

m−1
T2(mT2(m̃N )) = m̃N . (19)

RESULTS

To illustrate the features of our method we will con-
sider the case of associated production of the MSSM CP–
odd Higgs A with two b–jets, with the Higgs subsequently
decaying into two charginos. We will then consider the
decay of each chargino into a SM lepton plus a same
flavour sneutrino, taken as the lightest supersymmetric
particle in the spectrum. A final state with two opposite
sign leptons, missing transverse energy and two b–jets
will be therefore the topology under investigation.

It is worth stressing that the method we have presented
here is independent of the particular underlying model.

χ̃+
1

χ̃−
1

ν̃l

ν̃∗l

l+

l−

A

b̄

b̄

b

b

g

g

FIG. 7: Feynman diagram for the p p → Abb̄ → χ+
1 χ

−
1 bb̄ →(

l+ν̃l
) (
l−ν̃∗l

)
bb̄ process considered in our study.

However, for concreteness, we have chosen a particular
MSSM parameter space point. In particular we have
taken mA = 800 GeV, mχ± = 350 GeV, mχ0 = 300 GeV
and mν̃ = 200 GeV. We have chosen as reference values
tanβ = 50 and µ = 400 GeV, the former to increase the
production cross section of the CP–odd Higgs for a given
mass, the latter to increase the branching ratio into two
charginos. Note that the dominant decay mode of the
CP–odd Higgs is still into two bottom quarks, but we will
assume that its mass mA has already been measured with
10% precision from a dedicated study of the A → τ+τ−

channel, similar to [31]. We will however conclude this
paper by showing how our method could also be used
to obtain a quite precise determination of the CP–odd
Higgs mass, without such input.

The dominant backgrounds for the considered final
state consist of direct chargino pair production plus
jets, and SM tt̄ and WW+jets processes with the W
bosons decaying leptonically. A set of kinematic cuts has
been chosen in order to maximize the signal over back-
ground ratio. In particular, each event is required to
have exactly two opposite sign, same flavour leptons with
|η| < 2.5, and two b–jets with pT > 20 GeV, |η| < 2.5.
Moreover large cuts on the total missing transverse mo-
mentum (/ET > 130 GeV), the pT of the two leptons
(pl1T > 80 GeV, pl2T > 40 GeV), and on the mT2 vari-
able (mT2 > 120 GeV) are applied to successfully reduce
the backgrounds.

The associated CP–odd Higgs cross section has been
calculated using FeynHiggs2.9.5 [32], the χ+χ−+jets us-
ing Prospino2.1 [33], while the values of the SM cross
sections are reported in [34, 35]. The corresponding val-
ues are summarized in Table I. The branching ratio of
the chargino into a lepton and same flavour sneutrino is
set to 1.0, since the two–body decay into a W boson and
a neutralino is kinematically forbidden for our parame-
ter space choice. The leptonic branching ratio of the W
boson is set to 0.216 [36]. MadGraph5 [37] is used to
generate parton–level events, which are then interfaced
with the Pythia 6.42 [38] parton shower. These are then
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passed to Delphes 3.0 [39] to simulate the ATLAS detec-
tor in a fast manner, following the specifications reported
in [31]. The public code described in [23] is used to eval-
uate mT2 for each event.

Abb̄ χ+χ−+js tt̄ WW+js

σ · BR [pb] 0.023 0.056 40.92 5.80

TABLE I: Cross sections at LHC14 for the signal and back-
ground processes considered in our study, before cuts.

A signal over background ratio of S/B ∼ 6.5 with
roughly 1000 remaining signal events is obtained with
this setup, and the events passing the selection cuts are
then used as input for our mass measurement method. In
particular, we have simulated 100 independent signal and
background measurements at LHC14 with 300 fb−1 inte-
grated luminosity, to evaluate a statistical uncertainty on
our observables.

In the following we attempt to measure mN by mea-
suring the endpoint of the m̃max

N distribution: mexp
N ≡

(m̃max
N )endpoint. We determine then mX by measuring

the endpoint of the m̃min
X (mexp

N ) distribution: mexp
X ≡

[m̃min
X (mexp

N )]endpoint.

 (GeV)max
Nm

160 180 200 220 240 260 280 300 320

Ev
en

ts

0
10
20
30
40
50
60
70
80 Total

BG

FIG. 8: m̃max
N distribution of a single signal and background

measurement at LHC14. The green line represents the fit used
to determine the endpoint of the distribution.

In Fig. 8 we show a typical m̃max
N distribution of a

single LHC14 measurement. We fit the distribution by
the two straight lines described by the function

f(x;x0, a, b, c) = Θ(x− x0) · a · (x− x0) +

+ Θ(x0 − x) · b · (x0 − x) + c , (20)

where x is the kinematical variable used in the x-axis, x0

is the endpoint of the distribution, a and b are slopes of
the two straight lines, and c is a constant term. From the
fit we obtain a measurement of the invisible mass mexp

N

of

mexp
N = 194.5± 1.9 GeV , (21)

remarkably close to the true value mN = 200 GeV. All
uncertainties are Gaussian statistical uncertainties com-
ing from the 100 independent measurements.

) (GeV)
N

(mmin
Xm

240 260 280 300 320 340 360 380

Ev
en

ts

0

20

40

60

80

100 Total
BG

FIG. 9: m̃min
X (mexp

N ) distribution of a single signal and back-
ground measurement at LHC14. The mexp

N value has been
extracted from the endpoint of the m̃max

N distribution. The
green line represents the fit used to determine the endpoint
of the distribution.

In Fig. 9 we show a typical m̃min
X (m̃N ) distribution

of a single LHC14 measurement, where m̃N = mexp
N =

195.4 GeV is assumed. We obtain a measurement of the
chargino mass mexp

X of

mexp
X = 350.4± 1.4 GeV , (22)

again remarkably close to the true value mX = 350 GeV.

We have so far assumed that the mass of the resonance
is precisely known. In realistic situations, our knowledge
of mA is limited by the experimental uncertainty. To
study this effect, we interpret the mA in eq. (3) as a
variable and allow the observables defined in eqs. (12)
and (13) to have dependency on m̃A: m̃min

X (m̃A, m̃N ),
m̃max
N (m̃A). In Fig. 10 we plot the endpoints of the

m̃max
N (m̃A) distribution for different hypotheses on m̃A.

It is also shown how a 10% uncertainty on mA affects this
mexp
N measurement, namely introducing a ∼ 20% uncer-

tainty.

The endpoints of the m̃min
X (m̃A,m

exp
N ) distribution are

shown in Fig. 11: for each m̃A hypothesis, we have de-
termined the corresponding mexp

N value, and then used
this as an input for the m̃max

X (m̃A,m
exp
N ) distribution. It

is also shown how a 10% uncertainty on mA affects the
mexp
X measurement, namely introducing a ∼ 20% uncer-

tainty.

It has previously been claimed that a simultaneous
measurement of (mN ,mX) is possible by using the
kink structure arising in the distribution of the end-
points of the mT2(m̃N ) variable as a function of m̃N ,
see [13, 14, 23]. However, this kink resides at the tail of
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FIG. 10: Endpoint measurements of the m̃max
N (m̃A) distribu-

tion for different m̃A hypotheses. Each value represents the
mean of 100 independent simulated measurements at LHC14.
A band showing the effect of a 10% uncertainty on mA is also
shown.
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FIG. 11: Endpoint measurements of the m̃min
X (m̃A,m

exp
N ) dis-

tribution for different m̃A hypotheses. Each value repre-
sents the mean of 100 independent simulated measurements
at LHC14. A band showing the effect of a 10% uncertainty
on mA is also shown.

the mT2(m̃N ) distribution, making an accurate measure-
ment difficult. However, even if such a kink structure is
not evident, at the true invisible mass mN the endpoint
of the mT2(m̃N = mN ) distribution for a large number

of events should always coincide with the mother parti-
cle mass mX , namely the chargino mass in our example.
Therefore, by comparing the endpoints of the m̃min

X (m̃N )
and mT2(m̃N ) distributions (assuming the true CP–odd
Higgs mass mA), we should be able to see that the two
distributions coincide at mtrue, as can be clearly seen
from Fig. 12.

mN

mX

Endpoint analysis

m
�

X
minHm� NL

mT2Hm� NL

0 40 80 120 160 200

250

270

290

310

330
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370
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�
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m�

X
@G

e
V

D

FIG. 12: m̃min
X (m̃N ) and mT2(m̃N ) distributions as functions

of m̃N : they cross each other in the vicinity of the true masses
mtrue.

The latter result should be viewed as a cross–check
of the validity of our procedure rather than a direct
measurement of the true masses, because of the rather
large semi–overlapping region of the two curves. We can
also see that there is not a clear kink structure in the
mT2(m̃N ) distribution, and thus this could not provide a
precise mass measurement, at least for the case we have
considered.

Throughout the previous sections, the mass of the res-
onance, mA, has been assumed to be already (well) mea-
sured, to within 10% uncertainty, in order to simultane-
ously evaluate (mexp

N ,mexp
X ). However, if a wrong value

for mA is used, then the Φs constraint of (3) no longer
corresponds to the correct event kinematics, and one can-
not expect the boundary variables, e.g. m̃max

N , to have a
sharp endpoint structure. This observation may be used
to measure the mass of the resonance.

For example, one can expect the slope of m̃max
N (m̃A) at

the endpoint to become steeper as the input value, m̃A,
approaches mA, where we will expect a sharper endpoint
structure. This feature is indeed seen in Fig. 13, where we
plot the slope of m̃max

N at the vicinity of the endpoint as a
function of m̃A. This is obtained from the second straight
line used in the endpoint fit (see the green line in Fig. 8),



8

which gives an estimate of the slope of this distribution
as it approaches the endpoint. This behaviour is reason-
ably insensitive to precise parameters of the straight line
fit and choice of bin size, and we expect it to hold for
other mass choices. A more systematic understanding of
this effect and its application to these and other mass
measurements is the subject of ongoing studies.

mA

Slope analysis
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�
e
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d
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t

FIG. 13: Slope measurement at the endpoint of the
m̃max
N (m̃A) distribution: the maximum is observed at m̃A =

mA.

CONCLUSIONS

In this work a model–independent method for mass
measurements at hadron colliders, in semi–invisible de-
cay chains of pair produced particles, has been dis-
cussed. We have considered as a benchmark the process
p p→ Abb̄→ χ+

1 χ
−
1 bb̄→ (l+ν̃l) (l−ν̃∗l ) bb̄, where A is the

MSSM CP–odd Higgs. Here, the chargino χ±1 ≡ X and
LSP ν̃l ≡ N masses are undetermined. Analytic solu-
tions of the final state system, taking into account the
mass–shell conditions, constrain the possible (m̃N , m̃X)
mass hypotheses consistent with the measured momenta
for each event. Given this kinematically consistent mass
region, one can then construct new useful variables, and
the distribution of these from a large number of events
is found to exhibit a sharp endpoint at the true chargino
and LSP masses, respectively.

In particular we have shown that with this method one
can obtain a precise measurement of (mN ,mX) at the√
s = 14 TeV LHC, with 300 fb−1 of integrated luminos-

ity. It is to be noted that the only additional information
that has to be provided is the mass of the resonance A,

from whose decay the charginos are pair produced. The
total missing momentum is not required to be an input
of our analysis, as was considered in [29, 30]: our ap-
proach reflects a more realistic measurement scenario at
the LHC.

Furthermore we have shown for our benchmark exam-
ple that the value of the slope of the m̃max

N distribution at
the corresponding endpoint for different m̃A hypotheses
develops a peak at the true mass mA, and thus this fact
could provide a guide to infer the mass of the resonance
A. A more systematic understanding and application of
this effect to mass measurements is the subject of ongoing
studies.
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