
Eur. Phys. J. C manuscript No.
(will be inserted by the editor)

GoSam-2.0: a tool for automated one-loop calculations
within the Standard Model and Beyond

Gavin Cullen1, Hans van Deurzena,2,

Nicolas Greinerb,2, Gudrun Heinrichc,2,

Gionata Luisonid,2, Pierpaolo Mastroliae,2,3,

Edoardo Mirabellaf,2, Giovanni Ossolag,4,5,

Tiziano Peraroh,2, Johannes Schlenki,2,

Johann Felix von Soden-Fraunhofenj,2,

Francesco Tramontanok,6

1Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany
2Max-Planck-Institut für Physik, München, Germany
3Dipartimento di Fisica, Università di Padova, Italy
4New York City College of Technology, City University of New York, USA
5The Graduate School and University Center, City University of New York, USA
6Dipartimento di Scienze Fisiche, Università di Napoli and INFN, Sezione di Napoli, Italy

DESY 14-061, MPP-2014-145, arXiv:1404.7096 [hep-ph]

Abstract We present the version 2.0 of the program package GoSam for the auto-
mated calculation of one-loop amplitudes. GoSam is devised to compute one-loop
QCD and/or electroweak corrections to multi-particle processes within and be-
yond the Standard Model. The new code contains improvements in the generation
and in the reduction of the amplitudes, performs better in computing time and
numerical accuracy, and has an extended range of applicability. The extended ver-
sion of the “Binoth-Les-Houches-Accord” interface to Monte Carlo programs is
also implemented. We give a detailed description of installation and usage of the
code, and illustrate the new features in dedicated examples.

Keywords NLO calculations · automation · hadron colliders

PACS 12.38.-t · 12.38.Bx · 12.60.-i

aE-mail: hdeurzen@mpp.mpg.de
bE-mail: greiner@mpp.mpg.de
cE-mail: gudrun@mpp.mpg.de
dE-mail: luisonig@mpp.mpg.de
eE-mail: Pierpaolo.Mastrolia@cern.ch
fE-mail: mirabell@mpp.mpg.de
gE-mail: gossola@citytech.cuny.edu
hE-mail: peraro@mpp.mpg.de
iE-mail: jschlenk@mpp.mpg.de
jE-mail: jfsoden@mpp.mpg.de
kE-mail: Francesco.Tramontano@cern.ch

2

Contents

1 Introduction . 2
2 Overview of the program . 3
3 New features . 4
4 Installation and usage . 13
5 Examples . 16
6 Conclusions . 19
A: Commented example of an input card . 20
B: Higher rank integrals . 27

1 Introduction

After the great achievement of discovering a new boson at the LHC [1, 2], the
primary goal is now to study its properties in detail, and to detect the slight-
est hints for possible extensions of the Standard Model. Certainly, precise theory
predictions are indispensable to achieve this aim, which calls for calculations at
next-to-leading order (NLO) accuracy and beyond.

NLO predictions nowadays should be considered as the standard for experimen-
tal data analysis. Ideally, matching NLO results to a parton shower and merging
different jet multiplicities should be aimed for. However, this also requires fast and
highly automated NLO tools to be available, to be compared to a vast amount of
measurements, most of them dealing with multi-particle final states.

The development of automated NLO tools has seen tremendous progress in
the past years, leading to codes which are able to produce multi-particle NLO
predictions for user-defined processes, or to libraries which contain an impressive
collection of NLO processes [3–13].

The integrand-reduction method [14–16] has changed our way of addressing
the decomposition of amplitudes in terms of master integrals, whose coefficients
can be determined by applying algebraic projections to polynomial functions.

The principle of an integrand-reduction method, which is valid at any order
in perturbation theory [17–21], is the underlying multi-particle pole expansion
for the integrand of any scattering amplitude, or, equivalently, a representation
where the numerator of each Feynman integral is expressed as a combination of
products of the corresponding denominators, with polynomial coefficients. These
coefficients correspond to the residue of the integrand at the multiple-cut. Each
residue is a multivariate polynomial in the irreducible scalar products formed by the
loop momenta and either external momenta or polarization vectors constructed
out of them.

GoSam is a code which was designed to maximally exploit both the integrand
reduction for dimensionally regulated one-loop amplitudes [14,22], as implemented
in Samurai [23], as well as improved tensor reduction methods as developed in
[24,25]. The algebraic expression of the integrands are automatically generated by
means of the Golem technology [24,26–28].

The polynomial structure of the multi-particle residues is a qualitative informa-
tion that turns into a quantitative algorithm for decomposing arbitrary amplitudes
in terms of master integrals at the integrand level. In fact, in the context of an
integrand-reduction, any explicit integration procedure is replaced by a simpler
operation like polynomial fitting, which in Samurai is implemented via Discrete
Fourier Transform [29–31].

3

GoSam produces analytic expressions for the integrands. Because of this fea-
ture, it is suitable to be interfaced with a new library, called Ninja [32,33], imple-
menting an ameliorated integrand-reduction method, where the decomposition in
terms of master integrals is achieved by Laurent expansion through semi-analytic
polynomial divisions [34]. With the new reduction algorithm, GoSam-2.0 can pro-
duce results for NLO virtual corrections that are more accurate and less time
consuming than the ones provided by version 1.0.

In this paper we present the new version 2.0 of the program GoSam [10],
which has been used already to produce a multitude of NLO predictions both
within [33, 35–45] and beyond [46, 47] the Standard Model. The new version con-
tains important improvements in speed, numerical robustness, range of applica-
bility and user-friendliness. GoSam can be linked to different Monte Carlo pro-
grams via the Binoth-Les-Houches-Accord BLHA [48], where the extended version
BLHA2 [49] is also implemented. The program can be downloaded from [50]

http://gosam.hepforge.org

The structure of the paper is the following. In Section 2 we give a brief overview
of the program structure. The new features of the program are presented in Sec-
tion 3. Section 4 describes the installation and usage of GoSam, while in Section 5
we give examples illustrating some of the new features, before we conclude in
Section 6. The appendices contain a commented example of an input card for
convenience of the user, and some details about higher rank integrals.

2 Overview of the program

GoSam can be used either as a standalone code producing one-loop (and tree
level) amplitudes, or it can be used as a One Loop Provider (OLP) in combination
with a Monte Carlo (MC) program, where the interface is automated, based on the
standards defined in [48, 49]. The main workflow of GoSam is shown in Fig. 1 for
the standalone version and in Fig. 2 for GoSam as an OLP within a Monte Carlo
setup.

In the standalone version, the user will fill out a process run card which we call
process.in, where the process is defined, together with some options. Then the
code for the virtual amplitudes is generated by invoking gosam.py process.in .
After running the above command with an appropriate run card, all the files
which are relevant for code generation will be created. The command make source

will invoke QGRAF [51] and FORM [52, 53] to generate the diagrams and algebaric
expressions for the amplitudes, using also spinney [54] for the spinor algebra within
FORM and haggies [55] for code generation. In version 2.0 of GoSam, the production
of optimized code however is largely relying on the new features of FORM version
≥ 4. The command make compile will finally compile the produced Fortran90 code.

In the OLP version, the information for the code generation is taken from the
order file generated by the Monte Carlo program. Depending on the MC, the whole
generation can be invoked automatically and steered by its setup. This is shown
schematically in Fig. 2 and explained in more detail in Section 4.3.

http://gosam.hepforge.org

4

GoSam

user input file process.in

GoSam
gosam.py process.in

diagram drawing and code generation:
QGraf | FORM | Spinney

reduction: Ninja | Golem95C | Samurai | . . .

integral libraries: OneLOop | Golem95C | QCDLoop | . . .

virtual one-loop amplitude

Fig. 1 Basic workflow of GoSam.

The amplitudes are evaluated using D-dimensional reduction at integrand
level [14, 29, 56], which is available through two different reduction procedures
and libraries: Samurai [23, 31] and Ninja [33, 34]. Alternatively, tensorial recon-
struction [25] is also available, based on the libraries Golem95C [28, 57, 58] and
OneLOop [59].

It should be emphasized that all the reduction libraries used in GoSam-2.0
are included in the program package, and the installation script described in Sec-
tion 4.1 will take care of compilation and linking, such that the user does not
have to worry about installing them separately. Interfacing other tensor integral
libraries, such as LoopTools [4,60], PJFRY [61,62] or Collier [63], should be straight-
forward, due to the modular structure of our setup.

More details about the reduction procedures implemented in GoSam will be
given in Section 3.

3 New features

The version 2.0 of GoSam comes with several new features, which lead to an
improvement in speed for both the generation and the evaluation of the amplitudes,
more compact code, and more stable numerical evaluation. Further, the range of
applicability of the code is extended, in particular to deal with effective theories
and physics Beyond the Standard Model.

We will describe some of the new features in more detail below.

5

BLHA

user input (MC runcard)

GoSamMC

write order file

read contract file

read order file

write contract file

set parameters

generate amplitudes make source

prepare runtime phase make compile

phase space points

compute one-loop amplitude
compute Born,
real radiation,
IR subtraction

phase space
integration

full NLO result

Fig. 2 Schematic setup for GoSam as an OLP in combination with a Monte Carlo program.

3.1 Improvements in code generation

3.1.1 Producing optimised code with FORM version 4

While in version 1.0 of GoSam the Fortran code for the amplitudes was written
using haggies [55], we now largely use the features provided by FORM version 4.x [53]
to produce optimized code. This leads to more compact code and a speed-up in
amplitude evaluation of about a factor of ten. The option to use haggies is still
available by setting the extension noformopt.

3.1.2 Grouping/summing of diagrams which share common subdiagrams

Already in the first release of GoSam, the diagrams were analyzed according to
their kinematic matrix Sij and grouped together before reduction. This lead to
an important gain in efficiency, both with reduction based on integrand reduction
methods, as well as with classical tensor reduction techniques. Details about the
way diagrams are grouped can be found in [10]. This feature is still present when
Samurai or Golem95C are used for computing the amplitudes.

6

In the new release an option called diagsum combines diagrams which differ
only by a subdiagram into one “meta-diagram” to be processed as an entity. This
allows one to further reduce the number of calls to the reduction program and
therefore to increase the computational speed.

3 Colour Basis

|c1〉 = 1q
(1)
i1

q
(2)
i2

q̄
(1)
i1

q̄
(2)
i2

(13)

|c2〉 = 1q
(1)
i1

q
(2)
i2

q̄
(2)
i2

q̄
(1)
i1

(14)

4 BLABLA

4.1 Group 9 (5-Point)

General Information

The maximum effective rank in this group is 5.

4.1.1 Diagrams

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

g
γ

d
d

g

d

(A)

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

g

Z

d
d

g

d

(B)

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

g
γ

d
d

g

d

(C)

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

g

Z

d
d

g

d

(D)

4

Fig. 3 Example of diagrams sharing a common tree part, which are summed when the diagsum
option is set to diagsum=true.

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

γ

g

d

g

u

u

(A)

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

γ

g

d

g

ug

ug

(B)

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

γ

g

d

g

g

g

(C)

5

Fig. 4 Example of diagrams sharing a common loop propagator, but with different particle
content in the loop, which are summed when the diagsum option is set to diagsum=true.

When the option diagsum is active, diagrams which differ only by a propagator
external to the loop, as is the case e.g. for the Z/γ? propagator in QCD corrections
to the production of Z+jets, are summed together before being processed by FORM.
Similarly, diagrams which differ only by an external tree part, but which share

7

exactly the same set of loop propagators, are summed together prior the algebraic
manipulation. An example is shown Figure 3. Finally, diagrams which share the
same set of propagators, but have different particles circulating in the loop, as
shown in Figure 4, are also summed into one “meta-diagram”. The default setting
for this option is diagsum=true.

3.1.3 Numerical polarisation vectors

The use of numerical polarisation vectors for massless gauge bosons (gluons, pho-
tons) is activated by default. This means that the various helicity configurations
for the massless bosons will be evaluated numerically, based on a unique code con-
taining generic polarisation vectors, rather than producing separate code for each
helicity configuration. To switch off this default setting, for example if the user
would like to optimize the choice of reference vectors for each helicity configuration,
the option polvec=explicit should be given in the input file process.in.

3.2 Improvements in the reduction

The algebraic generation of the integrands in GoSam is tailored to the maximal
exploitation of the D-dimensional integrand reduction algorithm.

In the previous version, GoSam-1.0, Samurai has been the default library for
the amplitude decomposition in terms of master integrals. Within the original in-
tegrand reduction algorithm, implemented in Samurai, the determination of the
unknown coefficients multiplying the master integrals requires: i) to sample the
numerator on a finite subset of the on-shell solutions; ii) to subtract from the in-
tegrand the non-vanishing contributions coming from higher-point residues; and
iii) to solve the resulting linear system of equations. Gauss substitutions and the
integrand subtractions enforce a triangular system solving strategy, which proceeds
top-down, from the pentuple-cut to the single-cut. In this fashion, because of the
integrand subtractions, the integrand which has to be evaluated numerically gets
updated at any level, cut-by-cut, by the subtraction of the polynomial residues
determined at the previous step. The sampling and the determination of the co-
efficients in Samurai proceeds with a projection technique based on the Discrete
Fourier Transform [29,31].

In the new version GoSam-2.0, the amplitude decomposition is obtained by a
new integrand-reduction method [34], implemented in the C++ code Ninja [32,33],
which is the default reduction library.

In Ref. [34] an improved version of the integrand reduction method for one-loop
amplitudes was presented. This method allows, whenever the analytic dependence
of the integrand on the loop momentum is known, to extract the unknown coef-
ficients of the residues by performing a Laurent expansion of the integrand with
respect to one of the free loop components which are not constrained by the cor-
responding on-shell conditions.

Within the Laurent expansion approach, the system of equations for the co-
efficients becomes diagonal. In fact, in the asymptotic limit, both the integrand
and the higher-point subtractions exhibit the same polynomial behaviour as the
residue. Therefore one can identify the unknown coefficients with the ones of the

8

expansion of the integrand, corrected by the contributions coming from higher-
point residues. In other words, the subtractions of higher-point contributions are
replaced by corrections at the coefficient level. Because of the universal structure
of the residues, the parametric form of these corrections can be computed once
and for all, in terms of a subset of the higher-point coefficients.

This novel D-dimensional unitarity-based algorithm is lighter than the original
integrand reduction method, because less coefficients need to be determined, and
turns out to be faster and numerically more accurate.

The integrand reduction via Laurent expansion has been implemented in the
library Ninja, where the Laurent expansions of the integrands are performed by
a polynomial division between some parametric expansions of the numerator and
the uncut denominators. The expansions of the numerator, required by Ninja as
input, are efficiently generated by GoSam using FORM, after collecting the terms
that do not depend on the loop momentum into global abbreviations.

Ninja and the new version of Samurai, as well as Golem95C, all distributed
with the GoSam-2.0 package, can deal with processes where the masses of the
internal particles are complex, and where the rank r of the numerator of the
integrands can exceed the number N of denominators by one unit, i.e. r ≤ N + 1,
as it may happen e.g. in effective theories (see also Section 3.5.1).

3.2.1 The extension derive

The derive feature generates code to access the tensor coefficients of each diagram
or group of diagrams individually. While it has been among the possible keywords
for the extensions options in GoSam-1.0 already, it now has been promoted to be
used by default in the context of tensorial reconstruction [25]. It improves both
the speed and the precision of tensorial reconstruction and makes connection to
other reduction methods.

The idea behind it is to compute the numerator N (q) from a Taylor series

N (q) = N (0) + qµ
∂

∂qµ
N (q)|q=0 +

1

2!
qµqν

∂

∂qµ

∂

∂qν
N (q)|q=0 + . . . (1)

In this form one can read off a one-to-one correspondence between derivatives at
q = 0 and the coefficients of the tensor integrals.

At a technical level, the files helicity*/d*h*l1d.f90 contain the routines
derivative(µ2, [i1], [i2],...) and reconstruct d*(coeffs), where the latter is
only generated in conjunction with the extension golem95, and coeffs is a type
which comprises all coefficients of a diagram of a certain rank. The number of
optional indices i1, i2, . . . determine which derivative should be returned. The
subroutine reconstruct d* also takes into account the proper symmetrisation.

3.3 Electroweak scheme choice

Regularisation and renormalisation within the Standard Model can be performed
using various schemes, which also may differ in the set of electroweak parameters
considered as input parameters, while other electroweak parameters are derived
ones. Within GoSam-2.0, different schemes can be chosen in several different ways

9

ewchoice input parameters derived parameters

1 GF, mW, mZ e, sw
2 α, mW, mZ e, sw
3 α, sw, mZ e, mW

4 α, sw, GF e, mW

5 α, GF, mZ e, mW, sw
6 e, mW, mZ sw
7 e, sw, mZ mW

8 e, sw, GF mW, mZ

Table 1 Possible choices to select the electroweak scheme. To simplify the notation we write
the sine of the weak mixing angle as sw. The lists of derived parameters contain only the
parameters which are computed from the input parameters and used in the expressions for the
amplitudes.

by setting appropriately the flag model.options, depending on whether the scheme
might be changed after the generation of the code or not.

By default, when the flag is not set in the input card, GoSam generates a
code which uses mW, mZ and α as input parameters, allowing however to change
this in the generated code, by setting the variable ewchoice in the configuration
file common/config.f90 to the desired value. The user can choose among 8 dif-
ferent possibilities, which are listed in Table 1. When the electric charge e is set
algebraically to one, the schemes 6− 8 cannot be used.

The flag model.options in the input card allows one also to directly set the
values of the different parameters appearing in the model. If the values of exactly
three electroweak parameters are specified, GoSam automatically takes them as
input parameters. In that case, in order to be able to switch among different
schemes after code generation, the variable ewchoose also must be added to the
model.options flag.

3.4 Stability tests and rescue system

Within the context of numerical and semi-numerical techniques, we should be
able to assess in real time, for each phase space point, the level of precision of the
corresponding one-loop matrix element. Whenever a phase space point is found in
which the quality of the result falls below a certain threshold, either the point is
discarded or the evaluation of the amplitude is repeated by means of a safer, albeit
less efficient procedure. This procedure is traditionally called “rescue system”.

Apart from improvements in the stability of the reduction itself, which are
provided by the new versions of Samurai and Golem95C, and in particular by
the new reduction algorithm Ninja, the new version of GoSam also has a more
refined rescue system as compared to version 1.0.

Looking at the literature, we observe that various techniques for detecting
points with low precision have been implemented within the different automated
tools for the evaluation of one-loop virtual corrections.

A first commonly used approach relies on the comparison between the numer-
ical values of the infrared pole coefficients computed by the automated tool with

10

their known analytic results dictated by the universal behaviour of the infrared
singularities [64]. We refer to this as the pole test.

The main advantages of this method are its broad applicability to all am-
plitudes and the fact that it requires a negligible additional computation time.
However, since not all integrals which appear in the reconstruction of the ampli-
tude give a contribution to the double and single poles, this method often provides
an overestimate of the precision, which might result in keeping phase space points
whose finite part is less precise than what is predicted by the poles.

Different techniques have been proposed that target directly the precision of
the finite part. Using the symmetry properties of scattering amplitudes under
scaling of all physical scales, or alternatively the invariance under rotation of the
momenta, we can build pairs of points that should provide identical results, both
for the finite parts and for the poles, and use the difference between them as an
estimator of the precision.

The scaling test [65], is based on the properties of scaling of scattering am-
plitudes when all physical scales (momenta, renormalisation scale, masses) are
rescaled by a common multiplicative factor x. As shown in [65], this method pro-
vides a very good correlation between the estimated precision and the actual pre-
cision of the finite parts.

The rotation test [33] exploits the invariance of the scattering amplitudes under
an azimuthal rotation about the beam axis, namely the direction of the initial
colliding particles. Whenever the initial particles are not directed along the beam
axis, one can perform a rotation of all particles by an arbitrary angle in the space of
momenta. A validation of this technique, and the corresponding correlation plots,
has been presented in [33].

While the scaling and the rotation test provide a more reliable estimate of the
precision of the finite parts that enter in the phase space integration, their downside
is that they require two evaluations of the same matrix element, therefore leading
to a doubling in the computational time.

Additional methods have been proposed, within the context of integrand-
reduction approaches, which target the relations between the coefficients before
integration, namely the reconstructed algebraic expressions for the numerator
function before integration, known as N = N tests [16, 23]. This kind of tests
can be applied to the full amplitude (global N = N test) or individually within
each residue of individual cuts (local N = N test). The drawback of this technique
comes from the fact that the test is applied at the level of individual diagrams,
rather than on the final result summed over all diagrams, making the construction
of a rescue system quite cumbersome.

For the precision analysis contained in GoSam-2.0, and to set the trigger for
the rescue system, we decided to employ a hybrid method, that takes advantage of
the computational speed of the pole test, combined with the higher reliability of the
rotation test. This hybrid method requires setting three different thresholds. After
computing the matrix elements, GoSam-2.0 checks the precision δpole of the single
pole with the pole test. Comparing the single pole SIR that can be obtained from
the general structure of infrared singularities and the one provided by GoSam-2.0,
which we label S, we define

δpole =

∣∣∣∣SIR − SSIR

∣∣∣∣ . (2)

11

The corresponding estimate of the number of correct digits in the result is provided
by Ppole = − log10(δpole). This step does not require any increase in computational
time. The value of Ppole is then compared with two thresholds Phigh and Plow.

If Ppole > Phigh the point is automatically accepted. Given the high quality of
the computed pole, the finite part is very unlikely to be so poor that the point
should be discarded.

If Ppole < Plow the point is automatically discarded, or sent to the rescue
system. If already the pole has a low precision, we can expect the finite part to be
of the same level or worse.

In the intermediate region where Phigh > Ppole > Plow, it is more difficult to
determine the quality of the result solely based on the pole coefficients. Only in
this case the point is recalculated using the rotation test, which requires additional
computational time.

If we call the finite part of the amplitudes evaluated before and after the
rotation Afin and Afin

rot respectively, we can define the error δrot estimated with
the rotation as

δrot = 2

∣∣∣∣Afin
rot −Afin

Afin
rot +Afin

∣∣∣∣ . (3)

and the corresponding estimate on the number of correct digits as Prot = − log10(δrot).
Prot provides a reliable estimate of the precision of the finite part [33], and can be
compared with a threshold Pset to decide whether the point should be accepted
or discarded.

The values of the three thresholds Phigh, Plow and Pset can be chosen by the
user, to adjust the selection mechanism to the fluctuations in precision which occur
between different processes. In the input card, Phigh, Plow and Pset correspond
to PSP chk th1, PSP chk th2 and PSP chk th3, respectively, see appendix A. It is
worth to notice that the rotation test can be bypassed simply by setting the initial
thresholds Phigh = Plow. In this case the selection is performed solely on the basis
of the pole test.

3.5 New range of applicability

3.5.1 Higher rank integrals

The libraries Ninja, Golem95C and Samurai all support integrals with tensor
ranks r exceeding the number of propagators N . Such integrals occur for exam-
ple in effective theories (a prominent example is the effective coupling of gluons
to the Higgs boson), or in calculations involving spin-two particles beyond the
leading order. These extensions are described in detail in Refs. [31, 34, 58] and
are contained in the distribution of GoSam-2.0. The additional integrals will be
called automatically by GoSam if they occur in an amplitude, such that the user
can calculate amplitudes involving higher rank integrals without additional effort.
Ninja and Samurai provide higher rank integrals for rank r = N + 1, version 1.3
of Golem95C [58] provides higher rank integrals and the tensorial reconstruction
routines up to r = N + 1 for N ≤ 6, as well as form factors up to rank ten for
N ≤ 4. More details about the higher rank integrals are given in Appendix B.

12

3.5.2 Production of colour-/spin correlated trees

GoSam can also generate tree level amplitudes in a spin- and colour-correlated
form. Colour correlated matrix elements are defined as

Cij = 〈M|TiTj |M〉 , (4)

and we define spin-correlated matrix elements as

Sij = 〈M,−|TiTj |M,+〉 . (5)

The spin-correlated matrix element (as well as the colour correlated matrix ele-
ment) contains implicitly the sum over all non-specified helicities, while only the
helicities with the indices i and j are fixed, i.e.

〈Mi,−|Ti ·Tj |Mi,+〉 = (6)∑
λ1,...,λi−1,λi+1,...,λn

〈Mλ1,...,λi−1,−,λi+1,...,λn
|Ti ·Tj |Mλ1,...,λi−1,+,λi+1,...,λn

〉 .

These matrix elements are particularly useful in combination with Monte Carlo
programs which use these trees to build the dipole subtraction terms for the in-
frared divergent real radiation part. With these modified tree level matrix elements
GoSam is able to generate all necessary building blocks for a complete NLO cal-
culation.
Such a setup has been used successfully in combination with the framework of
Herwig++/Matchbox [66–68].

3.5.3 Support of complex masses

The integral libraries contained in the GoSam package as well as the GoSam code
itself fully support complex masses. The latter are needed for the treatment of
unstable fermions and gauge bosons via the introduction of the corresponding
decay width. A fully consistent treatment of complex W - and Z-boson masses
requires the use of the complex mass scheme [69]. According to this scheme the
boson masses become

m2
V → µ2

V = m2
V − imV ΓV , V = W,Z . (7)

Gauge invariance requires that the definition of the weak mixing angle has to be
modified accordingly:

cos2 θW =
µ2
W

µ2
Z

. (8)

To make use of the complex mass scheme, we introduce two new model files,
sm complex and smdiag complex, which contain the Standard Model with complex
mass scheme, the first with a full CKM matrix, the latter with a diagonal unit
matrix for the CKM matrix. An example dealing with a complex top quark mass
is given in Section 5.

13

4 Installation and usage

4.1 Installation

The user can download the code either as a tar-ball or from a subversion repository
at

http://gosam.hepforge.org

The installation of GoSam-2.0 is very simple when using the installation script.
The latter can be downloaded by

wget http://gosam.hepforge.org/gosam-installer/gosam_installer.py

By default GoSam will be installed into a subfolder ./local of the directory where
the installation script is saved. A different path can be specified using the

--prefix=PATH where to install

option. To run the script the user should execute the following commands

chmod +x gosam installer.py

./gosam installer.py [--prefix=...]

or

python gosam installer.py [--prefix=...]

Upon installation, the installer will ask some questions, which are described in
more detail in the manual [50], which also can be downloaded from the webpage
given above.

To use the default installation all the questions can be “answered” by pressing
the ENTER key.

In particular, the installer will check if QGRAF [51] and FORM [52, 53] already
exist on the system. If they are not found, one can either press ENTER to have them
installed by the script, or provide a path to the binary (tab-completion can be
used). If they are found, their version is checked, and if needed the installation of
a version which has been tested to run with GoSam is suggested.

As soon as all questions are answered, the main installation process will start.
The components will be downloaded, built and installed. The whole procedure can
take about 10-30 minutes.

At the end, a script gosam setup env.sh will be created in the bin/ subdi-
rectory of the install location, which will set (temporarily) all environment vari-
ables as soon as the script is sourced into a shell (with the command source

[path]/gosam setup env.sh). The installer also gives a recommendation how these
environment variables can be set permanently. The script can be used in all tcsh-
and bash-compatible shells.

All files which have been installed are tracked in the installer-log.ini file.
It is important to keep this file and the install script. They are needed to update
and uninstall GoSam. For the default installation, internet access is required.

The program GoSam is designed to run in any modern Unix-like environment
(Linux, Mac). The system requirements are Python (≥ 2.6), a Fortran compiler
(gfortran or ifort), a C/C++ compiler (gcc/icc), and (GNU) make. Compatibility
with gcc versions 4.2.–4.9 as well as clang has been tested. By default, GoSam uses

http://gosam.hepforge.org
http://gosam.hepforge.org/gosam-installer/gosam_installer.py

14

the gfortran/gcc compilers from the GNU Compiler Suite. To use an Intel compiler
(ifort/icc), the --intel option can be used. Specific paths to the compilers can be
provided using the --fc, --cc, --cxx options.

All further options can be listed by invoking the installation script with the flag
help:

gosam installer.py --help.

4.2 Using GoSam

We first start describing the use of GoSam in the standalone version. For the use
in combination with a Monte Carlo program, based on the BLHA interface, we
refer to Section 4.3.

In order to generate the matrix element for a given process the user should
create a process specific setup file, process.in, which we call process card. An
example process card for the process e+e− → tt̄ is given in Appendix A, where we
explain each entry in detail.

It is recommended to generate and modify a template file for the process card.
This can be done by invoking the shell command

gosam.py --template process.in

which generates the file process.in with some documentation for all defined op-
tions. The options are filled with the default values, and some paths are set by the
installation script. User-defined options changing the default values can also be set
in a global configuration file. The script will search in the GoSam-2.0 directory,
in the user’s home directory and in the current working directory for a file named
‘.gosam’ or ‘gosam.in’.

In order to generate the Fortran code for the process specified in the input
card one needs to invoke

gosam.py process.in

Structure of the generated code

The generated process directory will have the following sub-directory structure:

– codegen: This directory contains files which are only relevant for code genera-
tion. These files will therefore not be included in a tar-ball created with make

dist.
– common: Contains Fortran files which are common to all helicity amplitudes

and to the constructed matrix element code. The file config.f90 contains some
global settings, the file model.f90 contains the definitions and settings for the
model parameters. This directory is always compiled first.

– doc: Contains files which are necessary for creating doc/process.pdf, which dis-
plays all Feynman diagrams of the Born level and one-loop amplitude, together
with colour and helicity info.

15

– helicity*: These directories contain all files for a specific helicity amplitude.
The labeling of the helicities can be found in doc/process.pdf. Before invok-
ing make source, this directory only contains the makefiles. After the full code
generation, for each diagram three classes of files are created. The basic al-
gebraic expressions for the individual one-loop diagrams are contained in the
files d*h*l1.txt in an optimized format. The files d*h*l1.prc contain the ex-
pressions of the numerators as polynomials in the loop momentum. The cor-
responding Fortran files are d*h*l1.f90 and abbrevd*h*.f90, where the latter
contains the abbreviations.
Files generated with the derive option (see Sec. 3.2.1) are named d*h*l1d.*,
while the input files for Ninja (see Sec. 3.2) are named d*h*l1*.*. For more
details we refer to the manual [50].

– matrix: Contains the code to combine the helicity amplitudes into a matrix ele-
ment. Here one also finds the test program test.f90. The files in this directory
are always compiled last.

– Further, there are some files in the main process directory, for example the
Born/loop diagram files generated by QGRAF, called diagrams-[0/1].hh, or the
model file model.hh.

4.3 Interfacing to Monte Carlo programs

The interface of GoSam with a Monte Carlo event generator program is based
on the Binoth-Les Houches Accord (BLHA) standards. GoSam-2.0 supports both
BLHA1 [48] and BLHA2 [49]. Certainly, a dedicated interface without using the
BLHA is also possible, and such an interface with MadGraph/MadDipole/MadE-

vent [70–73] has been built and applied successfully in various phenomenological
applications [38,41,43,46,47].

If GoSam is used as a One Loop Provider (OLP), the Monte Carlo program
is steering the different stages of the calculation, in particular the phase space
integration and the event generation, as illustrated in Fig. 2. Therefore, the user
frontend will depend on the user interface of the Monte Carlo program. The latter
will call GoSam at runtime to provide the corresponding value of the one-loop
amplitude at the given phase space points.

A number of phenomenological results produced by combining GoSam with
various Monte Carlo programs can be found in the literature, e.g in combination
with Sherpa [37, 40–42,45], PowHeg [39], Herwig++/Matchbox [66].
Examples how to run GoSam with Sherpa can also be found on the Sherpa manual
webpage [74] and on the GoSam process packages webpage [75]. For the interface
with PowHeg, a detailed description can be found in the appendix of Ref. [39].
The interface with Herwig++/Matchbox is described in [66].

4.4 Using external model files

The GoSam-2.0 package comes with the built-in model files sm, smdiag, smehc,
sm complex, smdiag complex, where the latter two are needed in the case of complex
masses and couplings, see Section 3.5.3. The model files smehc contain the effective
Higgs-gluon couplings.

16

Other models can be imported easily in the UFO (Universal FeynRules Out-
put) [76] format. The model import in the UFO format can be used in the stan-
dalone as well as the OLP mode of GoSam, where both the BLHA1 and BLHA2
standards are supported for the syntax of the model import.

A model description in the UFO format consists of a python package which the
user can either generate using FeynRules [77,78] or write himself and store in any
directory. In order to import the model into GoSam one needs to set the model

variable in the process card (line 5 in the example process card of Appendix A),
specifying the keyword FeynRules in front of the path pointing to the python files
defining the model. For example, if we assume that the model description is in the
directory $HOME/models/MSSM UFO, the process card should contain the line
model= FeynRules,$HOME/models/MSSM UFO .

The import of model files generated by LanHEP [79] is also supported. More
details about the import from LanHEP are given in the GoSam-2.0 manual [50].

It should be pointed out that GoSam-2.0 provides automatic renormalisation
only for QCD corrections. If external model files are used, as well as in the case
of electroweak corrections, including the correct renormalisation is at the respon-
sibility of the user.

The examples directory of the GoSam-2.0 package contains several examples
for the import of model files, both in UFO and in LanHEP format. The subdirectory
examples/model contains model files for the MSSM (as well as for the SM) in both
UFO and LanHEP format. A concrete BSM example is discussed in Subsection 5.3.

5 Examples

5.1 gg → H+1 jet in the heavy top mass limit

Recently GoSam was used to compute the virtual corrections for the production
of a Higgs boson in association with 2 and 3 jets [37, 41] in the infinite top-mass
limit. As an example for this type of processes, where a special model file is needed,
containing the Feynman rules for the effective vertices, which furthermore give rise
to higher rank loop integrals, we consider here the process gg → H g.

An example process card for the generation of this process, and a test routine
comparing a phase space point with results from analytical amplitude represen-
tations is provided among the examples of the GoSam-2.0 distribution. In the
following we will refer to that example to describe some feature of this process.

In order to compute amplitudes using the effective gluon-gluon-Higgs vertices,
the model smehc has to be used. This model contains also the effective vertex for
the Higgs boson decaying to two photons. When setting the powers of the strong
coupling using the order flag, one has to remember that the effective vertex counts
as two powers of the strong coupling. To compute the virtual corrections for H+1
jet we therefore have to set order=QCD, 3, 5.

The inclusion of the effective gluon-gluon-Higgs coupling at NLO also requires
corrections of the Wilson coefficient. At NLO the Wilson coefficient is given by [80]

C1 = −αs
3π

(
1 +

αs
π

11

4

)
, (9)

17

E px py pz

g 298.17848024073913 0 0 298.17848024073913

g 298.17848024073913 0 0 -298.17848024073913
H 311.27885554899825 -282.56832327194081 -20.783785017815998 31.507187680134837

g 285.07810493248002 282.56832327194081 20.783785017815998 -31.507187680134837

Table 2 Kinematic point used for gg → Hg. The Higgs boson mass is set to mH = 125 GeV.

Results for gg → Hg with the kinematic point from Table 2.

GoSam result MCFM result

a0 7.274563870476018× 10−4 7.2745638706144032× 10−4

c0/a0 13.195495732443156 13.195495732443119
c−1/a0 12.160134391476801 12.160134391476900
c−2/a0 −8.9999999999999698 −9.0000000000000000

Table 3 Result for Born and virtual amplitude including the QCD corrections to gg → Hg.
The renormalisation scale is set to µ = mH = 125 GeV.

where the effective Lagrangian is given by

Leff = −C1

4v
HGa,µνGaµν . (10)

The smehc model file also contains the effective vertex for the Higgs decay into a
pair of photons via top- and W -loops. For the vertex factor we use the formula
given by FeynRules [77]:

gγγH =
47e2

72π2v

(
1− 14

705
x2
t −

2

987
x4
t +

33

470
x2
W +

57

6580
x4
W +

87

65800
x6
W

+
41

180950
x8
W +

5

119756
x10
W +

213

26346320
x12
W

)
, (11)

where xt = mH
mt

, xW = mH
mW

and the corresponding effective Lagrangian is given
by

Leff = −1

4
gγγHHF

µνFµν . (12)

Table 3 contains numerical results for gg → Hg at the phase space point shown in
Table 2.

5.2 Single top production

An example containing complex masses in the loop propagators is the so called
s-channel single top quark production, where the top quark has a width wt =
1.5 GeV. In Table 5 we give numerical results for the subprocess ud̄ → νee

+bb̄ at
the phase space point given in Table 4. The b-quarks are taken to be massless and
the comparison has been performed against the HELAC-NLO code [8].

18

E px py pz

u 250 0 0 250

d̄ 250 0 0 -250
νe 147.53211468467353 24.970405230567895 -18.431576028372117 144.23065114968881

e+ 108.70359662136400 103.25573902554709 -0.54846846595840537 33.976807664202191

b 194.06307653413651 -79.895963003674623 7.4858666717648710 -176.69486288452802

b̄ 49.701212159825850 -48.330181252440347 11.494177822565669 -1.5125959293629665

Table 4 Kinematic point used for ud̄→ νee+bb̄. The W -boson and top-quark mass and width
are set to mW = 80.25 GeV, wW = 0, mt = 170.9 GeV and wt = 1.5 GeV.

Results for ud̄→ νee+bb̄ with the kinematic point from Table 4.

GoSam result HELAC-NLO result

a0 6.7779888808717541× 10−13 6.7779888808718329× 10−13

c0/a0 8.8976474517729294 8.8976474517739739
c−1/a0 −4.9124524216371341 −4.9124524216370293
c−2/a0 −5.3333333333333393 −5.3333333333333073

Table 5 Result for Born and virtual amplitude including the QCD corrections to ud̄ →
νee+bb̄. The renormalisation scale is set to µ = mt = 170.9 GeV.

E px py pz

u 250 0 0 250

ū 250 0 0 −250

γ1 250 218.30931500994714 −29.589212828575324 118.17580743990260
γ2 250 −218.30931500994714 29.589212828575324 −118.17580743990260

Table 6 Kinematic point used for uū→ G→ γγ.

5.3 Graviton production within models of large extra dimensions

As an example for the usage of GoSam with a model file different from the Stan-
dard Model we consider the QCD corrections to graviton production in ADD
models [81,82] with large extra dimensions (LED). The corresponding model files
in UFO [76] format, which we generated using FeynRules [77, 78], are located in
the subdirectory examples/model/LED UFO. To import new model files within the
GoSam setup, the user should specify the path to the model file in the process card.
In the given example, this already has been done, i.e. the process card contains the
line model=FeynRules,[gosampath]/examples/model/LED UFO.

The example process we included in the GoSam-2.0 distribution is uū → G →
γγ, where G denotes a graviton, and the program calculates the virtual QCD
corrections. Note that this example also involves integrals where the rank exceeds
the number of propagators, due to the spin-2 nature of the graviton. Running
make test in the subdirectory examples/uu graviton yy should produce the result
shown in Table 7, using the phase space point given in Table 6. The full process,
including an additional jet, has been calculated in [47], where we refer to for details
about the parameter settings.

19

Results for uū→ G→ γγ with the kinematic point from Table 6.

GoSam result analytic result (Ref. [83])

a0 2.6456413225916027× 10−8 2.6456413225916010× 10−8

c0/a0 1.1594725347858084 1.1594725347858106
c−1/a0 −4.0000000000000009 −4.0000000000000000
c−2/a0 −2.6666666666666661 −2.6666666666666666

Table 7 Result for the virtual amplitude including the QCD corrections to uū → G → γγ
within ADD models of large extra dimensions.

6 Conclusions

We have presented the program package GoSam-2.0, which is a highly automated
tool to calculate one-loop multi-particle amplitudes. As the amplitudes at a first
stage are produced in an algebraic form, the program offers a lot of flexibility
concerning the particle content and the couplings, the choice of the reduction
method and the treatment of the rational parts.

GoSam-2.0 can be used to calculate NLO QCD corrections both within and

Beyond the Standard Model, as well as electroweak corrections, in combination with
a Monte Carlo program providing the tree-level and NLO real radiation parts. The
latter can be interfaced using the Binoth-Les-Houches-Accord, where both BLHA1

and BLHA2 standards are supported. The automated interface to various Monte
Carlo programs also offers the possibility to produce parton showered events and
to compare different shower Monte Carlo event generators at NLO level.

We also note that the structure of the code is favourable to be used as a
building block for the one-loop virtual times singly unresolved real radiation part
entering NNLO calculations.

GoSam-2.0 contains many important new features. The installation procedure
is extremely simple: all dependencies are provided in one package, and an install
script is building the whole package in a completely automated way. Setting up a
process is also very user-friendly: the user only has to fill out a well documented
text file, the process card, where the program automatically chooses appropriate
default values for unspecified options.

Improvements in the code generation compared to version 1.0 lead to more com-
pact and faster code. GoSam-2.0 also contains a new integrand reduction method,
the integrand decomposition via Laurent expansion, implemented in the library
Ninja, which leads to a considerable gain in stability and speed, in particular for
amplitudes containing internal masses.

The range of applicability of GoSam also has been extended considerably. In
particular, integrals where the rank exceeds the number of propagators (needed
e.g. in effective theories) are fully supported, and propagators for spin-2 particles
are implemented. The complex mass scheme is supported, including the complexi-
fication of the couplings, and several electroweak schemes can be chosen. Moreover,
a new system for stability tests and the rescue of ‘unstable’ phase space points
has been implemented. In addition, the program offers the possibility to produce
spin-and colour correlated tree-level matrix elements. As a consequence, GoSam-
2.0 can provide all the building blocks needed by modern Monte Carlo programs

20

to construct a full NLO event generator, for QCD corrections both within and
beyond the Standard Model, as well as electroweak corrections.

Therefore, to follow the strive for precision in the next phases of LHC data
taking as well as at a future Linear Collider, not only regarding QCD corrections,
GoSam-2.0 can serve as a highly valuable tool.

Acknowledgements We would like to thank the Herwig++ members J. Bellm, S. Gieseke,
S. Plätzer, D. Rauch and C. Reuschle for fruitful interaction concerning the implementation
of the BLHA2 interface. We are grateful to S. Pozzorini and C. Papadopoulos for comparisons
and to P.-F. Monni for helpful discussions. We also would like to thank Joscha Reichel for
collaboration on the BSM application of GoSam involving spin-2 particles. Finally, we are
indebted to Thomas Reiter for setting the groundwork GoSam is based on. The work of G.C.
was supported by DFG Sonderforschungsbereich Transregio 9, Computergestützte Theoretis-
che Teilchenphysik. P.M., H.v.D., G.L. and T.P. are supported by the Alexander von Humboldt
Foundation, in the framework of the Sofja Kovaleskaja Award Project “Advanced Mathemati-
cal Methods for Particle Physics”, endowed by the German Federal Ministry of Education and
Research. The work of G.O. was supported in part by the National Science Foundation under
Grant PHY-0855489 and PHY-1068550.

A: Commented example of an input card

Here we give a commented example for the process e+e− → tt̄.

In the following it is assumed that the process e+e− → tt̄ should be calculated
to order O(ααs) (QCD corrections). We neglect the exchange of a Z or a Higgs
boson and treat the electron as massless. The output directory is assumed to be in
the relative path eett. A template file for a generic process card (called eett.in

here) can be generated by invoking the shell command
gosam.py --template eett.in

The template file eett.in then should be edited by the user to define the process
specifications. All lines starting with # are comments.

At this point we would like to emphasize that almost all specifications in the
process card are options, which will take default values if they are not filled in by
the user. The paths to the libraries will be inserted automatically by the install
script. The only mandatory fields are the in and out particles, the perturbative
order and the path where to store the process files. Therefore, a minimal process
card can look like this:

Listing 1 eett.in

1 process_path=eett

2 in= e+, e-

3 out= t, t~

4 order= gs , 0, 2

In order to populate the process subdirectory specified under process path

with files for code generation one invokes
gosam.py eett.in

This will create the subdirectory structure described in Section 4.2.

In the following, we will give detailed comments to all the fields and options
available in the process card for the example eett.in. (Please note that the line

21

numbers on the left are only included for better readability and should not be
included in your input file).

Listing 2 eett.in

1 process_name=eett

2 process_path=eett

3 in= e+, e-

4 out= t, t~

5 model= smdiag

6 model.options=ewchoose

7 order= gs , 0, 2

8 zero=me

9 one=gs ,e

10 regularisation_scheme=dred

11 helicities=

12 qgraf.options=onshell ,notadpole ,nosnail

13 qgraf.verbatim= True=iprop[Z, 0, 0];\n\

14 true=iprop[H, 0, 0];

15 qgraf.verbatim.lo=

16 qgraf.verbatim.nlo=

17 polvec=numerical

18 diagsum=True

19 reduction_programs=ninja ,golem95 ,samurai

20 extensions=shared

21 debug=nlo

22 select.lo=

23 select.nlo=

24 filter.lo=

25 filter.nlo=

26 filter.module=

27 renorm_beta=True

28 renorm_mqwf=True

29 renorm_decoupling=True

30 renorm_mqse=True

31 renorm_logs=True

32 renorm_gamma5=True

33 reduction_interoperation =-1

34 reduction_interoperation_rescue =-1

35 samurai_scalar =2

36 nlo_prefactors =0

37 PSP_check=True

38 PSP_rescue=True

39 PSP_verbosity=False

40 PSP_chk_th1 =8

41 PSP_chk_th2 =3

42 PSP_chk_th3 =5

43 PSP_chk_kfactor =10000

44 reference -vectors=

45 abbrev.limit =0

22

46 templates=

47 qgraf.bin=qgraf

48 form.bin=form

49 form.threads =2

50 form.tempdir =/tmp

51 haggies.bin=

52 fc.bin=/usr/bin/gfortran

53 python.bin=python

54 ninja.fcflags=

55 ninja.ldflags=

56 samurai.fcflags=

57 samurai.ldflags=

58 golem95.fcflags=

59 golem95.ldflags=

60 r2=explicit

61 symmetries=family ,generation

62 crossings=

The comments to the file eett.in are as follows.

1 Setting a process name is optional but recommended. All module names will
be prefixed with the process name (e.g. precision → eett precision). This
will avoid name conflicts if at a later stage more than one matrix elements are
linked into one executable.

2 The item process path specifies the directory to which all generated files and
directories are written. Specification of a process path is mandatory.

3–4 The items in and out specify the particles of the initial and final state. The
particle names must be defined in the selected model file. As the model files
usually define mnemonics for the particle names there might be several ways
of specifying the same process. Instead of ‘e+’ one could have written ‘ep’ or
‘positron’. For a complete list of alternative particle names please refer to the
documentation of the corresponding model file.
Specifying in and out particles is mandatory.

5 The option model specifies which model files should be used in order to generate
and evaluate the diagrams. How to import models in UFO or LanHep format is
described in Section 4.4. The default for this field is smdiag, i.e. the built-in
Standard Model file with a diagonal CKM matrix.

6 The option model.options can be used to pass options which are specific to
a certain model. The default is ewchoose, which means that the electro-weak
scheme is selected automatically according to the given input parameters.

7 The item order is a comma separated list with three entries. The first entry
specifies a symbol that denotes a coupling constant. In the Standard Model file
sm the only two possibilities are ‘gs’ for the strong coupling constant gs and ‘e’
for the electroweak coupling. The second number is the power of the chosen
coupling constant for the tree-level diagrams and the third number specifies
the power of that coupling constant for the one-loop diagrams. Note that the
numbers refer to the powers in the diagrams of the amplitude rather than the
squared amplitude. In the above example the string ‘gs, 0, 2’ specifies that
the tree-level diagrams should be of order g0

s and the one-loop diagrams should
be of order g2

s and an unspecified power of e in both cases. If there is no tree

23

level, i.e. the process is loop induced, the keyword NONE should be put as second
item in the list, instead of the tree level power of the coupling.
The values of order are translated into a vsum constraint in the file qgraf.dat.
This field is mandatory.

8–9 The keywords zero and one specify a set of symbols that should be treated
as zero (resp. one). These simplifications are applied at the symbolical level.
Only symbols that appear in the FORM interface of the model file should be
specified here (masses, couplings, CKM-matrix elements, etc). In the example
we specify the electron mass ‘me’ to be zero and we do not keep the coupling
constants in the calculation explicitly (gs = e = 1).
These options can be omitted.

10 The option regularisation scheme allows to choose the dimensional regular-
isation scheme, in our example dred for dimensional reduction, which is the
default. cdr for “conventional dimensional regularisation” is also possible.

11 helicites: a comma separated list of helicities to be calculated. An empty list
means that all possible helicities should be generated. The characters corre-
spond to particles 1, 2, ... from left to right.
Example: e+e− → γγ:
Only three helicity configurations are required; the other ones are either zero
or can be obtained by symmetry transformations. This corresponds to
helicities=+-++,+-+-,+---

Multiple helicities can be encoded in patterns, which are expanded at the time
of code generation. For more details we refer to the manual.

12 qgraf.options=onshell,notadpole,nosnail: a list of options which is passed to
QGRAF via the ’options’ line. Possible values (as of qgraf.3.1.1) are the following
keywords: onepi, onshell, nosigma, nosnail, notadpole, floop, topol. In our ex-
ample, it means that external lines are on-shell, i.e. do not contain selfenergy
corrections, and that tadpole and snail diagrams are discarded. We refer to the
QGRAF documentation for more details.

13-16 The value of the option qgraf.verbatim is passed verbatim to the file qgraf.dat.
In our example we suppress the generation of diagrams containing Higgs and Z
bosons. As these commands are passed verbatim to QGRAF, no mnemonic names
are allowed here, e.g. the Higgs particle has to be denoted by ‘H’ and cannot be
replaced by ‘h’. For a complete list of available options, please consult the QGRAF

manual. For a complete list of particle names we refer to the documentation
of the corresponding model file.
These options can be omitted.

17 polvec: by default (polvec=numerical), numerical polarisation vectors are used
for the massless gauge bosons, rather than producing separate code for each
helicity (see Section 3.1.3). To switch off the use of numerical polarisation
vectors, use polvec=explicit.

18 diagsum: if True, one-loop diagrams sharing some propagators are combined
before the algebraic reduction. The default is diagsum = True.

19 The option reduction programs allows to choose the amplitude reduction method.
If several choices are given, the code is produced such that the reduction meth-
ods can be switched at runtime. The default is ninja, golem95.

20 extensions: this option contains a list of useful extensions to the core of the
program, which operate at the code generation stage. The currently available
extensions are

24

– autotools: use autotools to generate Makefiles
– shared: create shared libraries (i.e. dynamically linkable code rather than

static libraries). This extension is enabled by default when using the autotools
extension.

– f77: in combination with the BLHA interface it generates a file olp module.f90

linkable with Fortran77.
– noformopt: disables diagram optimization using FORM

– gaugecheck: modifies the massless gauge boson wave functions to allow for
a check of gauge invariance for processes involving gluons or photons.

– customspin2prop allows to replace the propagator of spin-2 particles with
a custom function (we refer to the manual for details).

In our example shared tells the program to build dynamic rather than static
libraries.

21 debug: can take the values lo, nlo, all. It sets the level of information printed
to the file matrix/debug.xml when running the test program.

22 select.lo: can be used to select/discard diagrams by their diagram numbers.
It can contain a list of integer numbers, indicating leading order diagrams to be
selected. If no list is given, all diagrams are selected. Otherwise, all diagrams
whose numbers are not in the list will be discarded. The list may also contain
ranges, with increments different from one, e.g. select.lo=1,2,5:10:3, 50:53

is equivalent to select.lo=1,2,5,8,50,51,52,53, i.e. the 3 in 5:10:3 is the
increment.

23 select.nlo: analogous to select.lo, for the one-loop diagrams.
24 filter.lo: a python function which provides a filter for tree diagrams.

Example: filter.lo=lambda d: d.iprop(Z) == 1 and d.vertices(Z, U, Ubar)

== 0 filters out diagrams containing exactly one Z propagator and no Zuū

couplings.
25 filter.nlo: analogous to filter.lo, for the one-loop diagrams. For details we

refer to the manual.
26 filter.module: a python file of predefined functions which can be used as

filters.
27 renorm beta: activates or disables beta function renormalisation. The default

is True.
28 renorm mqwf: activates or disables UV countertems coming from external mas-

sive quarks. The default is True.
29 renorm decoupling: activates or disables UV counterterms coming from massive

quark loops. The default is True.
30 renorm mqse: activates or disables the UV counterterm coming from the massive

quark propagators. The default is True.
31 renorm logs: activates or disables the logarithmic finite terms associated with

the UV counterterms. The default is True.
32 renorm gamma5: activates finite renormalisation for axial couplings in the ’t Hooft

Veltman scheme (CDR). Implemented for QCD only, works only with the built-
in model files. The default is True.

33 reduction interoperation: denotes the reductuion libraries to be used. Possi-
ble values are: ninja, samurai, golem95 (listing all of them simultaneously is
possible). A value of -1 lets GoSam decide. See common/config.f90 for details.

34 reduction interoperation rescue: specifies the reduction library to be used to
rescue ‘unstable points’. A value of -1 lets GoSam decide.

25

35 samurai scalar: integer which specifies the library Samurai chooses for the
basis integrals. 1: QCDLoop, 2: OneLOop, 3: Golem95C. The default is 2.

36 nlo prefactors: can take the integer values 0,1,2, which have the following
meaning:
0 : a factor of α(s)/(2π) is not included in the NLO result

1 : a factor of 1/(8π2) is not included in the NLO result
2 : the NLO result includes all prefactors (see also manual).

Note, however, that the factor of 1/Γ (1 − ε) is not included in any of the
cases. Please note also that nlo prefactors=0 is enforced in test.f90 in order
to recognize rational numbers for the pole coefficients. In the OLP interface
mode (BLHA/BLHA2), the default is nlo prefactors=2.

37 PSP check: allows to switch the stability test of the full amplitude for each
phase space point on or off. If PSP check is set to False, the following flags
concerning PSP rescue and the various thresholds for the rescue system have
no effect. Details about the stability tests are given in Section 3.4. Please note
that this test only works for QCD with the built-in model files. The default is
PSP check= True.

38 PSP rescue: activates the phase space point rescue system based on the esti-
mated accuracy of the finite part. The accuracy is estimated using information
on the single pole accuracy and the cancellation between the cut-constructible
part and R2. The default is PSP rescue= True.

39 PSP verbosity: sets the verbosity of the PSP check. verbosity = False means
no output, verbosity = True means that bad points are written to a file
gs badpts.log. The default is verbosity = False.

40 PSP chk th1: an integer indicating the number of desired accurate digits of the
single pole coefficient. For poles coefficients more precise than this threshold
the finite part is not checked separately. Note that this works only for QCD,
with the built-in model files. The default is 8.

41 PSP chk th2: threshold (number of accurate digits) to declare a phase space
point as bad point, based on the precision of the pole coefficient. Points with
precision less than this threshold are directly reprocessed with the rescue sys-
tem (if available), or declared as unstable. According to the verbosity level set,
such points are written to a file and not used when the code is interfaced to an
external Monte Carlo program using the new BLHA2 standards. The default
is 3.

42 PSP chk th3: threshold (number of accurate digits) to declare a phase space
point as bad point, based on the precision of the finite part estimated with a
rotation. According to the verbosity level set, such points are written to a file
and not used when the code is interfaced to an external Monte Carlo program
using the new BLHA2 standards. The default is 5.

43 PSP chk kfactor: threshold on the K-factor to declare a phase space point as
bad point. According to the verbosity level set, such points are written to a file
and not used when the code is interfaced to an external Monte Carlo program
using the new BLHA2 standards. The default is 10000.

44 reference-vectors: comma separated list of reference vectors for massive fermions
and vector bosons. If no reference vectors are assigned here, the program picks
the reference vectors automatically. Each entry of the list has to be of the form
〈index〉 : 〈index〉. Example:
in=g,u

26

out=t,W+

reference-vectors=1:2,3:4,4:3

In this example, the gluon (particle 1) takes the momentum k2 as reference mo-
mentum for the polarisation vector. The massive top quark (particle 3) uses
the light-cone projection l4 of the W-boson as reference direction for its own
momentum splitting. Similarly, the momentum of the W-boson is split into a
direction l4 and one along l3.

45 abbrev.limit: maximum number of instructions per subroutine when calculat-
ing abbreviations. The default is 0, which means that no maximum is set.

46 templates: path pointing to the directory containing the template files for the
process. If not set, the program uses the directory 〈 gosam path〉/templates.
The directory must contain a file called template.xml.

47 qgraf.bin: path to the QGraf executable. The default path will be set by the
installation script.

48 form.bin: path to the FORM executable. The default path will be set by the
installation script.

49 form.threads: the number of FORM threads when using tform, the parallel ver-
sion of FORM. The default is 2.

50 form.tempdir: the temporary directory where FORM can store (large) interme-
diate files. the default is /tmp.

51 haggies.bin: path to the haggies executable. The default path will be set by
the installation script.

52 fc.bin: path to the Fortran compiler. The default path will be set by the
installation script.

53 python.bin: path to the python executable. The default path will be set by the
installation script.

54 ninja.fcflags: compiler flags to compile with Ninja. The default will be set
by the installation script.

55 ninja.ldflags: ldflags required to link the Ninja library. The default will be
set by the installation script.

56 samurai.fcflags: compiler flags to compile with Samurai. The default will be
set by the installation script.

57 samurai.ldflags: ldflags required to link the Samurai library. The default
will be set by the installation script.

58 golem95.fcflags: compiler flags to compile with Golem95C. The default will
be set by the installation script.

59 golem95.ldflags: ldflags required to link the Golem95C library. The default
will be set by the installation script.

60 r2: treatment of the rational part R2. The possibilities are:
– implicit: µ2 terms are kept in the numerator and reduced at runtime,
– explicit: µ2 terms are reduced analytically,
– off: all µ2 terms are set to zero.

The default is r2=explicit.
61 symmetries: this information is used when the list of helicity configurations is

generated. An empty list means that all helicity configurations will be gener-
ated, even if some of them could be mapped onto each other. Possible values
are:

27

– flavour: assumes that no flavour changing interactions are present. When
calculating the list of helicities, fermions with PDG codess 1-6 are assumed
not to mix.

– family: flavour changing only within families. When calculating the list of
helicities, fermion lines with PDG codes 1-6 are assumed to mix only within
families, i.e. a quark line connecting an up with a down quark would be
considered, while up-bottom would be discarded.

– lepton: means for leptons what ‘flavour’ means for quarks.
– generation: means for leptons what ‘family’ means for quarks.
– 〈n〉 = 〈h〉: restriction of particle helicities, e.g. 1=-, 2=+ specifies helicities

of particles 1 and 2.
– %〈n〉 = 〈h〉 restriction by PDG code, e.g. %23=+- specifies the helicity of

all Z-bosons to be ’+’ and ’-’ only (no ’0’ polarisation),
%〈n〉 refers to both +n and −n,
%+〈n〉 refers to +n only, %-〈n〉 refers to −n only.

62 crossings: a list of crossed processes derived from this process. For each process
in the list a module similar to matrix.f90 is generated.
Example:
process name=ddx uux

in=1,-1

out=2,-2

crossings = dxd uux: -1 1 → 2 -2, ud ud: 2 1 → 2 1

B: Higher rank integrals

Higher rank integrals are implemented in all reduction libraries included in GoSam.
Ninja and Samurai are based on integrand reduction, as described in Section 3.2,
Golem95C provides tensor integrals, using a tensor reduction method and a basis
of scalar integrals which has been designed to provide numerical stability in prob-
lematic phase space regions, for example in the limit of small Gram determinants.

In the following we briefly sketch the main features of the higher rank exten-
sions for both approaches, more details can be found in [31,34,58].

B.1: Integrand reduction approach

If the rank r of a one-loop integrand is not larger than the number of propagators
N , the respective integral can be written as the following combination of known

28

master integrals

M =
∑

{i1,i2,i3,i4}

{
c
(i1i2i3i4)
0 Ii1i2i3i4 + c

(i1i2i3i4)
4 Ii1i2i3i4 [µ4]

}

+
∑

{i1,i2,i3}

{
c
(i1i2i3)
0 Ii1i2i3 + c

(i1i2i3)
7 Ii1i2i3 [µ2]

}

+
∑
{i1,i2}

{
c
(i1i2)
0 Ii1i2 + c

(i1i2)
1 Ii1i2 [(q + pi1) · e2]

+ c
(i1i2)
2 Ii1i2 [((q + pi1) · e2)2] + c

(i1i2)
9 Ii1i2 [µ2]

}
+
∑
i1

c
(i1)
0 Ii1 , (B.1)

where

Ii1···ik [α] ≡
∫
d4−2εq

α

Di1 · · ·Dik
, Ii1···ik ≡ Ii1···ik [1],

Dj = (q + pj)
2 −m2

j (B.2)

with

Ii1i2i3i4 [µ4] = −1

6
+O(ε)

Ii1i2i3 [µ2] =
1

2
+O(ε)

Ii1i2 [µ2] = −1

6

(
p2
i1 − 3(mi1 +mi2)

)
+O(ε) . (B.3)

In the case where r = N + 1 the integral is generalized as

M(r=N+1) =M(r=N) +
∑

{i1,i2,i3}
c
(i1i2i3)
14 Ii1i2i3 [µ4]

+
∑
{i1,i2}

{
c
(i1i2)
10 Ii1i2 [µ2 (q + pi1) · e2)] + c

(i1i2)
13 Ii1i2 [((q + pi1) · e2)3]

}

+
∑
i1

{
c14 Ii1 [µ2] + c

(i1)
15 Ii1 [((q + pi1) · e3)((q + pi1) · e4)]

}
. (B.4)

The three integrals in Eq. (B.4) whose numerator is proportional to µ2 are finite
and contribute to the rational part of the amplitude. They have been computed
in Ref. [27, 34] and they read

Ii1i2i3 [µ4] =
iπ2

6

(
si2i1 + si3i2 + si1i3

4
−m2

i1 −m
2
i2 −m

2
i3

)
+O(ε)

(B.5)

Ii1i2 [µ2 ((q + pi1) · e2)] = iπ2 ((pi2 − pi1) · e2)

12

(
si2i1 − 2m2

i1 − 4m2
i2

)
+O(ε) (B.6)

Ii1 [µ2] =
iπ2m4

i1

2
+O(ε) (B.7)

29

where sij ≡ (pi−pj)2. The tadpole of rank 2 appearing in Eq. (B.4) can be written
in terms of the scalar tadpole Ii1 as

Ii1 [((q + pi1) · e3) ((q + pi1) · e4)] = m2
i1

(e3 · e4)

4

(
Ii1 +

iπ2m2
i1

2

)
+O(ε). (B.8)

Finally, since the vector e2 can always be chosen to be massless, the bubble integral
of rank 3 appearing in Eq. (B.4) is proportional to the form factor B111,

Ii1i2 [((q + pi1) · e2)3] = ((pi2 − pi1) · e2)3B111(si2i1 ,m
2
i1 ,m

2
i2). (B.9)

The latter can be computed using the formulas of Ref. [84], as a function of form
factors of scalar integrals B0. In the special case with si2i1 = 0 we use Eq. (A.6.2)
and (A.6.3) of that reference. For the general case si2i1 6= 0 we use instead the
following formula [32]

B111(si2i1 ,m
2
i1 ,m

2
i2) =

1

4 s3i2i1

{
si2i1

(
m2
i1 Ii1 + Ii1 [µ2]−m2

i2 Ii2 − Ii2 [µ2]

− 4 Ii1i2 [µ2 ((q + pi1) · (pi2 − pi1))]

− 4m2
i1 Ii1i2 [(q + pi1) · (pi2 − pi1)]

)
+ 4 (m2

i2 −m
2
i1 − si2i1) Ii1i2 [((q + pi1) · (pi2 − pi1))2]

}
.

(B.10)

B.2: Tensor reduction approach

In the tensor reduction approach, the tensor integrals are written in terms of
linear combinations of scalar form factors and all possible combinations of external
momenta and metric tensors carrying the Lorentz structure. The form factors
themselves are then reduced to a convenient set of basis integrals. It is well known
that, due to the 4-dimensionality (resp. D = 4− 2ε dimensionality in dimensional
regularisation) of space-time, integrals with N ≥ 6 can be reduced iteratively to
5-point integrals. Therefore form factors for N ≥ 6 are never needed. The general
form factor decomposition of an arbitrary tensor integral can be written as

ID,µ1...µr

N (a1, . . . , ar;S) =

∫
dDk

iπD/2
qµ1
a1
. . . qµr

ar∏N
j=1(q2

j −m
2
j + iδ)

(B.11)

=
∑

j1,...,jr∈S

[
∆·j1· · · ·∆

·
jr·
]{µ1...µr}
{a1...ar} A

N,r
j1...jr

(S)

+
∑

j1,...,jr−2∈S

[
g··∆·j1· · · ·∆

·
jr−2·

]{µ1...µr}
{a1...ar} B

N,r
j1...jr−2

(S)

+
∑

j1,...,jr−4∈S

[
g··g··∆·j1· · · ·∆

·
jr−4·

]{µ1...µr}
{a1...ar} C

N,r
j1...jr−4

(S)

+
∑

j1,...,jr−4∈S

[
g··g··g··∆·j1· · · ·∆

·
jr−6·

]{µ1...µr}
{a1...ar} D

N,r
j1...jr−6

(S)

+ . . . ,

30

where ∆µij = rµi − rµj are differences of external momenta r, and qa = k + ra.

The notation [· · ·]{µ1···µr}
{a1···ar} stands for the distribution of the r Lorentz indices

µi, and the momentum labels ai, to the vectors ∆µi

j ai
and metric tensors in all

distinguishable ways. Note that the choice rN = 0, ai = N ∀ i leads to the well
known representation in terms of external momenta where the labels ai are not
necessary, but we prefer a completely shift invariant notation here.

S denotes an ordered set of propagator labels, corresponding to the momenta
forming the kinematic matrix S, defined by

Sij = (ri − rj)2 −m2
i −m

2
j , i, j ∈ {1, . . . , N} .

We should point out that the form factors of type DN,rj1...jr−6
and beyond, i.e.

form factors associated with three or more metric tensors, are not needed for
integrals where the rank r does not exceed the number N of propagators, no
matter what the value of N is, because integrals with N ≥ 6 can be reduced
algebraically to pentagons.

The program Golem95C reduces the form factors A, . . . ,D internally to a set of
basis integrals, i.e. the endpoints of the reduction (they do not form a basis in the
mathematical sense, as some of them are not independent). The choice of the basis
integrals can have important effects on the numerical stability in certain kinematic
regions. Our reduction endpoints are 4-point functions in 6 dimensions I6

4 , which
are IR and UV finite, 4-point functions in D + 4 dimensions, and various 3-point,
2-point and 1-point functions. A special feature of Golem95C is that the algebraic
reduction to scalar basis integrals is automatically replaced by a stable and fast
one-dimensional numerical integration of parametric integrals corresponding to
tensor rather than scalar integrals in kinematic situations where a further reduction
would lead to spurious inverse Gram determinants tending to zero. This leads to
improved numerical stability.

The extension of Golem95C to higher rank integrals [58] follows the reduction
formalism as outlined in [24]. However, the extension of the formalism to rank
six pentagons required some care, as the latter develop an UV divergence, and
therefore O(ε) terms occurring in the reduction need to be taken into account at
intermediate stages.

The rational parts of all the integrals contained in Golem95C can be extracted
separately, and analytic formulae for r ≤ N are provided in [85]. The results for
those integrals which are relevant for the higher rank extension can be extracted
from [27], where formulae for all possible rational parts are given in a general form.
The ones which are relevant for the higher rank extension which have not been
given above already are listed explicitly here, where the notation conventions are
kµ

(D)
= k̂µ

(4)
+ k̃µ

(−2ε), k
2
(D) = k̂2 + k̃2 ,

ID,α;µ1...µr

N (a1, . . . ar;S) ≡
∫

dDk

iπD/2

(
k̃2
)α
q̂µ1
a1
· · · q̂µr

ar∏N
j=1(q2

j −m
2
j + iδ)

, (B.12)

31

with the results [58]

ID,35 (S) = − 1

12
+O(ε) , (B.13)

ID,2;µ1µ2

5 (a1, a2;S) = − 1

48
gµ1µ2 +O(ε) ,

ID,1;µ1···µ4

5 (a1, . . . , a4;S) = − 1

96
[gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3] +O(ε) ,

εID+6
4 (S) =

1

240

 4∑
i,j=1

(∆2
ij −m

2
i −m

2
j)− 2

4∑
i=1

m2
i

+O(ε) .

References

1. ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for
the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys.Lett. B716
(2012) 1–29, [arXiv:1207.7214].

2. CMS Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125
GeV with the CMS experiment at the LHC, Phys.Lett. B716 (2012) 30–61,
[arXiv:1207.7235].

3. C. Berger, Z. Bern, L. Dixon, F. Febres Cordero, D. Forde, et al., An Automated
Implementation of On-Shell Methods for One-Loop Amplitudes, Phys.Rev. D78 (2008)
036003, [arXiv:0803.4180].

4. T. Hahn, Feynman Diagram Calculations with FeynArts, FormCalc, and LoopTools,
PoS ACAT2010 (2010) 078, [arXiv:1006.2231].

5. J. M. Campbell, R. K. Ellis, and C. Williams, Vector boson pair production at the LHC,
JHEP 1107 (2011) 018, [arXiv:1105.0020].

6. S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO
calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 1006 (2010)
043, [arXiv:1002.2581].

7. K. Arnold, J. Bellm, G. Bozzi, M. Brieg, F. Campanario, et al., VBFNLO: A Parton
Level Monte Carlo for Processes with Electroweak Bosons – Manual for Version 2.5.0,
arXiv:1107.4038.

8. G. Bevilacqua, M. Czakon, M. Garzelli, A. van Hameren, A. Kardos, et al.,
HELAC-NLO, Comput.Phys.Commun. 184 (2013) 986–997, [arXiv:1110.1499].

9. V. Hirschi, R. Frederix, S. Frixione, M. V. Garzelli, F. Maltoni, et al., Automation of
one-loop QCD corrections, JHEP 1105 (2011) 044, [arXiv:1103.0621].

10. G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, et al., Automated One-Loop
Calculations with GoSam, Eur.Phys.J. C72 (2012) 1889, [arXiv:1111.2034].

11. F. Cascioli, P. Maierhofer, and S. Pozzorini, Scattering Amplitudes with Open Loops,
Phys.Rev.Lett. 108 (2012) 111601, [arXiv:1111.5206].

12. S. Actis, A. Denner, L. Hofer, A. Scharf, and S. Uccirati, Recursive generation of
one-loop amplitudes in the Standard Model, JHEP 1304 (2013) 037, [arXiv:1211.6316].

13. S. Badger, B. Biedermann, P. Uwer, and V. Yundin, Numerical evaluation of virtual
corrections to multi-jet production in massless QCD, Comput.Phys.Commun. 184
(2013) 1981–1998, [arXiv:1209.0100].

14. G. Ossola, C. G. Papadopoulos, and R. Pittau, Reducing full one-loop amplitudes to
scalar integrals at the integrand level, Nucl.Phys. B763 (2007) 147–169,
[hep-ph/0609007].

15. G. Ossola, C. G. Papadopoulos, and R. Pittau, Numerical evaluation of six-photon
amplitudes, JHEP 0707 (2007) 085, [arXiv:0704.1271].

16. G. Ossola, C. G. Papadopoulos, and R. Pittau, CutTools: a program implementing the
OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042,
[arXiv:0711.3596].

17. P. Mastrolia and G. Ossola, On the Integrand-Reduction Method for Two-Loop
Scattering Amplitudes, JHEP 1111 (2011) 014, [arXiv:1107.6041].

18. S. Badger, H. Frellesvig, and Y. Zhang, Hepta-Cuts of Two-Loop Scattering Amplitudes,
JHEP 1204 (2012) 055, [arXiv:1202.2019].

http://xxx.lanl.gov/abs/1207.7214
http://xxx.lanl.gov/abs/1207.7235
http://xxx.lanl.gov/abs/0803.4180
http://xxx.lanl.gov/abs/1006.2231
http://xxx.lanl.gov/abs/1105.0020
http://xxx.lanl.gov/abs/1002.2581
http://xxx.lanl.gov/abs/1107.4038
http://xxx.lanl.gov/abs/1110.1499
http://xxx.lanl.gov/abs/1103.0621
http://xxx.lanl.gov/abs/1111.2034
http://xxx.lanl.gov/abs/1111.5206
http://xxx.lanl.gov/abs/1211.6316
http://xxx.lanl.gov/abs/1209.0100
http://xxx.lanl.gov/abs/hep-ph/0609007
http://xxx.lanl.gov/abs/0704.1271
http://xxx.lanl.gov/abs/0711.3596
http://xxx.lanl.gov/abs/1107.6041
http://xxx.lanl.gov/abs/1202.2019

32

19. Y. Zhang, Integrand-Level Reduction of Loop Amplitudes by Computational Algebraic
Geometry Methods, JHEP 1209 (2012) 042, [arXiv:1205.5707].

20. P. Mastrolia, E. Mirabella, G. Ossola, and T. Peraro, Scattering Amplitudes from
Multivariate Polynomial Division, Phys.Lett. B718 (2012) 173–177, [arXiv:1205.7087].

21. P. Mastrolia, E. Mirabella, G. Ossola, and T. Peraro, Multiloop Integrand Reduction for
Dimensionally Regulated Amplitudes, Phys.Lett. B727 (2013) 532–535,
[arXiv:1307.5832].

22. W. T. Giele, Z. Kunszt, and K. Melnikov, Full one-loop amplitudes from tree amplitudes,
JHEP 0804 (2008) 049, [arXiv:0801.2237].

23. P. Mastrolia, G. Ossola, T. Reiter, and F. Tramontano, Scattering AMplitudes from
Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 1008 (2010) 080,
[arXiv:1006.0710].

24. T. Binoth, J. P. Guillet, G. Heinrich, E. Pilon, and C. Schubert, An Algebraic/numerical
formalism for one-loop multi-leg amplitudes, JHEP 0510 (2005) 015, [hep-ph/0504267].

25. G. Heinrich, G. Ossola, T. Reiter, and F. Tramontano, Tensorial Reconstruction at the
Integrand Level, JHEP 1010 (2010) 105, [arXiv:1008.2441].

26. T. Binoth, J. Guillet, and G. Heinrich, Reduction formalism for dimensionally regulated
one loop N point integrals, Nucl.Phys. B572 (2000) 361–386, [hep-ph/9911342].

27. T. Reiter, Automated Evaluation of One-Loop Six-Point Processes for the LHC,
arXiv:0903.0947. Ph.D. Thesis, The University of Edinburgh, 2008.

28. G. Cullen, J. Guillet, G. Heinrich, T. Kleinschmidt, E. Pilon, et al., Golem95C: A library
for one-loop integrals with complex masses, Comput.Phys.Commun. 182 (2011)
2276–2284, [arXiv:1101.5595].

29. P. Mastrolia, G. Ossola, C. Papadopoulos, and R. Pittau, Optimizing the Reduction of
One-Loop Amplitudes, JHEP 0806 (2008) 030, [arXiv:0803.3964].

30. P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro, and H. van Deurzen, The Integrand
Reduction of One- and Two-Loop Scattering Amplitudes, PoS LL2012 (2012) 028,
[arXiv:1209.5678].

31. H. van Deurzen, Associated Higgs Production at NLO with GoSam, Acta Phys.Polon.
B44 (2013), no. 11 2223–2230.

32. T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop
Amplitudes, arXiv:1403.1229.

33. H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, et al., Multi-leg
One-loop Massive Amplitudes from Integrand Reduction via Laurent Expansion,
arXiv:1312.6678.

34. P. Mastrolia, E. Mirabella, and T. Peraro, Integrand reduction of one-loop scattering
amplitudes through Laurent series expansion, JHEP 1206 (2012) 095,
[arXiv:1203.0291].

35. N. Greiner, A. Guffanti, T. Reiter, and J. Reuter, NLO QCD corrections to the
production of two bottom-antibottom pairs at the LHC, Phys.Rev.Lett. 107 (2011)
102002, [arXiv:1105.3624].

36. N. Greiner, G. Heinrich, P. Mastrolia, G. Ossola, T. Reiter, et al., NLO QCD corrections
to the production of W+ W- plus two jets at the LHC, Phys.Lett. B713 (2012) 277–283,
[arXiv:1202.6004].

37. H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, et al., NLO QCD
corrections to the production of Higgs plus two jets at the LHC, Phys.Lett. B721 (2013)
74–81, [arXiv:1301.0493].

38. T. Gehrmann, N. Greiner, and G. Heinrich, Photon isolation effects at NLO in γγ + jet
final states in hadronic collisions, JHEP 1306 (2013) 058, [arXiv:1303.0824].

39. G. Luisoni, P. Nason, C. Oleari, and F. Tramontano, HW±/HZ + 0 and 1 jet at NLO
with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, JHEP
1310 (2013) 083, [arXiv:1306.2542].

40. S. Hoeche, J. Huang, G. Luisoni, M. Schoenherr, and J. Winter, Zero and one jet
combined NLO analysis of the top quark forward-backward asymmetry, Phys.Rev. D88
(2013) 014040, [arXiv:1306.2703].

41. G. Cullen, H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, et al., NLO QCD
corrections to Higgs boson production plus three jets in gluon fusion, Phys.Rev.Lett. 111
(2013) 131801, [arXiv:1307.4737].

42. H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, et al., NLO QCD
corrections to Higgs boson production in association with a top quark pair and a jet,
Phys.Rev.Lett. 111 (2013) 171801, [arXiv:1307.8437].

http://xxx.lanl.gov/abs/1205.5707
http://xxx.lanl.gov/abs/1205.7087
http://xxx.lanl.gov/abs/1307.5832
http://xxx.lanl.gov/abs/0801.2237
http://xxx.lanl.gov/abs/1006.0710
http://xxx.lanl.gov/abs/hep-ph/0504267
http://xxx.lanl.gov/abs/1008.2441
http://xxx.lanl.gov/abs/hep-ph/9911342
http://xxx.lanl.gov/abs/0903.0947
http://xxx.lanl.gov/abs/1101.5595
http://xxx.lanl.gov/abs/0803.3964
http://xxx.lanl.gov/abs/1209.5678
http://xxx.lanl.gov/abs/1403.1229
http://xxx.lanl.gov/abs/1312.6678
http://xxx.lanl.gov/abs/1203.0291
http://xxx.lanl.gov/abs/1105.3624
http://xxx.lanl.gov/abs/1202.6004
http://xxx.lanl.gov/abs/1301.0493
http://xxx.lanl.gov/abs/1303.0824
http://xxx.lanl.gov/abs/1306.2542
http://xxx.lanl.gov/abs/1306.2703
http://xxx.lanl.gov/abs/1307.4737
http://xxx.lanl.gov/abs/1307.8437

33

43. T. Gehrmann, N. Greiner, and G. Heinrich, Precise qcd predictions for the production of
a photon pair in association with two jets, Phys. Rev. Lett. 111 (2013) 222002,
[arXiv:1308.3660].

44. M. J. Dolan, C. Englert, N. Greiner, and M. Spannowsky, Further on up the road: hhjj
production at the LHC, Phys.Rev.Lett. 112 (2014) 101802, [arXiv:1310.1084].

45. G. Heinrich, A. Maier, R. Nisius, J. Schlenk, and J. Winter, NLO QCD corrections to
WWbb production with leptonic decays in the light of top quark mass and asymmetry
measurements, arXiv:1312.6659.

46. G. Cullen, N. Greiner, and G. Heinrich, Susy-QCD corrections to neutralino pair
production in association with a jet, Eur.Phys.J. C73 (2013) 2388, [arXiv:1212.5154].

47. N. Greiner, G. Heinrich, J. Reichel, and J. F. von Soden-Fraunhofen, NLO QCD
corrections to diphoton plus jet production through graviton exchange, JHEP 1311
(2013) 028, [arXiv:1308.2194].

48. T. Binoth, F. Boudjema, G. Dissertori, A. Lazopoulos, A. Denner, et al., A Proposal for
a standard interface between Monte Carlo tools and one-loop programs,
Comput.Phys.Commun. 181 (2010) 1612–1622, [arXiv:1001.1307].

49. S. Alioli, S. Badger, J. Bellm, B. Biedermann, F. Boudjema, et al., Update of the Binoth
Les Houches Accord for a standard interface between Monte Carlo tools and one-loop
programs, Comput.Phys.Commun. 185 (2014) 560–571, [arXiv:1308.3462].

50. http://gosam.hepforge.org.
51. P. Nogueira, Automatic Feynman graph generation, J.Comput.Phys. 105 (1993) 279–289.
52. J. Vermaseren, New features of FORM, math-ph/0010025.
53. J. Kuipers, T. Ueda, J. Vermaseren, and J. Vollinga, FORM version 4.0,

Comput.Phys.Commun. 184 (2013) 1453–1467, [arXiv:1203.6543].
54. G. Cullen, M. Koch-Janusz, and T. Reiter, Spinney: A Form Library for Helicity

Spinors, Comput.Phys.Commun. 182 (2011) 2368–2387, [arXiv:1008.0803].
55. T. Reiter, Optimising Code Generation with haggies, Comput.Phys.Commun. 181

(2010) 1301–1331, [arXiv:0907.3714].
56. R. Ellis, W. T. Giele, Z. Kunszt, and K. Melnikov, Masses, fermions and generalized

D-dimensional unitarity, Nucl.Phys. B822 (2009) 270–282, [arXiv:0806.3467].
57. T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon, and T. Reiter, Golem95: A Numerical

program to calculate one-loop tensor integrals with up to six external legs,
Comput.Phys.Commun. 180 (2009) 2317–2330, [arXiv:0810.0992].

58. J. P. Guillet, G. Heinrich, and J. von Soden-Fraunhofen, Tools for NLO automation:
extension of the golem95C integral library, arXiv:1312.3887.

59. A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions,
Comput.Phys.Commun. 182 (2011) 2427–2438, [arXiv:1007.4716].

60. T. Hahn and M. Perez-Victoria, Automatized one loop calculations in four-dimensions
and D-dimensions, Comput.Phys.Commun. 118 (1999) 153–165, [hep-ph/9807565].

61. J. Fleischer and T. Riemann, A Complete algebraic reduction of one-loop tensor
Feynman integrals, Phys.Rev. D83 (2011) 073004, [arXiv:1009.4436].

62. J. Fleischer, T. Riemann, and V. Yundin, New developments in PJFry, PoS LL2012
(2012) 020, [arXiv:1210.4095].

63. S. Actis, A. Denner, L. Hofer, A. Scharf, and S. Uccirati, EW and QCD One-Loop
Amplitudes with RECOLA, arXiv:1311.6662.

64. S. Catani, S. Dittmaier, and Z. Trocsanyi, One loop singular behavior of QCD and
SUSY QCD amplitudes with massive partons, Phys.Lett. B500 (2001) 149–160,
[hep-ph/0011222].

65. S. Badger, B. Biedermann, and P. Uwer, NGluon: A Package to Calculate One-loop
Multi-gluon Amplitudes, Comput.Phys.Commun. 182 (2011) 1674–1692,
[arXiv:1011.2900].

66. Proceedings of the Les Houches 2013 workshop on Physics at TeV colliders, 2014.
67. J. Bellm, S. Gieseke, D. Grellscheid, A. Papaefstathiou, S. Plätzer, et al., Herwig++ 2.7

Release Note, arXiv:1310.6877.
68. S. Plätzer and S. Gieseke, Dipole Showers and Automated NLO Matching in Herwig++,

Eur.Phys.J. C72 (2012) 2187, [arXiv:1109.6256].
69. A. Denner, S. Dittmaier, M. Roth, and L. Wieders, Electroweak corrections to

charged-current e+e− → 4 fermion processes: Technical details and further results,
Nucl.Phys. B724 (2005) 247–294, [hep-ph/0505042].

70. T. Stelzer and W. Long, Automatic generation of tree level helicity amplitudes,
Comput.Phys.Commun. 81 (1994) 357–371, [hep-ph/9401258].

http://xxx.lanl.gov/abs/1308.3660
http://xxx.lanl.gov/abs/1310.1084
http://xxx.lanl.gov/abs/1312.6659
http://xxx.lanl.gov/abs/1212.5154
http://xxx.lanl.gov/abs/1308.2194
http://xxx.lanl.gov/abs/1001.1307
http://xxx.lanl.gov/abs/1308.3462
http://xxx.lanl.gov/abs/math-ph/0010025
http://xxx.lanl.gov/abs/1203.6543
http://xxx.lanl.gov/abs/1008.0803
http://xxx.lanl.gov/abs/0907.3714
http://xxx.lanl.gov/abs/0806.3467
http://xxx.lanl.gov/abs/0810.0992
http://xxx.lanl.gov/abs/1312.3887
http://xxx.lanl.gov/abs/1007.4716
http://xxx.lanl.gov/abs/hep-ph/9807565
http://xxx.lanl.gov/abs/1009.4436
http://xxx.lanl.gov/abs/1210.4095
http://xxx.lanl.gov/abs/1311.6662
http://xxx.lanl.gov/abs/hep-ph/0011222
http://xxx.lanl.gov/abs/1011.2900
http://xxx.lanl.gov/abs/1310.6877
http://xxx.lanl.gov/abs/1109.6256
http://xxx.lanl.gov/abs/hep-ph/0505042
http://xxx.lanl.gov/abs/hep-ph/9401258

34

71. R. Frederix, T. Gehrmann, and N. Greiner, Automation of the Dipole Subtraction
Method in MadGraph/MadEvent, JHEP 0809 (2008) 122, [arXiv:0808.2128].

72. R. Frederix, T. Gehrmann, and N. Greiner, Integrated dipoles with MadDipole in the
MadGraph framework, JHEP 1006 (2010) 086, [arXiv:1004.2905].

73. J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, et al.,
MadGraph/MadEvent v4: The New Web Generation, JHEP 0709 (2007) 028,
[arXiv:0706.2334].

74. https://sherpa.hepforge.org/doc/SHERPA-MC-2.1.0.html.
75. http://gosam.hepforge.org/proc/.
76. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, et al., UFO - The

Universal FeynRules Output, Comput.Phys.Commun. 183 (2012) 1201–1214,
[arXiv:1108.2040].

77. N. D. Christensen and C. Duhr, FeynRules - Feynman rules made easy,
Comput.Phys.Commun. 180 (2009) 1614–1641, [arXiv:0806.4194].

78. A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, FeynRules 2.0 - A
complete toolbox for tree-level phenomenology, arXiv:1310.1921.

79. A. Semenov, LanHEP - a package for automatic generation of Feynman rules from the
Lagrangian. Updated version 3.1, arXiv:1005.1909.

80. K. Chetyrkin, B. A. Kniehl, and M. Steinhauser, Decoupling relations to O (alpha-s**3)
and their connection to low-energy theorems, Nucl.Phys. B510 (1998) 61–87,
[hep-ph/9708255].

81. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, The Hierarchy problem and new
dimensions at a millimeter, Phys.Lett. B429 (1998) 263–272, [hep-ph/9803315].

82. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, New dimensions at a
millimeter to a Fermi and superstrings at a TeV, Phys.Lett. B436 (1998) 257–263,
[hep-ph/9804398].

83. M. Kumar, P. Mathews, V. Ravindran, and A. Tripathi, Direct photon pair production
at the LHC to order αs in TeV scale gravity models, Nucl.Phys. B818 (2009) 28–51,
[arXiv:0902.4894].

84. R. G. Stuart, Algebraic Reduction of One Loop Feynman Diagrams to Scalar Integrals,
Comput.Phys.Commun. 48 (1988) 367–389.

85. T. Binoth, J. P. Guillet, and G. Heinrich, Algebraic evaluation of rational polynomials in
one-loop amplitudes, JHEP 0702 (2007) 013, [hep-ph/0609054].

http://xxx.lanl.gov/abs/0808.2128
http://xxx.lanl.gov/abs/1004.2905
http://xxx.lanl.gov/abs/0706.2334
http://xxx.lanl.gov/abs/1108.2040
http://xxx.lanl.gov/abs/0806.4194
http://xxx.lanl.gov/abs/1310.1921
http://xxx.lanl.gov/abs/1005.1909
http://xxx.lanl.gov/abs/hep-ph/9708255
http://xxx.lanl.gov/abs/hep-ph/9803315
http://xxx.lanl.gov/abs/hep-ph/9804398
http://xxx.lanl.gov/abs/0902.4894
http://xxx.lanl.gov/abs/hep-ph/0609054

	Introduction
	Overview of the program
	New features
	Installation and usage
	Examples
	Conclusions
	Commented example of an input card
	Higher rank integrals

