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Abstract

We study F-theory duals of singular heterotic K3 models that correspond to abelian

toroidal orbifolds T 4/ZN . While our focus is on the standard embedding, we also comment

on models with Wilson lines and more general gauge embeddings. In the process of

constructing the duals, we work out a Weierstrass description of the heterotic toroidal

orbifold models, which exhibit singularities of Kodaira type I∗0 , IV
∗, III∗, and II∗. This

construction unveils properties like the instanton number per fixed point and a correlation

between the orbifold order and the multiplicities in the Dynkin diagram. The results

from the Weierstrass description are then used to restrict the complex structure of the

F-theory Calabi–Yau threefold such that the gauge group and the matter spectrum of the

heterotic theories are reproduced. We also comment on previous approaches that have

been employed to construct the duality and point out the differences to our case. Our

results show explicitly how the various orbifold models are connected and described in

F-theory.
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1 Introduction

Heterotic E8 × E8 orbifold models [1–3] are popular for string phenomenology and for physics

beyond the standard model [4–8]. Heterotic toroidal abelian orbifolds are based on tori which

are orbifolded by acting with discrete abelian groups ZN or ZN × ZM . This introduces mild

singularities at the fixed points, which reduces the amount of parallelizable spinors and can

thus lead to models with reduced supersymmetry in lower dimensions. Compatibility with the

discrete action fixes the complex structure of the underlying tori (except for the case of Z2).

These models are based on free conformal field theories which allow for an exact treatment.

Orbifolds are at rather special points in the moduli space of string compactifications which

exhibit enhanced symmetry. In particular, the primordial E8 × E8 gauge group is broken

rank-preservingly. Furthermore, there are many discrete symmetries which can help solving

problems inherent to most models beyond the Standard Model such as proton decay or the µ-

problem [9]. This makes orbifolds phenomenologically attractive, but also rather special points,

apparently isolated from each other and from smooth (supergravity) compactifications. In the

last years there has been considerable progress connecting different orbifolds with their smooth

supergravity counterparts [10–12]; however, the process has to be carried out for each orbifold

separately.

F-Theory [13] was introduced roughly ten years later as an approach to constructing string

vacua which are connected via a web of dualities to type II and heterotic string theories. While

these dualities have been worked out for various dimensions of string compactification spaces,

we focus on the case of orbifolds corresponding to singular K3 surfaces on the heterotic side,

which correspond to F-theory models on (elliptically fibered) Calabi–Yau (CY) threefolds over a
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complex two-dimensional base space which is a Hirzebruch surface Fm [14,15]. Most commonly,

the elliptically fibered CY threefolds are discussed in terms of a Weierstrass model, in which

the elliptic fiber is given in terms of an equation of degree 6 in the weighted projective space

P

2
231 whose coefficients are sections in the base Fm. Generically, the elliptic fiber degenerates

over codimension one subloci in the base. The resolution of the singularities were classified by

Kodaira [16] in terms of the vanishing orders of the the coefficients f, g, and the discriminant ∆

of the Weierstrass equation. The resolution requires the introduction of P1’s whose intersection

numbers are those of the negative affine Cartan matrix of the ADE-type Lie algebras. Using

F-/M-theory duality, it can be seen that the ADE-type singularities give rise to precisely the

same gauge group in F-theory. For this reason, we use the name of the singularity in the

Kodaira classification and the name of the resulting gauge algebra somewhat interchangeably.

Matter arises in codimension two where the singularity type of the fiber is further enhanced. In

the meantime, there has been quite some progress in string phenomenology based on F theory,

ultimately motivated by the possibility to obtain exceptional groups and more general matter

representations than in type IIB intersecting brane models. Similar to intersecting branes,

however, much of the phenomenological work discusses local models, and global completions

are much harder to construct.

For the F-theory duals of smooth models, there is a general algorithm for the construction

[17–19]. In contrast, F-/M-Theory on singular spaces is less well understood [20–22]. As we

shall see, also in our case the tools from the smooth case cannot be applied directly (cf. also [23]).

Furthermore, as we shall explain, toroidal orbifolds do not have a direct Weierstrass description.

To circumvent this problem we will use a method used in [24] to construct a Weierstrass model

and from that the heterotic–F-theory duality.

The rest of the paper is organized as follows: In section 2 we review heterotic orbifold

models, F-theory, and the construction of the duality. In the process, we compare to other

methods used to construct the duals in the smooth case. In section 3 we construct the F-theory

duals of all four T 4/ZN orbifolds in the “standard embedding” (which means in the case of

orbifolds that the discrete gauge bundle is ZN , leading to a commutant of E7 × SU(2) for

N = 1 or E7 × U(1) for N = 3, 4, 6, respectively) and comment on cases with more general

gauge embeddings. In section 4 we conclude and present an outlook.

2 Review of heterotic – F-theory duality

2.1 6D heterotic orbifold models

We consider heterotic orbifold compactifications to six dimensions on Calabi–Yau manifolds,

which are singular limits of K3. We study orbifolds of the type T 4/ZN with N = 2, 3, 4, 6. The

spectra and gauge groups that can be obtained in these models without using Wilson lines have

been classified in [25]. We collect the spectra of the standard embeddings in table 1. We also

included the spectrum of a T 4/Z2 orbifold where one Wilson line in the first torus has been

switched on. This Wilson line has two effects: It breaks the gauge group further down (while

preserving the rank) and it projects out some of the matter states which are incompatible with
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(a) T 4/Z2 orbifold (b) Alternative depiction of the T 4/Z2 orbifold

Figure 1: Picture of the T 4/Z2 orbifold. The 4× 4 = 16 fixed points are drawn as red dots. The second picture

gives an alternative depiction, which will be useful when constructing the F-theory dual later.

the Wilson line. This leads to the fact that the spectrum at the various orbifold fixed points

where the Wilson line acts is different from the spectrum where the Wilson line is trivial.

For our discussion, we will start with the most simple model, which is the standard embed-

ding of T 4/ZN with gauge group (E7 × SU(2))× E8 or (E7 ×U(1))× E8. The orbifold acts on

the two complex torus coordinates (z1, z2) as

θ : (z1, z2) 7→ (e2iπ/Nz1, e
−2iπ/Nz2) . (1)

In order to ensure modular invariance, a twist by v = 1
N
(1,−1) in a T 4/ZN orbifold in

standard embedding is accompanied by a shift in the E8 × E8 gauge degrees of freedom by

V = 1
N
(1,−1, 06)(08). For the T 4/Z2 model this means that the orbifold acts as a reflection,

(z1, z2) 7→ (−z1,−z2) and the associated shift breaks the gauge group to (E7 × SU(2)) × E8.

The orbifold action introduces four fixed points in each torus, leading to 16 Z2 (or A1) orbifold

singularities, cf. figure 1. Comparing with table 1, we see that there are eight (56, 1). Note,

however, that the 56 of E7 is pseudo-real, so there are 16 half-hypers, i.e. one per fixed point.

Likewise, there are 32 hypermultiplet doublets (1, 2) which are pseudo-real as well, leading

to 4 half-hypers per fixed point. In contrast, the (56, 2) and the four singlets (1, 1) in the

untwisted sector are not pseudo-real and thus are full hypermultiplets. Also note that there is

no matter charged under the second (unbroken) E8. It should be mentioned that the subtlety

concerning pseudo-real representations mainly arise in the T 4/Z2 models. The reason is that

the commutant of ZN with E8 for N 6= 2 is U(1) rather than SU(2). For that reason, the

other orbifold standard embeddings come with a U(1) factor, and thus the irreps carrying U(1)

charge are complex (but e.g. the 5 singlets of the Z4 model are uncharged and correspond to

10 half-hypers at the 6+4 Z2 fixed points occurring in the second twisted sector of Z4). In

fact, in all cases where the number of states is half the number of equivalent fixed points the

representations are pseudo-real, such that there is one half-hyper per fixed point.

An advantage of 6D N = 1 models is that the chirality of the spinors is fixed: the chirality

of the hypermultiplets and tensor multiplets is the same and opposite to the chirality of the

vector multiplets. This leads to very stringent anomaly cancellation conditions. In particular,

the gravitational anomaly reads

NH −NV + 29NT = 273 , (2)
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Orbifold Gauge Group Untwisted matter Twisted matter

T 4/Z2

E7 × SU(2)× E8 (56,2) + 4(1,1) 8(56,1;1) + 32(1,2)

SO(12)× SU(2)
2 × E8 (12,2,2) + 4(1,1,1)

4 (32,1,1) + 4 (12,2,1) + 16 (1,1,2)+

4 (32,1,1) + 4 (12,1,2) + 16 (1,2,1)

T 4/Z3 E7 × U(1)× E8 (56)1 + (1)2 + 2 (1)0 9 (56) 1

3

+ 45 (1) 2

3

+ 18 (1) 4

3

T 4/Z4 E7 × U(1)× E8 (56)1 + 2 (1)0
4 (56)

−

1

2

+ 8 (1) 3

2

+ 24 (1) 1

2

+

5(56)0 + 32 (1)1

T 4/Z6 E7 × U(1)× E8 (56)1 + 2 (1)0

1 (56)
−

2

3

+ 8 (1) 1

3

+ 2 (1)
−

5

3

+

5 (56)
−

1

3

+ 22 (1) 2

3

+ 10 (1)
−

4

3

+

3 (56)0 + 22 (1)1

Table 1: Spectrum of T 4/ZN orbifold models. Except for the model in the second line, which has one Wilson

line, all models are in the orbifold standard embedding. In all models, the second E8 is unbroken, so we omit it

in the irreps for brevity. For Z4 and Z6, the ith line corresponds to the matter contribution of the ith twisted

sector.

where NH, NV, NT are the number of hyper-, vector-, and tensor multiplets. Perturbative

heterotic string models always have NT = 1, where the scalar of the tensor multiplet is the

dilaton. Using (2) and the other conditions ensuring the absence of gauge and mixed anomalies,

it can be easily checked that the models in table 1 are anomaly-free. Note that in contrast to 4D,

the anomaly (2) also depends on the singlets, i.e. it is sensitive to the entire particle spectrum.

It is well-known that these singularities can be resolved, leading to heterotic string models

on smooth Calabi–Yaus with vector bundles. In the case of the standard embedding, the vector

bundle is SU(2) which breaks the E8 × E8 to the commutant E7 × E8. The heterotic Bianchi

identity for the Kalb–Ramond three-form field strength reads

dH = ch2(TX)− ch2(V ) . (3)

Since the instanton number (i.e. the second Chern class) of K3 is 24, we need to embed a total

of 24 instantons in the gauge bundle to satisfy this identity. In principle, (3) is modified in the

presence of Neveu–Schwarz five-branes. Including these five-branes will lead to F-theory duals

with more than one tensor multiplet1, but we will not say too much about this.

2.2 Dual F-theory constructions

F-theory models on Calabi–Yau threefolds X with a heterotic dual show a special fibration

structure [14,15]. They are K3 fibrations over P1, where the K3 is itself elliptically fibered over

another P1. The base space B of the elliptically fibered CY threefold, i.e. the P1 fibration over

P

1, corresponds to a Hirzebruch surface Fm. The situation is depicted in figure 2.

Some of the particle content of the underlying theory is fixed by the geometrical data of the

CY threefold and the base space [13,15]. Using, among other things, that in going from the 6D

1The scalar in these extra tensor multiplets encodes the position of the five-brane in the M-theory bulk, as

explained in section 3.6.
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CY threefold

(a) CY threefold

Base B = Fm

(b) Elliptic fibration

Fiber K3

(c) K3 fibration

Het. K3

(d) Heterotic dual

Figure 2: Picture of the CY threefold used in the F-theory construction. It is shown how the CY can be

interpreted as: (b) elliptically fibered over Fm, (c) K3 fibered over P1, and (d) in terms of the heterotic K3 the

theory will be dual to.

N = 1 to the 4D N = 2 theory, the 6D vector and tensor multiplets correspond to 4D vector

multiplets while the 6D hypermultiplets stay hypermultiplets in 4D, one finds

NT = h1,1(B)− 1 , rk(V ) = h1,1(X)− h1,1(B)− 1 , Nneutral
H = h2,1(X) + 1 . (4)

Here, rk(V ) is the rank of the unbroken 6D gauge group and Nneutral
H is the number of uncharged

hypermultiplets. As explained above, models with a perturbative heterotic dual have NT = 1.

Since Fm inherits the two Kähler classes of the P1’s, it has h1,1(B) = 2, which corresponds to

NT = 1, as it should be. Furthermore, it has been argued in the smooth case that F-theory

with base space Fm corresponds to a heterotic E8×E8 theory with vector bundles where 12+m

instantons are embedded in the first E8 and 12−m in the second E8. All the models in table 1

have an unbroken hidden E8 gauge group. For this reason, we will concentrate on F12 where

all 24 instantons are embedded in the first E8, leaving the second E8 intact.

For the description of the elliptic fibered CY threefold we use the Weierstrass model. There

the elliptic curve is parametrized as a sextic in the weighted projective space P2
231,

y2 = x3 + fxz4 + gz6 , (5)

with homogeneous coordinates x, y, z. The fibration over the base F12 is encoded in f and g,

which are appropriate sections such that the complete elliptic fibration has a trivial anticanon-

ical bundle. The elliptic fiber degenerates at points where its discriminant

∆ = 4f 3 + 27g2 (6)

vanishes. We summarize the scalings2 of the model in table 2. For the base P1, we denote

the homogeneous coordinates by s, t and the scaling by µ. For the fiber P1 we denote the

coordinates by u, v and the scaling by λ; the scaling of the ambient space for the elliptic fiber

P

2
231 is denoted by ν.

2For Fm, the λ-scaling is m for u, 2(m+ 2) for x, and 3(m+ 2) for y.
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Scaling s t u v x y z f g ∆

λ 1 1 12 0 28 42 0 56 84 168

µ 0 0 1 1 4 6 0 8 12 24

ν 0 0 0 0 2 3 1 0 0 0

Table 2: Scalings of the homogeneous coordinates of the elliptically fibered CY threefold with base F12.

ord(f) ord(g) ord(∆) Name Gauge group

0 0 n In SU(n)

≥ 2 3 n + 6
I ∗

n SO(2n+8)
2 ≥ 3 n + 6

≥ 3 4 8 IV
∗ E6

3 ≥ 5 9 III
∗ E7

≥ 4 5 10 II
∗ E8

Table 3: Excerpt from the Kodaira classification of the vanishing orders and the corresponding gauge groups.

From the vanishing order of (f, g,∆) the gauge group and the matter content can be inferred

according to the Kodaira classification [16], cf. table 3. In order to resolve the singular fiber at

codimension 1, one glues in extra P1’s. Their intersection numbers with each other and with

the original torus are given by the negative of the affine Cartan matrix of the corresponding

gauge group.

2.3 Heterotic – F-theory duality in the smooth case

Before studying the singular limit we want to line out the duality in the smooth case which is

much better understood [26].

Fully Higgsed case with gauge group E8

In the generic case the entire gauge group is Higgsed. Due to the fixed chirality (and the

anomaly constraint (2)) one loses one hypermultiplet per vector multiplet. Thus by assigning

VEVs to the charged matter, i.e. to the (56, 1) and the (1, 2), we can break the visible sector

gauge group completely, losing 133 + 3 = 136 hypers and vectors. Since there is no charged

matter under the second E8, this group stays unbroken. Thus after Higgsing, we are left with

628− 136 = 492 singlets, 248 vector multiplets of the second E8, and 1 tensor multiplet.

On the heterotic side, the 24 instantons are embedded in the whole E8. Thus, we expect

an E8 bundle with instanton number 24 in the correspondence. Such a bundle has 472 moduli.

Together with the 20 geometric moduli of the K3, we recover the 492 singlets predicted from

the F-theory side.

Let us see how to realize this situation in the Weierstrass model. In the generic case, f

and g are arbitrary homogeneous polynomials in the coordinates s, t, u, v of the base. We first
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expand them in u, v:

1

3
f = c56v

8 + c44uv
7 + c32u

2v6 + c20u
3v5 + c8u

4v4 , (7a)

1

2
g = d84v

12 + d72uv
11 + d60u

2v10 + d48u
3v9 + d36u

4v8 + d24u
5v7 + d12u

6v6 + d0u
7v5 . (7b)

There can be no higher terms because u has a λ-weight of 12. The coefficients ci, dj are

homogeneous polynomials in s, t where the degree is given by the subscripts; in particular, d0
is just a number. With this general structure, we find for the discriminant

1

4 · 27
∆ = f 3 + g2 = v10∆red . (8)

Hence we have an E8 singularity at v = 0 and no further generic gauge group, since the reduced

discriminant ∆red does not factorize further and thus corresponds to an I1 fiber degeneration,

cf. table 3.

In order to check the charged hypermultiplet spectrum, we investigate how the matter curves

intersect. We see that the I1 fiber locus ∆red = 0 does not intersect the E8 brane v = 0, since

∆red ∼
(
d20u

14 +O(v)
)
. (9)

Note that the monomial uv is in the Stanley–Reissner ideal and thus the two coordinates

cannot vanish simultaneously. Furthermore, d0 is just a number not equal to zero: If it were

zero, ord(∆) = 11 at v = 0, which is too singular to allow for a crepant resolution. So there are

no “brane intersections”, and we do not expect any charged matter. On the other hand, the

neutral hypers can be counted by the coefficients in the the polynomials: The total number of

coefficients in the cq and dk is 509. Subtracting three for SL(2,C) acting on the base coordinates

and 14 for u → αu + β12(s, t)v, v → v/α, we end up with 509 − 3 − 14 = 492. Hence, we

reproduce the fully Higgsed heterotic model.

Furthermore, we used palp [27] as a cross-check to calculate the Hodge numbers of the

elliptically fibered CY threefold over F12. We get h1,1(X) = 11 and h2,1(X) = 491, and

h1,1(F12) = 2. By comparing with (4), we find indeed that the rank of the gauge group is

rk(V ) = 8, and there are 492 neutral hypermultiplets.

Minimally Higgsed case with gauge group E7 × E8

The largest gauge group which can be obtained in perturbative string theory on the smooth

heterotic side is when all instantons are embedded in the SU(2) (Alternatively, one can think

of only giving VEVs to the (1, 2) but not to the (56, 1). This case corresponds to an SU(2)

bundle which leaves an unbroken gauge group of E7 ×E8. In the process of Higgsing, we break

the SU(2) and lose three hypers. From the spectrum in table 1, we see that we end up with

2 + 8 = 10 56’s and 4 + 32× 2− 3 = 65 singlets in that case.

In order to get an enhanced gauge group from the Weierstrass model, we have to restrict

the polynomials. It is rather straightforward to see that we can get an E7 singularity if we set

c56 = c44 = c32 = 0 , d84 = d72 = d60 = d48 = d36 = 0 . (10)
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The determinant then factorizes as

1

4 · 27
∆ = u9v10∆red , (11)

and we find an E8 at v = 0, an E7 at u = 0, and a smooth I1 locus at ∆red = 0 since it does

not factorize further.

Regarding the matter spectrum, it is clear that on the one hand we have lost neutral

hypermultiplets from the complex structure moduli (namely the ones in the polynomial we

have set to zero), but on the other hand have gained charged matter from the resolution

of the singularity enhancements where the “branes” intersect, i.e. where the singularity in

the fiber gets worse. Explicitly, the remaining polynomials contain 69 parameters, but the

reparameterizations that are left are just the ones on the base and a rescaling of u (since u = 0

should be fixed). Hence, we find 69−3−1 = 65 neutral hypermultiplets. Regarding the charged

matter, we look at the reduced determinant,

∆red = c320v
5 +

(
3c220c8 + d224

)
uv4 +

(
3c20c

2
8 + 2d24d12

)
u2v3

+
(
c38 + d212 + 2d24d0

)
u3v2 + 2d12d0u

4v + d20u
5 ,

(12)

which intersects u = 0 at 20 points on the base P1. At each of these intersection points, we

expect one half-hypermultiplet of 56, yielding 10 full 56 hypers. Since again u and v cannot

vanish simultaneously, we find no intersection of the E7 with the E8 curve or of the E8 with the

I1 curve.

From the cross-check with palp we obtain h1,1 = 18 and h2,1 = 64, which is consistent with

our previous findings. We could now go back to the generic case by switching on VEVs, or

polynomials, which is basically the path outlined in [26].

Completely unhiggsed case with gauge group E7 × SU(2) × E8

Motivated by the previous results, our ansatz is to factorize ∆red further by choosing less

generic polynomials such that we find an additional I2 locus. In addition to the three extra

vector multiplets, we should get three new hypermultiplets, which, together with the already-

present 65 singlets of E7 organize themselves into 32 doublets of SU(2) plus four remaining

singlets. However, we expect the following problems: First, from the orbifold analysis we

expect fractional instantons: we need a total instanton number of 24, which should be divided

evenly among the 16 Z2 fixed points which are the only loci of non-zero curvature. Hence,

each fixed point carries a fractional instanton number of 24/16 = 3/2. Furthermore, these

instantons, embedded in the first E8, should not break the gauge group but only branch it

to E7 × SU(2). Second, the SU(2) doublets, the E7 charged matter, and the instantons are

localized at the orbifold fixed points. This leads to a singularity at the intersection points in

codimension two which is too severe for the usual rules of calculating the spectrum to apply.

Third, due to the homogeneity of the polynomials in ∆red, the extra SU(2) locus will be located

at the zeros of a factor of the form (u+ p12v)
2 = 0, i.e. we get a natural quantization of matter

states in multiples of 12 arising from the λ-scaling of F12. However, the multiplicity of (56, 2)

is 1 and the multiplicity of (1, 2) is 32, so neither is dividable by 12. Before we discuss how to

8



Gauge group Irrep R AR BR CR Normalization

SU(2)
2 1 0 1

2 1
Adj 4 0 8

E7

56 1 0 1
24 12

Adj 3 0 1
6

E8 Adj 1 0 1
100

60

SO(12)

12 1 1 0

232 4 −2 3
2

Adj 10 4 3

Table 4: Values of the AR, BR, and CR used in the calculation of the anomaly polynomial.

tackle this problem in the next section, it is worthwhile to investigate other approaches to the

duality to see how these problems arise there.

2.4 Comparison with other singular K3 limits

In a series of beautiful papers [17–19] a connection between the data from the anomaly polyno-

mial and the geometry of the CY threefold was worked out. For the Green–Schwarz anomaly

cancellation, the anomaly polynomial eight-form I8 has to factorize into two four-forms as

I8 =

(
trR2 −

∑

i

trαiF
2
i

)(
trR2 −

∑

i

tr α̃iF
2
i

)
, (13)

where tr is the trace in the fundamental and R and F are the curvature and the field strengths,

respectively. In order to get to this factorization, the traces trR in a representation R are

written in terms of traces tr in the fundamental as

trR F 2 = ARtrF
2 ,

trR F 4 = BRtrF
4 + CR

(
trF 2

)2
.

(14)

The constants AR, BR, CR can be calculated from group theory [18,28], cf. table 4. Denoting

the multiplicities of a state transforming in a representation (R) by xR and the multiplicities

of a bi-fundamental transforming in a representation (R,S) by xRS, the real coefficients α, α̃

in the factorized anomaly polynomial (13) have to fulfill

αi + α̃i =
1

6

(
Ai

adj −
∑

R

xi
R
Ai

R

)
,

αi · α̃i =
2

3

(
∑

R

xi
R
C i

R
− C i

adj

)
,

αi · α̃j + αj · α̃i = 4
∑

R,S

xij
RS

Ai
R
Aj

S
.

(15)
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Since the multiplicity of the states is related to the number of intersections of matter curves,

the numbers αi, α̃i can be related to the divisors in Fm. Following the notation in table 2,

we use the integral divisor basis Dv = {v = 0}, Ds = {s = 0} ∼ Dt = {t = 0}. Then

Du = {u = 0} = Dv +mDs Their intersection numbers are

Dv.Dv = −m, Dv.Ds = 1 , Ds.Ds = 0 . (16)

and the anti-canonical divisor is

−K = Du +Dv +Ds +Dt = 2Dv + (2 +m)Ds (17)

The divisors ξi corresponding to the matter curves are linked to (αi, α̃i) via

ξi =
α

2

(
Dv +

m

2
Ds

)
+

α̃

2
Ds . (18)

Applying this to the “minimally Higgsed” case with gauge group E7 × E8 on F12, one finds

(αE7
, α̃E7

) = (2, 12) =⇒ ξE7
= Dv + 12Ds = Du ,

(αE8
, α̃E8

) = (2,−12) =⇒ ξE8
= Dv .

(19)

Thus we find E7 along u = 0 and E8 along v = 0. For the matter spectrum one then finds

using the intersection numbers (16) that ξE7
.ξE8

= 0. Furthermore, using that the discriminant

∆ = −12K, we find for the reduced determinant ∆red = −12∆ − 9ξE7
− 10ξE8

= 5Dv + 60Ds

where we used the vanishing orders given in table 3. Thus ∆red.ξE8
= 0 and ∆red.ξE7

= 60,

which corresponds to the 20 zeros of c320 in (12) (counted with multiplicities).

Factorizing the orbifold anomaly polynomial I8 for the case of E7 × SU(2) × E8 yields

(αSU(2), α̃SU(2)) = (αE7
, α̃E7

) = (2, 6) and thus ξE7
= ξSU(2). Consequently, one finds that

ξE7
.ξE8

= 0 = ξE8
.ξSU(2) as it should be. Furthermore, we find ξE7

.ξSU(2) = 12, but there is

only one state transforming in the bi-fundamental (56, 2). This factor of 12 is precisely the

quantization in multiples of 12 noticed above. Furthermore, ∆red = 3Dv + 36Ds and thus

∆red.ξE8
= 0, which is as expected, but ∆red.ξE7

= ∆red.ξSU(2) = 36, while in the spectrum we

have eight (56, 1) and 32 (1, 2).

From the orbifold point of view, this was bound to happen. So let us see why the multiplicity

comes out incorrectly even though all anomalies cancel and the anomaly polynomial factorizes

in the right way. The reason is that the normalization chosen in (15) is such that all instantons

are integral. But as pointed out above, we have a fractional instanton number of 3/2 at each

fixed point. Without this change in normalization, one obtains

(αE7
, α̃E7

) =

(
1

6
, 1

)
=⇒ ξE7

=
1

12
Dv +Ds =

1

12
Du ,

(αSU(2), α̃SU(2)) = (2, 6) =⇒ ξSU(2) = Dv + 12Ds = Du ,

(αE8
, α̃E8

) =

(
1

30
,−

1

5

)
=⇒ ξE8

=
1

60
Dv .

(20)

It can be easily checked that these ξi have the correct intersection numbers among each other,

but they do not correspond to integral divisors in F12.
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However, we have not yet made use of the fact that the heterotic compactification space our

duality construction is based on is singular itself and that the orbifold has discrete holonomy.

In [29], this is accounted for by using the torsion part of the Mordell–Weil group. The authors

give the form that (f, g,∆) have to take such that the Mordell–Weil group contains a factor

of ZN or ZN × ZM . Then they consider the stable degeneration limit [30, 31]. We will not go

into the details of this construction and simply mention that in the stable degeneration the

Hirzebruch surface Fm degenerates into two Hirzebruch surfaces Fi
m which intersect along a

curve C∗. This curve forms together with its fibers the heterotic K3 in the large volume limit.

Cast into the language of divisors (or their dual curves, which is used interchangeably by abuse

of notation), this means we have divisors C0 and C∗ in F1
m and divisors C∞ and C∗ in F2

m,

where the two C∗’s have to be identified. The ZN singularities of the heterotic K3 surface arise

from intersections of IN curves with C∗. We are interested in the case where the Mordell–

Weil group contains a Z2 factor, which has also been analyzed in [23]. We place the E7 along

ξE7
= C0. Using the form of the discriminant necessary to get a Z2 factor that gives rise to the

(E7 × SU(2))/Z2 gauge group [29], one finds that the I2 curve is along ξSU(2) = Dv +8Ds. This

intersects C∗ ∼ Du eight times (no matter what m is). Hence this construction leads to the

“wrong” singular K3 limit (i.e. not the one dual to the orbifold which has 16 Z2 singularities).

By looking at the Euler number, we can see what is happening: the limit corresponds to K3/Z2

rather than T 4/Z2. To show this let us denote the number of fixed points by k. We can

calculate the Euler number of the (smooth) K3 [32] by starting from the original singular space

X , subtracting the number of fixed points, dividing by the Z2 action, and gluing back in k

exceptional divisors E:

χ(K3smooth) =
χ(X)− k

|Z2|
+ kχ(E) . (21)

Using χ(K3smooth) = 24, χ(E) = 2, χ(X = K3) = 24, χ(X = T 4) = 0, we find that k = 8 for

X = K3 and k = 16 for X = T 4. This means that the global compactification obtained by

using this method does not result in the heterotic dual we want to construct3.

3 F-theory duals of heterotic orbifold models

After having outlined why the previously considered constructions cannot work in our case we

now describe the approach we are following instead. In order to do so it is thus instructive to

take a closer look at the duality [14, 15]. As explained in figure 2, we have a double fibration

structure on the F-theory side. In particular, the heterotic K3 is essentially the base P1 together

with the elliptic fiber. This means that the “middle” terms in f and g, i.e. the terms c8u
4v4

and d12u
6v6 should contain the geometric moduli of the heterotic K3. Indeed, subtracting an

overall scaling, we obtain 8 + 12 = 20 moduli. Likewise, the zeros of d24 and d0 correspond

to the instantons in the two E8’s. Again, after subtracting an overall scaling, one obtains 24

3The same happens for the other orbifolds. In the Z3 case for example, one can show that this method

produces only 6 fixed points instead of the 9 that we would expect from the orbifold, which is again consistent

with a quotient K3/Z3 rather than T 4/Z3.
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Figure 3: Blowdown limit of T 4/Z2. Over each base singularity there is an orbifold pillow with four Z2

singularities, corresponding to the affine Dynkin diagram of SO(8). In the blowdown procedure, the central

torus node (blue) is blown down and one of the corner singularities (red) is blown up.

and 0, as it should be. To describe the fibration structure depicted in figure 2, we use similar

methods to the ones described in [24].

3.1 Constructing the duals of the T 4/Z2 orbifold

Pictorially, the T 4/Z2 orbifold is a pillow with a torus over it everywhere except at the corners,

where the fiber is a pillow itself, cf. figure 1(b). Any section will hit one of the fiber pillow

corners at the base pillow corners. On the other hand, a Weierstrass fiber torus always has one

singularity (at ∆ = 0), not four, and a non-singular section at z = 0. Hence we have to deform

the orbifold in order to write it as a Weierstrass model. The method of [24] is to

• pick one section,

• blow up the fiber singularities it hits (such that we basically have a pillow where one of

the corners is blown up to a smooth P1),

• blow down the other finite-volume component of the fiber (i.e. the original pillow).

This procedure is summarized pictorially in figure 3. In this way we end up with a fiber with

a D4 singularity (made up of three of the original pillow corners and the blown-down pillow

itself), where the section sits at a smooth point. In particular, the affine node corresponds to

one of the four corner singularities and the original orbifold pillow corresponds to the central

(adjoint) node. Note that the central node has multiplicity (or Dynkin label) two. Hence it

is intersected by a two-section rather than a section. In contrast, after applying the above

procedure, we obtain a finite component with multiplicity one, which can hence be hit by a

section and thus should have a Weierstrass model. This means we need to find a complex

two-dimensional Weierstrass model with four D4 singularities. We start from the heterotic

Weierstrass model

y2 = x3 + f̃8xz
4 + g̃12z

6 , (22)
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where we identify f̃8 = c8 and g̃8 = d12 and require the vanishing orders of (f̃ , g̃, ∆̃) to be

(2, 3, 6) at four points in the base (cf. table 3). This fixes the Weierstrass equation to

y2 = x3 + α̃p24xz
4 + β̃p34z

6 . (23)

Here p4 is a polynomial of degree four in s, t, whose four zeros correspond to the position of

the four fixed points in the base. The discriminant is

1

4 · 27
∆̃ =

(
α̃3 + β̃2

)
p64 , (24)

so we clearly have four D4 singularities at the roots of p4. As an additional check, note that

the complex structure τ is given in terms of the j-function by

j(τ) ∼
f̃ 3

∆̃
∼

α̃3

(
α̃3 + β̃2

) , (25)

i.e. it is constant but not fixed. This fits nicely with the Z2 orbifold, in which the complex

structure is also not fixed since every lattice has a reflection symmetry.

This orbifold argument fixes c8 = α̃p24 and d12 = β̃p34. Furthermore, we know that the 24

instantons are located at the fixed points as well, which suggests d24 = γ̃p64. Looking at (12),

we see that we have fixed all polynomials except for c20. Requiring that we find an extra SU(2)

symmetry forces us to take c20 = κ̃p54 and to relate the numerical coefficients α̃, β̃, γ̃, κ̃ among

each other. By rescaling and leaving d0 and the coefficients in p4 as free parameters, we then

find

1

3
f =

4

d0
u3v4p24

(
d0u+ 12p34v

)
, (26a)

1

2
g =

1

d0
u5v5

(
d20u

2 − 4d0p
3
4uv − 108p34v

2
)
, (26b)

1

4 · 27
∆ =

1

d30
u9v10

(
d0u+ 6p34v

)2 (
d30u

3 + 20d20p
3
4u

2v + 68d0p
6
4uv

2 + 3072p94v
3
)
. (26c)

Clearly, there is an extra locus of type I2 fibers over d0u+ 6p34v = 0.

Spectrum

When looking at the spectrum, one has to be very careful as results may be different from what

one naively expects. We present a discussion of the subtleties from different point of views.

First we find that (by construction) still nothing intersects the E8 curve at v = 0. However,

the price to pay is that the E7 curve, the SU(2) curve, and the I1 curve all intersect at the four

points u = 0 = p4. This is to be expected since all matter (except for the untwisted (56, 2) and

the four singlets) is localized at the orbifold fixed points located at the zeros of p4 in the base.

Now comes the tricky part: the blowup of the singularities in the base seems to introduce

new tensor multiplets (whose singlets correspond to the blowup moduli), which would result in

models with NT 6= 1 and thus would not be dual to a perturbative heterotic model. However,
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as argued by Aspinwall and Donagi in [33], the spectrum computation is much more subtle in

this case. Naively one might have expected that the orbifold is the limit in which the gauge

bundle becomes concentrated at the orbifold singularities, leading to point-like instantons.

However, these point-like instantons are not the same as the tangent sheaf (albeit having the

same support). The difference becomes apparent when looking at the spectral curve. In the

former case it contains a reduced component while in the latter case it contains a fat line. This

leads to different effects when resolving the singularities. In particular, in order to decide which

of the multiplets (tensor, gauge, and matter multiplets) that are expected from the resolution

actually do occur, one needs to investigate the corresponding extremal transitions. By studying

a similar case, the authors of [33] find that the occurrence of extra tensor multiplets is indeed

blocked, while the SU(2) together with the four half-hyper doublets do occur.

The fact that the spectrum differs from the naive expectations can also be understood from

the heterotic/M-Theory duality. Note that the instantons at the orbifold fixed points cannot

be “ordinary” point-like instantons which would correspond to M5 branes. These ordinary

instantons do not break or branch the gauge group; the corresponding new tensor multiplets

balance the vector multiplets in the anomaly (2). This fits well with the fact that point-like

instantons usually have trivial holonomy [33, 34]. In contrast, point-like instantons at orbifold

singularities are expected to inherit the orbifold holonomy, which is fractional. This means

that these instantons can (and do) branch the gauge group, removing some W -bosons from the

spectrum. In order to still satisfy the anomaly constraint (2), no new tensor multiplets do occur.

Hence these point-like instantons with non-trivial fractional holonomy cannot correspond to

ordinary M5 branes. In some sense, these M5 branes with fractional holonomy are forced to sit

at the fixed point with the same fractional holonomy and cannot travel though the bulk (which

has trivial holonomy); hence they cannot be removed from the singularity and become ordinary

M5 branes. The presence of spaces with singularities were studied in an M-theory description

in [21,35]. There, the singularities correspond to “frozen singularities” with discrete 3-form flux

obstructing their resolution. It would be very interesting to construct these M-theory models

directly and compare with the Jacobian of the F-theory models as discussed in [22], which is

however beyond the scope of the paper.

Despite these complications, we demonstrate that the spectrum can be determined based

on counting arguments as it was done in section 2.3 and is found to be as expected from the

perturbative heterotic orbifold point of view. To determine the number of 56’s, we note that

after deforming the extra SU(2) locus away by switching on coefficients in the polynomial, we

are again in the “minimally Higgsed” case described in section 2.3 with 20 56’s, which assemble

into sixteen half hypers (56, 1) and one full hyper (56, 2). The uncharged moduli correspond

to the parameters left in the polynomials. On the heterotic side, there are four (two are related

to the size and two are related to the complex structure of the T 4 = T 2 × T 2 underlying the

T 4/Z2 orbifold. On the F-theory side we find that there are 9 parameters: α̃, β̃, γ̃, κ̃, d0 and

four parameters of p4. However, the zeros of p4 are fixed as they correspond to the orbifold

fixed point locations. In addition, the other parameters have to be related amongst each other

for the extra SU(2) locus to appear, which leaves us with four free parameters. In particular,

the complex structure of the base torus depends on a combination of α̃ and β̃, cf. (25). Finally,

the doublets of SU(2) are related to those deformations of the original polynomials c20, c8, d24,
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Figure 4: The orbifold T 4/Z3 has three Z3 singularities in each T 2.

d12, and d0 that destroy the SU(2) locus. As discussed in section 2.3, these have 69 parameters

out of which one is an overall scaling, so there are 68. Out of these four respect the SU(2)

symmetry (i.e. the four singlets), so 64 parameters destroy the extra SU(2) locus. These 64

correspond to the 64 half-hypers (1, 2).

Stable degeneration

In terms of the stable degeneration limit, this means that the 24 I1 fibers that generically

intersect the divisor C∗ are grouped into four groups with 6 I1’s each, leading to four I∗0
singularities. Since the discriminant vanishes with order 1 along an I1 and with order 6 along

an I∗0 , we see that all 24 I1 fiber components are used in this limit. Along the divisors C0 we

keep an E8 fiber and along the divisor C∞ we split the E8 into E7 × SU(2). When blowing up

the central node in each of the I∗0 , we obtain the 16 I2 singularities of the T 4/Z2 orbifold. It is

not possible to obtain 16 I2 directly, as this would require 32 I1 fibers, but in a K3 there are

only 24.

Of course the techniques outlined here can also be applied to other T 4/ZN orbifolds, which

we will discuss now in turn.

3.2 Constructing the duals of the T 4/Z3 orbifold

We start with discussing the orbifold. It has nine Z3 (or A2) fixed points (three per T 2 plane,

cf. figure 4) and two twisted sectors,

θ : (z1, z2) 7→ (e2πi /3z1, e
−2πi /3z2) , θ2 : (z1, z2) 7→ (e−2πi /3z1, e

2πi /3z2) . (27)

This means that if we distribute the instantons again evenly, we have n3 = 24/9 = 8/3 instan-

tons per fixed point or 4/3 per resolution P1. In order to be able to mod out the Z3 orbifold

action, the complex structures of the two T 2 have to be fixed to τ = e2πi /3. For the spectrum,

this means that there are two moduli (completely uncharged singlets) corresponding to the

overall sizes of the tori. Since the commutant of E8 with Z3 is U(1), we find a gauge group of

E7 ×U(1)×E8. Each fixed point has one 56 and seven singlets, both charged under the U(1).

Furthermore, there is another 56 and another charged singlet in the untwisted sector. It can

easily be checked that this satisfies the anomaly constraint (2) (as well as all other anomaly

constraints, of course).

In the case where the U(1) is broken, the spectrum is the same as for the Z2 model with

broken SU(2) (ten 56’s and 9 · 7 + 2 = 65 singlets), so we can take the same polynomials

at that stage. By the same argument as above, we cannot directly take the orbifold as a
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Figure 5: Blowdown limit of T 4/Z3. Over each base singularity there is an orbifold pillow with three Z3

singularities, corresponding to the affine Dynkin diagram of E6. In the blowdown procedure, the central torus

node (blue) is blown down and one of the corner singularities (red) is blown up.

Weierstrass model, but have to perform a similar blowup and blowdown. This time, however,

the procedure takes us from nine A2 singularities to three E6 ones, cf. figure 5. The Dynkin

label of the original finite (central) component is 3 and thus should be intersected by a three-

section, while after applying the procedure, we obtain a finite component with multiplicity 1,

which can be described as a Weierstrass model with a single section. The vanishing orders of

f̃8 and g̃12 in the heterotic Weierstrass equation (22) should be ≥ 3 and 4 at three points to

obtain an E6. But clearly f̃8 is not the cube of any degree-three polynomial, so we have to set

f̃8 = 0 (note that indeed the vanishing order for E6 is ord(f) ≥ 3, not necessarily equal) On

the other hand, we can easily set g̃12 = αp43 to obtain a vanishing order of 4 at three points in

the base. This has the nice effect that the the complex structure of the fiber is given by

j(τ) ∼
f̃8

∆̃
= 0 , f̃8 (28)

i.e. it is fixed to τ = e2πi /3, just as it should be for the Z3 orbifold.

Hence we have fixed c8 and d12. Going further, we note the interpretation of d24 as the

instanton location implies that we should have d24 ∼ p83, since we have 24 instantons equally

divided between the three singularities, i.e. eight per singularity. On the other hand, c20 is

again not fixed. However, by comparing to the minimally Higgsed case and to the Z2 orbifold

results, we find that each zero of c20 contributes one 56 half-hypermultiplet, which have to

combine into full hypermultiplets in this case since their U(1) charge forces them into complex

representations, so we make the ansatz c20 ∼ p63k2. The zeros of k2 should then correspond to

the untwisted 56, while the p63 gives rise to the twisted 56’s. As in the Z2 case, we find that

there are 18 half-hypers of 56, one per P1 needed to resolve the Z3 singularity. Finally, the

factorization should be such that there is an extra section leading to the U(1) symmetry, but

a detailed exploration of this is beyond the scope of this paper. The parameter counting is

similar to the Z2 case (since they both have the same minimally Higgsed limit), except that

there are two parameters less (corresponding to the complex structures of the two T 2, which

are fixed for this orbifold).
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Figure 6: The orbifold T 4/Z4 has two Z4 singularities and one Z2 singularity in each T 2.

Stable degeneration

In this case the 24 I1 fibers are grouped into three groups with 8 I1’s each, resulting in three

IV
∗ singularities intersecting C∗. This uses up again all 24 I1 fibers. Along the divisors C0 we

keep an E8 fiber and along the divisor C∞ we split the E8 into E7 × U(1). When blowing up

the central node in each III
∗, we obtain the 9 I3 singularities of T 4/Z3. Again, obtaining 9 I3

singularities directly is impossible, since it would require 27 I1 fibers.

3.3 Constructing the duals of the T 4/Z4 orbifold

This orbifold has three twisted sectors,

θ : (z1, z2) 7→ (e2πi /4z1, e
−2πi /4z2) , θ2 : (z1, z2) 7→ (−z1,−z2) , θ3 = θ−1 (29)

but the third sector is the CPT conjugate of the first, so it is enough to discuss the first and

second twisted sector. In the first sector, we have two Z4 fixed points (which are at the same

time Z2 fixed points of the second twisted sector) and one Z2 fixed point (cf. figure 6). For the

underlying T 2’s to be compatible with the Z4 action, the complex structure of the tori have to

be fixed to τ = i . Picking one T 2 as the base and the other one as the fiber as before, this

means that there are

• two points on the base over which there is a “Z4 fiber”, with two Z4 and one Z2 singu-

larities, which in blowup lead to an extended E7 diagram (cf. figure 7),

• and one point in the base over which we have the known “Z2 fiber”, leading to the

extended D4 diagram (cf. figure 3).

Again, this takes us from a finite component with multiplicity 4 to a finite component with

multiplicity 1 in the Z4 fibers; for the Z2 fiber, the story is as in the T 4/Z2 case. The required

vanishing orders of (f̃8, g̃12, ∆̃) for the Weierstrass model on the heterotic side are (3,≥ 5, 9)

for E7 and (2,≥ 3, 6) for D4. Since there are two Z4 and one Z2 fiber, the combined varnishing

orders are (8, 13, 24). However, g̃12 is a section in 12Du; hence it cannot vanish to order 13 and

we have to set g̃12 = 0 identically. This means that the complex structure of the fibration is

again fixed since ∆̃ = 4f̃ 3, and thus

j(τ) ∼
f̃ 3

f̃ 3
= 1 (30)
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Figure 7: Blowdown limit of T 4/Z4. Over a base singularity there is an orbifold pillow with two Z4 (one of which

is depicted here) and one Z2 (depicted in figure 3) singularities, corresponding to the affine Dynkin diagram of

E7. In the blowdown procedure, the central torus node (blue) is blown down and one of the corner singularities

(red) is blown up.

From the properties of the j function, this implies that indeed τ = i .

In summary, we have

c8 = f̃8 = αp31q
3
1r

2
1 , d12 = g̃12 = 0 . (31)

Here, p1, q1, and r1 are all polynomials of degree one, giving the locations of the two E7 and

the D4 fiber, respectively. Again, the instantons are located at the singular fibers, so

d24 = βpi1q
i
1r

j
1 (32)

with 2i + j = 24. Since r1 = 0 is a Z2 fiber, we may assume just as for the Z2 orbifold above

that j = 6 and thus i = 9, i.e. nine instantons per Z4 fiber. Using that the Z2 fixed points

carry n2 =
3
2
instantons, we find that each Z4 fixed point carries n4 =

15
4
instantons (and thus

5
4
instantons per resolution P1), such that 2n4 + n2 = 9. We thus find that Z4 fixed points

carry fractional (quarter) instantons, as seems reasonable.

Finally, using again that the half-hypers 56 are localized at the zeros of c20, we expand it

in powers of p1, q1, r1. Assuming that each P1 needed in the resolution process comes with one

twisted 56 half-hyper as in the previous cases, we find that

c20 = γp71q
7
1r

4
1k2 , (33)

where again k2 is a degree-two polynomial accounting for the untwisted 56, which cannot be

composed out of two half-hypers because of its U(1) charge. Note, however, that p1 and q1
are raised to odd powers. This means that some of these have to correspond to actual half-

hypermultiplets, which consequently cannot be charged under U(1). The contributions to the

massless spectrum are as follows:

• A Z4 fixed point contains three P1’s, one of which can be though of as a P1 corresponding

to the Z2 fixed point (i.e. belonging to the second twisted sector). Thus, each Z4 point

contains a full 56 for the first twisted sector and a half 56 for the θ2 sector.

• The pure Z2 fixed points simply contain half 56’s, corresponding to the θ2 sector.
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Figure 8: The orbifold T 4/Z6 has one Z6, one Z3, and one Z2 singularity in each T 2.

Adding these up, we find four full 56’s in the θ sector and 4+2(1+1+1) = 10 half-hypers in the

θ2 sector, which matches precisely the spectrum of the orbifold, cf. table 1 and the discussion

of the distribution of the 56’s in section 2.1. The counting of parameters is as in the Z3 case.

Again, we find that there are only two uncharged singlets (geometric moduli), corresponding

to the sizes of the tori; the other two singlets corresponding to the complex structure are lost

since it had to be fixed to be compatible with the Z4 action.

Stable degeneration

Here we group the 24 I1 fibers into two groups with 9 I1’s each and one group with 6 I1’s,

resulting in two III
∗ and one I∗0 singularities intersecting C∗. This uses up again all 24 I1 fibers.

As before, we keep the E8 fiber along C0 and split the other E8 along C∞ into E7×U(1). When

blowing up the central nodes, we obtain 4 I4 and 6 I2 singularities. Again, obtaining these

singularities directly would require 28 I1 fibers intersecting C∗.

3.4 Constructing the duals of the T 4/Z6 orbifold

Lastly, we want to discuss the Z6 orbifold. Here, the orbifold action introduces one fixed point

of each order Z6, Z3 and Z2 (cf. figure 8) in each torus,

θ : (z1, z2) 7→ (e2πi /6z1, e
−2πi /6z2) , θ2 : (z1, z2) 7→ (e2πi /3z1, e

−2πi /3z2) ,

θ3 : (z1, z2) 7→ (z1,−z2) , θ4 = θ−2 , θ5 = θ−1 .
(34)

The θ4 sector is the CPT conjugate of the θ2 sector, and the θ5 sector is the CPT conjugate of

the θ sector, so it is enough to discuss only the first three twisted sectors.

Fiberwise, this gives

• one “Z6 fiber” with the three fixed points, leading to an E8 fiber after performing the

blowup/blowdown procedure with vanishing orders (4, 5, 10) (cf. figure 9),

• one “Z3 fiber” which turns into an E6 with vanishing orders (3, 4, 8) as discussed in section

3.2, and

• one “Z2 fiber”, which becomes the D4 fiber with vanishing orders (2, 3, 6) as discussed in

section 3.1.

For the Z6 fiber, this takes us from a finite component with multiplicity 6 to a finite component

with multiplicity 1; the outcome of the procedure for the other fiber types are as discussed in
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Figure 9: Blowdown limit of T 4/Z6. Over a base singularity there is an orbifold pillow with one Z6 (depicted

here), one Z3 (depicted in figure 5), and one Z2 (depicted in figure 3) singularity, corresponding to the affine

Dynkin diagram of E8. In the blowdown procedure, the central torus node (blue) is blown down and one of the

corner singularities (red) is blown up.

the previous cases. We observe in general that in the description of the ZN singularities in a

T 4/ZN orbifold, we obtain Dynkin diagrams in which the original orbifold corresponds to the

“central” node (i.e. the node with the most neighboring nodes) which always has a Dynkin

label of N .

The overall vanishing orders of (f̃8, g̃12, ∆̃) would have to be (9, 12, 24), which is impossible

since f̃8 is a section in 8Du. Hence f̃8 = 0 identically, which again fixes τ = e2πi /3 as required

by the Z6 orbifold action (albeit for a different reason than in the Z3 case). We choose

d12 = g̃12 = αp51q
4
1r

3
1 , (35)

such that the Z6, Z3, and Z2 fixed points are located at the zeros of p1, q1, and r1, respectively.

The other polynomials are now relatively straightforward. By similar reasoning as above,

we find

d24 = βp101 q81r
6
1 . (36)

Hence, the Z6 fiber carries ten instantons. If we want to turn this into a fixed point instanton

number n6, we use that according to our previous results n3 = 8
3
and n2 = 3

2
and thus n6 =

10− 8
3
− 3

2
= 35

6
, which amounts to 7

6
per P1 glued in to resolve the A5 singularity. This leads

to an obvious pattern: A Zk fixed point carries instanton number

nk =
k2 − 1

k
. (37)

The P1’s glued into the corresponding Ak−1 singularity thus carry an instanton number of
k2−1
k(k−1)

= k+1
k
, if distributed evenly.

Finally, we discuss the charged matter. To fix c20 we use again that each P1 used to resolve

a ZN singularity contributes one half-hyper 56. Hence we find

c20 = γp81q
6
1r

4
1k2 . (38)

The distribution of the 56’s among the sectors and fixed points is then as follows:
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• The untwisted sector has one 56, corresponding to k2,

• the θ sector has as its only fixed point the Z6 fixed point at p1 = 0, so we expect eight,

minus the Z2 and Z3 fixed points in the Z6 fiber which do not appear in the θ sector, minus

the Z2 and Z3 components inside the Z6, such that we end up with 8− 1− 2− 1− 2 = 2

half-hypers, which can come as one charged multiplet,

• the θ2 sector contains the Z3 fixed points at q1 = 0, plus the ones in the Z6 fiber, so

6 + 2 + 2 = 10 half-hypers, again possibly charged,

• and finally the θ3 sector picks up the remaining 4+ 1+ 1 = 6 half-hypers, which actually

are true half-hypers, i.e. uncharged.

This agrees perfectly with the orbifold spectrum given in table 1.

Stable degeneration

Here we group the 24 I1 fibers into a group with 10 I1’s, a group with 8 I1’s, and a group with

6 I1’s, resulting in one II
∗, one III

∗, and one I∗0 singularity intersecting C∗, which uses up all

24 I1 fibers as in the previous cases. Again, we keep the E8 fiber along C0 and split the E8

along C∞ into E7 × U(1). When blowing up the central nodes, we obtain 1 I6, 4 I3, and 5 I2
singularities, whose direct construction would require 28 I1 fibers.

3.5 Constructing the duals of T 4/ZN orbifolds with Wilson lines

As a last step we want to discuss orbifold models with Wilson lines. If on turns on Wilson lines

at the orbifold, they further branch the gauge group and project out some of the matter states.

As an example, we will discuss the T 4/Z2 orbifold where one Wilson line W = (02, 1, 05)(08)

along one of the torus directions (say e1 = Re(z1)) has been switched on in addition to the

standard embedding shift vector V . As a result, the 2 × 4 = 8 Z2 fixed points located at

e1 = 0 do not feel the Wilson line and behave as if it was not switched on, while the other 8

Z2 fixed points at e1 = 1
2
feel both the shift and the Wilson line. As a result, we get a gauge

group of SO(12) × SU(2) × SU(2)′ × E8 with the matter content given in table 1. Note that

the SU(2) corresponds to the factor branched off the E7, while the SU(2)′ corresponds to the

“original“ SU(2) of the above Z2 example. At the 8 fixed point where the Wilson line does

not act (corresponding to the upper line in the third column of the T 4/Z2 case in table 1), the

spectrum is simply branched, which means that (56, 1) → 2(12, 1) + (32, 1). At the other 8

fixed points, it has been calculated using the standard CFT techniques.

Hence the discussion is not as symmetric as in the first case. Nevertheless, the idea is similar.

One starts with an SO(12) (i.e. I∗2 ) singularity at u = 0 with vanishing orders (2, 3, 8) and an

E8 singularity at v = 0 and factorizes the discriminant further by restricting the polynomials

until two further I2 loci appear which correspond to the two SU(2)’s. The resulting expressions
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f , g, ∆ then are of the form

f ∝ u2v4p24
(
a1u

2 + a2p
3
4uv + a3p

6
4v

2
)
, (39a)

g ∝ u3v5
(
a4d0u

4 + . . .+ a8p
12
4 v4

)
, (39b)

∆ ∝ u8v10
(
u+ a9p

3
4v
)2 (

u− a9p
3
4v
)2 (

a10d0u
2 + . . .+ a12p

6
4v

2
)
, (39c)

where the ai are (fixed) numerical constants that are determined such that the discriminant

factorizes into two quadratic pieces plus a rest and that the terms containing u6 and u7 cancel

from the discriminant, enhancing D4 to D6. We thus obtain an E8 singularity at v = 0, a D6

singularity at u = 0 and two I2 singularities at u± a9p
3
4v = 0.

Applying the methods described in section 2.4 does again not give rise to the “correct”

orbifold limit. Using table 4, we find

(αSO(12), α̃SO(12)) = (2, 12) ⇒ ξSO(12) = Dv + 12Ds = Du ,

(αSU(2), α̃SU(2)) = (2, 12) ⇒ ξSU(2) = Dv + 12Ds = Du ,

(αSU(2)′, α̃SU(2)′) = (2, 12) ⇒ ξSU(2)′ = Dv + 12Ds = Du ,

(αE8
, α̃E8

) = (2,−12) ⇒ ξE8
= Dv .

(40)

As expected, the SO(12) and the two SU(2)’s are in the same divisor class Du, and the E8 is

in the divisor class Dv. We thus find that

ξSO(12).ξE8
= ξSU(2).ξE8

= ξSU(2)′ .ξE8
= 0 ,

ξSO(12).ξSU(2) = ξSO(12).ξSU(2)′ = ξSU(2).ξSU(2)′ = 12 .
(41)

Neglecting again the normalization such that fractional instantons can arise we find that

ξSO(12) =
1
2
Du, ξSU(2) = ξSU(2)′ = Du, ξE8

= 1
60
Dv, which gives the correct spectrum.

3.6 General instanton embedding

So far we have restricted our discussion to the case where all instantons are embedded in one

E8. In an orbifold with general gauge shift and Wilson lines, both E8’s will be broken. Such

models can also be connected to the ones we discussed here via a sequence of blowups and

blowdowns in the base [14, 15, 20]. By blowing up an extra point in the base, we can get from

FN to FN±1. The corresponding picture in the Hořava–Witten picture of M-theory [36–38] is

the following: the blowup in the base introduces an extra tensor multiplet; the scalar of this

tensor multiplet encodes the position of on M5 brane in the M-theory bulk (i.e. on the interval

between the two E8 branes). Thus by blowing up and blowing down, we can “peel off” an M5

brane from one E8 (blowup), let it travel through the bulk, and absorb it at the other E8 brane

(blowdown), changing the instanton embedding in this way. For the analysis, this means that

the expansions in (7) have to be done such that they are compatible with the new scalings.

The geometry of the singularity structure does not change, and the terms in the expansions

can still be identified with bundle and geometry data [15].
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4 Conclusions and outlook

In this paper we investigated heterotic models compactified on singular K3 spaces corresponding

to abelian toroidal orbifolds T 4/ZN and argued that all these models can be connected via F-

theory.

For the sake of simplicity we concentrated on the standard embedding of these orbifolds,

in which one E8 is broken rank-preservingly to either E7 × SU(2) or E7 × U(1) and the other

E8 is left unbroken. First we discussed previous approaches for constructing F-theory duals

of smooth heterotic K3 models and argued why these approaches cannot be used. For the

construction of the duals, we first had to describe the geometry of the T 4/ZN models on the

heterotic side. Having singular fibers by itself over singularities in the base, the description led

to fibers with singularities of the type I∗0 , IV
∗, III∗ and II

∗. By calculating the j(τ) function

of these fibers, we found that the complex structure of the orbifold torus is free in the T 4/Z2

case, fixed to τ = e2πi /3 in the T 4/Z3 and T 4/Z6 case, and fixed to τ = i in the T 4/Z4 case,

as needed for compatibility with the orbifold action. We found that in these constructions the

node corresponding to the “orbifold pillow” in a fiber above a ZN singularity in the base has

multiplicity N . Furthermore, the distribution of the fractional instantons over the ZN fixed

points in the base is (N2 − 1)/N .

By blowing down the “orbifold pillow” and blowing up one of the Dynkin nodes with multi-

plicity one, we could go to a Weierstrass description of the model. Using the information about

the instanton embeddings and the singularities of the geometry on the heterotic side, we could

tune the complex structure parameters on the F-theory side such that the defining quantities

(f, g,∆) of the F-theory Weierstrass model have the vanishing orders needed to reproduce the

gauge groups on the heterotic side.

However, the resulting models were too singular to apply the usual spectrum calculation

rules of F-theory. The reason is that (most) matter and instantons are living at the singularities

on the heterotic side and thus all components of the discriminant on the F-theory side vanish at

the fixed point loci of the heterotic dual. Nevertheless, by counting parameters and deforming

the singularities away to connect to the (partially Higgsed) smooth model, we argued that

the F-theory spectrum coincides with the spectrum on the heterotic side. Using the strong

constraints imposed by 6D anomaly cancellation, we could further cross-check the spectrum.

The results obtained from the counting agree with the ones obtained by Aspinwall and Donagi

in [33] for F-theories with orbifold singularities in the fiber.

In the end, we investigated more general gauge sectors with Wilson lines and configurations

in which both E8’s were broken on the heterotic side and argued that these can be obtained

by further specialization of the complex structure moduli in the CY threefold combined with

blowups and blowdowns in the base FN . In particular, the geometry on the heterotic side and

the gauge group and matter content in each E8 are described by the complex structure on the

F-theory side, while the instanton embedding on the heterotic side corresponds to blowups and

blowdowns in the base on the F-theory side. This means that heterotic orbifold Wilson lines

map to complex structure parameters (and not to Wilson lines) on the F-theory side.
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Outlook

It should be noted that the methods we applied here for the description of the geometry of

the singular K3 compactifications could in principle also be applied to CY threefolds on the

heterotic side (of course there the anomaly cancellation conditions are weaker, which makes

cross-checking the F-theory matter spectrum harder). It would be very interesting to see which

of the T 6/ZN and T 6/(ZN × ZM) orbifolds are connected via F-theory on CY fourfolds.

In addition, one could work out the description of the heterotic orbifolds and their F-theory

duals directly using multisections as recently explored in [22] rather than constructing the

Weierstrass model using the blowup and blowdown procedure, and match the results.

Furthermore, it would be interesting to study the M-theory description of these models and

compare it with the the case of frozen singularities and discrete 3-form flux [21, 35].

Acknowledgments
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