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The anomalous dimensions of operators in the purely glusbi@,12) sector of any planar conformsl = 2
theory can be readitfrom the N = 4 SYM results by replacing th& = 4 coupling constant by an interpolating
function of theN = 2 coupling constantsl], to which we refer to as theffective coupling. We compute the
weak coupling expansion of these functions for a large aig§ = 2 theories by employing supersymmet-
ric localization. Via Feynman diagrams, we interpret owuits as the relative (betweevi = 2 andN = 4)
finite renormalization of the coupling constant. Using th@SACFT dictionary, we identify theféective cou-
plings with the &ective string tensions of the corresponding gravity duabties. Thus, any observable in the
SU(2,12) sector can be obtained from % = 4 counterpart by replacing th¥ = 4 coupling constant by the
universal, for a given theoryflective coupling.

I. INTRODUCTION AND SUMMARY The simplest example in this class is thg elliptic quiver.
This is the SUK)xSU(N.) theory with two marginal cou-

The recent studies 0 = 4 SYM have lead to impressive Plingsg., g which, in the limitg — 0, leads to superconformal
exact results and novel insights for 4D gauge theories.ign th QCD (SCQCD) with color group SW() andN = 2N flavor
letter we consider the simplest next step in 4D= 2 gauge  hypermultiplets that has been studied extensively7ir2D-
theories. So far, exact results in gauge theories have con?dl- )
from using either integrability (se€]for a review), localiza- In [1] we show that the purely gluonic SU(22) sector of
tion [3] or a dual string theory description (AASFT [4]). composite operators in evely = 2 theory, mgde out of fields

The general problem of obtaining the gravity duakoi= 2 only in the vector multiplet, A7, 7., D.., is closed to all
superconformal gauge theories has been studiedal]  00ps in planar perturbation theory. This sector includeero
with partial success. However, theories that are obtaine@tors that correspond to string states classically livinly on
as orbifolds of A/ = 4 SYM have well known gravity du- the AdSs x S* factor of the dual geometry. We also present
als [12, 13 and in particular, theA,_; quivers are dual to @ diagrammatic argument that anomalous dimensions in the
AdSsx S5/Z,, where theZ, does not fiect theAdSsx St fac-  SU(2,12) sector can be readidrom the N = 4 ones up to
tor. The dual geometry of any’ = 2 superconformal theory @ redefinition, due t_o finite renormalization, of the couglin
has anAdSs x St factor, since the protected members of theconstang? — f(g?), i.e.
N = 2 chiral ring precisely match the Kaluza-Klein reduction @ N
of the 6D Tensor Multiplet on thifdSs x St factor [7, 14]. YV = YV (H(gY),  whereg? = M2 (1)
Wilson loops provide a way to probe the dual geometry and in (47)
particular to measure the size of thdSs x S factor because, Thus, we can use the integrability of planér= 4 and the re-
on the string theory side, they are described by a minimal sursults available to compute the anomalous dimensions fer pla
face which classically ends on the contour of the Wilson loopnar N = 2 theories of operators in this sector, as long as we
Calculating the expectation value of the circular Wilsoado can compute thefBective couplingf (g2).
on both sides of the correspondence has been one of the firstin this letter we compute these functions for e, theo-
successful tests of th¥ = 4 AASCFT paradigm15, 16l and  ries (15) and we interpret them as the relative finite renormal-
with this letter we begin a similar program f8f = 2 theories.  ization of the coupling constant

In 4D, N = 4 SYM is the unique, up to a choice of the ) )
gauge group, maximally supersymmetric gauge theory and it f(g) -g*=¢° [(Zgzz) - (257 ] 2)
has exactly one marginal coupling constant. The space of con
formal N = 2 gauge theories is classified by ADE3 17—  The calculation of theféective couplings is done via the eval-
19| finite or affine Dynkin diagrams. By sending some cou- uation of the expectation value of the circular Wilson loop.
pling constant to zero, one can obtain the superconforreal th Using localization, Pestun was able to prove the conjecture
ories that correspond to finite Dynkin diagrams from thima of [15, 16] that the expectation values of the circular Wilson
ones. For simplicity, in the present article we will only eon loops for anyN' = 2 theory can be obtained using matrix
sider the elliptic quivers based on th@ime A,_; Dynkin dia-  models B]. Here, we use these matrix models to calculate the
grams that can be obtained fratnorbifolds of A’ = 4 SYM.  Wilson loop expectation values and we show that

W) = W), with WY @) = S (3
* mitev@math.hu-berlin.de From equationsl) and @) we learn that the integrabl¢ = 4
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Feynman diagram calculations. To get to iWe= 2 theory  be inserted in their renormalized for@*"(Qren, Aren) =
result all we need to do is to compute the relative finite renory, Zijo?are(z(l?/ZQ’ Zifﬂ) whereZ;; is the the mixing ma-
malization of the coupling constant that is encoded in the efy,

fective couplingf(g?). On the dual gravity side, thefective
couplings are interpreted as the renormalization of thece
tive string tension

In [1] we presented a diagrammatic argument that for any
planar and superconform& = 2 theory, the asymptotic
SU(2,12) Hamiltonian is identical to all loops to that of

R N = 4 SYM, up to a redefinition of the coupling constant
T2, = g = f(g%). (4) ¢ — f(g?). Thus, this sector is integrable and anomalous
(2ra’) dimensions can be readfdrom the N = 4 ones, up to this
For theZ, quiver, the first correction of theffective coupling ~ redefinition. _ _ _ _
f(g?) from the weak coupling side was computed 22,[25] A refined version of the diagrammatic argument 1 is
using Feynman diagrams reviewed below, based only on
(@ { o+ 12(g2 _ gZ) (B)P+, g.§g—0 ) e gauge invariance (background field method),
g = 20 o 5
2 g gv + CEEN 5 — 00

o*+g° 9.9 e the chirality of the SU(2,R) sector which makes the

while the first term of the strong coupling expansion was-writ non-renormalization theorem d3(, 31] applicable.

ten in [24] by using AdSCFT. In sectionlll we write down

f(g?) for a few orders in the weak coupling expansion and we To0 explain the argument, we begin by considerig= 2
discuss its Feynman diagram interpretation_ theories obtained as orbifolds 8f = 4 SYM. They are con-

formal by inheritance argument3Z, 33]. When all the cou-
pling constants are equal to each other (orbifold point), al
Il. THE DIAGRAMMATIC ARGUMENT AND anomalous dimensions in the untwisted sector are equatto th
THE POWER OF GAUGE INVARIANCE N =4 ones.
In order to compute the renormalization of operators, we
Classical gauge theory has local gauge invariance which igrite down all the relevant diagrams and compute each one of
broken by the addition of a gauge fixing term during quantizathem inN" = 4 (at the orbifold point) as well as i = 2 and
tion. The background field formalism (BFF) provides a waysubtract the results from each other. All the individual UV-
to keep manifest as much as possible of the local gauge invarglivergent Feynman diagrams that should be calculated éor th
ance. To use it, we separate the gauge fgldn a classical ~renormalization of operators in the SU(R)isector, are iden-
and a quantum pary, = A, + Q,. The bare and the renor- tical in both theories. The only diagrams that arfedent
malized quantities are related by the renormalizatiorofact ~ from their ' = 4 counterparts are finite and they are respon-
sible for the relative finite renormalization between Me= 2

Mg~ VE e Q™ VZol 0 e ouping consiant, Some exanpes ofsch
Obare = Zggren, Ebare = foren, (6) g P g .

This procedure should be thought of as a novel regulariza-
where¢ is the gauge fixing parameter. For simplicity, we tion prescriptionthat cancels thg divergencies of ea_civiitmd
present only the Yang Mills part of the theory, but the proce-Ual diagram. The fact that theftérence of the two diagrams
dure carries over to quarks and also to supersymmaticl IS always finite stems from the finiteness of tRe= 2 theo-

andN = 2 theories in the appropriate superspa&-p9J. ries we are considering.J] and from the fact that the purely
In the background field gauge the renormalization factorgluonic tree level terms in both th&" = 2 and theN' = 4
are related as Lagrangians are identical. With this powerful regulavizat
prescription, we can simplify our computations. All the com
ZyNZa=1, Zo=2Z: (7)  binatorics and symmetry factors of the individual diagrams

are identical in both theories. So, we let tRe= 4 integrable
and the final answer for any gauge invariant quantity willmodel give them to us, and we just have to compute the dif-
only depend on theZx factor. What is more, in the ference ).
BFF the renormalization factors for the quantum fields There is one possible way this argument could fail. Going
will cancel for each individual diagram. This can be €as-upto h|gher orderi@, new nonlocal vertices can appearin the
ily seen by recalling a couple of BFF corollaries. In the effective action ofV = 2 theories that are not there ff = 4
BFF Feynman diagrams the classical fields cannot prop-  SyM. However, none of these new vertices can contribute to
agate on the internal lines. They only appear as exterthe anomalous dimensions of the SU(2)sector 1] due to
nal fields in correlation functions. Moreover, alift@hell  the non-renormalization theorem &g 31]. Only the renor-
n-point functions(Qy, - --Qy, A,, ---A,,) renormalize as malized tree level vertices will contribute. Due to the fit
Zg/zzg/zzg@m - Qu Ay, -+ Ay,). Finally, each inter- the Zo cancel, the final result depends only @ = Z4
nal propagatoKQ,Q,) carries a factor ofZ;!. Compos- Thus all anomalous dimensions obgyg?) = »=*(f(g?)
ite local or non-local operators like Wilson loops shouldwith f(g?) givenin @).



I1l. WILSON LOOPS

Pestun’s matrix models provide afiieient way to compute
the expectation value of the circular Wilson loop

W™ = < itrDPexpgg ds(iAl ()% + ¢(k)(x)|5(|)> > ©
C

Ne

wheren denotes the fundamental representation@risl the
circular loop located at the equator 8f. The adjoint scalar
¢® and the gauge field are in the vector multiplet of the

k-th gauge group. Inserting in the path integral a composite

operator with fields only in thé&-th vector multiplet selects
the couplinggﬁ whose renormalization we are computing,

W0, 0) = WA (@0 0) . (9)

wherefy(g1,...,0) = gﬁ + --- is the dfective coupling con-
stant of thek-th gauge group.

Let us consider a cyclic quiver made outrgfauge groups,
corresponding to the untwistedfime Dynkin diagramA,_;.
We follow the method and notations &4-37]. The partition
function of the corresponding matrix model is

r
2= [[]oe
k=1

N c c 2
[ (@ - afoye =)
]

i<j=1

2
Z1-I00p |Zinst -

(10)

Inthe planar limit, the instanton contribution can be netgd,
while the one loop part is

r N
Zuoop= | [ [ [H¥ (@Y -a)), (11)
kl=1i,j=1

whereH(x) = [Tj, (1+ §)n e anday is the Cartan matrix
corresponding tdA,_;. By using the saddle point approxi-

mation and replacing in the planar limit the eigenvalal@s
by normalized densities(x) that are localized in an interval

3

Inserting the above iVV=4(f (g, §)) and taking the limig™—
0, we recover theV = 2 SCQCD computation of3{]. For
the general superconformal cyck¢_; quivers, we obtain up
to order0(g'9):

fic = of + 62(3)0i[0F 1 + 0.1 — 208 ]

~20¢(5)0% | Gk-1 + Gty — 60K + 20k (071 + 074

+0¢| 700(7)(0%, + OF,1 — 1605 + 3g¢ (074 + 0F.,)  (15)
+40% (01 + Gt) ) - 2425k (0 5 + 0. - 207)
+(62(3))(89% — 201 — 2061 + Gk 10k 2 + T 2T

604 (07 1 + O%.1) + 208 (01 + GF 108, + Gia) )| + -+
TheZ, symmetry implies the following cyclic relation

fk(gl’ ey gr) = fk+|(gl+|’ L) gl’+|)’ Vk’ I’ (16)

i.e. all the dfective couplings are given by the same function,
up to a cyclic shift of the couplings.

IV. FEYNMAN DIAGRAM INTERPRETATION

Calculatingf (g°) using Feynman diagrams is not as hard as
one would imagine because of its interpretation as theivelat
finite renormalization of the coupling constag}.(First of all,
in the BFF one does not have to calculate the renormalization
of 3- or 4- point vertices as for usual covariant gauges, dout t
useZgy = Z;{l/z and to compute only the renormalization of
the propagatot A(p)A(-p) ). Moreover, to getZ), we do
not need to calculate every single diagram that contribtates
the renormalization of the propagator, but only the ones tha
are diferent betweerV = 2 andN = 4 (or the orbifold of
N = 4 at the orbifold point). As we discussed i, 22,
for any N = 2 superconformal theory the only possible way

[~k u], we obtain the following system of coupled integral t0 get diagrams dierent from theN' = 4 ones is to make

equations:
X ") 1 fﬂl
—=1 =2 - ai| aKx-ydy, (12)
295 J[ﬂk Xx-y 2 ; —H

a loop with hypermultiplets and to let a vector field from a
neighboring vector multiplet propagate inside this loopisT
narrows down significantly the number of Feynman diagrams
that need to be computed.

It so happens that the type of diagrams that different

fork=1,....r. For small values of the couplings the widths from theA’ = 4 ones are always finite and they always include
of the densities tend towards zero and we can expand the kess a basic building block the finite fan integrals 88|} For a

nelK(x) = -2 3% 1 (—1)"¢(2n+1)x?**1. Then we can solve the

fan with n faces, we have

integral equations recursively and compute the Wilson loop

expectation values of equatio8) yia:

- 1 & K Hk
WNV=2 = < N ; e’ > = I . (X e™dx (13)

For the ellipticZ, quiver with couplingg: = g, g2 = §, we
obtain

f(9.9) = & +2(& - &) [60(3)g* - 20(5)g* (& + 3¢F)
+g*(70¢(7)(§* + 5§°0° + 8g") - 2£(2)(2x(5))g’*

~2(6/(3)(§* - &0 + 2¢°))| + - - (14)

=2(2nn_1)§(2n—1)é.

The first£(3) contribution in (4) was computed inZ2], it
comes from the diagram depicted in figur@and is equal to
129°3°¢(3). Subtracting from it thev' = 4 result of 12°/(3)
gives precisely thé(3) codficientin (14). The next correction
comes with &(5) and is obtained from diagrams, ofieirent
graph topologies, in which two propagators are runningén th
bubble. For each graph topology there are three diagrams. In

(17)
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9 expansion of theféective couplings for thé, _; class of con-
g7 ¢ T\g formal quiver theories. The strong coupling expansion igkwo
-\ S in progress. Last but certainly not least, we interpreitgf)
\g - diagrammatically as the relative finite renormalizatiorthaf

coupling constant between thé = 2 and theN = 4 the-
FIG. 1. The Feynman diagram responsible for #t@) contribution ~ ories ). This provides a test of our results using Feynman
to f(g,d). The solid lines represents the backgrousd= 2 vec-  diagrams.
tor superfield, the wiggly line the quantui = 2 vector superfield Based on the existence of an AdS dual description of these
while the dashed blue lines tité = 2 hyperfield. N = 2 gauge theories and on the interpretation of tiiece

tive couplings as thefective string tension3?2,, = f(g?),
) ) ) _ we conjecture that all possible observables that are cesdri
figure 2, we give an example of the diagrams with the sameyq the purely gluonic SU(2|2) sector can be computed by
topology. Their sum is proportional @f‘94 + 2§°¢°, which _ replacing theN = 4 coupling constant in the corresponding
happens to be the same for all topologies. After subtractingesy|ts by theiniversaleffective couplingf (g?). Such observ-
the N = 4 result, which is proportional to8, fromtheN = 2 gpjes include the cusp anomalous dimensk8), [scattering
one we obtain the overall cigient of 2Q'(5): *(§°-9°)(§*+  amplitudes, Wilson loops (se&(] and references therein) and
3g?) which is equal to the one in4). Observe thatthe overall ¢orrelation functions4L, 42) with the external momenta con-
strained byp_; = 0.

A 99 99 In a future work, we will present similar results for the
g/ g g 5 %g gs /&g asymptotically conformal quiver theories in which confaim
N S - S + roX ity is softly broken by adding mass terms for the hypermul-
g =g g --"g g ~-"g tiplets. While our methods are applicable agidis again

corrected only with finite renormalization, understandimg
FIG. 2. In this figure we present some representative Feyrdizan scheme dependence is subtle and requires further investiga
grams that are responsible for #11®) contribution tof (g, §). tion.

One way to test our results for th&ective couplings is to
sign of thes(2n — 1) contribution is alternating, because eachconsider the anomalous dimension of the twist-two descen-
wiggly line comes with a minus sign. dant of Konishi. Using the anomalous dimension of Konishi

All fan diagrams come with maximum transcendentality forin ' = 4 SYM, which thanks to integrability is known up to
the given loop level. However, as we see i) and (15), eight loops £#3], we can predict the anomalous dimension of
less than maximum transcendentality contributions can apthe twist-twoD?Z? descendant to the same loop order for any
pear. These come from nested diagrams like the one depict&dthe cyclic quivers. This prediction can be explicitly cked
in figure 3. For the general cyclic quiver with> 2, we start by computing the wrapping corrections using Feynman dia-
getting contributions from the next to nearest neighboiggau gram calculations to at least four loops followingdl. To

groups for the(3)? term of (L5). conserve space, we restrict ourselves to five loops and to the
A; quiver. The contributions ta that diter from theN = 4
91 ones are marked in red:

0] g A(9,8) = 4+ 127 - 48g" + 48¢° [ 7°-3(¢” - &) £(3)]
Ny +96g°] - 269" + 6(3)g" - 1(5)g"+ (o - &) (1206°(3)
- +5(307 + §) £(5))] + 160°[ 9484° + 432°(3)
FIG. 3. This figure shows a part of t€3)? contribution created by _32496§(3)2 _ 54096{(5) + 18909%(7) (18)

nested Feynman diagrams. ) )+ 26
_3(92 _ gz) [ (894 + 5% + 94) 35¢(7)
Finally, the origin of the;(2)¢(5) contribution hasn't been  _2 (4@2 F P (12— 4V(Z))) 20/(5)
fully elucidated and a careful calculation is in progress. e o ‘ . » ,
—(29 -g°0°+4d )(6{(3)) +429 (64(3))]] T

Our results can also be used for observables outside the
SU(2,12) sector. The all loop dispersion relation and scat-
tering matrix for fields in the bifundamental hypermultigle
the¢ vacuum were derived ir2fl]

V. DISCUSSION AND FUTURE WORK

Building on [1], we have argued that the anomalous dimen
sions of operators in the purely gluonic SU(2)1sector of
conformalN = 2 gauge theories can be obtained by taking > T
the correspondingy = 4 result and replacing th§ = 4 cou- Epit(P) = \/1 +4(g-9)° + 16ggsi” (E) (19)
pling constant by thefeective couplingf(g?). Localization
provides exact results for the expectation values of crcul up to two unknown functions that we conjecture are given by
Wilson loops, from which we determine the weak couplingthe dfective couplingg = f(g, Q)% andg = f(g, Q)% that we
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calculated {4) in this paper. Due to th&; symmetry, we publication, we shall provide additional details, shallegex-
havef(g,d) = f(§,g). Thus the dispersion and the scatteringpressions concerning the strong coupling expansion and the
matrix are now exactly known. implementation of mass terms for the hypermultiplets.

Our work is the 4D equivalent of the ABJM result @],
even though our methods are verffdient. The quantum
spectral curve and the slope functions of Bas$g fan be
used to check our logic. Furthermore, the results for the in-
terpolating functiorhagim(g) [45] can be combined with our
method to derivdag;(g) of the ABJ theory 47].

ACKNOWLEDGMENTS

We are grateful to Wenbin Yan for giving us his unpub-
lished notes on the calculation of the Wilson loop of e
quiver using localization. We thank Isabella Bierenbaum,

The present letter contains the principles regarding thé&ergey Frolov, Sven-Olaf Moch, Leonardo Rastelli, Martin
computation of thef@ective couplings via localization as well Rocek, Alessandro Sfondrini, Christoph Sieg and Peter van
as their Feynman diagram interpretation. In a forthcomingNieuwenhuizen for insightful and helpful discussions.

[1] E. Pomoni, (2013)arXiv:1310.5709 [hep-th] [25] R. Andree and D. Young, JHEP1009, 095 (2010)

[2] N. Beisert, C. Ahn, L. F. Alday, Z. Bajnok, J. M. Drummond,
et al, Lett.Math.Phys99, 3 (2012) arXiv:1012.3982 [hep-th]

[3] V. Pestun, Commun.Math.Phys313, 71 (2012)
arXiv:0712.2824 [hep-th]

[4] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and

Y. Oz, Phys. Rept323, 183 (2000)arXiv:hep-t9905111
[5] M. Grana and J. PolchinskiPhys.RevD65, 126005 (2002)
arXiv:hep-th0106014 [hep-th]
[6] D. Gaiotto and J. Maldacena JHEP1210, 189 (2012)
arXiv:0904.4466 [hep-th]
[7] A. Gadde, E. Pomoni,
arXiv:0912.4918 [hep-th]
[8] R. Reid-Edwards and j- Stefanski,
Nucl.PhysB849, 549 (2011)arXiv:1011.0216 [hep-th]
[9] E. O Colgain and J. Stefanski, Bogddi{EP1110, 061 (2011)
arXiv:1107.5763 [hep-th]
[10] O. Aharony, L. Berdichevsky, and M. Berkooz,
JHEP1208, 131 (2012)arXiv:1206.5916 [hep-th]
[11] B. Stefanski, Nucl.PhysB883, 581 (2014)
arXiv:1308.2789 [hep-th]
[12] S. Kachru and E. Silversteif®hys.Rev.Lett80, 4855 (1998)
arXiv:hep-th9802183 [hep-th]
[13] A. E. Lawrence, N. Nekrasov, and C. Vafa,
Nucl.PhysB533, 199 (1998) arXiv:hep-th9803015 [hep-th]

and L. Rastelli, (2009),

B.,

[14] s. Gukov, Phys.LettB439, 23 (1998)
arXiv:hep-th9806180 [hep-th]
[15] J. Erickson, G. Semefio and K. Zarembo,

Nucl.PhysB582, 155 (2000) arXiv:hep-thH0003055 [hep-th]

[16] N. Drukker and D. J. Gross).Math.Phys42, 2896 (2001)
arXiv:hep-th0010274 [hep-th]

[17] P. S. Howe, K. Stelle,
Phys.LettB124, 55 (1983)

[18] S. Katz, P. Mayr, and C. Vafa, Adv.Theor.Math.Ph§s53
(1998),arXiv:hep-th9706110 [hep-th]

[19] N. Nekrasov and V. Pestun, (2012yXiv:1211.2240 [hep-th]

[20] A. Gadde, E. Pomoni, and L. RastellHEP1206, 107 (2012)
arXiv:1006.0015 [hep-th]

[21] A. Gadde and L.
arXiv:1012.2097 [hep-th]

[22] E. Pomoni and C. Sieg, (2018¢Xiv:1105.3487 [hep-th]

[23] P. Liendo, E. Pomoni, and L. RasteliHHEP1207, 003 (2012)
arXiv:1105.3972 [hep-th]

[24] A. Gadde, P. Liendo, L. Rastelli,
JHEP1308, 015 (2013)arXiv:1211.0271

and P. C. West,

Rastelli, JHEP1204, 053 (2012)

and W. Yan,

arXiv:1007.4923 [hep-th]

[26] S. Gates, M. T. Grisaru, M. Rocek, and W. Siegel, (1983),
arXiv:hep-tH0108200 [hep-th]

[27] 1. Buchbinder, E. Buchbinder, S. Kuzenko, and B. A. Qyru
Phys.LettB417, 61 (1998) arXiv:hep-th9704214 [hep-th]

[28] 1. L. Buchbinder and S. M. Kuzenko,
Mod.Phys.LettA13, 1623 (1998)
arXiv:hep-th9804168 [hep-th]

[29] D. Jain and W. Siegel,Phys.RevD88, 025018 (2013)
arXiv:1302.3277 [hep-th]

[30] F. Fiamberti, A. Santambrogio, C. Sieg, and D. Zanon,
Nucl.PhysB805, 231 (2008) arXiv:0806.2095 [hep-th]

[31] C. Sieg, Phys.RevD84, 045014 (2011)
arXiv:1008.3351 [hep-th]

[32] M. Bershadsky, Z. Kakushadze, and C. Vafa,
Nucl.Phys B523, 59 (1998) arXiv:hep-th9803076 [hep-th]

[33] M. Bershadsky and A. Johansexicl.PhysB536, 141 (1998)
arXiv:hep-th9803249 [hep-th]

[34] F. Passerini and K. ZaremboJHEP1109, 102 (2011)
arXiv:1106.5763 [hep-th]

[35] 3. Russo and K. Zarembo,JHEP1210, 082 (2012)
arXiv:1207.3806 [hep-th]
[36] 3. Russo and K. Zarembo,JHEP1311, 130 (2013)

arXiv:1309.1004 [hep-th]
[37] J. Russo and K. Zarembo, (2018)Xiv:1312.1214 [hep-th]
[38] D. J. BroadhurstPhys.LettB164, 356 (1985)

[39] G. Korchemsky, Lett.Math.Phys99, 425 (2012)
arXiv:1012.4000 [hep-th]
[40] s. Caron-Huot, JHEP1107, 058 (2011)

arXiv:1010.1167 [hep-th]

[41] B. Eden, P. Heslop, G. P. Korchemsky, and E. Sokatchev,
Nucl.PhysB869, 329 (2013)arXiv:1103.3714 [hep-th]

[42] B. Eden, P. Heslop, G. P. Korchemsky, and E. Sokatchev,
Nucl.PhysB869, 378 (2013)arXiv:1103.4353 [hep-th]

[43] S. Leurent and D. Volin, Nucl.PhysB875, 757 (2013)
arXiv:1302.1135 [hep-th]

[44] F. Fiamberti, A. Santambrogio, C. Sieg, and D. Zanon,
Phys.LettB666, 100 (2008)arXiv:0712.3522 [hep-th]

[45] N. Gromov and G. Sizov, (20143yXiv:1403.1894 [hep-th]

[46] B. Basso, (2011)arXiv:1109.3154 [hep-th]

[47] O. Aharony, O. Bergman, and D.
JHEPO0811, 043 (2008) arXiv:0807.4924 [hep-th]

L. fleris,


http://arxiv.org/abs/1310.5709
http://dx.doi.org/10.1007/s11005-011-0529-2
http://arxiv.org/abs/1012.3982
http://dx.doi.org/10.1007/s00220-012-1485-0
http://arxiv.org/abs/0712.2824
http://dx.doi.org/ 10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://dx.doi.org/10.1103/PhysRevD.65.126005
http://arxiv.org/abs/hep-th/0106014
http://dx.doi.org/10.1007/JHEP10(2012)189
http://arxiv.org/abs/0904.4466
http://arxiv.org/abs/0912.4918
http://dx.doi.org/ 10.1016/j.nuclphysb.2011.04.002
http://arxiv.org/abs/1011.0216
http://dx.doi.org/ 10.1007/JHEP10(2011)061
http://arxiv.org/abs/1107.5763
http://dx.doi.org/10.1007/JHEP08(2012)131
http://arxiv.org/abs/1206.5916
http://dx.doi.org/10.1016/j.nuclphysb.2014.03.028
http://arxiv.org/abs/1308.2789
http://dx.doi.org/10.1103/PhysRevLett.80.4855
http://arxiv.org/abs/hep-th/9802183
http://dx.doi.org/10.1016/S0550-3213(98)00495-7
http://arxiv.org/abs/hep-th/9803015
http://dx.doi.org/10.1016/S0370-2693(98)01005-3
http://arxiv.org/abs/hep-th/9806180
http://dx.doi.org/10.1016/S0550-3213(00)00300-X
http://arxiv.org/abs/hep-th/0003055
http://dx.doi.org/10.1063/1.1372177
http://arxiv.org/abs/hep-th/0010274
http://dx.doi.org/10.1016/0370-2693(83)91402-8
http://arxiv.org/abs/hep-th/9706110
http://arxiv.org/abs/1211.2240
http://dx.doi.org/10.1007/JHEP06(2012)107
http://arxiv.org/abs/1006.0015
http://dx.doi.org/10.1007/JHEP04(2012)053
http://arxiv.org/abs/1012.2097
http://arxiv.org/abs/1105.3487
http://dx.doi.org/10.1007/JHEP07(2012)003
http://arxiv.org/abs/1105.3972
http://dx.doi.org/ 10.1007/JHEP08(2013)015
http://arxiv.org/abs/1211.0271
http://dx.doi.org/10.1007/JHEP09(2010)095
http://arxiv.org/abs/1007.4923
http://arxiv.org/abs/hep-th/0108200
http://dx.doi.org/10.1016/S0370-2693(97)01319-1
http://arxiv.org/abs/hep-th/9704214
http://dx.doi.org/10.1142/S0217732398001704
http://arxiv.org/abs/hep-th/9804168
http://dx.doi.org/10.1103/PhysRevD.88.025018
http://arxiv.org/abs/1302.3277
http://dx.doi.org/10.1016/j.nuclphysb.2008.07.014
http://arxiv.org/abs/0806.2095
http://dx.doi.org/10.1103/PhysRevD.84.045014
http://arxiv.org/abs/1008.3351
http://dx.doi.org/10.1016/S0550-3213(98)00272-7
http://arxiv.org/abs/hep-th/9803076
http://dx.doi.org/10.1016/S0550-3213(98)00526-4
http://arxiv.org/abs/hep-th/9803249
http://dx.doi.org/10.1007/JHEP10(2011)065, 10.1007/JHEP09(2011)102
http://arxiv.org/abs/1106.5763
http://dx.doi.org/10.1007/JHEP10(2012)082
http://arxiv.org/abs/1207.3806
http://dx.doi.org/10.1007/JHEP11(2013)130
http://arxiv.org/abs/1309.1004
http://arxiv.org/abs/1312.1214
http://dx.doi.org/10.1016/0370-2693(85)90340-5
http://dx.doi.org/10.1007/s11005-011-0516-7
http://arxiv.org/abs/1012.4000
http://dx.doi.org/10.1007/JHEP07(2011)058
http://arxiv.org/abs/1010.1167
http://dx.doi.org/10.1016/j.nuclphysb.2012.12.015
http://arxiv.org/abs/1103.3714
http://dx.doi.org/10.1016/j.nuclphysb.2012.12.014
http://arxiv.org/abs/1103.4353
http://dx.doi.org/10.1016/j.nuclphysb.2013.07.020
http://arxiv.org/abs/1302.1135
http://dx.doi.org/10.1016/j.physletb.2008.06.061
http://arxiv.org/abs/0712.3522
http://arxiv.org/abs/1403.1894
http://arxiv.org/abs/1109.3154
http://dx.doi.org/10.1088/1126-6708/2008/11/043
http://arxiv.org/abs/0807.4924

