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The masses of the low lying baryons are evaluated using a total of ten ensembles of dynamical
twisted mass fermion gauge configurations. The simulations are performed using two degenerate
flavors of light quarks, and a strange and a charm quark fixed to approximately their physical values.
The light sea quarks correspond to pseudo scalar masses in the range of about 210 MeV to 430 MeV.
We use the Iwasaki improved gluonic action at three values of the coupling constant corresponding
to lattice spacing a = 0.094 fm, 0.082 fm and 0.065 fm determined from the nucleon mass. We
check for both finite volume and cut-off effects on the baryon masses. We examine the issue of
isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice
spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected.
We performed a chiral extrapolation of the forty baryon masses using SU(2) χPT. After taking the
continuum limit and extrapolating to the physical pion mass our results are in good agreement with
experiment. We provide predictions for the mass of the doubly charmed Ξ∗cc, as well as of the doubly
and triply charmed Ωs that have not yet been determined experimentally.
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I. INTRODUCTION

Simulations of QCD defined on four-dimensional Euclidean lattice using near to physical values of the light quark
masses are enabling the reliable extraction of the masses of the low lying hadrons. This progress in lattice QCD
coupled with the interest in charmed-baryon spectroscopy, partly triggered by the first observation of a family of
doubly charmed baryons Ξ+

cc(3519) and Ξ++
cc (3460) by the SELEX collaboration [1–3], make the study of the charmed

hadron masses particularly timely. The fact that the observation of Ξ+
cc(3519) or Ξ++

cc (3460), has not be confirmed by
the BABAR [4] nor the BELLE [5] experiments calls for further attention into the existence of doubly charmed Ξs.
Even more interesting is the mass splitting of about 60 MeV for this doublet as compared to the splitting of other
previously observed isospin partners that have mass differences one order of magnitude smaller. Theoretical studies
using e.g. the non relativistic [6] and relativistic quark models [7, 8], and QCD sum rules [9] predict the Ξcc mass to
be 100-200 MeV higher than that observed by SELEX. Heavy baryon spectra will be further studied experimentally at
the recently upgraded Beijing Electron- Positron Collider (BEPCII) detector, the Beijing Spectrometer (BES-III) and
at the anti Proton Annihilation at DArmstadt (PANDA) at FAIR. Lattice QCD calculations can provide theoretical
input for these experiments. A number of lattice QCD studies have recently looked at the mass of charmed baryons.
Most of these studies employ a mixed action approach using staggered sea quarks. In Ref. [10] Nf = 2+1+1 staggered
sea quarks with clover light and strange valence quarks and a relativistic action for the charm quark are employed
and the results are extrapolated to the continuum limit. In Refs. [11, 12] Nf = 2 + 1 staggered sea quarks are used
with staggered light and strange [11] or domain wall [12] valence quarks with a relativistic action for the charm quark.

In this work we extend our previous study on the low-lying spectrum of the baryon octet and decuplet using
Nf = 2 twisted mass fermions [13] to Nf = 2 + 1 + 1 twisted mass fermions at maximal twist. For the valence
strange and charm sector we use Osterwalder-Seiler quarks avoiding mixing between these two sectors. The strange
and charm valence quark masses are tuned using the Ω− and Λc baryon mass, respectively. We analyze a total of ten
Nf = 2 + 1 + 1 ensembles at three different lattice spacings and volumes. This enables us to take the continuum limit
and assess volume effects. Our results are fully compatible with an O(a2) behavior which is used to extrapolate to
the continuum limit.

The good precision of our results on the baryon masses allows us to perform a study of chiral extrapolations to
obtain results at the physical point. This study shows that one of the main uncertainties in predicting the mass at
the physical point is caused by the chiral extrapolations, which yield the largest systematic error.

An important issue is the restoration of the explicitly broken isospin symmetry in the continuum limit. At finite
lattice spacing, baryon masses display O(a2) isospin breaking effects. There are, however, theoretical arguments [14]
as well as numerical evidence [15, 16] that these isospin breaking effects are particularly pronounced for the neutral
pseudo scalar mass, whereas for other quantities studied so far by the European Twisted Mass Collaboration (ETMC)
they are compatible with zero. In this paper, we will corroborate this result also in the baryon sector showing that
isospin breaking effects are in general small or even compatible with zero. For a preliminary account of these results
see Ref. [17].

The paper is organized as follows: The details of our lattice setup, namely those concerning the twisted mass action,
the parameters of the simulations and the interpolating fields used, are given in Section II. Section III contains the
numerical results of the baryon masses computed for different lattice volumes, lattice spacings and bare quark masses.
Lattice artifacts, including finite volume and discretization errors are also discussed with special emphasis on the
O(a2) isospin breaking effects inherent in the twisted mass formulation of lattice QCD. The chiral extrapolations are
analyzed in Section IV. Section V contains a comparison with other existing calculations and conclusions are finally
drawn in Section VI.

II. LATTICE TECHNIQUES

A. The lattice action

In the present work we employ the twisted mass fermion (TMF) action [18] and the Iwasaki improved gauge
action [19]. Twisted mass fermions provide an attractive formulation of lattice QCD that allows for automatic O(a)
improvement, infrared regularization of small eigenvalues and fast dynamical simulations [20].

The twisted mass Wilson action used for the light degenerate doublet of quarks (u,d) is given by [18, 20]

S
(l)
F

[
χ(l), χ(l), U

]
= a4

∑
x

χ(l)(x)
(
DW [U ] +m0,l + iµlγ5τ

3
)
χ(l)(x) (1)

with τ3 the third Pauli matrix acting in the flavour space, m0,l the bare untwisted light quark mass, µl the bare
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twisted light quark mass and the massless Wilson-Dirac operator given by

DW [U ] =
1

2
γµ(∇µ +∇∗µ)− ar

2
∇µ∇∗µ (2)

where

∇µψ(x) =
1

a

[
U†µ(x)ψ(x+ aµ̂)− ψ(x)

]
and ∇∗µψ(x) = −1

a

[
Uµ(x− aµ̂)ψ(x− aµ̂)− ψ(x)

]
. (3)

The quark fields denoted by χ(l) in Eq. (1) are in the so-called “twisted basis”. The fields in the “physical basis”,
ψ(l), are obtained for maximal twist by the simple transformation

ψ(l)(x) =
1√
2

(
11 + iτ3γ5

)
χ(l)(x), ψ

(l)
(x) = χ(l)(x)

1√
2

(
11 + iτ3γ5

)
. (4)

In addition to the light sector, a twisted heavy mass-split doublet χ(h) = (χc, χs) for the strange and charm quarks
is introduced, described by the action [21, 22]

S
(h)
F

[
χ(h), χ(h), U

]
= a4

∑
x

χ(h)(x)
(
DW [U ] +m0,h + iµσγ5τ

1 + τ3µδ
)
χ(h)(x) (5)

where m0,h is the bare untwisted quark mass for the heavy doublet, µσ is the bare twisted mass along the τ1 direction
and µδ is the mass splitting in the τ3 direction. The quark fields for the heavy quarks in the physical basis are
obtained from the twisted basis through the transformation

ψ(h)(x) =
1√
2

(
11 + iτ1γ5

)
χ(h)(x), ψ

(h)
(x) = χ(h)(x)

1√
2

(
11 + iτ1γ5

)
. (6)

In this paper, unless otherwise stated, the quark fields will be understood as “physical fields”, ψ, in particular when
we define the baryonic interpolating fields.

The form of the fermionic action in Eq. (1) breaks parity and isospin at non-vanishing lattice spacing. In particular,
the isospin breaking in physical observables is a cut-off effect of O(a2) [20].

Maximally twisted Wilson quarks are obtained by setting the untwisted quark mass m0 to its critical value mcr,
while the twisted quark mass parameter µ is kept non-vanishing in order to work away from the chiral limit. A
crucial advantage of the twisted mass formulation is the fact that, by tuning the bare untwisted quark mass m0 to
its critical value mcr, all physical observables are automatically O(a) improved [20, 22]. In practice, we implement
maximal twist of Wilson quarks by tuning to zero the bare untwisted current quark mass, commonly called PCAC
(Partially Conserved Axial Current) mass, mPCAC [23, 24], which is proportional to m0−mcr up to O(a) corrections.
A convenient way to evaluate mPCAC is through

mPCAC = lim
t/a�1

∑
x〈∂4Ã

b
4(x, t)P̃ b(0)〉∑

x〈P̃ b(x, t)P̃ b(0)〉
b = 1, 2 , (7)

where Ãbµ = χγµγ5
τb

2 χ is the axial vector current and P̃ b = χγ5
τb

2 χ is the pseudoscalar density in the twisted basis.
The large t/a limit is required in order to isolate the contribution of the lowest-lying charged pseudoscalar meson
state in the correlators of Eq. (7). This way of determining mPCAC is equivalent to imposing on the lattice the validity

of the axial Ward identity ∂µÃ
b
µ = 2mPCACP̃

b, b = 1, 2, between the vacuum and the charged zero three-momentum
one-pion state. When m0 is taken such that mPCAC vanishes, this Ward identity expresses isospin conservation,
as it becomes clear by rewriting it in the physical quark basis. The value of mcr is determined at each µl in our
Nf = 2 + 1 + 1 simulations, a procedure that preserves O(a) improvement and keeps O(a2) small [23, 24]. The reader
can find more details on the twisted mass fermion action in Ref. [25]. Simulating a charm quark may give rise to
concerns regarding cut-off effects. An analysis presented in Ref [26] shows that they are surprising small. In this work
we investigate in detail the cut-off effects on the hyperon and charmed baryon masses using simulations at our three
values of the lattice spacings. All final results are extrapolated to the continuum limit.

In order to avoid complications due to flavor mixing in the heavy quark sector we only use Osterwalder-Seiler
valence strange and charm quarks. Since the bare heavy quark masses in the sea were approximately tuned to the
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mass of the kaon and D-meson, in order to match their masses exactly tuning would have been required even if we
used twisted mass quarks for the strange and the charm. Since our interest in this work is the baryon spectrum we
choose to use the physical mass of the Ω− and the Λc in order to tune the Osterwalder-Seiler strange and charm
quark masses. This means that we need to choose a value of strange (charm) quark mass, perform the computation at
several values of the pion mass and then chiral extrapolate the Ω− (Λc) mass and compare with its experimental value.
If our chirally extrapolated results do not reproduce the right mass we change the strange (charm) quark mass and
iterate until we reach agreement with the experimental value. Osterwalder-Seiler fermions are doublets with r = ±1
like the the u- and d- doublet, i.e. χ(s) = (s+, s−) and χ(c) = (c+, c−), having an action that is the same as for the
doublet of light quarks, as given in Eq. (1), but with µl in Eq. (1) replaced with the tuned value of the bare twisted
mass of the strange (charm) valence quark. Taking m0 to be equal to the critical mass determined in the light sector
the O(a) improvement in any observable still applies. One can equally work with the upper or the lower component
of the strange and charm doublets. In the continuum limit both choices are equivalent. In this work we choose to
work with the upper components, namely the s+ and c+. The action for the heavy quarks would then read

S
(h)
OS

[
χ(h), χ(h), U

]
= a4

∑
x

c∑
h=s

χ(h)(x)
(
DW [U ] +mcr + iµhγ5

)
χ(h)(x) (8)

The reader interested in the advantage of this mixed action in the mesonic sector is referred to the Refs [21, 27–30].
We give more details on the tuning of the strange and charm quark masses in subsection F.

B. Simulation details

We summarize the input parameters of the calculations, namely β, L/a, the light quark mass aµ as well as the
value of the pion mass in Table I. A total of ten gauge ensembles at three values of β are considered, namely β = 1.90,
β = 1.95 and β = 2.10, allowing for an investigation of finite lattice spacing effects and for taking the continuum limit.
The values of the lattice spacings a given in Table I are determined using the nucleon mass as explained in subsection
E. The pion masses for the simulations span a range from about 210 MeV to 430 MeV, which is close enough to the
physical point mass to allow us to perform chiral extrapolations.

β = 1.90, a = 0.0936(13) fm r0/a = 5.231(38)

323 × 64, L = 3.0 fm

aµ 0.0030 0.0040 0.0050

No. of Confs 200 200 200

mπ (GeV) 0.261 0.298 0.332

mπL 3.97 4.53 5.05

β = 1.95, a = 0.0823(10) fm, r0/a = 5.710(41)

323 × 64, L = 2.6 fm

aµ 0.0025 0.0035 0.0055 0.0075

No. of Confs 200 200 200 200

mπ (GeV) 0.256 0.302 0.372 0.432

mπL 3.42 4.03 4.97 5.77

β = 2.10, a = 0.0646(7) fm r0/a = 7.538(58)

483 × 96, L = 3.1 fm

aµ 0.0015 0.002 0.003

No. of Confs 196 184 200

mπ (GeV) 0.213 0.246 0.298

mπL 3.35 3.86 4.69

TABLE I. Input parameters (β, L, aµ) of our lattice simulations with the corresponding lattice spacing (a), pion mass (mπ) as
well as the number of gauge configurations analyzed.
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C. Two-point correlation functions and effective mass

In order to extract baryon masses we consider two-point correlation functions at ~p = ~0 defined by

C±X(t, ~p = ~0) =
∑

xsink−xsource

〈1
4

Tr (1± γ0)JX (xsink, tsink) J̄X (xsource, tsource)〉, t = tsink − tsource (9)

where JX is the interpolating field of the baryon state of interest acting at the source (xsource, tsource) and the sink,
(xsink, tsink). Space-time reflection symmetries of the action and the anti-periodic boundary conditions in the temporal
direction for the quark fields imply, for zero three-momentum correlators, that C+

X(t) = −C−X(T − t). Therefore, in
order to decrease errors we average correlators in the forward and backward direction and define

CX(t) = C+
X(t)− C−X(T − t) . (10)

In addition, the source location is chosen randomly on the whole lattice for each configuration, in order to decrease
correlation among measurements.

The ground state mass of a given hadron can be extracted by examining the effective mass defined by

amX
eff(t) = log

(
CX(t)

CX(t+ 1)

)
= amX + log

(
1 +

∑∞
i=1 cie

−∆it

1 +
∑∞
i=1 cie

−∆i(t+1)

)
−→
t→∞

amX (11)

where ∆i = mi −mX is the mass difference of the excited state i with respect to the ground mass mX . All results
in this work have been extracted from correlators where Gaussian smearing is applied both at the source and sink.
In general, effective masses of correlators of any interpolating fields are expected to have the same value in the large
time limit, but applying smearing on the interpolating fields suppresses excited states, therefore yielding a plateau
region at earlier source-sink time separations and better accuracy in the extraction of the mass. Our fitting procedure
to extract mX is as follows: The sum over excited states in the effective mass given in Eq. (11) is truncated, keeping
only the first excited state,

amX
eff(t) ≈ amX + log

(
1 + c1e

−∆1t

1 + c1e−∆1(t+1)

)
. (12)

The upper fitting time slice boundary is kept fixed, while allowing the lower fitting time to be two or three time slices
away from tsource. We then fit the effective mass to the form given in Eq. (12). This exponential fit yields an estimate

for c1 and ∆1 as well as for the ground state mass, which we denote by m
(E)
X . Then, we perform a constant fit to the

effective mass increasing the initial fitting time t1. We denote the value extracted by m
(C)
X (t1). The final value of the

mass is selected such that the ratio

|am(C)
X (t1)− am(E)

X |
ammean

X

, ammean
X =

am
(C)
X (t1) + am

(E)
X

2
(13)

becomes less than 50% the statistical error on m
(C)
X (t1). This criterion is, in most cases, in agreement with χ2/d.o.f.

becoming less than unity. In the cases in which this criterion is not satisfied a careful examination of the effective
mass is made to ensure that the fit range is in the plateau region. We show representative results of these fits to the
effective mass of the baryons Ξ0 and Ω0

c in Fig. 1. The error bands on the constant and exponential fits are obtained
using jackknife analysis. As can be seen the exponential and constant fits yield consistent results in the large time
limit.

D. Interpolating fields

The baryon states are created from the vacuum with the use of interpolating fields that are constructed such that
they have the quantum numbers of the baryon of interest and reduce to the quark model wave functions in the non-
relativistic limit. We have a four-dimensional flavour space and therefore we consider SU(3) sub-groups to visualise
baryons under SU(4) symmetry. The baryon states split into a 20′-plet of spin-1/2 states and a 20-plet of spin-3/2
states. There also exists a 4̄-plet, which is not considered in this work. Light, strange and charmed baryons can be
classified according to their transformation properties under flavour SU(3) and their charm content. This is shown
schematically in Fig. 2 and Fig. 3. The spin-1/2 20′-plet decomposes into three horizontal levels. The first level is
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FIG. 1. Representative effective mass plots for Ξ0 (left) and Ω0
c (right) at β = 2.10, aµl = 0.0015. Both the constant and the

exponential fits are displayed.

the standard octet of the SU(3) symmetry that has no charm quarks, the c = 1 is the second level that splits into
two SU(3) multiplets, a 6 containing the Σc and a 3̄ containing the Λc and the Ξc and the c = 2 is a 3 multiplet of
SU(3) that forms the top level. In a similar way, the 20-plet of spin-3/2 baryons contains the standard c = 0 decuplet
at the lowest level, the c = 1 level 6 multiplet of SU(3), the c = 2 3 multiplet and a c = 3 singlet at the top of the
pyramid. The interpolating fields for these baryons, displayed Fig. 2 and Fig. 3, are collected in the Tables XII and
XIII of Appendix A [31–33].

In other recent works where baryon properties are studied, e.g. in Ref [34], different interpolating fields to those we
provide in Tables XII and XIII were used. These different interpolating fields are tabulated in Table XIV of Appendix
A. In what follows we will compare the effective masses using the two different sets that have the same quantum
numbers but different structure.

FIG. 2. The 20′-plet of spin-1/2 baryons classified ac-
cording to their charm content. The lowest level repre-
sents the c = 0 SU(3) octet. FIG. 3. The 20-plet of spin-3/2 baryons classified accord-

ing to their charm content. The lowest level represents
the c = 0 decuplet sub-group.

As local interpolating fields are not optimal for suppressing excited state contributions, we apply Gaussian smearing
to each quark field q(x, t) [35, 36]. The smeared quark field is given by qsmear(x, t) =

∑
y F (x,y;U(t))q(y, t), where

we have used the gauge invariant smearing function

F (x,y;U(t)) = (1 + αH)
n

(x,y;U(t)), (14)

constructed from the hopping matrix understood as a matrix in coordinate, color and spin space,

H(x,y;U(t)) =

3∑
i=1

(
Ui(x, t)δx,y−aî + U†i (x− aî, t)δx,y+aî

)
. (15)

In addition, we apply APE smearing to the spatial links that enter the hopping matrix. The parameters α and n of
the Gaussian and APE smearing at each value of β are collected in Table II.
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aµl , L/a
APE Gaussian

n α n α

β = 1.90

0.0030, 32 20 0.5 50 4.0

0.0040, 32 20 0.5 50 4.0

0.0050, 32 20 0.5 50 4.0

β = 1.95

0.0025, 32 20 0.5 50 4.0

0.0035, 32 20 0.5 50 4.0

0.0055, 32 20 0.5 50 4.0

0.0075, 32 20 0.5 50 4.0

β = 2.10

0.0015, 48 50 0.5 110 4.0

0.0020, 48 20 0.5 50 4.0

0.0030, 48 20 0.5 50 4.0

TABLE II. Smearing parameters for the ensembles at β = 1.90, β = 1.95 and β = 2.10.

The interpolating fields for the spin-3/2 baryons defined in Table XIII have an overlap with spin-1/2 states. These
overlaps can be removed with the incorporation of a spin-3/2 projector in the definitions of the interpolating fields

J µX3/2
= Pµν3/2JνX . (16)

For non-zero momentum, Pµν3/2 is defined by [37]

Pµν3/2 = δµν − 1

3
γµγν − 1

3p2
(6 pγµpν + pµγν 6 p) . (17)

In correspondence, the spin-1/2 component J µX1/2
can be obtained by acting with the spin-1/2 projector Pµν1/2 =

δµν − Pµν3/2 on J µX . Elements with Lorentz indices µ, ν = 0 will not contribute. In this work we study the mass

spectrum of the baryons in the rest frame taking ~p = ~0. Since in that case the last term of Eq. (17) will contain δ0µ, it
will vanish. When the spin-3/2 and spin-1/2 projectors are applied to the interpolating field operators, the resulting
two-point correlators for the spin-3/2 baryons acquire the form

C 3
2
(t) =

1

3
Tr[C(t)] +

1

6

3∑
i 6=j

γiγjCij(t) ,

C 1
2
(t) =

1

3
Tr[C(t)]− 1

3

3∑
i 6=j

γiγjCij(t) , (18)

where Tr[C] =
∑
i Cii. When no projector is taken into account, the resulting two-point correlator would be C =

1
3 Tr[C].

We have carried out an analysis to examine the results of the effective masses extracted from correlation functions
with and without the spin-3/2 projection, as well as with the spin-1/2 projector using 100 gauge configurations, a
number sufficiently large for the purpose of this comparison. In our comparison we also consider correlation functions
obtained using the alternative interpolating fields given in Table XIV. To distinguish these two sets we denote the
interpolating fields of Tables XII and XIII by JB and those in Table XIV by J̃B . The left panel of Fig. 4 compares
effective masses extracted from correlators with JΣ∗+ at β = 2.10, aµl = 0.0015. As can be seen, the results for the
effective masses when applying the 3/2-projector and without any projection are perfectly consistent even at short
source-sink time separations yielding the mass of Σ∗+. On the other hand, the effective mass obtained using the
spin-1/2 projected interpolating field is much more noisy and yields a higher value of the mass. The latter property
suggests that the 1/2-projected interpolating field JΣ∗ yields an excited spin-1/2 state of the Σ∗ at least at small time
slices. The large errors associated with the correlator with the spin-1/2 projector suggest that the overlap with this
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state is weak. Another example is shown in the right panel of Fig. 4, where results are displayed for the correlator
using JΣ∗++

c
at β = 1.95, aµl = 0.0055. A similar behavior to ours for the Σ∗++

c was found in Ref. [38] where the same

spin projections are implemented. However, there are cases where the spin-3/2 projection is required. One example
is the Ξ∗− baryon, shown in Fig. 5, where the effective mass when no projection is applied is persistently lower than
when using the spin-3/2 projector. It is also apparent from Fig. 5 that the spin-1/2 projected interpolating field JΞ∗−

yields an effective mass, which is consistent with the corresponding results using the spin-1/2 interpolating field JΞ−

and thus the mass of Ξ−. A similar case to this is the Ξ∗0, as can be seen from Fig. 6. Therefore, it is crucial in order
to obtain the correct spin-3/2 mass to project out the lower-lying spin-1/2 state.
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with spin-1/2 projection (green triangles). Also plotted
is the effective mass using JΞ− (magenta diamonds).
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FIG. 6. Comparison of effective masses for Ξ∗0 at β =
1.95, aµl = 0.0025 obtained with the spin-3/2 projection,
without projection and with spin-1/2 projection. Also
plotted is the effective mass of Ξ0. The notation is as in
Fig. 5.

In order to further examine the properties of the interpolating fields, we also include effective mass results from the
alternative set of interpolating fields. We plot effective mass results obtained from J̃Ξ∗0 as well as the effective mass
of the spin-1/2 Ξ0 at β = 1.95, aµl = 0.0025 in Fig. 7, in correspondance with Fig. 6. As shown, the results from

using spin-3/2 projection and when applying no projection on J̃Ξ∗0 are now consistent. In contrast with JΞ∗0 , the

spin-1/2 projection of J̃Ξ∗0 yields an excited spin-1/2 state of Ξ∗0. However, as can be seen from Fig. 8, the spin-
3/2 projections of the two interpolating fields for Ξ∗0 yield fully consistent results, as expected. Similar behavior is
observed in the other baryon states as well. We demonstrate this by showing results for Ω∗0c at β = 1.95, aµl = 0.0075
in Figs. 9 and 10.
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FIG. 7. Effective masses obtained using J̃Ξ∗0 at β =
1.95, aµl = 0.0025 with the spin-3/2 projection (red filled
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triangles). Also plotted is the effective masses using J̃Ξ0
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FIG. 8. Comparison of effective masses for Ξ∗0 at β =
1.95, aµl = 0.0025 obtained from JΞ∗0 (red filled circles)

and J̃Ξ∗0 (blue open squares, shifted to the right for clar-
ity) using the spin-3/2 projection. Results from the two
interpolating fields are fully consistent.

The main conclusion of this analysis is that the set of spin-3/2 J̃ interpolating fields do not need any spin-3/2
projection, whereas the J in general do. After spin-3/2 projection they both give consistent results for the mass of
the spin-3/2 state they represent, as expected. Therefore from now on we use only results from spin-3/2 projected
interpolating fields and limit ourselves to the interpolating fields J listed in Tables XII and XIII.
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.

E. Determination of the lattice spacing

Since in this work the observables discussed are the masses of baryons, the physical nucleon mass is the most
appropriate quantity to set the scale. In order to determine the values of the lattice spacings as accurate as possible
we have carried out a high statistics analysis of the nucleon masses for a total of 17 Nf = 2 + 1 + 1 gauge ensembles
at β = 1.90, β = 1.95 and β = 2.10 on a range of pion masses and volumes. We average over the masses of the proton
and neutron to further gain on statistics. The resulting nucleon masses for each of the gauge ensembles are collected
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in Table III.

Volume Statistics aµl amπ mπ (GeV) amN mN (GeV)

β = 1.90

323 × 64

740 0.0030 0.1240 0.2607 0.5239(87) 1.1020(183)

1556 0.0040 0.1414 0.2975 0.5192(112) 1.0921(235)

387 0.0050 0.1580 0.3323 0.5422(62) 1.1407(130)

243 × 48

2092 0.0400 0.1449 0.3049 0.5414(84) 1.1389(176)

1916 0.0060 0.1728 0.3634 0.5722(48) 1.2036(101)

1796 0.0080 0.1988 0.4181 0.5898(50) 1.2407(104)

2004 0.0100 0.2229 0.4690 0.6206(43) 1.3056(90)

203 × 48 617 0.0040 0.1493 0.3140 0.5499(195) 1.1568(410)

β = 1.95

323 × 64

2892 0.0025 0.1068 0.2558 0.4470(59) 1.0706(141)

4204 0.0035 0.1260 0.3018 0.4784(48) 1.1458(114)

18576 0.0055 0.1552 0.3716 0.5031(16) 1.2049(39)

2084 0.0075 0.1802 0.4316 0.5330(42) 1.2764(100)

243 × 48 937 0.0085 0.1940 0.4645 0.5416(50) 1.2970(121)

β = 2.10

483 × 96

2424 0.0015 0.0698 0.2128 0.3380(41) 1.0310(125)

744 0.0020 0.0805 0.2455 0.3514(70) 1.0721(215)

226 0.0030 0.0978 0.2984 0.3618(68) 1.1038(208)

323 × 64 1905 0.0045 0.1209 0.3687 0.3944(26) 1.2032(79)

TABLE III. Values of the nucleon masses with the associated statistical error.

The nucleon masses as function of m2
π are presented in Fig. 11. As can be seen, cut-off effects are negligible,

therefore we can use continuum chiral perturbation theory to extrapolate to the physical pion mass using all the
lattice results. To this end we consider SU(2) chiral perturbation theory (χPT) [39] and the well-established O(p3)
result of the nucleon mass dependence on the pion mass, given by

mN = m
(0)
N − 4c1m

2
π −

3g2
A

32πf2
π

m3
π (19)

where m0
N is the nucleon mass at the chiral limit and together with c1 are treated as fit parameters. This lowest

order result for the nucleon in HBχPT, first derived in Ref. [40], and describes well lattice data [13, 41]. Since this
result is well established as the leading contribution irrespective of the various approaches to compute higher orders
such as in HBχPT with dimensional and infra-red regularization with and without the ∆ degree of freedom explicitly
included, we will use it to fix the lattice spacing from the nucleon mass. The lattice spacings aβ=1.90, aβ=1.95 and
aβ=2.10 are considered as additional independent fit parameters in a combined fit of our data at β = 1.90, β = 1.95
and β = 2.10. We constrain our fit so that the fitted curve passes through the physical point by fixing the value of
c1. The physical values of fπ and gA are used in the fits, namely fπ = 0.092419(7)(25) GeV and gA = 1.2695(29),
which is common practice in chiral fits to lattice data on the nucleon mass [42–44]. The left panel of Fig. 11 shows
the fit to the O(p3) result of Eq. (19) on the nucleon mass. The error band and the errors on the fit parameters are
obtained from super-jackknife analysis [45]. As can be seen, the O(p3) result provides a very good fit to our lattice
data, which in fact confirms that cut-off and finite volume effects are small for the β-values used. In addition, our
lattice results exhibit a curvature which supports the presence of the m3

π-term.
In order to estimate the systematic error due to the chiral extrapolation we also perform a fit using heavy baryon

chiral perturbation theory (HBχPT) to O(p4) in the so-called small scale expansion (SSE) [44]. This form includes
explicit ∆ degrees of freedom by introducing as an additional parameter the ∆-nucleon mass splitting, ∆ ≡ m∆−mN ,
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FIG. 11. Nucleon masses at the three values of the lattice spacing. On the left panel the solid band represents a fit to the
lowest order O(p3) expansion from HBχPT. The band on the right panel is a fit to O(p4) with explicit ∆ degrees of freedom
in the so called small scale expansion (SSE). The physical nucleon mass is denoted with the asterisk.

taking O(∆/mN ) ∼ O(mπ/mN ). In SSE the nucleon mass is given by

mN = m0
N − 4c1m

2
π −

3g2
A

32πf2
π

m3
π − 4E1(λ)m4

π −
3
(
g2
A + 3c2A

)
64π2f2

πm
0
N

m4
π −

(
3g2
A + 10c2A

)
32π2f2

πm
0
N

m4
π log

(mπ

λ

)
− c2A

3π2f2
π

(
1 +

∆

2m0
N

)[
∆

4
m2
π +

(
∆3 − 3

2
m2
π∆

)
log
(mπ

2∆

)
+
(
∆2 −m2

π

)
R (mπ)

]
(20)

where R (mπ) = −
√
m2
π −∆2 cos−1

(
∆
mπ

)
for mπ > ∆ and R (mπ) =

√
∆2 −m2

π log
(

∆
mπ

+
√

∆2

m2
π
− 1
)

for mπ < ∆.

We take the cut-off scale λ = 1 GeV, c1 = 1.127 [44] and treat the counter-term E1 as an additional fit parameter. As
in the O(p3) case we use the physical values of gA and fπ. The corresponding plot is shown on the right panel of Fig.
11. The error band as well as the errors on the fit parameters are obtained using super-jackknife analysis. One can see
that this formulation provides a good description of the lattice data as well and yields values of the lattice spacings
and m0

N which are consistent with those obtained in O(p3) of HBχPT. We take the difference between the results of
the O(p3) and O(p4) fits as an estimate of the uncertainty due to the chiral extrapolation. This is found to be about
three times the statistical error. The final values of the lattice spacing are shown in Eq. (21). The first parenthesis is
the statistical error and the systematic error is given is the second parenthesis. The rest of the fit parameters for the
two expansions and the χ2/d.o.f. are given in Table IV.

aβ=1.90 = 0.0936(13)(35) fm ,

aβ=1.95 = 0.0823(10)(35) fm ,

aβ=2.10 = 0.0646(7)(25) fm . (21)

m0
N −4c1(GeV−1) E1(λ) (GeV−3) σπN (MeV) χ2/d.o.f

O(p3) HBχPT 0.8667(15) 4.5735 64.9(1.5) 1.5779

O(p4) SSE 0.8813(47) 3.7282 -2.5858(2480) 45.3(4.3) 1.0880

TABLE IV. Fit parameters m0
N in GeV and E1(λ) in GeV−3 from O(p3) HBχPT and O(p4) SSE, as well as the fixed value of

−4c1. Also included is the value of the σ-term for each fit.

In order to better assess discretization effects we perform a fit to O(p3) at each of the β values separately. The
values we find are aβ=1.90 = 0.0923(20) fm, aβ=1.95 = 0.0821(16) fm and aβ=2.10 = 0.0657(12) fm. These values are
fully consistent with those obtained in Eq. (21) from the combined fit, indicating that discretization effects are small,
thus confirming a posteriori the validity of the assumption that cut-off effects are small for the nucleon mass. A
different way of demonstraing this is to include a quadratic term da2 to Eqns. 19 and 20, treating d as an additional
fit parameter. Performing the fits with the da2 term gives a value of d = 0.017(17) GeV3 i.e. consistent with zero.
The same is true for the ∆ mass confirming that cut-off effects are negligible in the light quark sector.
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We will use the values given in Eq. (21) to convert to physical units all the quantities studied in this work. We note
that when performing these fits only statistical errors are taken into account and systematic errors due to the choice of
the plateau are not included. The lattice spacings for these β values were also calculated from a pion decay constant
analysis using NLO SU(2) chiral perturbation theory for the extrapolations [46]. In that preliminary analysis only a
subset of the ensembles used here was included, yielding values of the lattice spacings that are smaller compared to
the values we extract using the nucleon mass in this work. Specifically, the lattice spacings at β = 1.90 , 1.95 and
2.10 were found to be afπ = 0.0863(4) , 0.0779(4) and 0.607(2) respectively, where afπ denotes the lattice spacing
determined using the pion decay constant. This implies that the values of the pion masses in physical units we quote
in this paper are equivalently smaller than those obtained using fπ to convert to physical units. A comprehensive
study of the different lattice spacing determinations is on-going.

Having determined the parameters of the chiral fit we can compute the nucleon σπN -term by evaluatingm2
π∂mN/∂m

2
π

where we have taken the leading order relation m2
π ∼ µl. Using Eq. (19) we find σπN = 64.9 ± 1.5 MeV. This value

is fully consistent with previous values extracted using this lowest order fit by ETMC on Nf = 2 quark flavor ensem-
bles [13, 41]. Performing the same calculation using the O(p4) expression we obtain a lower value of σπN = 45.3± 4.3
MeV showing the sensitivity to the chiral extrapolation. It is worth mentioning that such a difference in the determi-
nation of the σπN -term is known in the literature. For example, a latest πN scattering study [47], reporting a value
σπN = 59 ± 7 MeV, while higher values were also obtained using the Feynman-Hellmann theorem to analyse lattice
QCD data yielding σπN = 55± 1 MeV [48]. Lower values are associated with the well-known result of σπN = 45± 8
MeV extracted from an earlier chiral perturbation analysis of experimental scattering data [49], as well as, with the
values extracted in other lattice QCD calculations, such as the analysis of the QCDSF collaboration [50], where a
value σπN = 38± 12 MeV is obtained and of Ref. [51] where a value of σπN = 52± 3± 8 is extracted from a flavour
SU(2) extrapolation of a large set of lattice data on the nucleon mass. A very recent result is obtained using the
relativistic chiral Lagrangian from Ref. [52], suggests a rather smaller value of σπN = 39 + 2− 1 MeV. We summarize
lattice results on σπN in Fig. 12 we we show our O(p3) value. We take difference between the value extracted from
the O(p4) expression of Eq. (20) and the O(p3) value as an estimate for the error arising from chiral extrapolation.
As can be seen from the values in Table IV the chiral extrapolation error is large showing the sensitivity on the chiral
extrapolation, which explains the large error shown on our σπN results. It is apparent that, despite the long efforts,
the precise determination of the nucleon σ-terms is still an open issue and direct techniques as those described in for
example Ref. [53] are welcome. 1

20 30 40 50 60 70 80 90 100

�⇡N (MeV)

This work

ETMC Nf = 2 [13]

G. Bali et al. (QCDSF) [50]

L. Alvarez-Ruso et al. [51]

X.-L. Ren et al. [48]

M.F.M. Lutz et al. [52]

S. Durr et al. (BMW) [59]

R. Horsley et al. (QCDSF-UKQCD) [60]

FIG. 12. Comparison of lattice results for σπN in MeV, extracted from the O(p3) analysis of this work with the results from
other lattice calculations. Our result shows the statistical error in red and a systematic error in blue taken as the difference
between the value obtained using the O(p3) and O(p4) expressions (Eqns. (19) and (20) respectively) providing an estimate of
the uncertainty due to the chiral extrapolation.

F. Tuning of the bare strange and charm quark masses

A tuning of the bare strange and charm quark masses is performed using the physical mass of the Ω− and the Λ+
c

baryons respectively. For the tuning we calculate the Ω− and Λ+
c masses at a given value of the renormalized strange

and charm quark mass for all β values. For this we need the renormalization constants ZP for the three β values.
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These were computed in Ref. [54] and we quote, for the convenience of the reader, the values computed in the MS
scheme at 2 GeV:

Zβ=1.90
P = 0.529(7), Zβ=1.95

P = 0.509(4), Zβ=2.10
P = 0.516(2). (22)

For the Ω− we use the leading one-loop result from SU(2) χPT, given by

mΩ = m
(0)
Ω − 4c

(1)
Ω m2

π , (23)

where the mass m
(0)
Ω and c

(1)
Ω are treated as fit parameters. For the Λ+

c baryon, we use the result motivated by SU(2)
HBχPT to leading one-loop order given by

mΛc = m
(0)
Λc

+ c1m
2
π + c2m

3
π , (24)

where m
(0)
Λc

and the coefficients ci are treated as fit parameters. We include cut-off effects, by adding a quadratic term

da2 to the Eqns. (23) and (24), where d is treated as an additional fit parameter. The fit then yields the result at the
physical point in the continuum limit. We use the lattice spacings given in Eq. (21) extracted from the nucleon mass
to convert the Ω− and Λc masses to physical units.

In order to perform the tuning we use several values of the strange and charm quark masses for the gauge ensembles
considered in this work, as listed in Table V. Our strategy is to interpolate the Ω− and Λ+

c masses to a given value
of the renormalized strange and charm quark mass, respectively, and then extrapolate to the physical point using
Eqns. (23) and (24) to compare with the experimental values. The value of the renormalized quark mass is then
changed iteratively until the extrapolated continuum values agree with the experimental ones. This determines the
tuned values of mR

s and mR
c that reproduce the physical masses of Ω− and Λ+

c , respectively. In Fig. 13 we show
representative plots from the determination of mR

S and mR
c . We obtain the following values in MS at 2 GeV:

mR
s = 92.4(6)(2.0)MeV

mR
c = 1173.0(2.4)(17.0)MeV . (25)

The error in the first parenthesis is the statistical error on the fit parameters and in the second parenthesis is the
error associated with the tuning estimated by allowing the renormalized mass to vary within the statistical errors of
the Ω− and Λ+

c mass at the physical point. The latter systematic uncertainty due to the tuning will be included in
the final errors we quote for the baryon masses. In Ref. [54] the mass of the kaon and D-meson were used to tune
the strange and charm quark masses, obtaining mR

s = 99.6(4.1) MeV and mR
c = 1176(36) MeV in MS at 2 GeV,

respectively, both in agreement with our values. The corresponding plots of the chiral extrapolations for Ω− (Λ+
c )

at the fixed value of the strange (charm) quark mass after correcting for cut-off effects are shown in Fig. 14, where
indeed all data fall on the same curve and the physical masses of the Ω− and Λ+

c baryons are reproduced. The fit

parameters m
(0)
Ω , c

(1)
Ω and ci are collected in Table VII. The results in lattice units and the continuum extrapolated

values in physical units for Ω− and Λ+
c are listed in Table VI.
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FIG. 13. Tuning of the renormalized strange and charm quark masses with the experimental values of the Ω (left) and Λ+
c

(right) masses respectively.

Given the fact that we have performed a high statistics run (see Table I) using mR
c = 1186 MeV, which was our

first estimate for mR
c and since this value is consistent with the final tuned value given in Eq. (25) we will use the

high statistics results to obtain the values of the charmed baryon masses at the physical point. We have checked
that interpolation of our lattice data for the charm baryons at the tuned value of mR

c = 1173(2.4) yield masses at
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Ensemble ams mR
s (GeV) amc mR

c (GeV)

β = 1.90

aµl = 0.0030, L/a = 32
0.0229 0.0904 0.2968 1.1737

0.0234 0.0924 0.2999 1.1860

aµl = 0.0040, L/a = 32

0.0232 0.0917
0.2851

0.2999

1.1272

1.1860
0.0234 0.0924

0.0264 0.1043

aµl = 0.0050, L/a = 32 0.0234 0.0924
0.2943 1.1637

0.2999 1.1860

β = 1.95

aµl = 0.0025, L/a = 32

0.0182 0.0862 0.2350 1.1122

0.0192 0.0909 0.2506 1.1860

0.0195 0.0924 0.2550 1.2069

0.0200 0.0947 0.2694 1.2752

aµl = 0.0035, L/a = 32

0.0187

0.0195

0.0200

0.0883

0.0924

0.0970

0.2250 1.0649

0.2450 1.1596

0.2506 1.1860

0.2580 1.2210

aµl = 0.0055, L/a = 32

0.0186

0.0195

0.0200

0.0879

0.0924

0.0970

0.2350 1.1122

0.2506 1.1860

0.2570 1.2164

0.2715 1.2848

aµl = 0.0075, L/a = 32
0.0195

0.0200

0.0924

0.0970

0.2240 1.0602

0.2440 1.1548

0.2506 1.1860

β = 2.10

aµl = 0.0015, L/a = 48

0.0155 0.0919 0.1850 1.0959

0.0156 0.0924 0.2000 1.1847

0.0162 0.0959 0.2002 1.1860

0.0169 0.1002 0.2195 1.3002

aµl = 0.0020, L/a = 48

0.0156 0.0924 0.1900 1.1255

0.0158 0.0936 0.2002 1.1860

0.0165 0.0977 0.2150 1.2736

aµl = 0.0030, L/a = 48
0.0156

0.0163

0.0924

0.0965

0.1800 1.0662

0.2002 1.1860

0.2080 1.2321

TABLE V. The values of the strange and charm quark masses for each ensemble used for the tuning.

the physical point which are totally consistent with the ones obtained at mR
c = 1186(2.4), albeit with larger errors

due to the interpolation of the lattice results. Thus, we avoid interpolation and use the results obtained directly at
mR
c = 1186 MeV in what follows.

III. LATTICE RESULTS

Lattice results are obtained for three lattice spacings allowing to assess cut-off effects. We start by addressing any
possible isospin breaking effects on the baryon masses.

A. Isospin symmetry breaking

The twisted mass action breaks isospin explicitly to O(a2) and the size of the O(a2) terms determines how large
this breaking is. Any isospin splitting should vanish in the continuum limit. In general, isospin symmetry breaking
manifests itself as a mass splitting among baryons belonging to the same multiplets. We note that there is still a
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aµl amΩ mΩ (GeV) am
Λ+
c

m
Λ+
c

(GeV)

β = 1.90

0.0030 0.8380(77) 1.6575(609) 1.1651(157) 2.3223(729)

0.0040 0.8374(131) 1.6562(648) 1.1714(92) 2.3356(678)

0.0050 0.8491(118) 1.6808(637) 1.1816(78) 2.3571(670)

β = 1.95

0.0025 0.7484(60) 1.7111(535) 1.0236(52) 2.3523(584)

0.0035 0.7406(72) 1.6924(544) 1.0261(45) 2.3581(581)

0.0055 0.7477(67) 1.7093(540) 1.0434(43) 2.3997(580)

0.0075 0.7409(62) 1.6931(536) 1.0468(53) 2.4077(585)

β = 2.10

0.0015 0.5676(34) 1.6816(418) 0.7817(33) 2.3234(459)

0.0020 0.5568(54) 1.6484(437) 0.7796(68) 2.3171(494)

0.0030 0.5651(51) 1.6740(434) 0.7883(43) 2.3438(467)

TABLE VI. Masses of the Ω and Λ+
c baryons in lattice and physical units with the associated statistical error. The values in

physical units are continuum extrapolated.
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FIG. 14. Chiral extrapolations of the lattice data for Ω− (left) and Λc (right) at the fixed values of the renormalized strange
and charm quark masses of Eq. (25) respectively. In these figures, the lattice data for each β value as well as the continuum
extrapolated values are plotted. The physical masses of Ω− and Λc are reproduced at the continuum limit and at the physical
pion mass.

symmetry when interchanging a u- with a d-quark, which means for example that the proton and the neutron are still
degenerate as are the ∆++ and the ∆− as well as the ∆+ and ∆0. However, mass splitting could be seen between the
∆++ and the ∆+. Also, isospin breaking effects maybe present in the hyperons and charmed baryons in particular
given that we consider only the s+ and c+, as explained in section II.A.

We begin this analysis by plotting the mass difference as a function of a2 for the ∆ baryons. We average over ∆++

and ∆− as well as over ∆+ and ∆0 and take the difference between the two averages. The corresponding plot is
shown in Fig. 15, where as one can see, the mass difference is consistent with zero, indicating that isospin breaking
effects are small for the ∆ baryons at the β values analysed. We also examine the mass difference of the strange
baryons in Fig. 16. We observe that the mass difference between the Σ+ and Σ− and between the Ξ0 and Ξ− are
indeed decreasing linearly with a2 being almost zero at our smallest lattice spacing. For the strange spin-3/2 baryons
the results are fully consistent with zero at all lattice spacings.

We continue our analysis by studying the isospin breaking for the charm baryons. We show in Fig. 17 the mass
difference between the Σc, Ξc and Ξcc multiplets at the three lattice spacings for all pion masses considered in this
work. As in the strange sector, non-zero values are obtained at the largest lattice spacing, which do not exceed 3%
the average mass of these baryons. As expected, the mass splitting vanishes as the continuum limit is approached.
In the same figure we also show the mass difference between Ξ′+c and Ξ′0c , which is consistent with zero indicating
that isospin breaking effects are small at all values of the lattice spacing. As in the case of the strange decuplet, the
isospin splitting for the charmed spin-3/2 baryons is consistent with zero.
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Ω− (1.672)

m
(0)
Ω (GeV) 1.669(19)

−4c
(1)
Ω (GeV−1) 0.161(124)

d (GeV3) 0.466(123)

χ2/d.o.f. 2.24

m (GeV) 1.672(18)

Λ+
c (2.286)

m
(0)
Λc

(GeV) 2.272(26)

c1 (GeV−1) 0.799(935)

c2 (GeV−2) -0.118(1.834)

d (GeV3) 0.553(104)

χ2/d.o.f. 1.33

m (GeV) 2.286(17)

TABLE VII. Fit parameters and physical point values determined from the chiral fits to the Ω− and Λ+
c using Eqns. (23) and

(24) respectively.

-0.08

-0.04

 0

 0.04

 0.08

 0.12

 0  0.002  0.004  0.006  0.008  0.01

Δ
m

 (
G

eV
)

a2 (fm2)

Δ++,- - Δ+,0

FIG. 15. Mass differences for the ∆ baryons for our three lattice spacings (circles for β = 1.90, squares for β = 1.95 and
triangles for β = 2.10) examined and for all pion masses. Symbols for each lattice spacing have been shifted to the left and
right for clarity. Red symbols represent the lightest pion mass and blue symbols the heaviest pion mass for each lattice spacing.
For β = 1.95, the green symbol is the second lightest pion mass and the magenta symbol is the second heaviest pion mass.

Having several pion masses at a given lattice spacing one can ask how the isospin mass splitting depends on the
pion mass. As shown in Figs. 16 and 17, the baryon mass differences are independent of the light quark mass to the
present accuracy of our results.

IV. CHIRAL AND CONTINUUM EXTRAPOLATION

In order to extrapolate our lattice results to the physical pion mass we allow for cut-off effects by including a term
quadratic in the lattice spacing and then apply continuum chiral perturbation theory at our results.

For the strange baryon sector we consider SU(2) heavy baryon chiral perturbation theory (HBχPT). The same
expressions were used in other twisted mass fermion studies [13, 41, 55] and were found to describe lattice data
satisfactory. The leading one-loop results for the octet and decuplet baryons [56, 57] are given by

mΛ(mπ) = m
(0)
Λ − 4c

(1)
Λ m2

π −
g2

ΛΣ

16πf2
π

m3
π

mΣ(mπ) = m
(0)
Σ − 4c

(1)
Σ m2

π −
2g2

ΣΣ + g2
ΛΣ/3

16πf2
π

m3
π

mΞ(mπ) = m
(0)
Ξ − 4c

(1)
Ξ m2

π −
3g2

ΞΞ

16πf2
π

m3
π (26)
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FIG. 16. Mass differences for the octet (left) and decuplet (right) hyperons for our three lattice spacings examined. Small
non-zero mass differences are observed for the octet hyperons. The symbol notation is as in Fig. 15.

for the octet baryons and

m∆(mπ) = m
(0)
∆ − 4c

(1)
∆ m2

π −
25

27

g2
∆∆

16πf2
π

m3
π

mΣ∗(mπ) = m
(0)
Σ∗ − 4c

(1)
Σ∗m

2
π −

10

9

g2
Σ∗Σ∗

16πf2
π

m3
π

mΞ∗(mπ) = m
(0)
Ξ∗ − 4c

(1)
Ξ∗m

2
π −

5

3

g2
Ξ∗Ξ∗

16πf2
π

m3
π

mΩ(mπ) = m
(0)
Ω − 4c

(1)
Ω m2

π (27)

for the decuplet baryons. In addition we consider the next-to-leading order SU(2) χPT results [39]. For completeness,
we include the expressions in Appendix C.

We fix the nucleon axial charge gA and pion decay constant fπ to their experimental values (we use the convention
such that fπ = 0.092419(7)(25) GeV) as was done in the case of determining the lattice spacings from fitting the
nucleon mass. The remaining pion-baryon axial coupling constants are taken from the following SU(3) relations [39]:

Octet : gA = D + F gΣΣ = 2F, gΞΞ = D − F, gΛΣ = 2D

Decuplet : g∆∆ = H, gΣ∗Σ∗ = 2
3H, gΞ∗Ξ∗ = 1

3H
Transition : g∆N = C, gΣ∗Σ = 1√

3
C, gΞ∗Ξ = 1√

3
C, gΛΣ∗ = − 1√

2
C

(28)

In the octet case, once gA is fixed, the axial coupling constants depend on a single parameter α such that α = D
D+F .

Its value is poorly known. It can be taken either from the quark model (α = 3/5), from the phenomenology of
semi-leptonic decays or from hyperon-nucleon scattering. As in Ref. [39], we take α = 0.58 or 2D = 1.47. The axial
couplings in the decuplet case depend only on H for which we take the value H = 2.2, again from Ref. [39]. This value
is close to the prediction by SU(6), namely H = 9

5gA = 2.29. The latter was used in a previous work [41], resulting
in the same cubic term for the nucleon and ∆. When fixing the octet-decuplet transition couplings we take C = 1.48
from Ref. [58]. Having fixed the coupling constants this way, the LO, the one-loop as well as the NLO expressions

are left with m
(0)
X and c

(1)
X as independent fit parameters. Unlike in Ref. [39] where a universal mass parameter m

(0)
X

was used for all baryons with the same strangeness, in this work we treat all mass parameters m
(0)
X independently.

The chiral extrapolation is applied to the average over all states belonging to the same isospin multiplets, except for
the charged states of the Σ, Ξ and Ξc where small non zero mass differences exist due to isospin breaking effects.
For these particles we first extrapolate to the continuum limit to ensure that they are degenerate and then take the
average of their continuum values.
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FIG. 17. Mass differences between the charm baryons belonging to the same isospin multiplets for the three lattice spacings.
Small non-zero differences which are reduced as the lattice spacing gets smaller are seen between the Ξc states. The notation
is the same as that in Fig. 15.

We give the fit parameters extracted from fitting our lattice results for the octet and decuplet baryons to the leading
one-loop order (Eqns. (26) and (27)) and NLO (Eqns. (30) and (31)) in Table IX. We also show the baryon masses
at the physical point obtained from the leading order fits in Table XI. The lattice results for the octet and decuplet
baryons at the three β values are collected in Appendix. B. The deviation of the values obtained at the physical pion
mass from the two fitting procedures provide an estimate of the systematic error due to the chiral extrapolation. This
error on the masses is given in the second parenthesis in Table XI. Since for the Ω the LO and NLO expressions have
no difference, we do not quote a systematic error due to the chiral extrapolation. We show representative plots of
the chiral fits for the octet and decuplet baryons in Fig. 18. Our results shown here are continuum extrapolated and
thus the errors on the points are larger than those on the raw data. The error band for the leading one-loop order
and NLO fits are constructed using the super-jackknife procedure [45]. As can be seen, the data are well described
by the LO fits and the physical masses of Λ, Σ0 and Ξ0 are reproduced. For the ∆ and Ξ∗ the physical point is
missed by about one standard deviation, while the results for Σ∗ extrapolate to a 5% higher value. The NLO fits also
describe the lattice data satisfactory but in general extrapolate to a lower value at the physical point. Taking the
difference between the value found using the LO and NLO expressions we estimate the systematic error due to the
chiral extrapolation, and this yields agreement with the experimental values also in the cases of ∆, Σ∗ and Ξ∗.
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FIG. 18. Chiral extrapolations of the octet (left) and decuplet (right) baryons in physical units, using the leading one-loop
expressions of Eqns. (26) and (27) respectively as well as the NLO expressions of Eqns. (30) and (31). The lattice values are
continuum extrapolated.The notation is given in the legend in the top left plot. The experimental value is shown with the
black asterisk.

For the charm baryons we use the Ansatz

mB = m
(0)
B + c1m

2
π + c2m

3
π . (29)

This expression is motivated by SU(2) HBχPT to leading one-loop order, where m
(0)
B and ci are treated as independent

fit parameters. As before, we add the term da2 in the fits in order to simultaneously extrapolate to the continuum
and we average over the states belonging to the same isospin multiplets. We show representative plots of the chiral
fits for the charm baryons in Fig. 19. The resulting fit parameters from the fits are listed in Table X. The masses at
the physical point are shown in Table XI. The lattice results for all charm baryons at the three β values are collected
in Appendix. B. As can be seen from the chiral fits, setting c2 = 0 in the Ansatz would lead to satisfactory fits as
well. This is also reflected by the large uncertainties on this fit parameter, making it consistent with zero. As in the
strange baryon sector, our continuum data are described well by Eq. (29), yielding values at the physical point which
in general are consistent with experiment. For the Ω0

c and Ω∗0c the lattice data extrapolate to a lower value by one
and two standard deviations respectively. In order to estimate a systematic error due to the chiral extrapolation in
the charm sector, we perform the chiral fits using Eq. (29) with our lattice data only up to mπ ∼ 300MeV and setting
c2 = 0. The deviation of the values obtained at the physical pion mass from fitting using the whole pion mass range
and fitting up to mπ ∼ 300MeV yields an estimation of the systematic error due to the chiral extrapolation.

The size of the cut-off effects in both the strange and charm quark sectors are small. This can be seen by the values
of the fit parameter d, which are O(1), and thus the cut-off effects are indeed O(a2). As an example, we show in
Fig. IV the a-dependence of the mass of the Ω− and Ωccc for fixed quark masses. The correction at the largest value
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FIG. 19. Representative chiral fits of the charm spin-1/2 (left) and spin-3/2 (right) baryon results in physical units, using the
Ansatz of Eq. (29). The lattice results are the continuum extrapolated ones. The notation is shown in the legend of the top
left plot.

of a is 6% for the Ω− and 5% for the Ωccc. In Table VIII we give the values of the parameter d and the finite lattice
spacing corrections in percentage of the mass at each β value for the doubly and triply charmed baryon masses.
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FIG. 20. Dependence of the Ω− (left) and Ωccc (right) mass on the lattice spacing.

We also estimate a systematic uncertainty due to the tuning for all strange and charm baryons. This is done by
evaluating the baryon masses when the strange and charm quark masses take the upper and lower bound allowed by
the error in their tuned values (Eq. (25)). The deviation of the mass extracted using χPT to leading order provides
an estimate of the systematic error due to the tuning, given in the third parenthesis in Table XI. In the strange sector,
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Baryon d (GeV3)
% correction

β = 1.90 β = 1.95 β = 2.10

Ξcc 1.08 6.3 5.0 3.1

Ξ∗cc 1.01 5.9 4.6 2.9

Ωcc 1.20 6.9 5.4 3.4

Ω∗cc 1.10 6.2 4.9 3.0

Ωccc 1.15 5.1 4.1 2.6

TABLE VIII. The value of the fit parameter d and the finite lattice spacing correction as percentage of the mass for the doubly
and triply charmed baryons .

the systematic error due to the tuning on the strange baryon masses gives an upper bound of the error expected, since
the tuning was performed using the Ω which contains three strange quarks, and thus any error due to the uncertainty
of the tuning would be the largest in this case.

As in the nucleon case, an estimate of the light σ-term of all the hyperons and charmed baryons considered in this
work can be made, by taking the derivative m2

π∂mB/∂m
2
π. For the octet and decuplet we calculate σπB using the

LO as well as the NLO expressions. It is apparent that the value extracted depends on the fitting Ansatz, and since
the slope of the NLO fit is larger at the physical point, the resulting values for σπB from the NLO expressions are
larger, again indicating the sensitivity on the chiral extrapolations. We list the values extracted for the octet and
decuplet baryons in Table IX. A number of other recent works [13, 48, 52, 59–63] have computed the light σ-terms for
the octet and decuplet baryons by analyzing lattice QCD data from various collaborations. We compare our results
with the results of these calculations in Figs. 21 and 22. As for the case of the nucleon σ-term, we take the difference
between the values obtained using O(p3) and O(p4) perturbation theory as an estimate of the systematic error arising
from the chiral extrapolation. This explains why our results have a larger error as compared to other groups which,
typically, do not include such an estimate. Extending this analysis we can compute the poorly known σ-terms for the
charmed baryons from the fitting Ansatz of Eq. (29). We list the resulting values in Table X.

It is worth mentioning that a number of analyses based on baryon chiral perturbation theory have been carried out
for the octet baryon masses and sigma terms. We refer for example to Refs. [64–66] for details.
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FIG. 21. Comparison of the light σ-term of the spin-1/2 hyperons in MeV, extracted from the O(p3) in this work with the
results from other lattice calculations. Our result shows the statistical error in red and a systematic error in blue taken as the
difference between the value obtained using the O(p3) and O(p4) expressions (Eqns. (26) and (30) respectively) providing an
estimate of the uncertainty due to the chiral extrapolation.

V. COMPARISON WITH RESULTS FROM OTHER COLLABORATIONS

In this section we compare our lattice results with those of other collaborations which use different discretization
schemes. Having already extrapolated to the continuum, we also compare our values at the physical pion mass with
the corresponding results of other collaborations and with experiment.
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FIG. 22. Comparison of the light σ-term of the spin-3/2 hyperons in MeV, extracted from the O(p3) in this work with the
results from other lattice calculations. The notation is the same as that in Fig 21.

Baryon m
(0)
B (GeV) −4c

(1)
B (GeV−1)

σπB (MeV)

O(p3) NLO

N 0.867(2) 4.574 64.9(1.5) 45.3(4.3)

Λ 1.067(16) 3.544(97) 46.0(1.8) 74.5(1.8)

Σ+ 1.110(21) 4.470(113) 55.6(2.1) 65.3(2.2)

Σ0 1.117(17) 4.422(95) 54.7(1.7) 64.5(1.8)

Σ− 1.095(18) 4.618(102) 58.3(1.9) 68.3(1.9)

Ξ0 1.307(16) 0.433(147) 6.8(2.7) 18.9(2.7)

Ξ− 1.312(12) 0.497(107) 8.0(2.0) 20.4(1.9)

∆ 1.207(31) 6.496(162) 79.9(3.0) 100.3(3.1)

Σ∗ 1.405(23) 3.603(156) 45.1(2.8) 68.6(2.7)

Ξ∗ 1.535(19) 1.562(123) 20.8(2.2) 38.2(2.2)

Ω 1.669(19) 0.161(124) 2.9(2.3)

TABLE IX. The mass at the chiral limit, m
(0)
B , and the fit parameter c

(1)
B as determined from fitting to the leading one-loop

order expressions for the octet and decuplet baryons at the tuned strange quark mass. Also shown in the value of the light
σ-term at the physical point determined from the fits.

Several collaborations have calculated the strange spectrum. The Budapest-Marseille-Wuppertal (BMW) collabo-
ration carried out simulations using tree level improved 6-step stout smeared Nf = 2 + 1 clover fermions and a tree
level Symanzik improved gauge action. The lattice spacing values used to obtain the continuum limit were a = 0.065
fm, 0.085 fm and 0.125 fm. Using pion masses as low as 190 MeV, a polynomial fit was performed to extrapolate to the
physical point [67]. The PACS-CS collaboration obtained results using Nf = 2 + 1 non-perturbatively O(a) improved
clover fermions on an Iwasaki gauge action on a lattice of spatial length of 2.9 fm and a value of lattice spacing
a = 0.09 fm [68]. In addition, the octet and decuplet spectrum was obtained in Ref. [69], using Nf = 2 + 1 SLiNC
configurations. Ref. [70] also includes results on the charmed baryons from an analysis on Nf = 2 + 1 2-HEX [71]
and SLiNC [69, 72] configurations produced by the BMW-c and QCDSF collaborations respectively. Finally, we
compare with the LHPC collaboration, which obtained results using a hybrid action of domain wall valence quarks
on a staggered sea on a lattice of spatial length 2.5 fm and 3.5 fm at lattice spacing a = 0.124 fm [73].

In Fig. 23 we compare our lattice results on the octet baryons with those of BMW, the PACS-CS and the LHPC
collaborations. In the nucleon case, we furthermore compare with results from the MILC collaboration [74], obtained
from Nf = 2+1+1 simulations using the one-loop Symanzik improved gauge action and an improved Kogut-Susskind
quark action at a lattice spacing value a = 0.130 fm and with results from QCDSF-UKQCD, obtained using Nf = 2
simulations at three values of the lattice spacing, a = 0.076 , 0.072 , 0.060 fm [75]. We note that our results shown in
these plots and the results from the PACS-CS and LHPC are not continuum extrapolated, while the results from BMW
are continuum extrapolated and have larger errors than the rest. Nevertheless, there is an overall agreement, best seen
in the case of the nucleon mass, which indicates that cut-off effects are small. A similar behavior is also seen in the case



22

Baryon m
(0)
B (GeV) c1 (GeV−1) c2 (GeV−2) σπB (MeV)

Λc 2.272(26) 0.799(935) -0.118(1.834) 14.1(10.3)

Σc 2.445(32) 0.903(1.118) -0.662(2.159) 14.0(12.4)

Ξc 2.469(28) 0.233(906) -0.087(1.782) 4.6(10.0)

Ξc 2.447(25) 0.855(788) -1.128(1.527) 11.4(8.8)

Ξ′c 2.542(27) 1.242(870) -1.924(1.690) 15.5(9.7)

Ωc 2.629(22) 1.028(768) -2.017(1.507) 11.3(8.5)

Ξcc 3.561(22) 0.516(725) -0.880(1.415) 6.2(8.0)

Ωcc 3.654(18) 0.341(602) -0.937(1.193) 2.8(6.6)

Σ∗c 2.513(38) 0.887(1.345) -0.481(2.593) 14.4(15.0)

Ξ∗c 2.628(33) 0.483(1.178) -0.766(2.339) 6.0(12.9)

Ω∗c 2.709(26) 1.408(875) -2.623(1.710) 16.0(9.7)

Ξ∗cc 3.642(26) 0.703(891) -1.087(1.733) 8.8(9.9)

Ω∗cc 3.724(21) 0.792(719) -1.695(1.418) 8.2(7.9)

Ωccc 4.733(18) 0.156(551) -0.443(1.082) 1.2(6.1)

TABLE X. The mass at the chiral limit, m
(0)
B , and fit parameters ci as determined from fitting to the Ansatz of Eq. (29) for

the charm baryons at the tuned strange and charm quark masses. Also listed is the value of the light σ-term in MeV.

Baryon (PDG) m (GeV)

N (0.939) 0.939

Λ (1.116) 1.120(15)(54)(22)

Σ (1.193) 1.168(32)(14)(44)

Ξ (1.318) 1.318(19)(23)(9)

∆ (1.232) 1.299(30)(66)

Σ∗ (1.384) 1.457(22)(28)(32)

Ξ∗ (1.530) 1.558(18)(41)(19)

Ω (1.672) 1.672(18)

Λc (2.286) 2.286(17)(10)

Σc (2.453) 2.460(20)(20)(6)

Ξc (2.470) 2.467(24)(4)(5)

Ξ′c(2.575) 2.560(16)(22)(42)

Ω0
c (2.695) 2.643(14)(19)(42)

Ξcc (3.519) 3.568(14)(19)(1)

Ω+
cc 3.658(11)(16)(50)

Σ∗c (2.517) 2.528(25)(15)(7)

Ξ∗c (2.645) 2.635(20)(27)(55)

Ω∗0c (2.765) 2.728(16)(19)(26)

Ξ∗cc 3.652(17)(27)(3)

Ω∗+cc 3.735(13)(18)(43)

Ω++
ccc 4.734(12)(11)(9)

TABLE XI. Our values of the masses of the baryons considered in this work after extrapolating to the physical point and taking
the continuum limit given in GeV, with the associated statistical error shown in the first parenthesis. The error in the second
parenthesis is an estimate of the systematic error due to the chiral extrapolation and in the third parenthesis (except for ∆,
which contains only light quarks) is an estimate of the systematic error due to the tuning. There are no systematic errors for
Ω− and Λ+

c since these are used for the tuning of the strange and charm quark mass, respectively.

for the mass in the decuplet shown in Fig. 24, where we compare our results with those from PACS-CS and LHPC.



23

We stress that these lattice results need to be extrapolated to zero lattice spacing (continuum limit) and therefore
small deviations are to be expected the raw data. A comparison is also made with recent phenomenology results on
the octet and decuplet baryon masses, obtained from an analysis of lattice QCD data based on the relativistic chiral
Lagrangian [52]. As can be seen from Fig. 25, results show an overall agreement.

In Fig. 26 we show the masses for the octet and decuplet baryons obtained after extrapolating to the continuum
limit and to the physical pion mass. Our results are obtained using the leading order expansions from HBχPT and
the statistical error and total error are shown separately. The error in red in our results shown in Figs. 26 represents
the statistical error. The total error bar, shown in blue, is obtained after adding quadratically the statistical error
and the systematic errors due to the chiral extrapolation and due to the tuning.

In addition, we compare our results obtained in the charm sector with the corresponding results of other lattice
calculations. Specifically, the MILC collaboration has obtained results using a clover charm valence quark in Nf =
2 + 1 + 1 gauge configurations at three values of the lattice spacing, a = 0.09 , 0.12 , 0.15 fm [11, 76]. Moreover,
results for the charm spectrum were produced from Nf = 2 + 1 + 1 gauge configurations at lattice spacing values
a = 0.06 , 0.09 , 0.12 fm using the highly improved staggered quark (HISQ) action, whereas the valence up, down and
strange quark propagators were generated using the clover improved Wilson action [10]. A relativistic heavy quark
action was implemented for the charm quark in order to reduce discretization artifacts. In Ref. [12] domain wall
fermions are used for the up, down and strange quarks with Nf = 2+1 simulations using the improved Kogut-Susskind
sea quarks at a lattice spacing value a = 0.12 fm. For the charm quark the relativistic Fermilab action was adopted.
Finally, the PACS-CS has obtained results in the charm sector using the relativistic heavy quark action on Nf = 2+1
configurations with the light and strange quarks tuned to their physical masses, a lattice spacing of a = 0.09 fm and
a spatial length of L = 2.9 fm [77]. We compare our results with those from Refs. [10–12, 76, 77].

In Fig. 27 we compare our continuum extrapolated results on the charmed spectrum with experiment again showing
separately the statistical error and the total error. Given the agreement with the experimental values, lattice QCD
thus provides predictions for the mass of the Ξ∗cc, Ωcc, Ω∗cc and Ωccc. These predictions are consistent among lattice
calculations, as shown in Fig. 27. We also point out that our value for Ξcc is within errors with the value measured
by the SELEX experiment.
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FIG. 23. Comparison of lattice results of this work (red filled circles) with those from other collaborations for the octet baryons.
Results using clover fermions from BMW [67] are shown in green triangles and from PACS-CS [68] with blue squares. Domain
wall valence quarks by the LHPC [73] are shown in magenta diamonds. In the nucleon case we additionally show results from
the MILC collaboration [74] in purple inverted triangles and from QCDSF-UKQCD [75] with orange crosses. The physical
point is shown with the black asterisk.
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FIG. 24. Comparison of the results for the decuplet baryons in this work with the results from PACS-CS using clover fermions
[68] and from the LHPC collaboration [73] using domain wall valence quarks. The notation is as in Fig. 23.
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FIG. 25. Comparison of the lattice results for the octet (left) and decuplet (right) baryons from this work (red circles) with
the phenomenology results from Ref. [52] (blue open squares). The results are consistent for all β values.

VI. CONCLUSIONS

The twisted mass formulation allowing simulations with dynamical strange and charm quarks with their mass fixed
to approximately their physical values provides a good framework for studying the baryon spectrum. A number of
gauge ensembles are analyzed spanning pion masses from about 450 MeV to 210 MeV for three lattice spacings. For
the strange and charm valence quarks we use the Osterwalder-Seiler formulation and tuned their mass using the mass
of the Ω and Λc, respectively. Thus the strange and charm quarks are treated in the same manner as the light quarks.
This is to be contrasted with other lattice calculations where Nf = 2 + 1 staggered gauge configurations are used
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the chiral extrapolation was performed using the leading order HBχPT. In our results, the statistical error is shown in red,
whereas the blue error bar includes the statistical error and the systematic errors due to the chiral extrapolation and due to the
tuning added in quadrature. Results using clover fermions from BMW [67] are shown in magenta squares and from PACS-CS
[68] with green triangles. Results from QCDSF-UKQCD collaborations [69] using Nf = 2 + 1 SLiNC configurations are also
displayed in blue inverted triangles. Open symbols are used wherever the mass was used as input to the calculations.
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FIG. 27. The masses of spin-1/2 (left) and spin-3/2 (right) charm baryons. The notation of our results (ETMC) is the same
as in Fig. 26. The experimental values are from Ref. [78] and are shown with the horizontal bands. Included are results
from various hybrid actions with staggered sea quarks from Refs. [11, 76] (purple triangles), [10] (magenta diamonds) and [12]
(orange inverted triangles). Results from PACS-CS [77] are shown in green triangles.

and the charm valence quark is introduced using a different discretization scheme such as clover or described by a
relativistic heavy quark action. A comparison of our lattice results to other lattice calculations before extrapolations
shows an overall similar tread for all lattice formulations.

Having values for the masses at three lattice spacings is crucial in order to both verify that cut-off effects are under
control and to extrapolate the results to the continuum limit. We perform a continuum extrapolation to all our data
and chiral extrapolate to the physical pion mass. In most cases, the largest systematic error arises because of the
chiral extrapolation and the tuning of the strange and charm quark masses. We estimate the error due to the chiral
extrapolation by comparing results at different orders of the chiral expansion. The systematic error due to tuning is
estimated by varying the strange and charm quark mass within the error band of the Ω and Λc masses at the physical
point. From the chiral fits we can determine the light σ-terms for all baryons via the Feynman-Hellmann theorem.
The largest uncertainty in their determination arises from the chiral extrapolation which, in some cases amounts to
over 30% error. Therefore direct determinations of the σ-terms [53, 79] although very computer intensive can provide
a valuable alternative. The values extracted for σπB for all the baryons are given in Table IX.

Our values for the baryon masses at the physical point, shown in Figs. 26 and 27, reproduce the known baryon
masses. For the Ξcc we find a mass of 3.568(14)(19)(1) GeV, which is higher by one standard deviation as com-
pared with the value of 3.519 GeV measured by the SELEX collaboration. Our prediction for the mass of the
Ξ∗cc is 3.652(17)(27)(3) GeV, for the Ω+

cc is 3.658(11)(16)(50) GeV, for Ω∗+cc 3.735(13)(18)(43) GeV and for Ω++
ccc

4.734(12)(11)(9) GeV.
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A. APPENDIX: INTERPOLATING FIELDS FOR BARYONS

In the following tables, we give the interpolating fields for the baryons used in this work in correspondence with
Fig. 2 and Fig. 3. Throughout, C denotes the charge conjugation matrix and spinor indices are suppressed.

Charm Strange Baryon
Quark

Interpolating field I Iz
content

c = 2
s = 0

Ξ++
cc ucc εabc

(
cTaCγ5ub

)
cc 1/2 +1/2

Ξ+
cc dcc εabc

(
cTaCγ5db

)
cc 1/2 -1/2

s = 1 Ω+
cc scc εabc

(
cTaCγ5sb

)
cc 0 0

c = 1

s = 0

Λ+
c udc 1√

6
εabc

[
2
(
uTaCγ5db

)
cc +

(
uTaCγ5cb

)
dc −

(
dTaCγ5cb

)
uc
]

0 0

Σ++
c uuc εabc

(
uTaCγ5cb

)
uc 1 +1

Σ+
c udc 1√

2
εabc

[(
uTaCγ5cb

)
dc +

(
dTaCγ5cb

)
uc
]

1 0

Σ0
c ddc εabc

(
dTaCγ5cb

)
dc 1 -1

s = 1

Ξ+
c usc εabc

(
uTaCγ5sb

)
cc 1/2 +1/2

Ξ0
c dsc εabc

(
dTaCγ5sb

)
cc 1/2 -1/2

Ξ′+c usc 1√
2
εabc

[(
uTaCγ5cb

)
sc +

(
sTaCγ5cb

)
uc
]

1/2 +1/2

Ξ′0c dsc 1√
2
εabc

[(
dTaCγ5cb

)
sc +

(
sTaCγ5cb

)
dc
]

1/2 -1/2

s = 2 Ω0
c ssc εabc

(
sTaCγ5cb

)
sc 0 0

c = 0

s = 0
p uud εabc

(
uTaCγ5db

)
uc 1/2 +1/2

n udd εabc
(
dTaCγ5ub

)
dc 1/2 -1/2

s = 1

Λ uds 1√
6
εabc

[
2
(
uTaCγ5db

)
sc +

(
uTaCγ5sb

)
dc −

(
dTaCγ5sb

)
uc
]

0 0

Σ+ uus εabc
(
uTaCγ5sb

)
uc 1 +1

Σ0 uds 1√
2
εabc

[(
uTaCγ5sb

)
dc +

(
dTaCγ5sb

)
uc
]

1 0

Σ− dds εabc
(
dTaCγ5sb

)
dc 1 -1

s = 2
Ξ0 uss εabc

(
sTaCγ5ub

)
sc 1/2 +1/2

Ξ− dss εabc
(
sTaCγ5db

)
sc 1/2 -1/2

TABLE XII. Interpolating fields and quantum numbers for the 20′-plet of spin-1/2 baryons.
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Charm Strange Baryon
Quark

Interpolating field I Iz
content

c = 3 s = 0 Ω++
ccc ccc εabc

(
cTaCγµcb

)
cc 0 0

c = 2
s = 0

Ξ?++
cc ucc εabc

(
cTaCγµub

)
cc 1/2 +1/2

Ξ?+cc dcc εabc
(
cTaCγµdb

)
cc 1/2 -1/2

s = 1 Ω?+cc scc εabc
(
cTaCγµsb

)
cc 0 0

c = 1

s = 0

Σ?++
c uuc 1√

3
εabc

[(
uTaCγµub

)
cc + 2

(
cTaCγµub

)
uc
]

1 +1

Σ?+c udc
√

2
3
εabc

[(
uTaCγµdb

)
cc +

(
dTaCγµcb

)
uc +

(
cTaCγµub

)
dc
]

1 0

Σ?0c ddc 1√
3
εabc

[(
dTaCγµdb

)
cc + 2

(
cTaCγµdb

)
dc
]

1 -1

s = 1
Ξ?+c usc εabc

(
sTaCγµub

)
cc 1/2 +1/2

Ξ?0c dsc εabc
(
sTaCγµdb

)
cc 1/2 -1/2

s = 2 Ω?0c ssc εabc
(
sTaCγµcb

)
sc 0 0

c = 0

s = 0

∆++ uuu εabc
(
uTaCγµub

)
uc 3/2 +3/2

∆+ uud 1√
3
εabc

[
2
(
uTaCγµdb

)
uc +

(
uTaCγµub

)
dc
]

3/2 +1/2

∆0 udd 1√
3
εabc

[
2
(
dTaCγµub

)
dc +

(
dTaCγµdb

)
uc
]

3/2 -1/2

∆− ddd εabc
(
dTaCγµdb

)
dc 3/2 -3/2

s = 1

Σ?+ uus 1√
3
εabc

[(
uTaCγµub

)
sc + 2

(
sTaCγµub

)
uc
]

1 +1

Σ?0 uds
√

2
3
εabc

[(
uTaCγµdb

)
sc +

(
dTaCγµsb

)
uc +

(
sTaCγµub

)
dc
]

1 0

Σ?− dds 1√
3
εabc

[(
dTaCγµdb

)
sc + 2

(
sTaCγµdb

)
dc
]

1 -1

s = 2
Ξ?0 uss εabc

(
sTaCγµub

)
sc 1/2 +1/2

Ξ?− dss εabc
(
sTaCγµdb

)
sc 1/2 -1/2

s = 3 Ω− sss εabc
(
sTaCγµsb

)
sc 0 0

TABLE XIII. Interpolating fields and quantum numbers for the 20-plet of spin-3/2 baryons.
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Charm Strange Baryon
Quark

Interpolating field I Iz
content

Spin-1/2 baryons

c = 1 s = 1
Ξ+
c usc 1√

6
εabc

[
2
(
sTaCγ5ub

)
cc +

(
sTaCγ5cb

)
uc −

(
uTaCγ5cb

)
sc
]

1/2 +1/2

Ξ0
c dsc 1√

6
εabc

[
2
(
sTaCγ5db

)
cc +

(
sTaCγ5cb

)
dc −

(
dTaCγ5cb

)
sc
]

1/2 -1/2

Spin-3/2 baryons

c = 0 s = 2
Ξ?0 uss 1√

3
εabc

[
2
(
sTaCγµub

)
sc +

(
sTaCγµsb

)
uc
]

1/2 +1/2

Ξ?− dss 1√
3
εabc

[
2
(
sTaCγµdb

)
sc +

(
sTaCγµsb

)
dc
]

1/2 -1/2

c = 1
s = 1

Ξ?+c usc
√

2
3
εabc

[(
uTaCγµsb

)
cc +

(
sTaCγµcb

)
uc +

(
cTaCγµub

)
sc
]

1/2 +1/2

Ξ?0c dsc
√

2
3
εabc

[(
dTaCγµsb

)
cc +

(
sTaCγµcb

)
dc +

(
cTaCγµdb

)
sc
]

1/2 -1/2

s = 2 Ω?0c ssc 1√
3
εabc

[
2
(
sTaCγµcb

)
sc +

(
sTaCγµsb

)
cc
]

0 0

c = 2
s = 0

Ξ?++
cc ucc 1√

3
εabc

[
2
(
cTaCγµub

)
cc +

(
cTaCγµcb

)
uc
]

1/2 +1/2

Ξ?+cc dcc 1√
3
εabc

[
2
(
cTaCγµdb

)
cc +

(
cTaCγµcb

)
dc
]

1/2 -1/2

s = 1 Ω?+cc scc 1√
3
εabc

[
2
(
cTaCγµsb

)
cc +

(
cTaCγµcb

)
sc
]

0 0

TABLE XIV. Additional interpolating fields for spin-1/2 and spin-3/2 baryons. There are two of the spin-1/2 baryons and
eight of the spin-3/2 baryons.
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B. APPENDIX: LATTICE RESULTS

In the tables below we list the baryon masses in lattice units and the continuum extrapolated values in physical
units. The masses in physical units are in GeV and are converted from lattice units using the lattice spacing values
extracted from the nucleon in this work, Eq. (21). The masses for the nucleon, Ω and Λ+

c are listed in Tables III and
VI.

aµl amΛ amΣ amΞ am∆ amΣ∗ amΞ∗

β = 1.90

0.0030 0.5972(46) 0.6420(60) 0.6906(50) 0.7090(100) 0.7481(95) 0.8046(61)

0.0040 0.5978(46) 0.6335(52) 0.6888(38) 0.6924(145) 0.7339(89) 0.7918(73)

0.0050 0.6051(60) 0.6552(52) 0.6949(69) 0.7097(101) 0.7600(91) 0.8044(144)

β = 1.95

0.0025 0.5217(59) 0.5586(66) 0.6077(38) 0.6340(100) 0.6677(89) 0.7093(87)

0.0035 0.5341(50) 0.5633(50) 0.6090(48) 0.6329(102) 0.6614(92) 0.6987(84)

0.0055 0.5529(43) 0.5800(60) 0.6126(50) 0.6525(88) 0.6841(77) 0.7189(68)

0.0075 0.5640(52) 0.5937(39) 0.6125(72) 0.6691(74) 0.6862(80) 0.7199(62)

β = 2.10

0.0015 0.3904(37) 0.4167(37) 0.4537(28) 0.4614(71) 0.5000(48) 0.5359(39)

0.0020 0.4021(43) 0.4250(49) 0.4540(35) 0.4749(98) 0.5052(63) 0.5308(53)

0.0030 0.4041(40) 0.4253(46) 0.4543(32) 0.4749(81) 0.5024(71) 0.5330(58)

TABLE XV. Octet and decuplet baryon masses in lattice units with the associated statistical error.

aµl mΛ mΣ mΞ m∆ mΣ∗ mΞ∗

β = 1.90

0.0030 1.2329(394) 1.3103(435) 1.3331(356) 1.4909(834) 1.5669(678) 1.6139(539)

0.0040 1.2343(394) 1.2924(431) 1.3294(349) 1.4560(863) 1.5372(674) 1.5869(545)

0.0050 1.2496(402) 1.3381(431) 1.3422(369) 1.4923(835) 1.5920(675) 1.6133(604)

β = 1.95

0.0025 1.2314(364) 1.3067(399) 1.3632(312) 1.5178(749) 1.5938(608) 1.6379(504)

0.0035 1.2610(356) 1.3180(385) 1.3662(320) 1.5152(750) 1.5787(610) 1.6126(502)

0.0055 1.3063(351) 1.3580(393) 1.3748(322) 1.5621(740) 1.6332(598) 1.6609(487)

0.0075 1.3328(358) 1.3909(378) 1.3746(345) 1.6019(731) 1.6382(600) 1.6633(483)

β = 2.10

0.0015 1.1798(287) 1.2522(308) 1.3272(250) 1.4074(598) 1.5222(470) 1.5973(380)

0.0020 1.2157(294) 1.2775(324) 1.3282(258) 1.4484(632) 1.5380(486) 1.5819(395)

0.0030 1.2216(291) 1.2783(320) 1.3290(253) 1.4484(609) 1.5294(497) 1.5885(402)

TABLE XVI. Octet and decuplet baryon masses in physical units with the associated statistical error.
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aµl amΣc amΞc amΞ′c amΩ0
c

amΞcc am
Ω+
cc

β = 1.90

0.0030 1.2543(72) 1.2611(46) 1.3028(53) 1.3575(46) 1.8187(48) 1.8704(38)

0.0040 1.2448(53) 1.2580(62) 1.2983(50) 1.3506(37) 1.8166(42) 1.8694(33)

0.0050 1.2696(55) 1.2599(61) 1.3185(49) 1.3655(47) 1.8303(44) 1.8781(37)

β = 1.95

0.0025 1.0896(55) 1.0900(43) 1.1388(42) 1.1764(41) 1.5684(34) 1.6099(29)

0.0035 1.0927(49) 1.0920(41) 1.1322(43) 1.1726(39) 1.5684(32) 1.6077(27)

0.0055 1.1091(51) 1.1027(37) 1.1440(44) 1.1788(39) 1.5782(36) 1.6138(33)

0.0075 1.1112(43) 1.1024(36) 1.1412(37) 1.1691(37) 1.5739(34) 1.6065(34)

β = 2.10

0.0015 0.8348(35) 0.8362(25) 0.8682(27) 0.9010(23) 1.2136(25) 1.2449(19)

0.0020 0.8384(64) 0.8419(33) 0.8735(35) 0.9000(30) 1.2078(31) 1.2414(21)

0.0030 0.8376(49) 0.8410(26) 0.8741(33) 0.9028(28) 1.2139(25) 1.2438(19)

TABLE XVII. Charm spin-1/2 baryon masses in lattice units with the associated statistical error.

aµl mΣc mΞc mΞ′c mΩ0
c

mΞcc m
Ω+
cc

β = 1.90

0.0030 2.5020(560) 2.4921(374) 2.5890(412) 2.6663(350) 3.5829(344) 3.6631(268)

0.0040 2.4820(551) 2.4856(384) 2.5796(410) 2.6518(345) 3.5784(340) 3.6611(265)

0.0050 2.5342(552) 2.4896(384) 2.6221(410) 2.6831(350) 3.6072(341) 3.6794(267)

β = 1.95

0.0025 2.5042(492) 2.4865(334) 2.6102(363) 2.6713(311) 3.5687(300) 3.6461(235)

0.0035 2.5114(489) 2.4912(332) 2.5946(364) 2.6623(310) 3.5687(299) 3.6408(234)

0.0055 2.5509(490) 2.5168(330) 2.6228(364) 2.6771(310) 3.5921(301) 3.6554(238)

0.0075 2.5558(485) 2.5161(329) 2.6160(360) 2.6538(309) 3.5818(300) 3.6378(239)

β = 2.10

0.0015 2.4816(387) 2.4746(261) 2.5766(286) 2.6585(242) 3.5867(239) 3.6686(186)

0.0020 2.4927(421) 2.4921(269) 2.5927(294) 2.6557(249) 3.5690(245) 3.6581(188)

0.0030 2.4902(401) 2.4891(262) 2.5944(292) 2.6643(247) 3.5877(239) 3.6652(186)

TABLE XVIII. Charm spin-1/2 baryon masses in physical units with the associated statistical error.
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aµl amΣ∗c amΞ∗c amΩ∗0c
amΞ∗cc am

Ω∗+cc
am

Ω++
ccc

β = 1.90

0.0030 1.2828(103) 1.3333(78) 1.3780(58) 1.8464(71) 1.8941(47) 2.3788(37)

0.0040 1.2812(76) 1.3337(57) 1.3846(48) 1.8407(100) 1.9034(38) 2.3845(48)

0.0050 1.3057(65) 1.3543(57) 1.3953(51) 1.8665(52) 1.9092(41) 2.3857(42)

β = 1.95

0.0025 1.1296(90) 1.1757(52) 1.2049(46) 1.6084(54) 1.6400(41) 2.0486(29)

0.0035 1.1295(53) 1.1588(63) 1.1999(46) 1.6037(45) 1.6394(35) 2.0537(27)

0.0055 1.1435(63) 1.1767(54) 1.2028(51) 1.6153(42) 1.6451(36) 2.0578(29)

0.0075 1.1471(54) 1.1608(64) 1.2016(43) 1.6107(39) 1.6386(38) 2.0570(28)

β = 2.10

0.0015 0.8591(41) 0.8951(32) 0.9239(28) 1.2380(26) 1.2669(21) 1.5958(20)

0.0020 0.8612(73) 0.8928(53) 0.9277(30) 1.2377(40) 1.2702(26) 1.5928(20)

0.0030 0.8596(55) 0.8909(44) 0.9296(29) 1.2384(33) 1.2665(26) 1.5946(16)

TABLE XIX. Charm spin-3/2 baryon masses in lattice units with the associated statistical error.

aµl mΣ∗c mΞ∗c mΩ∗0c
mΞ∗cc m

Ω∗+cc
m

Ω++
ccc

β = 1.90

0.0030 2.5529(709) 2.6263(552) 2.7461(402) 3.6555(497) 3.7362(335) 4.7432(263)

0.0040 2.5496(694) 2.6271(541) 2.7599(396) 3.6435(518) 3.7556(330) 4.7552(270)

0.0050 2.6012(689) 2.6704(541) 2.7824(397) 3.6978(486) 3.7680(332) 4.7576(266)

β = 1.95

0.0025 2.5928(631) 2.6778(479) 2.7677(354) 3.6756(436) 3.7361(298) 4.7049(231)

0.0035 2.5927(607) 2.6373(487) 2.7557(353) 3.6642(430) 3.7347(293) 4.7171(229)

0.0055 2.6261(612) 2.6803(481) 2.7626(357) 3.6921(428) 3.7481(294) 4.7268(231)

0.0075 2.6349(607) 2.6422(488) 2.7600(351) 3.6810(427) 3.7327(295) 4.7250(230)

β = 2.10

0.0015 2.5515(482) 2.6459(377) 2.7459(277) 3.6679(336) 3.7469(230) 4.7443(183)

0.0020 2.5581(517) 2.6388(398) 2.7576(279) 3.6669(349) 3.7568(234) 4.7350(184)

0.0030 2.5530(495) 2.6329(387) 2.7632(278) 3.6694(342) 3.7457(234) 4.7406(180)

TABLE XX. Charm spin-3/2 baryon masses in physical units with the associated statistical error.
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C. APPENDIX: HBχPT NEXT-TO-LEADING ORDER EXPRESSIONS FOR THE OCTET AND
DECUPLET BARYONS

For the octet baryons the NLO expressions read

mNLO
Λ (mπ) = m

(0)
Λ − 4c

(1)
Λ m2

π −
g2

ΛΣ

(4πfπ)2
F(mπ,∆ΛΣ, λ)− 4g2

ΛΣ∗

(4πfπ)2
F(mπ,∆ΛΣ∗ , λ)

mNLO
Σ (mπ) = m

(0)
Σ − 4c

(1)
Σ m2

π −
2g2

ΣΣ

16πf2
π

m3
π −

g2
ΛΣ

3(4πfπ)2
F(mπ,−∆ΛΣ, λ)− 4g2

Σ∗Σ

3(4πfπ)2
F(mπ,∆ΣΣ∗ , λ)

mNLO
Ξ (mπ) = m

(0)
Ξ − 4c

(1)
Ξ m2

π −
3g2

ΞΞ

16πf2
π

m3
π −

2g2
Ξ∗Ξ

(4πfπ)2
F(mπ,∆ΞΞ∗ , λ) (30)

and for the decuplet baryons

mNLO
∆ (mπ) = m

(0)
∆ − 4c

(1)
∆ m2

π −
25

27

g2
∆∆

16πf2
π

m3
π −

2g2
∆N

3(4πfπ)2
F(mπ,−∆N∆, λ)

mNLO
Σ∗ (mπ) = m

(0)
Σ∗ − 4c

(1)
Σ∗m

2
π −

10

9

g2
Σ∗Σ∗

16πf2
π

m3
π −

2

3(4πfπ)2

[
g2

Σ∗ΣF(mπ,−∆ΣΣ∗ , λ) + g2
ΛΣ∗F(mπ,−∆ΛΣ∗ , λ)

]
mNLO

Ξ∗ (mπ) = m
(0)
Ξ∗ − 4c

(1)
Ξ∗m

2
π −

5

3

g2
Ξ∗Ξ∗

16πf2
π

m3
π −

g2
Ξ∗Ξ

(4πfπ)2
F(mπ,−∆ΞΞ∗ , λ)

mNLO
Ω (mπ) = m

(0)
Ω − 4c

(1)
Ω m2

π . (31)

The non-analytic function F(m,∆, λ) is of the form [58]

F(m,∆, λ) = (m2 −∆2)
√

∆2 −m2 + iε log

(
∆−

√
∆2 −m2 + iε

∆ +
√

∆2 −m2 + iε

)
− 3

2
∆ m2 log

(
m2

λ2

)
−∆3 log

(
4∆2

m2

)
(32)

depending on the threshold parameter ∆XY = m
(0)
Y −m

(0)
X and on the scale λ of chiral perturbation theory, fixed to

λ = 1 GeV. For ∆ > 0 the real part of the function F(m,∆, λ) has the property

F(m,−∆, λ) =

{
−F(m,∆, λ) m < ∆

−F(m,∆, λ) + 2π(m2 −∆2)3/2 m > ∆
(33)

which corrects a typo in the sign of the second term in Ref. [73].
A noticeable result of this expansion is the absence of a cubic term in the expressions for the Λ and Ω baryons given

in Eqns. (30) and (31). In the case of Ω it follows from the absence of light valence quarks. However, the absence of
a cubic term in the NLO expression for Λ, although a consequence of χPT, is nevertheless a questionable result, since
it relies on the assumption that mπ �MΣ −MΛ. In the limit ∆→ 0 the non-analytic function of Eq. (32) becomes

F(mπ,∆→ 0, λ) = πm3
π , (34)

which generates a cubic term for the Λ and slightly modifies the existing one for Σ. The corresponding expressions
are given by

mΛ(mπ) = m
(0)
Λ − 4c

(1)
Λ m2

π −
g2

ΛΣ

16πf2
π

m3
π

mΣ(mπ) = m
(0)
Σ − 4c

(1)
Σ m2

π −
2g2

ΣΣ + g2
ΛΣ/3

16πf2
π

m3
π (35)
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