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Abstract

The single-logarithmic enhancement of the physical kefmeHiggs production by gluon-gluon
fusion in the heavy top-quark limit is employed to derive leeding so far unknown contributions,
In57473(1—z), to the NPLO coefficient function in the threshold expansion. Alsongsknowledge
from Higgs-exchange DIS to estimate the remaining termsaoishing forz = mﬁ /§— 1, these
results are combined with the recently completed-sefttual contributions to provide an uncer-
tainty band for the complete 3O correction. For the 2008 MSTW parton distributions these
N3LO contributions increase the cross section at 14 Te\(14+ 2)% and (34 2.5)% for the
standard choicgsgy = my andpg = my, /2 of the renormalization scale. The remaining uncertainty
arising from the hard-scattering cross sections can betijeanas no more than 5%, which is
smaller than that due to the strong coupling and the partsmilolitions.
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1 Introduction

After the recent discovery of a new boson by the ATLAS and Cii&borations([1,2] at the Large
Hadron Collider (LHC), precise theoretical predictions aeeded in order to determine whether
or not this particle is indeed, as it appears so [far|[3, 4],Stendard Model (SM) Higgs boson.
In particular, to study its properties and to be able to dggtish between SM and Beyond-the-SM
scenarios, it is important to provide precision calculasiof the Higgs production rate.

The main production mechanism for the SM Higgs boson at th€ lsthe gluon-gluon fusion
process. The radiative corrections in Quantum Chromodyes(@CD) for the corresponding in-
clusive cross section have been computed to next-to-oebeading order (NNLO) in the effective
theory [5£7] based on the limit of a large top-quark masss> my, and later fom,, < 2m in the
full theory [8+10]. The large size of the QCD correctionstas tand the previou$ [11-14] order,
mainly due to large contributions from tlze-+ 1 limit, wherez is the ratio of the Higgs mass,,
to the partonic center-of-mass energ$ squaredz = mﬁ /8§, together with the still sizeable scale
uncertainty have motivated systematic theory improvesieayond NNLO.

At the next-to-next-to-next-to-leading orderND), all plus-distribution contributions to the
partonic cross section in tHdS scheme[(1—2) *Ink(1—2)], with 0 < k < 5, i.e., the leading
contributions for Higgs boson production at threshold karewn in the large top-mass limit [15].
Recently also the corresponding terms proportionad(tb-z) have been computed [16] which
include the 3-loop virtual contributions. In MelliN-space, withN being the conjugate variable
of z the threshold logarithms appear a§hhwith 1 < k < 2n at then-th order, while the virtual
contributions lead to a constant M. Based on comparisons at the previous orders, the soft-
virtual (SV) approximation ifN-space (which can be supplemented by an all-order resurmmati
of threshold contributions up to next-to-next-to-nexteading logarithmic (RLL) accuracy[17])
has been shown to yield reliable predictions for the totajgdi production cross section, see,
e.g., Refs.[[15, 18-21]. Studies in the soft-collinearcffe theory (SCET) have reached similar
conclusions concerning the validity of an approximatiosdzhon threshold logarithms [22)23].

In this paper we present3NO and N*LO results beyond the SV approximation. For a scheme-
independent description of the hard scattering processamemploy physical evolution kernels
(also called physical anomalous dimensions) which argse Btandard QCD factorization once the
parton densities (PDFs) are eliminated from the evolutoumeg¢ion for the physical cross section.
Since the physical evolution kernels exhibit only a sinigigarithmic enhancement at largesee
Refs. [24] 25], we are able to establish constraints on teéfic@nt functions in thélS scheme.

In this manner we obtain at¥O the subleading logarithmic contributionéﬂ(ri—z) (orin Mellin
spaceN ~1InkN) for k = 5, 4, 3 to the gluon-gluon partonic cross section. In additiorthvifie
help of results for inclusive deep-inelastic scatterintS)by Higgs exchange which are known to
N3LO [25], we can also systematically estimate the size of ¢éeainingO(N 1) terms.

Based on the SV contributions together with the new subtepdouble logarithmically en-
hancedN~1InkN terms, we are then able to provide improved predictionstferet unknown full
N3LO corrections to the gluon-gluon coefficient function faclusive Higgs production. As an
additional uncertainty estimate we study the numericakiotpf the NLO corrections in the SV
approximation. Our rigorous analytical results 2 can be compared to previous phenomeno-
logically motivated approximations for the third-ordeoss section [26, 27].
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Beyond the(l—z)O terms in the expansion abont= 1, the gluon-gluon coefficient function
receives ‘flavour-singlet’ contributions which, unlike ©IS and semi-inclusive™ e~ annihilation
(SIA), cannot be analyzed (so far) in terms of physical kisrfi@r hadron-collider observables.
Hence an extension of the above results to all powe(4-ef) along the lines of Ref[[24] can be
performed only for the ‘non-singIeC'A‘ nf contributions. Yet the corresponding terms can, at least,
provide useful checks of future Feynman-diagram calcutati Finally we take the opportunity to
update the corresponding results for the dominant quatikpeark annihilation contribution to the
Drell-Yan (DY) process to the same accuracy aL® and N'LO.

2 Constraints from the physical evolution kernel

For my ~ 125 GeV [1[2] the higher-order corrections can be addressdhde large top-mass
approximation, in which the effective coupling of the Higggartons is given by the Lagrangian

1 2 a v
Lett = —EC )HGWG:;1 ) (2.1)
wherev ~ 246 GeV is the Higgs vacuum expectation value @ﬁpldenotes the gluon field strength
tensor. The matching coefficie@t u3) is fully known up to NLO [28+30]. Standard QCD factor-
ization, here as usual performed in t& scheme, allows to express the inclusive hadronic cross

section for Higgs boson production at a center-of-masgr&m = /S as

dx; dx, T
a(Smj) = / ~ fa/h (Xq, HE) fo/n, (X27U~F>/ d25<2—x—> X
1%2
X 0-O Cab(z7 GS(MR)7 mH/“I%, mlﬁ/p'lg) ) (22)

wheret = m3 /S, andye andpg are the mass-factorization and renormalization scalspegtively.
The PDFs of the colliding hadrons are denotedy(x, ué), the subscripta, bindicating the type
of massless parton. The varialzle mﬁ /$ is the partonic equivalent af with §= x;x,S being the
partonic center-of-mass energy squared. The complegxpansion of the effective Higgs-gluon
vertex is included iro,, viz

B C 2\2 . 2 2
5y = "6%@) with C(pd) = —“Sé? {1+11%:f> +. ) 2.3)

We expand the coefficient functiong, in powers of the strong coupling witl = as(p3) /(41),

Can(Z, As(HZ), M3 /1B, M3 /1E) = gasc;’Q(z, 3 /13, md /1) (2.4)
n=

At leading order (LO) we have;%) = dagOpgd(1—2); atn>1 the coefficient functionsgg in
Eq. (2.3) differ from the quantitie’,y, in Refs. [6,7] by a factor ot 1, cf. Eq. (4.3) of [7]. As men-
tioned above, the QCD corrections within the large top-ntiass are known up to NNLOI[[6=7],
while at N°LO only the soft and virtual (SV) contributions, i.e., theugldistributionsDy(z) =
[(1-2)~1In%(1—2)] ; and thed(1—2) terms in the gluon-gluon channel are available sdfaf [1F, 16
Very recently, also the leading double-logarithmic thadditontribution to the quark-gluon coef-

ficient functioncég) has been obtained as part of an all-order result [31].
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More information about large-contributions to the RLO coefficient functioncggg) and its
higher-order counterparts can be extracted from the palysiolution kernel. To that end, we con-
sider the caspr = g = My (the scale-dependent terms can be reconstructed by relativa-
group arguments) and define dimensionless partonic ‘streiétinctions’#ap

a(SMmf) = %aoffab. (2.5)

For the sub-dominar(11—z)0 terms we can restrict ourselves to the ‘non-singlet’ caserevonly
the coefficient functioimgg and the splitting functiofyg are taken into account; other contributions
are suppressed by two powers (df-z) relative to the Ieadin@l—z)‘1 terms. Exploiting the
evolution equations fans and the PDFs one arrives at the expression, cf. Ref. [24],

d d s _
dinng Fog = {Zng(as)-l-B(as) ng;sa) ® (Cgg(as)) l}®5fgg

= Kgg® Fgg = /Z al Ky ® Fog

- {2aspgg +[Z altt <2ng z Bk ) } ® Fog (2.6)

which defines the physical evolution kerrglq and its perturbative expansion. Heredenotes
the usual Mellin convolution, cf. EJ.(2.2), whifas) stands for the standard QCD beta function,
B(as) = —ByaZ—... with Bo=11/3Ca—2/3n;. Pg(é) are the(/ + 1)-loop gluon-gluon splitting
functions, defined analogously 1@(9 in the middle line of Eq.[{2]6). Up to NLO the expansion
coefficientscég) in the last line are given by [32]

- 4,

- - od,

- wp-xFod+ododd

= 4cly —acd) @ cly — 2 @ o) +4ckd @ iy @ ch — chy @iy @k ®cyy . (2.7)

The calculation of the physical kernel, given the fact thatintains several convolutions, is
best carried out itN-space. The MellilN-moments are defined as

-/ Nz(N Y1) f@) ) (2.8)

where the parts in curly brackets apply to plus-distringioA useful if approximate dictionary
between the logarithms irspace and\-space is
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with S, (N) =InN —1/(2N) +0(1/N?) andN = Ne¥, i.e., InN = InN + ye with ye ~ 0.577216.
HereM indicates that the right-hand-side is the Mellin transf@@8) of the previous expression.
The splitting functions, coefficients functions and themwgucts in Mellin space can be expressed
in terms of harmonic sum5[33]. These give rise to harmoniglpgarithms [34] inz-space from
which one can then extract the largend largeN expansions. All these manipulations were
carried out using the symbolic manipulation systearm [35-+37].

The crucial feature of the (factorization scheme indepet)dehysical evolution kernels to be
exploited here is the fact that they display only a singlgalithmic largez enhancement. This
behaviour is in striking contrast to that of tMS scheme coefficient functions, which do include
double-logarithmic contributions, i.e.,"tl—z) with k > n > 1 at N'LO, at all orders in the ex-
pansion around= 1. This behaviour of the physical evolution kernels has lmeserved at higher
orders in perturbative QCD for a variety of observables i 3emi-inclusiveet e~ annihilation
(SIA) and DY lepton-pair production [24, 25]. For DIS and St&an be derived from properties
of the unfactorized partonic cross sections in dimensimeglarization, see Refs, [38,/39].

Also the kerneKgqqin Eq. (2.6) is single-log enhanced as far as it is known sa.&ar to NNLO.
It is therefore plausible to conjecture this behaviour t@eders inas. In particular, requiring the
cancellation of the IR(1—2) and Irf(1—2) terms in the third line of Eq[{2.7), we can determine

the corresponding coefficients q(fé). Moreover, we observe that the leading laigdegarithms
of Kgq take a simple form for the sub-dominaxit ! contributions,

Kgg |, = — (BBoCa+32C3) INN + O(1),
Kég N T (16B3Ca + 112B0CZ) IN?N + O(InN)
Kga |, = — (32B3Ca+E BECE) In*N + O(In?N), (2.10)

where the first two lines follow from the NLO and NNLO coeffiotdunctions known from the re-
spective diagram calculations in Refs.|[11,12] and [5—THe Tast line is an obvious generalization
based on the results for DIS (where the leadBagzoefficients can be derived from the lange-
results in Ref.[[40] to all orders) and DY, where the coeffitseare the same except 165 — Cr,
see Eq. (6.17) of Ref,_[24]; the unknown coefficiéﬁt) can be estimated from Ed. (2]10) and its
completely known analogue in DIS as about 30060. This result provides the information about
the In®(1—z) term of the NLO coefficient function. Note that the splitting functiomskq. [Z.6)
do not contribute to Eq[{2.10) beyond NLO, as the diagonahtjties and:’q(g) and Pg(g) do not
show any logarithmic higher-order enhancement oNReandN 1 terms [41-44].

Egs. (2.6) -[(2.10) Withég)‘Nfl = 0(In*N) lead to the NLO and N'LO predictions

@ n _ O3 B 31a501 3,640 5 V44
Cyg (2) = cgg(z)‘ua(l_z) 512C;In>(1 z)+{172&A+ 3 CAQ}In (1-2)
1168 2512 1 64
+{( 3584ZZ>CA (— —aH) c20 —;CABO} 3(1—2)
+o In?(1- z)) (2.11)



4096 19712 3584
ng(z) = ng(z)) _TCAl 7(1—Z)+{ 3 CA 3 CAQ} |n6(1—2)

Dy,0(1-2)
19136 8 1024
L] ) CRO——— CABO} In®(1-2)

+ { — 2240+ 23552,)Cx — <
+0(In*(1-2)) (2.12)
at hg = g = My, Wherecgg)(z)m.é(l{) denotes the-space SV approximation at"NO. The
coefficients fom = 3 can be found in Egs. (17) — (22) of Réf.[15] and Eq. (10) of fE8] (where
the expansion is in powers ofs/Tt instead of ouras = as/(41)). The coefficients multiplying
leading and next-to-leading 1 —z) terms in Eq.[(Z111) and{2.12) agree with those for DY case
in Egs. (6.24) and (6.25) in Ref._[24] @ is replaced byCa in the latter results. For the third
logarithm this is, unsurprisingly, only true for tlﬁ% contribution. The leading ff'(l—z) terms in
Eq. (Z11) and(2.12) agree with the old conjecture of R&],[4e., the coefficients of F—1(1—2)
and?D,,_; are the same at'NLO up to a sign. On the other hand, the subleading terms irldEql
do not agree with the phenomenological ansatz employedfs R&/27].

Seven of the eight plus-distributions of thélN\D SV contributior‘cgg (2)|py 519 IN EQ. (2.12)

can be obtained by expanding and Mellin inverting the resfithe N°LO + NSLL soft-gluon
exponentiation. The coefficients @ for 2 < k < 7 can be found in Eq. (16) of Ref. [46] and that
of Dy in Eq. (13) of Ref.[[47]. The remainino andd(1—z) terms, on the other hand, require a
fourth-order calculation. Th@®g term can be predicted up to two unknown anomalous dimensions
at four loops which are usually denoted Ays andDg 4, see, e.g., Refs, [15,117], as

(4) - af 50096 1132841 8392600 1581760 3461120
), = Doa CA< o o+ =05+ s
6894080 372416 595616
(203 + (32171845 — ———(3(3—56217& {5+ 98304017)
191776 361369 228569 401920, , 492800
CAN 612— 613— G+ (203
81 81
729088 69248 4
I (5— 15 3+ 3040({3)
17920 290816 89344 2560, , 69376 32768
> of
+ CAN; ( a1 729 (2+ a1 {3+ 5 45— {203+ Zs)
108272 62752 34071 13312 512,
+C2Cen, ( - o 53— 25602 + Cala+ e 03+ 908813)
15008 2144 3584 512
+ CaCr nf2<_ 1 T —Zz —Zs— —2213) (2.13)

The derivation of the this result required the extensiorhef talculations of Ref[ [15] to thed
part of the exponentiation functiag, see also Refs, [18,49].
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The coefficieng 4 has been estimated by Padé approximantgas= (17.7,9.70, 3.49) - 108
forn; = 3, 4, 5 effectively massless flavours. A corresponding estin@t®f 4 is

Dga(n; =3) = 12:10°, Dga4(n; =4) = 9.3-10°, Dga(n; =5) = 6.8-10°, (2.14)

which is less reliable, as due fy1 = 0 only the two coefficients of Refs. [1I5,]118]49+51] are
available. Corresponding estimates for the quark quasfij 4 andDg 4 relevant to the Drell-Yan
process can be obtained by multiplying the above resulGhHa.

Using Egs.[(Z.B), our new resulf(Z2]111) together with theffaments of 0539)(2)@(,5(172) in
Refs. [1515] can be employed to rigorously extendkgpace NLO threshold expansion to

KaCod (N) ~ 1.152In°N +5.46171 PN + 23.8352 In*N -+ 44.9659 IrPN (2.15)

+85.6361 I’N + 60.7085 InN + 57.0781
+ N—1{3.456 IPN +19.7023 Ir'N -+ (61.7304+ .01156>)) In3N + O(InzN)}

with kg = 1/2000~ 1/(4m)3. Here we have inserted the QCD values of the group fadBars; 3
andCr = 4/3, used the physical value of = 5 light flavours at scales of orde?, and truncated
coefficients including the Riemargifunction and the Euler-Mascheroni constggt The factor
Ks, asK, in Eq. (2.16) below, approximately converts the coefficgentan expansion ias.

Note that theN —1 coefficients receive contributions from both the plus+iistions and the
Ink(l—z) terms of Eq.[(2.1]1), hence tlzespace andN-space SV approximations lead to different

predictions for cross sections. It is clear from Hq. (2.18tthe coefﬁcienE(Hs) is not a major
source of uncertainty; its contribution to the coefficiehNo * In3N is expected to be below 10%.

The N*LO result corresponding to EE.{2]15) reads, Wwith= 1/25000~~ 1/(4m)%,

KyChg (N) ~ 0.55296 IPN + 3.96654 I'N -+ 21.2587 IrPN + 62.2985 IrPN
+150141 In*N 4212443 In®N + (256.373+ 2K4Ag4) IN*N (2.16)
+ (1425484 K4 [4YeAgs — Dga]) INN + K, 0, 4
+N *1{2.21184 IPN + 19.6890 IrPN -+ (86.4493+ 552k, €\ ) In®N + 0(|n4N)} .

Here the coefficiend\ 4 is practically negligible, its contribution to thedN and InN coefficients
being of the order of 0.1%. The uncertainty[®f 4 in Eq. (2.14), conservatively set to 100%, is
an effect of order:20% for the I'N term. The constan contributiong, 4, i.e., the fourth-order
term of the prefactor of the soft-gluon exponential, seg,, &kefs. [17, 49] can be estimated by
three Padé approximants which yield a fairly wide spreadatdes suggesting, g, 4 = 65+ 65.
Alternative this quantity can be estimated via a calcuraiiowhich the constani contributions in
the integrals for the soft-gluon exponent are not discarldediing to much smaller coefficients of
the constaniN prefactors of the soft-gluon exponential at NNLO armtLR. This approach leads
to an estimate consistent which the one given above.

Exact SU(N) expressions corresponding to Eq. (2.15) anbhidenhanced parts of Eq.(Z]16)
can be found in the Appendix, together with third- and fototter predictions for the respective
highest-three logarithms beyond tfe-z)° terms given in Eqs[{2.11) and{212) above.
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3 Approximate N3LO phenomenology

Before we address the numerical impaciof! contributions to the coefficient function, we briefly
discuss the soft virtual (SV) approximation. lre-space this approximation can be defined by
keeping only thely(z) andd(1—2z) terms in the cross section, cf. EQ.(2.11). The soft coeffisie
in z-space are affected, however, by the artificial presencaobdfially-growing subleading terms,
originating in the mis-treatment of kinematic constraish as energy conservation, that spoil
the accuracy of the approximation for higher-order predins at limited logarithmic depth [52].

The natural choice for the soft-gluon enhanced contrilmstis MellinN-space, where instead
of plus-distributions irz the dominant threshold contributions are given by powets Nf and the
kinematic constraints are automatically imposed. ConsetijitheN-space SV approximation is
defined by keeping the terms in the coefficient function tleatok vanish folN — o, cf. Eq. [2.15).

The numerical contributions of theiiN terms, 0< k < 2n, of the Mellin-transformed coeffi-
cient functionscég) in Eq. (Z.3) to the cross sectidn (R.2) are illustrated up to°NO in Tableld,
where all numbers are normalized to the lowest-order rgsaftortional to[ fy/, @ fy/,](T) with
T=mj/S All these results have been calculated in the heavy-tofisifor m, = 125 GeV,
Ecm = VS = 14 TeV, the central gluon distributiofy,, of the 2008 NNLO MSTW set[83] and
the corresponding value of the strong coupliagym3) = 0.1118, ati: = pg = my,. Also shown
is the corresponding normalized expansion of the prefdatetion [C(u3 = m3)]? in Eq. (2.3).

All these contributions are positive, as are th&llanhanced terms at®NO, see Eq.[(2.16).
The same is true for the corresponding coefficient functionshe Drell-Yan process and semi-
inclusiveet e~ annihilation, cf. Table 1 and Eq. (37) of Ref.[54], while IS only theal IN*>"N
contributions are positive at < 4, see Table 1 of Refi [17]. In all these cases the complete SV
result is smoothly approached when thENnterms are included one by one. This is in contrast to
the z-space SV approximation which exhibits large cancellatibetween the) (z) contributions
as illustrated at RLO for DIS in Fig. 4 of Ref.[17] and for Higgs production in R¢16].

Furthermore the formally leading terms, i.e., those with lighest powers of IN, provide
numerically small contributions to the cross section; tmohant part of the threshold corrections
arises from the lowest-power logarithms and the constanige This is due to the pattern of
coefficients in, for example, Eq.(2]15), which is compaeaiit less pronounced than that in DIS
and SIA, and the low value affor the production of a 125 GeV Higgs-boson at the LHC, which
leads a low effective value & of Negs ~ 2 for the IKN contributions according to Table 1.

Another interesting feature shown in Table 1 is the ratheyelavalue of thed(1—z) term at
N3LO [16] which contributes, for the value afs given above, about three times as much as its
NNLO counterpart. It accounts for 63% of the constintontribution at this order, the rest of
which arises from the Mellin transform of thB, terms, such as the first line of EQ. (2.9) for 2.

We are now ready to analyze the effect of adding the subdamial contributions to the
SV terms. Before turning to §LO, we compare the resulting approximation to the exactiresu
NLO and NNLO in Fig[l. It is clear that including thé¢~! terms improves the approximation at
largeN. Interestingly, the exact result lies between the SV andSt¥ie- N—1 approximations at
N 2 2 at both NLO and NNLO. It is therefore not unreasonable tamssthat this behaviour also

holds at NLO; hence one can constraié%)(N) even in this region iMN.
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Figure 1: The exact results for thi-space gluon-gluon coefficient functions fa§ = p= = my at NLO
(top) and NNLO (bottom) in the heavy-top limit, together lwithe corresponding SV approximations
(dotted) and the SV terms plus theé~! contributions (dashed). The respective lower panels shew t
relative positions and widths of the error bands defined bgehwo approximations.
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LO NLO NNLO N3LO
constantf 100 774 322 8.04
(delta) (100) (35.1) (1.72) (5.07)
InN 14.8 12.0 5.14
In°N 7.16 7.56 4.04
In3N 1.07 1.09
In*N 0.18 0.27
In°N 0.025
In°N 0.002
SV 100 99.4 53.0 18.6
C?(m3) | 100 19.6 2.05 0.12

Table 1: The individual contributions of the [N terms in theN-space coefficient functionsjy > at

Hr = e = My to the Higgs production cross section foy, = 125 GeV,Ecy = 14 TeV, and the central
gluon density and five-flavouxs of Ref. [53]. All results are given as percentages of the L@tidloution.
Also shown, in the same manner, is the expansion of the peefamction[C(p3 = m3]?), calculated in the
on-shell scheme for the top mass witf = 3.00- 10* Ge\~.

This situation is, in fact, expected from related studieshef DY process[[24] and Higgs-
exchange DIS[25]. Itis particularly interesting to coreithe latter case as the coefficient func-
tions are completely known to3O. Thus, in order to estimate the size of the'! logarithms
not determined in EqL(2.15), we compare with [25] anubex] the gluon coefficient function
I (N) of Higgs-exchange DIS up t0(N-1) at both NNLO and RLO. We find

(2)

Cbis

3
CI(DI)S

‘ 0 In3N+5.732 IrfN + 8.244 InN — 3.275,
N-1InkN

‘N sy D IN°N +12.65 I*N 45256 I"°N +-92.01 I’ N 41813 InN — 24.30  (3.1)
—in

for Ca = 3,Cr = 4/3 andn; =5, where we have normalized the expressions such that tlie coe
cient of the leading logarithm is equal to 1. The analogoysessions for Higgs production are

c&%}‘N sy O INPN+2.9261P N 45.970 InN + 2,007,

—=In

3 3

a4y O IN°N+5701IN+ (17.86+0.0033% ) I N+ O(In?N) . (3.2)

Comparing Eqs[(311) and_(3.2) an interesting pattern eeserthe size of the coefficients of the
non-leading logarithms for Higgs production is always derahan that of their analogues for
Higgs-exchange DIS; the ratio is a factor of about 1/2 or (muess except for the N terms.
Thus we suggest as a conservative estimate of the conpiéteontribution

(3) estimate

Cog 0 In°N+5.701 ' N+ 189 In*°N +46 I’N + 18 INnN + 9, (3.3)

N-1InkN

where we have usdf) =300 as roughly indicated by the physical-kernel coeffigémRef. [24].
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Figure 2: The Mellin-space RLO coefficient functioncyy (N) as approximated, faN > 2, by theN® SV
contributions in Eq.[{Z.15) (dotted), the SV contributiolupthe threeN ~1InkN terms (approximately)
known from physical kernels constraints (dash-dottedy, flaynthe SV terms plus the estimated complete
N~ contributions in Eq[{3]3) (dashed).

The above equation includes an estimate of the non-logaigtN—* contribution tocé?é)(N).
The ratio of the corresponding coefficient to thatNof:InN is moderate with 0.58 at NLO and
0.34 at NNLO, which may even indicate a trend towards lowéne&if the order is increased.
Hence a ratio of 0.5 at HLO, as used in Eq[(3.3), appears to be sufficiently conseevéiecall
that these terms contribute positively to the cross secsioffior larger coefficients we have larger
contributions from the estimated terms which lead to a wider, more conservative error band).

Summarizing these constraints, we show in Eig. 2 the coelfﬁdunctioncgsg)(N) in the SV
approximation, for the SV terms plus the 1InKN contributions withk > 3 as in Eq.[[2.15), and

for the SV terms plus the estimafe (3.3) of KII'! contributions. Varying the value cif<H3) by
+50% has a very small impact on the latter two results. Basatepattern observed at NLO and
NNLO, we expect that the exact result falls in the band diggdan the figure foN = 2.

The consistency of the bands in Fig. 1 with the exact restili$ 22 does not guarantee the
same for the hadronic cross sections at high collider eegEgi,. Hence we show in Fid.] 3 the
NLO and NNLO gluon-gluon contributions to the cross sec{dg) for a wide range d&.,,. Here
and below we have used the exact top-quark mass dependdr@ératead of the constamy, in
Eq. (2.3) but for now, as in Table 1, the NNLO MSTW [53] part@h and itsus value irrespective
of the order of the calculation. Also displayed in the figure tine results for the corresponding
‘K-factors’ at NLO and NNLOKyk o = Onko/Onk-1.0, Where we show the rather small (but
not negligible) negative effect of the quark-gluon and gt@nti) quark contributions as well.

We observe that the exact results, for both gluon-gluorofuand all channels, are consistent
with the band defined by the SV and S\N 1 approximations folEcy, < 20 TeV at NLO (the
deviation from it remains small even at higher energies)atrall energies considered at NNLO,
where the approximations are applicable down to somewhagdrlgalues olN as shown in Figl1.
The effect of the non-SV gluon-gluon terms is largely congaged by the other channels at NNLO.
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K-factors, including the impact of the other partonic sulbpsses (dash-dotted). All curves have been
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In view of these results, we can reliably employ our appr@tions ofc(g%)(N) to predict the
size of the NLO corrections folEcy, < 20 TeV, as shown in Fi] 4. Here all partonic channels are
included up to NNLO, while at RLO we consider only the gluon-gluon process. TH:.® scale
dependence afs [55,56] has been used withy(M2) = 0.1165 in the latter case with, since there
are no PDF parametrizations at this order yet, the NNLO PDIRed [53] at the scalmﬁ.

Under these conditions, the’NO cross sections are largerigt = my, that their NNLO coun-
terparts by 113%+1.9% atEcym =7 TeV and 97 %+ 1.7% atEcym = 20 TeV. Atpg =my/2,
which is closer to the point of minimal sensitivity and prdes a scale choice that closely re-
produces the effect of threshold resummation [19], theembions are substantially smaller with
4.1%+2.9% and 27 %+ 2.5%, respectively, at 7 TeV and 20 TeV. Hence the size and prese
uncertainty of the RLO corrections is only weakly dependent of the collider gyen this range,
the latter amounting to about 2-3% at these natural valugg.of

Fig.[8 displays the dependence of the total cross sectiom@®menormalization and factor-
ization scalesiz andp for the successive perturbative orders, now consisteattyutated using
(where possible) the corresponding values and evolutiar ahd the PDFs, at 14 TeV. As shown
in the upper plot, the variation witly- for fixed i is small already at LO, despite the PDFs chang-
ing considerably over the wide range of scales used in ths.plthe dependence qr is, in fact,
larger at NLO than at NNLO:; this is due to the (presently unavoidable) osthe NNLO gluon
distributions also at this order and the omission of the knggmon and quark-(anti) quark channels.

12



60r
e _
of _:

5 [T :
2 30 __
5 f :
20F ]

[ —— Lo ]

10f ——=- NLO  ------ N3LO SV _:
fm NNLO — — N3LO SV4N -1 _

O 1 1 1 | | I I
Y6 4 13 12 1 2 3

HME/My

o[pb]

----- NNLO — — N°LO sv+N !
10I 1 1 1 1 1 1
/6 14 13 1/2 1 2 3
MR/ My
60f >
50f
2
S
30}
20}
----- NNLO — — N°LO Ssv+N !
10I 1 1 1 1 1 1
/6 14 13 1/2 1 2 3
H/my

Figure 5:The dependence of the Higgs production cross section oradterization scal@e for pz = my,
(top), the renormalization scajg, for y- = my (middle), and onu = p = g (bottom) atEc, = 14 TeV.
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No such caveats apply to the dependenceyofor fixed p- which at NPLO requires ‘only’
the four-loop beta functiori [55, 56] but not the so far unkndeaurth-order splitting functions.
Using the interval @5my, < pg < 2my, the cross section ranges from 32 to 56 pb at NLO, from
42.5 to 57 pb at NNLO, and from 49.5 to 54.5 pb for the centerwfN?LO uncertainty band.
The respective lower numbers change to 38, 47.5 and 52.5phdre conventional variation by a
factor of 2 is used about the apparently preferred stglg2. These results indicate an uncertainty
due to the truncation of the perturbation series #t® of slightly less thant 5 %.

Finally, in the bottom plot in Fid.]54- andpy are varied together relative . The resulting
scale dependence of the cross sections at LO, NLO and NNLinigsto, but slightly smaller
than, those just discussed. The further improvement®aCNcan not be trusted quantitatively,
as the falling trend towards large scales withis combined with the partly spurious (see above)
increase withu: shown in the upper plot. Hence it is best, at least for the tieiag, to use the
results for a fixequ- for a conservative error estimate.

While often unavoidable, error estimates using scale trana are, of course, not particularly
reliable; they summarize rather what is known than what kélladded by yet unknown higher
orders, and (width of) the scale range considered is sonteavhdrary. A useful alternative is
to estimate, where possible, the size to the next order ipénirbative expansion at a standard
scale. In the case at hand this is possible, since the size @bmplete SV contribution atNO
has been determined in terms of two parameters that canibeatst, see EqL(Z.16). In line with
the discussion at the end of Section 2, we Dg@ = 0 andk, g, , = 130 for a ‘large’ estimate of

the N*LO gluon-gluon coefficient function, arnd, Dy 4 = 55, i.e., twice the Padé approximant in
Eq. (2.14) andy, 4, = O for a ‘'small’ estimate (recall that, = 1/25000 effectively converts the
fourth-order quantities to an expansioruoig).

In principle, the NLO cross section in the SV limit also involves thé contribution to the con-
stantC(uF%) in Eq. (2.3) which, in fact, is known except for the-dependent part of the five-loop
beta-function of QCD [29, 30]. However, as obvious from &t kow of Tablél, this contribution
can be safely neglected in the present context.

The resulting estimates for the!NO correction are shown in Fil] 6 in the same manner as the
NS3LO contributions in Figl4. Also here the relative size to tieerections depends weakly on the
colliders energy between 7 TeV and 20 TeV, with aba0t%8 to 25% atpg = m, and—0.4% to
—0.5% atpy = my, /2. At Ecm = 14 TeV the MLO SV terms change the respectivéllD cross
sections by about 1.5 pb and -0.5 pb. Even if these results twezonsiderably underestimate the
true N*LO correction, the latter would still amount to less than 5%.

In view of these and the above results, a combined pertarmatries uncertainty of about
4+ 5% can be assigned to our preseAL® cross section, which takes into account the approximate
character oté%)(N), the omission of the RLO quark-gluon and quark-(anti)quark contributions
and the truncation of the expansion at this point. Calaodgdill higher-order contributions in the
heavy-top approximation but normalizing with the full losteorder result, this leads to a total
cross section of 58+ 2.7 pb at 14 TeV for the NNLO PDFs of Ref. [63] — which should under
or overestimate the correspondingllD gluon-gluon luminosity by less than 1% — atmg(Mzz) =
0.1165, where the central value refers the chqige- m, /2 andy = my. As all our results, the

above cross section does include neither electroweakatimmne nor bottom-mass effects.
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Our present result for the O corrections in the SV approximation is larger, by about a
factor of two atuy = my, than that given ten years ago in Réf.J[15]. This is due to euemtly
calculated coefficient a¥(1—z) [16], which turns out to be almost twice as large as antieigéor
the uncertainty estimate in Ref. [15], and the differentitjparameters, most notably a larger value
of as(M2). Our results including thid ~InkN term in Eq. [3:B) can be compared to Refs![26,27],
where an approximate 3O prediction has been constructed, based on the large aatl-Nm
behavior of the partonic cross section (for which the lalti@s a small effect at LHC energies).
As mentioned above, theM ~1In“N terms due not agree with our result except for the obvious
coefficient ofN~1In°N. Nevertheless, the central prediction of Refs] [26, 27}fier N°LO cross
section is rather comparable to our result.

Finally, with the perturbative QCD corrections to the casdfint function of the dominant hard
scattering process well under control, the largest remginincertainties in predictions of the
physical cross section originate from the input paramefmrsis and the PDFs, cf. Eq[(2.2).
For instance, use of the ABM12 value @f and PDFs[[57], which were tuned to LHC data, leads
to central values for the cross section which are signifigdatver, by some 11-14% (depending
on the collider energy), than those reported, e.g., in Takdad Fig[5, see Ref. [67]. This is
due to a smaller value afs(M2) and a smaller gluon distribution in the relevartange for the
ABM12 parametrization as compared to MSTW[53]; the origfrtteese differences has been
understood [58, 59]. Very recently, also the NNPDF collaltion has reported new and slightly
lower values of the Higgs cross section for the NNPDF 3.0questt [60] also tuned to LHC data.
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4 Summary and outlook

For almost ten years rigorous results for the total Higgsdpction cross section in the heavy top-
quark limit have been confined to the exact NNLO coefficienttions [5£7] plus the RLL soft-
gluon resummation [15,50,51] which fixes the highest sigshold logarithms at all higher orders.
Earlier this year an RLO diagram calculation has been completed in the-softtual limit [L6],
adding the coefficient a(1—2) to those of thé(1—2) *Ink (1—2)] . terms with 0< k < 5.

Progress has also been made in the past years on resummidgrsuiant largezlogarithms,
(1—2)2In*(1—2) with a> 0, via physical evolution kernels[24,25] or the structufamfactorized
cross sections in dimensional regularization [38, 39]j&ter has been used recently to derive the
leading largez logs for the quark-gluon contribution to Higgs productioratl orders[[31].

Here we have considered the dominant gluon-gluon channkeéstended the calculations of
Ref. [24] to Higgs-boson production. Based on the resulRaf. [5£7] we have thus derived the
leading sub-SV contributions, 'fml—z) with k=5, 4, 3, the first two completely (unsurprisingly
verifying the conjecture of Ref_[45] for the leading loghm) and the third up to a constant of
minor numerical relevance. The corresponding resulta fed can only be derived for the noGe
terms at this point, consequently only the coefficient ofldaeling logarithms is complete. These
results, included in the Appendix together with their fbuorder counterparts, can provide a non-
trivial check on a future complete3NO calculation.

Switching to Mellin moments for phenomenological consadiens, a comparison of the pat-
tern of the coefficients at NLO, NNLO and®NO with those for Higgs-exchange DIS, where the
coefficient function is fully known to RLO [25], allows to give well-motivated estimates for the
remainingN ~2In% 20N third-order contributions ta{y (N). It turns out that both the correspond-
ing coefficient functions &l = 2 as well as the NLO and NNLO contributions to the cross sastio
for LHC energies are contained in a band spanned by the risp&y and SV-O(N~1) approx-
imations. Assuming the same situation at the third orderhesxe been able to improve upon
previous estimates [15,26] of the size and remaining uaiceytof the NLO correction.

We have studied the dependence of these approxim#t® Mesults on the renormalization
and factorization scales, as well as the size of thieQNcorrections in the SV approximation. We
conclude that the remaining perturbation-series unggptaimounts to no more than5%, which
includes the effects of approximate charactecé@f(N), the omission of the RLO quark-gluon
and quark-(anti)quark contributions and the truncationhef series. Using the central NNLO
PDFs of Ref.[[58] af- = m,, and the NLO strong coupling withos(M2) = 0.1165 leads to an
increase by10+2)% atpgz = my and(3+2.5)% atpgy = my /2, which appears to be the preferred
central scale, over the corresponding NNLO cross sectibasallider energy of 14 TeV.

The perturbative expansion of the hard scattering crossoseis, therefore, now quite well
under control, rendering the uncertainties of the PDFsaan at least as important source of
uncertainties for LHC predictions. Given the progress anphbrturbative QCD corrections re-
ported in Ref.[[16] and here, together with new global fits DB to LHC data, it appears that the
cross section values [61] recommended for use in the ongoidgupcoming ATLAS and CMS
Higgs analyses require revision, for Run2 of the LHC, toude the latest theory developments
and improvements on the evaluation of the parton distidmstend the value afs.
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A Large-N expansions at NLO and N4LO

Here we present the general expressions correspondingstdZEg5) and(2.16). For compactness
the results are written in terms offh= In N+ vye. TheN©? coefficients at RLO read

Ct(ag) InoN = 2—2,6cA7
cg i CR :%87“)4‘38412} 2§$4CA f+g7CAnf ;
o e Ca _6;—2164— 448134'7—0412] —Ciny [14:36124 1—2852} 32CACan+68A;_OC n?,
o2 — _12:576 1500812_ @13 @Zz] _cn [3386188 @Zz @ZS}
— CACeNy [252— 192z3] + %) Can? ,
o — [59742(;58 64784Z2_ 24656ZS 176Z 2336Z2 _— 415}
“Cn, {_ 1275;2952_ 9;24Z 1808Z3 32 Zz] C.Cny {3;1;2_ 608, 64 Zz}
o258
o - 3{21851131+ 18§f8OZ2_ 132?28Z3+ 111%6592@_ 2024Z2 - @15
g ]+ o [ e B, b
+CAng P%— %116%# %Zs— %Z 78412(3 @Zs]
+ CaCr 1y {— 6?191— 320452 1184134— 17612 + 38423+ 16015}
+Céng [688+ S s 320@] +Cen? [%(152— - %13— — zz} : (A1)

Except for the IAN part, these results have been presented before in a diffevéation, e.g., in
Appendix E of Ref.[[18]. Our new ~! terms read, with one unknown coefﬁciéﬁ) of Eq. (Z.10)

& — 256C3
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The corresponding NLO results are given by

Cég) IneN - TCA )
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with the yet unknown fourth-order quantitiég 4 andDg 4, and
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The correspondingd® contributions for the DY process can now be written down atghme
accuracy due to the determination of the coefficierd(df-z) at N°LO in Refs. [47/48]. The DY
counterparts of Eqd. (A.2) and (A.4) have been determin&kin[24].

B z-space results beyond (1—2¥or large z

For non-singlet quantities such as the dominant quarlgqaatk annihilation contribution to the
total cross section for Drell-Yan lepton-pair productipm/pp — | 71~ + X, the physical kernel is
single-log enhanced at all orders in the expansion abetit [24]. This is also true for th@Ak nf
contributions to Higgs production via gluon-gluon fusiortihe heavy-top limit, viz

Kdg (2) = In(1—2) pgg(2) [~16CaBo— 32CZHo] + O(In%(1-2)) |,
Kég'(2) = In?(1—2) pgg(2) [ 32CABE + 112CE BoHo+ 128C3Ho] + O(In(1-2))
Kg(g)(z) = In3(1-2) pgy(2) [_64CAB(:)3 - 5&3) CABGHo - H&S) CABoHoo — Eés) CaHoo0
+ 0(In?(1-2)) (B.1)
at iy = my, with Ho = Inz, Hoo = 1/2 In?z, Hoo0 = 1/6 In3z[34] and

Poo(2) = (1-2); ' —2+z2 1z 22,
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The first two lines of Eq[(B]1) are a direct consequence o§ H&fl[ 12] and[[5=7]; their numerical
coefficients are the same as for the Drell-Yan case in Eq7)®ERef. [24], which is based on the
results of Refs[[5,62], up to a factor of two due to the défernormalizations ofgg here andygq

in Ref. [24]. The NLO generalization based on the results for DIS, where theesponding
coefficient functions are known [25,163,64], involves twegently unknown parameters of the
third-order coefficient functiorf,,(f) already encountered above arnﬁ) relevant af1—2)*=*, and

one unknown coefficient of the four-loop splitting functiﬁg@ which is not relevant here.
Eq. (B.1) together with Eqd.(2.6) arid (2.7) above yieldgthe= pz = my, results

€0 (|n5(1—z) 8C2 - In%(1-2)10/3C20 + In3(1-2) 1/3CA[35) Pug(2)
+n%(1-2)C3 { — 27HoPyg(2) — 32Ho (1+2) +59(1— 2) — 187/3 (2‘1—22)}
+ |n3(1—z>c§{ [16/3— 567, + (170/3+ r](H3)/96) HQO} Pug(2)
+ [4 Hoo — 8ﬁ_170] Pag(—2) — (119—407/32 1 — 2052+ 605/37) Hg
+(76+1402) Hoo — 128(1+2) Hy o — 721/3+ 2875/122+ 2314/9 (z‘l—zz)}
+In3(1-2) cﬁa{ (20/3(1+ Ho) +£2)/192 rb) Pag(2) +10(1+2) Ho — 67/3
+271122+193/9 (271~ 7))} + 0(In%(1-2)) (8.2)
and

4-%cid (2)

- <In7(1—z) 16/3C4 —In®(1-2)14/3C30+In5(1-2) 4/3CAZB%) Pgg(2)

=
+In8(1-2)C? { — 77/3Ho pyg(2) — 32(1+2) Ho+ 166/3 (1—2) —550/9 (z 1 — z2)}
+1n%(1-2)CA { [8-9225+ (244/3-+{}/96) Hoo| pag(2
+ [4Ho0— 8H_1.0] pog(—2) — (1562202 1 — 3062+ 28672) Ho
+(104+ 2322) Ho o — 192(1+2) Hy o — 1265/3+ 5051/122+ 3818/9 (21— 72) }
+InS(1-2) cga{ [1o+ (91/6+ E(HS)/%) HO] Pag(2) + 70/3 (1+2) Ho — 265/6
+533/122+93/2(z 1~ 22)} + 0(In*(1-2)) . (B.3)
Here we have again suppressed the argurmehthe harmonic polylogarithms for which we use
a partly modified basis in terms of functions that have Taglgansions aboat= 1 with rational

coefficients|[24] including

Hio(2 = Hio@ +% = —Inzin(1-2)—Lix(2)+ 22,

H_10(z) = H-10(2)+02/2 = InzIn(1+2) +Lix(—-2)+{2/2.



Similar to their NNLO analogue§|[5-7] and the NNLO anéli coefficient function for Higgs-
exchange DIS[25], the complete coefficient functions @pomding to Eqs[(Bl2) and(B.3) will
include additionaCr-terns contributing fronf1—z)* beyond the leading logarithms.

The corresponding results for the non-singlet quark-aatiky annihilation contribution to the
Drell-Yan process are given By

473c8"™(2) = (In%(1-2)4C ~ In*(1-2)5/3C20+ In%(1-2) 1/6C¢ B pog(2)
+In%(1-2)Cd { —27/2Hopaq(2) +4(1+2) Ho—8(1— z)}
+In%(1-2) cé{ [—16— 2475 —3Ho— Hio+ (79/3+ ng?/lgz) HQO} Paa(2)
+(17/2—73/22)Ho— 27/2(1+ 2) Hoo+ 14(1+2) Hy 0+ 8 — 17/2z}
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+1n3(1-2)C2C, { (8/3— 405+ Hyo+2 Ho,o) Paq(2) + (1+2) (Ayo+2Ho)
+6—11/2z} + 0(In%(1-2)) (B.4)
and
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+(16—522) Ho— 21(1+2) Hoo+ 22(1+2) ﬁ170+16—33/22}
+1n°(1-2)C30{ [5+ (103/12+ £ /192) Ho| pug(2) —8/3(1+2) Ho+22/3(1-2)}
+In5(1-2)CG3C, { (4— 62+ H10+42 H070> Paq(2) + (14 2) (Hi.0+ 2Ho)
+6—11/2z} + 0(In*(1-2)) (B.5)

with
Pqa(2) = 2(1-2); ' ~1-z.

The In(1—2) term in Eq. [B:%) and the f{(1—2) contribution in Eq.[(B.b) include the unknown
third-order coefficientig)( andng)( which we definitely expect to be equal to their counterparts
for Higgs-boson production in Eqs._(B.1) E(B.3). Hence atemsion of either Refs[ [5+7] or
Refs. [5/62] to NLO will fix also the third-highest power of Ifl—z) at N*LO and all higher

orders for both processes.

"The In*(1—2) and Ir°(1—2) contributions tocg\)(ns(z) have been presented before in Eq. (6.29) of Refl. [24]
where, unfortunately, all coefficients are too small by ade8&/4.
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