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ABSTRACT

Weak vector-boson W,Z scattering at high energy probes the Higgs sector
and is most sensitive to any new physics associated with electroweak sym-
metry breaking. We show that in the presence of the 125 GeV Higgs boson,
a conventional effective-theory analysis fails for this class of processes. We
propose to extrapolate the effective-theory ansatz by an extension of the
parameter-free K-matrix unitarization prescription, which we denote as di-
rect T -matrix unitarization. We generalize this prescription to arbitrary
non-perturbative models and describe the implementation, as an asymptoti-
cally consistent reference model matched to the low-energy effective theory.
We present exemplary numerical results for full six-fermion processes at the
LHC.

1kilian@physik.uni-siegen.de
2ohl@physik.uni-wuerzburg.de
3juergen.reuter@desy.de
4sekulla@physik.uni-siegen.de

ar
X

iv
:1

40
8.

62
07

v1
  [

he
p-

ph
] 

 2
6 

A
ug

 2
01

4



Contents

1 Introduction 2

2 Effective Theories for Electroweak Interactions 3
2.1 Effective Theory and Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Fields and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Breakdown of the EFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Unitarization Prescriptions 7
3.1 K-Matrix Ansatz, Cayley Transform and Stereographic Projection . . . . . . . . 7
3.2 Standard K-Matrix Unitarization . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Direct T -Matrix Unitarization I: Linear Projection . . . . . . . . . . . . . . . . . 10
3.4 Direct T -Matrix Unitarization II: Thales Projection . . . . . . . . . . . . . . . . 12
3.5 Alternative Unitarization Prescriptions . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Unitary Description of Electroweak Interactions 16
4.1 Unitarity for electroweak scattering amplitudes . . . . . . . . . . . . . . . . . . 16
4.2 Model and Calculation: Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Complete Electroweak Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Numerical Results: On-Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Numerical Results: Full Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Summary and Conclusion 26

A Notational Conventions 27

B Unitarization, K-Matrix, and All That: Proofs 28
B.1 Non-Hermitian K-Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
B.2 Properties of T -matrix unitarized (Linear Projection) operators . . . . . . . . . 29
B.3 Properties of T -matrix unitarized (Thales Projection) operators . . . . . . . . . 30

C Operator Bases and their Translation 30
C.1 Introduction to different sets of operator bases . . . . . . . . . . . . . . . . . . . 30
C.2 Translation between Nonlinear and Linear Matrix representation . . . . . . . . . 31

D Feynman Rules 31
D.1 Feynman Rules from New Physics Operators . . . . . . . . . . . . . . . . . . . . 31

D.1.1 LS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
D.1.2 LHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

D.2 Feynman Rules: Unitarization Corrections . . . . . . . . . . . . . . . . . . . . . 33

1



1 Introduction

After the discovery of a Higgs-like particle at the LHC [1,2], and without any signal of other
new particles, the focus of collider physics is shifting towards a detailed study of electroweak
symmetry breaking (EWSB). We are interested in the properties of the Higgs boson itself and
in its precise role in a fundamental theory [3,4,5]. Beyond that, the most fundamental process
of the electroweak interactions is the scattering of the electroweak gauge bosons [6]. It will
be one of the key physics processes at the high-luminosity LHC as well as any planned future
high-energy pp and e+e− machine.

The most striking effect of the Higgs boson is the strong suppression of electroweak vector-
boson scattering (VBS) at high center-of-mass (c.m.) energy [7]. Without the Higgs boson, VBS
scattering amplitudes V V → V V , where V = W± or Z, are dominated by scalar Goldstone-
boson scattering which relates to the scattering of longitudinally polarized W and Z particles.
Power counting predicts an s/v2 rise of these amplitudes (v = (

√
2GF )−1/2 = 246 GeV), such

that electroweak interactions should become strong in the TeV range. However, the Standard
Model (SM) representation of the Higgs sector replaces this by a consistently weakly interacting
model. The cancellation induced by Higgs exchange results in a residual Goldstone-scattering
amplitude that is asymptotically small, at tree level proportional to m2

H/v
2 = 0.25. This can

be interpreted as an effective suppression in the cross section which for a V V c.m. energy of√
s = 1.2 TeV amounts to a factor of m4

H/s
2 = 10−4.

At the LHC, VBS processes have become accessible to experiment [8,9]. The accuracy and
energy reach of these measurements will improve at the upgraded LHC and at future colliders,
including the planned ILC [10]. The SM with the observed light Higgs particle provides a very
specific prediction for all VBS processes, namely a scattering amplitude which is dominated by
the transversal gauge-boson components of the W and Z bosons. A significant excess in the
longitudinally polarized channel would clearly point to new interactions in the EWSB sector.

A phenomenological description of high-energy VBS processes should smoothly interpolate
between the low-energy behavior, which is determined by the SM and depends on a well-defined
set of perturbative parameters as corrections, and any possible high-energy asymptotics which
should be captured by a sufficiently generic class of models [11,12]. It is important to note that
in hadron collider observables, the separation of low- and high-energy scattering is not straight-
forward. For a meaningful comparison with data, the parameterized high-energy behavior has
to remain consistent with the universal principles of quantum physics. Systematically compar-
ing model predictions with data, the results will become a measure of confidence for the SM
case, or otherwise the numerical evaluation of any observed new-physics effects.

In this paper, we develop this program specifically for the scenario with a light Higgs boson
which is now being confirmed by the LHC analyses. This scenario deviates significantly from
the situation without light Higgs [13,14,15,16,17,18] where there is a steady transition from
low-energy weak interactions to strong interactions at high energies. We discuss the necessary
steps that allow us to parameterize high-energy asymptotics and the interpolation between
low and high energies, embed this in the interacting theory with off-shell gauge bosons and
fermions, and show how to convert the algorithm into a consistent calculational method and
simulation of exclusive event samples.
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The paper consists of three parts. In the first part, we review the essentials of the effective-
theory approach to electroweak interactions and the Higgs mechanism. The second part extends
the well-known concept of K-matrix unitarization in such a way that we can apply it to generic
(non-Hermitian) expansions and models of the complete scattering matrix. In the third part,
we show how to implement this variant of K-matrix unitarization in actual calculations of
vector-boson scattering amplitudes beyond the Standard Model and show exemplary numerical
results for LHC processes. In a final section, we summarize the results and conclude.

2 Effective Theories for Electroweak Interactions

2.1 Effective Theory and Higgs Mechanism

Throughout this paper, we will assume that no new weakly coupled new particles, i.e., narrow
resonances, appear within the energy range that we consider for VBS. The elementary particle
spectrum is given by the SM. It has been known for a long time that this scenario can be
addressed by an effective field theory (EFT) as a universal phenomenological ansatz [19].

Early studies of VBS considered a nonlinear EWSB representation, the chiral electroweak
Lagrangian, as an EFT without light Higgs boson [20,21,22,23,24,25,26,27,28,29,30,31]. This
scenario was to be experimentally distinguished from the simplest light-Higgs case [32,17,33,
34,35,36]. Any Higgs-less model evolves into strong interactions in the TeV range, while the
SM remains weakly interacting at all energies. However, after the recent discovery of a light
Higgs candidate [1,2], new studies should narrow down the case towards distinguishing different
models which do include the Higgs as a particle.

A neutral scalar particle can be coupled to the nonlinear chiral Lagrangian in a gauge-
invariant way, including a power series of higher-dimensional operators [37]. Alternatively, we
can combine it with the Goldstone bosons of EWSB as an electroweak doublet and base the
analysis on the SM, also augmented by a power series of higher-dimensional operators [38,39,
40,41]. Both approaches allow for the most general set of interactions. They are related by
a simple field redefinition and thus equivalent [42,43,44,45,46,27]. However, truncating either
power series exposes differences in the power counting, and thus different theoretical prejudice
about the hierarchy of coefficients.

In this work, we anticipate Higgs (and W,Z) couplings that are close to their SM values,
as suggested by the current LHC analyses [47]. In the linear representation, this parameter
point is distinguished by renormalizablity, the absence of any higher-dimensional terms. In
the nonlinear representation this parameter point is not distinguished in the Lagrangian, so the
high-energy cancellations that the Higgs induces at the amplitude level appear as accidental. We
therefore adopt the linear representation. Furthermore, we implicitly assume that electroweak
gauge symmetry is a meaningful concept up to energies far beyond the TeV scale [42,43]. We
therefore include the gauge boson fields W 1,2,3

µ and Bµ as elementary vector fields which enter
via covariant derivatives and field strength tensors, always multiplied by the respective gauge
couplings g and g′ and thus weakly interacting. This assumption is clearly supported by all
known electroweak precision and flavor data.

3



The EFT extension of the linearily parameterized SM has been worked out up to next-
to-leading order in the power series (dimension six) [38,40,41,48] and applied to properties of
the Higgs boson in various contexts [49,50,51,52,53,54,55,56]. Operator mixing at the one-loop
order has been calculated in Refs. [57,58,59,60,61]. Dimension-eight operators as the second
order have been studied in Refs. [62,63]. In the current work, we do not intend to incorporate
the complete operator basis, but rather select exemplary terms that specifically affect VBS,
such that we can describe the matching and interpolation procedure that connects low- and
high-energy amplitudes.

2.2 Fields and Operators

The SM Higgs resides in a doublet of the SU(2)L gauge symmetry. Our notation is laid out
in Appendix A. We choose to parameterize the Higgs multiplet in form of a 2 × 2 Hermitian
matrix H. In this parameterization, the custodial-SU(2)C transformation properties of any
operator are manifest, and there is a simple relation to the nonlinear Higgs EFT, namely the
replacement

H→ 1

2
(v + h)Σ (1)

where Σ is a nonlinear Goldstone-boson representation.
Since we focus exclusively on the Higgs and electroweak gauge sectors, we do not write light

fermions explicitly, but treat them as external probes for the interactions that we are interested
in. In accordance with the hypothesis of minimal flavor violation, we ignore the possibility of
anomalous effects due to higher-dimensional operators that involve light flavors. Heavy flavors
and gluons do not play a role for the signal processes that we consider. If we do not look at
observables with explicit heavy flavors, the fermion sector emerges as perturbative. Extending
this result to the full EFT, we arrive at a model that decomposes, at high energy E � v,
into left- and right-handed fermion, gauge boson, and scalar (EWSB) sectors, almost mutually
decoupled due to the smallness of the EWSB order parameter v. This decomposition is stable
against radiative corrections, since operator mixing in the EFT is governed exclusively by weak
couplings with loop factors. It should be noted that it is also stable with respect to applying
equations of motion to the operator basis, as long as we impose the gauge and minimal flavor
violation principles that identify weak coupling parts.

The processes of interest at a hadron collider, namely

pp→ 2j + (V V → 4f) (2)

embed the actual quasi-elastic VBS processes, V V → V V , together with irreducible non-
VBS background. The vector-boson interactions are affected by all bosonic dimension-six and
dimension-eight operators that the EFT provides. We should weigh their impact in view of
the experimental possibilities. Current and future analyses will rather precisely determine
the coefficients of pure-gauge operators that affect vector-boson pair production and related
processes. Fixing a suitable operator basis, we may take these coefficients as given [64,65]. On
the other hand, we can safely ignore terms that exclusively provide couplings to Higgs pairs,
since such couplings do not enter VBS processes at tree level. In a simplified first approach to
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the problem, we may thus exclude most dimension-six operators from an analysis that focuses
on VBS. Instead, we incorporate operators that supply genuine quartic gauge couplings in the
longitudinal mode. Such operators do not affect simpler processes, they occur first at dimension
eight in the operator basis.

For the purpose of studying VBS processes, we therefore concentrate on the subset

LHD =FHD tr

[
H†H− v2

4

]
· tr
[
(DµH)† (DµH)

]
(3)

LS,0 =FS,0 tr
[
(DµH)†DνH

]
· tr
[
(DµH)†DνH

]
(4)

LS,1 =FS,1 tr
[
(DµH)†DµH

]
· tr
[
(DνH)†DνH

]
(5)

The corresponding Feynman rules modify the VBS amplitude expressions, predominantly in
the longitudinally polarized channel.

The dimension-six operator LHD modifies the HWW and HZZ couplings and thus controls
the Higgs exchange diagrams in VBS. We take this particular term as a representative of the
possible effects that dimension-six operators can contribute to VBS processes. We have written
the operator in a subtracted form, such that it respects on-shell renormalization conditions as
discussed in App. A.

The included terms manifestly respect custodial symmetry, SU(2)C [66]. There are both
dimension-six and dimension-eight operators that violate SU(2)C , but they provide bilinear and
trilinear gauge couplings and thus should be considered as input to a VBS analysis. SU(2)C-
violating operators which only affect quartic couplings occur first at dimension 10. This is a
consequence of the linear doublet Higgs representation. We therefore assume global SU(2)C
invariance for the current paper, which should hold at least at the threshold where new effects
start to become relevant.

2.3 Breakdown of the EFT

The pure-SM cross section for VBS, (2), is dominated by transversally polarized gauge bosons,
which in the high-energy limit decouple from the Higgs sector. Apart from the Higgs suppres-
sion, this is a consequence of the vector-boson production mechanism, namely radiation from
massless fermions which couple to longitudinal vector bosons only via helicity mixing [67,68].
The transversal polarization directions are further enhanced by their higher multiplicity.

Adding in the operators (3)–(5), the picture changes. In Fig. 1, we illustrate this for the
particular process of same-sign W production at a LHC energy of 14 TeV. We have applied
standard cuts [8] on the forward jets and the V V system, adapted to the simplified picture of
on-shell vector bosons in the final state.

The cross section with a dimension-six correction included, asymptotically falls off with a
slower rate than the SM reference curve. There is a range of coefficient values for which the EFT
remains valid, until it eventually crosses the unitarity bound. In the on-shell approximation for
elastic VV scattering, we can derive a unitarity limit on any partial wave, say the spin-isospin
zero channel. The limit roughly translates into an upper bound on the total cross section. This
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Figure 1: pp → W+W+jj, naive EFT results that violate unitarity, QCD contributions ne-
glected. The band describes maximal allowed values, due to unitarity constraints, for the dif-
ferential cross section. The lower bound describes the saturation of A20 and the upper bound
describes the simultaneous saturation of A20 and A22, cf. (47).
Cuts: Mjj > 500 GeV; ∆ηjj > 2.4; pjT > 20 GeV; |ηj| > 4.5.

bound is proportional to the SM cross section, enhanced by about one order of magnitude.
Looking at Fig. 1, we observe that for the chosen coefficient value, unitarity can be regarded
as (marginally) satisfied, if we account for the limited event count in an actual analysis which
makes the lower part of the diagram inaccessible. For larger coefficient values, we would leave
the applicability range of the EFT. This result is typical for the effect of dimension-six operators
in energy-dependent observables [69,56].

By contrast, the dimension-eight operators have a dramatic impact on the VV pair invariant-
mass distribution. The differential cross section leaves the SM value at a certain threshold
energy and then increases up to a broad maximum at multi-TeV invariant mass. This behavior
is easily explained by the high mass dimension of the included operators. Their contributions
are enhanced by M8

WW/m
8
H relative to the SM prediction. The high power of MWW overcomes

the energy-dependent suppression caused by the parton distributions. Taken at face value, this
would become a powerful handle on the coefficients FS,0 and FS,1, even for a rather low collider
luminosity.

Unfortunately, this result is entirely unphysical. No high-energy completion of the SM that
is consistent with the basic assumptions of the EFT approach is capable of producing such a
distribution [7]. In the dimension-eight case, the calculated curves cross this unitarity limit
immediately within the experimentally accessible region, for any coefficient value that could
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possibly be accessible. Furthermore, except for the rare final state ZZ → 4`, observables at a
hadron collider mix different MWW ranges and thus disallow a strict exclusion of the unphysical
region in an analysis.

Obviously, we are using the EFT far beyond its region of validity. The important result is
that for the dimension-eight operators, which are the most interesting terms in this context,
there is actually no coefficient value for which the EFT yields a useful prediction. This is in
contrast to an analysis of dimension-six operators, which are mostly accessible via production
and decay processes with well-defined or limited energy range. In other words, if a deviation
from the SM in VBS can be detected at all, it either contains new particles which invalidate the
SM-based EFT, or it contains strong interactions. In either case, the pure EFT is insufficient.

3 Unitarization Prescriptions

3.1 K-Matrix Ansatz, Cayley Transform and Stereographic Projec-
tion

To address the invalid high-energy asymptotics of an EFT in a universal way, we start with
the K-matrix ansatz. The formalism applies to the complete S matrix, so it is independent of
any particular model or approximation, and it does not rely on a perturbative expansion. It is
therefore a suitable ansatz for the present problem where we have no clue about the fundamental
theory that describes electroweak interactions, unless it is just the Standard Model or a simple
weakly interacting extension.

Heitler [70] and Schwinger [71] introduced the K operator as the Cayley transform of the
complete unitary scattering operator S, namely

S =
1 + iK/2

1− iK/2
, (6a)

where we include a factor 1/2 for later convenience. K is self-adjoint by definition, and as such
more closely related to the interaction Hamiltonian than the S matrix. The corresponding
transition operator T , as defined by S = 1 + iT , is then

T =
K

1− iK/2
. (6b)

This T satisfies the optical theorem iT †T = T − T † since S is unitary, SS† = S†S = 1.
These relations can be inverted

K = 2i
1− S
1 + S

=
T

1 + iT/2
. (7)

If the theory admits a perturbative expansion, the latter formula allows us to compute the
K-matrix perturbatively from the expansion of T , as long as T − 2i is non-singular. Obviously,
K = T in lowest order.
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If we are able to find a basis that diagonalizes the scattering operator S, and thus T and
K, the Cayley transform has a simple geometric interpretation for the eigenvalues. Given a
complex eigenvalue t = 2a of the true transition operator T , the optical theorem implies

|a− i/2| = 1/2 , (8)

i.e., the eigenamplitude a is located on the Argand circle with radius 1/2 and center i/2 [72].
The corresponding real K-matrix eigenvalue k = 2aK is then given by

aK =
a

1 + ia
(9)

This is the inverse of the stereographic projection from the real axis onto the Argand circle, cf.
Fig. 2. The Cayley transform, or K-matrix, can thus be understood as the inverse stereographic
projection of the transition matrix T onto the space of Hermitian matrices.

i
2

i

a

aK

Figure 2: Stereographic projection of a real scattering amplitude (K-matrix eigenvalue) onto
the Argand circle

The scattering amplitude of charged particles will contain a Coulomb singularity. This
singularity is physical and must not be handled by an ad-hoc unitarization prescription, but by
a proper definition of the asymptotic states of charged particles [73,74,75,76] instead. Thus one
should subtract the Coulomb singularity from the amplitude, apply the chosen unitarization
prescription to the remainder and subsequently add the Coulomb singularity together with
appropriate corrections for the asymptotic states.

In the following, we will use the terms scattering operators and scattering matrices in-
terchangably. We stress that we are always dealing with the full 2 → n-particle scattering
operators. Nevertheless, we may assume that we work in the finite dimensional subspaces
corresponding to a fixed overall angular momentum in the partial wave decomposition.

3.2 Standard K-Matrix Unitarization

Following Gupta and collaborators, and subsequent studies [77,78,32,79,80], we may reverse
the logic behind the definition of the K-matrix. We interpret the Hermitian K-matrix as an
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incompletely calculated approximation to the true amplitude, and look for the unitary S or T
matrix as a non-perturbative completion of this approximation.

Let us first assume that the scattering matrix is available in diagonal form. Given a real
eigenamplitude aK (9) of the K matrix, the corresponding unitarized amplitude a that enters
the T matrix is obtained by inverting (9),

a =
aK

1− iaK
. (10)

If the approximation to the scattering matrix K is Hermitian but not available in diagonal form,
we can similarly define the unitarized transition matrix T as the stereographic projection, by
the formula (6b).

The standard K-matrix unitarization formalism works on a perturbative series of the T ma-
trix. Given a n-th order approximation T

(n)
0 to the T matrix, represented by an eigenamplitude

a
(n)
0 , we first have to construct the corresponding real K-matrix amplitude a

(n)
K via (9),

a
(n)
K =

a
(n)
0

1 + ia
(n)
0

= a
(1)
0 + Re a

(2)
0 + i(Im a

(2)
0 − (a

(1)
0 )2) + . . .

= a
(1)
0 + Re a

(2)
0 + . . . (11)

where we assume that a
(1)
0 is real and use the lowest order of the optical theorem Im a

(2)
0 =

(a
(1)
0 )2. At each order, the imaginary parts cancel if the original perturbation series was correct.

In a second step, we then insert the truncated perturbation series for a
(n)
K into (10), this time

without truncating,

a(n) =
a

(1)
0 + Re a

(2)
0 + . . .

1− i(a
(1)
0 + Re a

(2)
0 + . . .)

(12)

If the exact scattering matrix does admit a perturbative expansion, this prescription amounts
to a partial resummation of the perturbation series. In its general form, the construction
guarantees that (i) the computed S matrix is unitary, and (ii) perturbation theory is reproduced
order by order.

For a concrete example, a 2→ 2 scattering process of scalar particles with a scalar s-channel
pole is represented by a J = 0 partial-wave eigenamplitude

a
(0)
K (s) =

λ

s−m2
, (13)

and the unitarized version reads

a(0)(s) =
λ

s−m2 − iλ
, (14)

the Breit-Wigner form of a scalar resonance. K-matrix unitarization, in this case, therefore
implements the Dyson resummation of the resonant propagator.

Beyond leading order, given the (non-unitary) perturbative approximation to the transition
matrix T , we should reconstruct the corresponding truncated perturbative expansion of the
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Hermitian K matrix via (7) and insert this back into the unitarization formula (6b), to obtain
the corresponding unitarized T matrix. Thus inserting a nth order approximation of (7) into (6)
will result in a unitary S-matrix to all orders. Conversely, the nth order expansion of this S-
matrix will reproduce the original nth order expression, which is unitary only up to terms of
order n+ 1.

3.3 Direct T -Matrix Unitarization I: Linear Projection

While the reconstruction of the unitary S (or T ) matrix according to this algorithm is exact
within the framework of perturbation theory, it suffers from the drawback that we have to
reconstruct the self-adjoint K matrix as an intermediate step. This is not just unnecessary, but
it may become a significant complication if the scattering matrix is not available in diagonal
form, or if non-perturbative effects need to be considered. For practical purposes, we are rather
interested in a means to unitarize an arbitrary model of the scattering matrix, which may or
may not admit a perturbative expansion.

In the following, we therefore present a generalization of the K-matrix prescription that
operates on the T matrix directly. Given a0 as a complex approximation to an eigenvalue of
the true T matrix, we first define the unitarized version a by the same geometric construction
as before, i.e., connecting the point a0 with the point i by a straight line and determining
the intersection with the Argand circle. However, we do not attempt to construct the real
amplitude aK . This results in

a =
Re a0

1− ia∗0
(15)

This formula has the properties that (i) a lies on the Argand circle, (ii) if a0 is real, it repro-
duces (10), and (iii) if a0 is already on the Argand circle, it is left invariant, a = a0. This
guarantees the invariance of the correct perturbative series, up to the resummation of higher
orders. Nevertheless, the actual expression for (15), evaluated in perturbation theory, differs
from the standard K-matrix formula (12). We obtain

a(n) =
a

(1)
0 + Re a

(2)
0 + . . .

1− i(a
(1)
0 + Re a

(2)
0 − i Im a

(2)
0 + . . .)

. (16)

Due to the truncation of the perturbation series at different stages of the calculation, higher
orders enter in a different way. We also note that the standard K-matrix formalism, and
thus formula (16), requires the existence of a perturbative series. By contrast, the direct
unitarization formula (15) does not rely on a perturbative expansion. The latter construction
is thus applicable to a larger set of models. In particular, in the case of vector-boson scattering
with a light Higgs that we consider in this paper, the leading term a

(1)
0 is suppressed, and thus

the original K-matrix construction is ill-behaved. The modified version (15) does not suffer
from this problem.

Still, the formula (15) is not quite satisfactory: if the imaginary part of a0 becomes larger
than i, the selected intersection point a appears beyond the fixed point a = i, on the complex
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half-plane opposite to the location of a0. A consequence would be that a model amplitude of
the form

a0(s) =
λ′

s−m2 − iλ (17)

where λ′ > λ, would be transformed into an unitarized version that revolves twice around the
Argand circle, splitting the resonance at m2 into two separate peaks. Although the original
model is a rather pathological ansatz for a resonance, such a behavior is clearly undesirable.
To avoid this problem, we may require that (iv) if Im a0 ≥ 1, the unitarized amplitude a is tied
to the fixed point, i.e., we finally define

a =





Re a0

1− ia∗0
if Im a0 < i,

i otherwise
(18)

We now generalize this prescription to the scattering matrix T , starting from a model
approximation T0 that is not necessarily unitary. We may first restrict ourselves to matrices
that are normal (i. e. T †0T0 = T0T

†
0 ) and do not have eigenvalues with an imaginary part larger

than i. The unitarized transition matrix then is given by

T =
ReT0

1− i
2
T †0
. (19)

For non-normal matrices, the operator ordering in the fraction must be defined. We obtain two
equivalent expressions

T =
1√

1− 1
2

ImT0

ReT0
1

1− i
2
T †0

√
1− 1

2
ImT0

=

√
1− 1

2
ImT0

1

1− i
2
T †0

ReT0
1√

1− 1
2

ImT0

. (20)

For any matrix T0, the matrix T from (20) respects the optical theorem. If T0 already respects
the optical theorem, we get T = T0. If T0 represents the correct perturbative expansion of
T , truncated at a given order and retaining non-Hermitian parts, the reconstructed matrix T
reproduces this perturbative expansion.

Beyond perturbation theory, in order to extract eigenvalues with imaginary part greater than
i, we may either diagonalize the matrix and use (18), or we can use projections to make (20)
well defined. For this purpose, recall that functions of matrices can be defined by their power
series expansion, as long as the radius of convergence exceeds the norm of the matrix. More
generally, one can use a functional calculus to associate to a function f : D ⊆ C → C a
function f̂ mapping matrices to matrices, such that

̂αf + βg = αf̂ + βĝ (21a)

f̂ g = f̂ ĝ (21b)

f̂ ◦ g = f̂ ◦ ĝ . (21c)
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Imz = 1

|z| = ‖ImT0/2‖ + ǫ

∂Σ+

∂Σ−

Im z

Re z

Figure 3: Integration contours used for projecting on the subspaces corresponding to ImT0/2 < 1
and ImT0/2 > 1 for a bounded operator ImT0/2 in (20).

The Riesz-Dunford functional calculus [81,82,83] defines f̂(A) by a contour integral encircling
the spectrum σ(A)

f̂(A) =

∫

∂Σ:σ(A)⊆Σ

dz

2πi

f(z)

z1− A (22)

using the fact that the resolvent matrix 1/(z1−A) is well defined whenever z 6∈ σ(A). Note that
this functional calculus can be used unchanged for all bounded operators on a Hilbert space.
It can even be extended to certain classes of unbounded operaters, but the details are not
important in the present work, because we deal with finite dimensional matrices corresponding
to scattering amplitudes with definite angular momentum. Closely related to this functional
calculus (22) are the projections on the invariant subspace of A corresponding to a part Σ ⊆
σ(A) of the spectrum [81,82,83]

PA,Σ =

∫

∂Σ

dz

2πi

1

z1− A . (23)

In particular we can define projections PImT0/2,Σ± with

1 = PImT0/2,Σ+ + PImT0/2,Σ− (24)

using the contours Σ± in fig. 3 to generalize the prescription (18) for ImT > 2.

3.4 Direct T -Matrix Unitarization II: Thales Projection

Elementary geometry (Thales’ Theorem) suggests an alternative construction of the stereo-
graphic projection from the real axis to the unitarity circle, which results in a different ex-
tension to general complex scattering amplitudes. Fig. 4 shows that the K matrix amplitude
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a0 coincides with the endpoint of a half-circle that connects the lower fixed point 0 with the
unitary amplitude a. Consequently, given an arbitrary complex amplitude a, we define the
Thales projection a as the intersection point of the half-circle that connects 0 and a0, with the
Argand circle. The Thales circle is characterized by its intersection aK with the real axis, given

i
2

i

a

aKaK
2

Figure 4: Geometrical representation of Thales projection.

by ∣∣∣a− aK
2

∣∣∣ =
aK
2
. (25)

Therefore every real amplitude aK would be projected on the unitary circle

a =
aK

1− iaK
. (26)

In case we start with a complex amplitude a0, we can derive the transformation to real aK from
the condition, that a0 has to be on the Thales circle, (25):

1

aK
=

Re (a0)

|a0|2
= Re

(
1

a0

)
. (27)

We then calculate the transformation for general amplitudes:

a =
1

Re
(

1
a0

)
− i

(28)

The corresponding operator equation is

T (T0) =
1

Re
(

1
T0

)
− i

2
1

. (29)

In appendix B we show that this indeed leads to a unitary S operator, and that the T operation
on a T0 operator is idempotent.
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This construction avoids the undesirable behavior for a model amplitude above the Argand
circle; the unitarized version of a single resonance is again a single resonance. However it suffers
itself from another undesirable feature: it is not analytic in the vicinity of a0 = 0. Fortunately,
this drawback is of little practical importance, because we are mostly interested in the case
where a0 6= 0.

i
2

i
aS

a0

aT

Figure 5: Geometrical representation: stereographic projection vs Thales projection.

3.5 Alternative Unitarization Prescriptions

The generalized K-matrix projection, as described above, allows us to unitarize any model
of the scattering matrix without relying on perturbation theory or any other details of the
processes under consideration. It leaves invariant the scattering matrix, if it is already unitary.
Nevertheless, it is clearly not unique. Since the model that we start from does not carry the
complete information about its UV completion, we cannot expect the correct completion to
appear in the unitarized version either.

For an instructive example, consider another parameterless prescription

S = eiL (30a)

T = 2eiL/2 sin
L

2
, (30b)

which leads to
L = −i lnS = −i ln(1 + iT ) . (31)

In a perturbative expansion1 away from the cut starting at T = −i1, the logarithm will be

1Incidentally, the expansions of L and K agree in first and second order:

K = T − i

2
T 2 − 1

4
T 3 + . . . (32a)

L = T − i

2
T 2 − 1

3
T 3 + . . . . (32b)
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replaced by a polynomial and L will grow like a power, as the coupling and energy increases.
In this case, unlike (6), the S-matrix will “wrap around” faster and faster, corresponding to a
series of resonances with decreasing distance.

We do not expect a unitarization prescription to produce additional structure that is not
already present in the original model. However, the tower of resonances that appear in (30)
clearly is an artefact of the prescription. From this perspective, the prescription (6), which
for a uniformly growing amplitude just implies asymptotic saturation and no extra features,
appears to be closer to a minimal and thus natural amendment of the perturbative prediction.

There are also unitarization prescriptions that rely on reordering a perturbation series, such
as Padé unitarization [84,85,86], which has frequently been applied to vector-boson scattering
physics in the Higgs-less or heavy-Higgs limit [88,89,90,87,32]. This method reproduces certain
exactly solvable models [91]. However, unitarization prescriptions of this kind tend to gener-
ate resonances (poles) in the physical region that are not present in the original EFT. Similar
effects are observed when applying the inverse-amplitude [92,93,94,95,96] or N/D unitariza-
tion prescriptions [97,93]. This may be useful if the true amplitude happens to contain those
resonances (as in pion-pion scattering), but it nevertheless is an artefact of the unitarization
method, not a prediction. Depending on parameters, a Padé-unitarized amplitude may even
generate artefacts with unphysical properties [87,32].

Other approaches explicitly apply a form-factor suppression to amplitudes that nominally
violate unitarity constraints [98,99,100,101]. Such a suppression indicates new physics, e.g.,
mixing with nearby resonances or additional open channels which dissipate the scattering into
multi-particle final states. This is a possible scenario for high-energy electroweak interactions,
but it is not a prediction of unitarity [69]. The form factors depend on additional parameters.
In order to implement such a behavior, one would describe the new physics explicitly, and
subsequently apply K-matrix unitarization to the complete set of amplitudes if necessary.

3.6 Practical Considerations

In summary, the K-matrix formalism, either in its classic form or as one of the two direct
T -matrix prescriptions, appears to be preferred as a universal method. It restores unitarity
exactly, if applied to the complete scattering matrix. It is as a minimal prescription that does
not introduce visible structure into scattering amplitudes which is not present in the original
model. It does not introduce new parameters, and it is does not rely on the parameters of a
perturbative expansion, therefore it is stable against small perturbations of the input model.

As a caveat, we should not mistake these features as an indication that K-matrix or direct
T -matrix unitarization yields a viable UV completion for an effective theory. The unitarized
results typically miss important requirements such as crossing symmetry and a consistent ana-
lytic structure [93]. We rather should be prepared to implement additional structure explicitly,
resonances or entirely new degrees of freedom, before applying unitarization. This necessarily
introduces new parameters. Our direct T -matrix version of the K-matrix formalism ensures
that a complete unitary model will remain invariant under unitarization, so the method can
only improve the prediction.

In the following section, we will apply the direct T -matrix prescription to the minimal EFT
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with anomalous couplings. We do not expect a UV complete model to emerge. The implemented
asymptotics is minimal, interpolating the low-energy EFT with high-energy unitarity saturation
for any parameter set different from the SM. We propose to take this as a class of reference
models. As soon as experiment will allow us to inspect the high-energy behavior in more detail,
we should introduce specific extensions, such as new resonances or other kinds of new physics.
The direct T -matrix formalism can be used to unitarize extended models by the same algorithm.

4 Unitary Description of Electroweak Interactions

4.1 Unitarity for electroweak scattering amplitudes

In the current paper, we are interested in a model-independent bottom-up approach to VBS
processes. The Higgs-induced cross-section suppression makes VBS a prime candidate for look-
ing at anomalous effects. Furthermore, there are possible extensions of the SM which provide
large (tree-level) contributions exclusively to the quartic couplings, via resonance exchange in
s- and t-channels, but only minor contributions to dimension-six operators in the EFT [102].

Results from analyzing VBS data should be combined with all kinds of different measure-
ments, many of which remain well defined in the EFT. However, the EFT breakdown within
the accessible region inevitably introduces a model dependence. We should set up the phe-
nomenological description in such a way that this model dependence is kept under control.

The fundamental process in question is a quasi-elastic 2→ 2 scattering process of Goldstone
bosons. The unitarity requirement takes a particularly simple form, since we can employ
angular-momentum and isospin symmetry to completely diagonalize the scattering process. The
eigenamplitudes are just scalar functions of s which must satisfy the Argand-circle condition (8)
as long as no inelastic channels appear.

In reality, we should face one of the following situations:

1. the amplitude stays in the perturbative regime, close to zero, and the imaginary part is
small compared to the real part. This is the SM case.

2. the amplitude rises beyond this level. Then, it will develop an imaginary part, and we are
in a strongly interacting regime. This happens if there is any dimension-eight operator
with a noticeable coefficient.

3. the amplitude approaches the maximimum absolute value, asymptotically (Fig. 6, left).

4. the amplitude turns over. This is a resonance (Fig. 6, center).

5. new inelastic channels open and absorb part of the total cross section (Fig. 6, right).
This amounts to an increase in the amplitude that is halted by an effective form-factor
suppression. The extra channels, typically resulting in multiple vector boson production,
should then be observable [13,103].
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Figure 6: The Argand-circle condition for a scattering amplitude.

For a prediction, we have to make a choice among these possibilities. There is no case where
the amplitude (in the ideal case of pure Goldstone scattering) leaves the Argand circle, so the
naive EFT result is no option.

In general, apart from the exact SM case we are necessarily in a non-perturbative regime. In
line with the discussion in the preceding section, we propose to take case 3.) as a reference model
for the high-energy behavior, correctly matched to the low-energy EFT. This idea is realized by
the parameter-free direct T -matrix unitarization prescription, as an extension of the K-matrix
unitarization formalism as described in the preceding Section. In the high-energy range, the
results saturate the unitarity bound. We thus obtain an approximate upper bound for the set
of possible amplitudes that match to a given EFT.

We recall that the T -matrix prescription is not a viable UV completion of the EFT, but
should be understood as a safeguard against computing unphysical contributions beyond the
unitarity limit. In the case at hand, the unitarization changes the interpretation of EFT oper-
ator coefficients. While they formally remain the parameters of a low-energy Taylor expansion
of the cross section, they effectively take the role of threshold parameters that indicate the
point of energy where the differential cross section deviates from the SM prediction and enters
a strongly interacting regime. This threshold region is the energy range to which the exper-
imental analysis will be most sensitive. In a context where the EFT applies, they keep their
relation to the full set of operator coefficients that may be determined by a global fit to exper-
imental results. The high-energy range where actual model dependence becomes important, is
asymptotically suppressed in the same way as the SM prediction and has a minor impact on
observed experimental data, as one would expect.

A complete description of the processes in question should aim at a more detailed under-
standing. One has to address the violation of crossing symmetry and the analytic properties
of the model amplitude. This introduces new parameters. However, the first measurements of
VBS will not be very sensitive to details beyond threshold, so simulations based on a simple
unitarization prescription in the EFT context will at least allow us to quantify the level of
agreement (or disagreement) of data with the SM.

4.2 Model and Calculation: Amplitudes

There are various refinements that we must apply to the idealized model of the preceding sec-
tion. (i) We have to translate Goldstone-boson interactions to interactions of vector bosons.
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This introduces the explicit SU(2)C breaking associated with hypercharge. (ii) Further low-
energy corrections are caused by the mixing of transversal and longitudinal (effectively scalar)
polarization components. This mixes spin and orbital angular momentum and spoils the sim-
plicity of the partial-wave expansion. (iii) The vector bosons are off-shell, in particular in
the initial state. (iv) In the forward scattering direction, massless photon exchange becomes
relevant, cut off only by the off-shellness of the vector bosons in the initial state, and thus a
significant correction.

We approach this situation by the following algorithm. First, we analytically unitarize
the scattering amplitudes in the high-energy limit where the symmetries are exact, and the
unitarity-violating terms occur exclusively in Goldstone-boson scattering. In particular, we
can make use of custodial, i.e., weak isospin symmetry and thereby reduce the number of
independent amplitudes.

In contrast to the no-Higgs case which has been discussed extensively in the literature, in
the presence of a light Higgs boson, the SM contribution to Goldstone scattering is suppressed
by m2

H/v
2. On the scale of the unitarity limit in the high-energy range, this can be considered

negligible. Thus, we take the SM contribution to the Goldstone-scattering amplitudes as zero.
Nonzero contributions are induced by the anomalous operators, which thus become leading.
(The spin eigenamplitudes A have to be normalized by a0 = A

32π
.)

A(w+w+ → w+w+) =
1

4
FS,0(2s2 + t2 + u2) +

1

2
FS,1(t2 + u2)

−
(
F 2
HD

v2

4
+ FHD

)(
t2

t−m2
H

+
u2

u−m2
H

)
(33)

A(w+z → w+z) =
1

4
FS,0(s2 + u2) +

1

2
FS,1t

2 −
(
F 2
HD

v2

4
+ FHD

)
t2

t−m2
H

(34)

A(w+w− → w+w−) =
1

4
FS,0(s2 + t2 + 2u2) +

1

2
FS,1(s2 + t2)

−
(
F 2
HD

v2

4
+ FHD

)(
s2

s−m2
H

+
t2

t−m2
H

)
(35)

A(w+w− → zz) =
1

4
FS,0(t2 + u2) +

1

2
FS,1s

2 −
(
F 2
HD

v2

4
+ FHD

)
s2

s−m2
H

(36)

A(zz → zz) =
1

2
(FS,0 + FS,1) (s2 + t2 + u2)

−
(
F 2
HD

v2

4
+ FHD

)(
s2

s−m2
H

+
t2

t−m2
H

+
u2

u−m2
H

)
(37)

Note that s > m2
H for the observed Higgs boson, so there are actually no poles in the physical

region.
Since all operators are SU(2)C-symmetric, we can apply isospin symmetry and crossing
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symmetry and express all amplitudes in terms of a single master amplitude A(s, t, u) [7],

A(w+w− → zz) = A(s, t, u), (38)

A(zz → zz) = A(s, t, u) + A(t, s, u) + A(u, s, t), (39)

A(w+w− → w+w−) = A(s, t, u) + A(t, s, u), (40)

A(w+z → w+z) = A(t, s, u), (41)

A(w+w+ → w+w+) = A(t, s, u) + A(u, s, t), (42)

and construct the isospin eigenamplitudes AI ,
A2 = A(t, s, u) + A(u, s, t), (43)

A1 = A(t, s, u)− A(u, s, t), (44)

A0 = 3A(s, t, u) + A(t, s, u) + A(u, s, t). (45)

After partial wave decomposition (t = −s/2(1− cos Θ))

AI`(s) =

∫ 0

−s

dt

s
AI(s, t, u)P` (cos Θ) . (46)

we obtain the isospin-spin eigenamplitudes:

A00 =
1

6
(7FS,0 + 11FS,1) s2

−
(
F 2
HD

v2

4
+ FHD

)(
3s2

s−m2
H

+ 2S0(s)

)
, (47a)

A02 =
1

30
(2FS,0 + FS,1) s2 −

(
F 2
HD

v2

4
+ FHD

)
2S2(s), (47b)

A11 =
1

12
(FS,0 − 2FS,1) s2 −

(
F 2
HD

v2

4
+ FHD

)
2S1(s), (47c)

A13 =−
(
F 2
HD

v2

4
+ FHD

)
2S3(s), (47d)

A20 =
1

3
(2FS,0 + FS,1) s2 −

(
F 2
HD

v2

4
+ FHD

)
2S0(s), (47e)

A22 =
1

60
(FS,0 + 2FS,1) s2 −

(
F 2
HD

v2

4
+ FHD

)
2S2(s). (47f)

Expressed in terms of the isospin-spin eigenstates, the Goldstone scattering matrix becomes
diagonal.

It is now straightforward to apply the T -matrix unitarization scheme (equivalent to the
K-matrix scheme at this order) to the diagonal isospin-spin eigenamplitudes. For each I`
combination, the T -matrix unitarized amplitude is given by, cf. (28),

ÂI`(s) =
1

Re
(

1
AI`(s)

)
− i

32π

. (48)
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We split off the original amplitude AI` that corresponds to the naive EFT and obtain the
unitarization correction as

∆AI` = ÂI` −AI`. (49)

Given this set of corrections, we dress the eigenamplitude corrections by the appropriate Leg-
endre polynomials and revert the basis from isospin eigenstates to w+, z, w−, so we arrive at
counterterms for the individual Goldstone scattering channels:

∆A(w+w+ → w+w+) = ∆A20(s)− 10∆A22(s)

+ 15∆A22(s)
t2 + u2

s2
(50)

∆A(w+w− → zz) =
1

3
(∆A00(s)−∆A20(s))− 10

3
(∆A02(s)−∆A22(s))

+ 5 (∆A02(s)−∆A22(s))
t2 + u2

s2
(51)

∆A(w+z → w+z) =
1

2
∆A20(s)− 5∆A22(s)

+

(
−3

2
∆A11(s) +

15

2
∆A22(s)

)
t2

s2

+

(
3

2
∆A11(s) +

15

2
∆A22(s)

)
u2

s2
(52)

∆A(w+w− → w+w−) =
1

6
(2∆A00(s) + ∆A20(s))− 5

3
(2∆A02(s) + ∆A22(s))

+

(
5∆A02(s)− 3

2
∆A11(s) +

5

2
∆A22(s)

)
t2

s2

+

(
5∆A02(s) +

3

2
∆A11(s) +

5

2
∆A22(s)

)
u2

s2
(53)

∆A(zz → zz) =
1

3
(∆A00(s) + 2∆A20(s))− 10

3
(∆A02(s) + 2∆A22(s))

+ 5 (∆A02(s) + 2∆A22(s))
t2 + u2

s2
(54)

We observe that the correction terms explicitly break crossing symmetry, analogous to the
simpler case of Dyson resummation for a resonance.

4.3 Complete Electroweak Processes

So far, we have only considered Goldstone-scattering amplitudes, which represent longitudinal
vector bosons at asymptotically high energy. The result of the unitarization procedure is a
set of correction terms that depend on s, t, u. We would like to use the expressions in a
calculation of vector-boson scattering amplitudes at finite energy. To achieve this, we note
that by construction, the counterterms have a t and u dependence that is equivalent to the
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anomalous quartic terms that we started with. We can therefore unambiguously distribute the
new contributions among the two different gauge-invariant interaction operators (counterterms)
LS,0 and LS,1 that are already present. The algorithm follows precisely the derivation in [18].

In the result, all three parameters FDM , FS,0, FS,1 enter both of the counterterm prefactors,
respectively. The unitarization procedure effectively modifies and mixes the EFT operator
coefficients in a nonlinear way.

We finally switch back from covariant gauge to unitarity gauge and obtain Feynman rules
for physical vector bosons. Inserting external momenta and polarization vectors (or fermionic
currents), the asymptotic amplitude expressions receive finite low-energy corrections that are
related to the W and Z masses, some of them breaking the custodial symmetry.

In the context of complete scattering amplitudes, the new Feynman rules for quartic gauge-
boson couplings are evaluated off-shell. We have to define a prescription that determines the
energy value in the operator coefficient. Relying on the assumption that the effective vertices
are evaluated for an approximately on-shell 2→ 2 scattering kinematics, we define the energy
value as the square root of the initial- or final-state invariant mass, i.e., the

√
ŝ value for the

V V system, represented by their decay products. This completes the algorithm.
Before we turn to concrete results, we should review the assumptions and approximations

on which the algorithm is based. First of all, we started from the linear Higgs EFT as the low-
energy approximation and assume the absence of new states (resonances) within the accessible
energy range. We have to accept the fact that the model enters a strongly interacting regime, so
beyond the threshold where the corrections start to play a role, the prediction becomes a rather
uncertain estimate, controlled just by the unitarity requirement. However, the unitarized cross
section asymptotically falls off, so the energy range beyond this threshold is again suppressed in
the event sample. Finally, the unitarization corrections are strictly valid only in the high-energy
limit and for on-shell vector bosons in the kinematical configuration of quasi-elastic scattering.
We thus have to require that these conditions are approximately met, typically by imposing
VBF cuts in the analysis.

These constraints imply, in particular, that the results can not be applied to the analogous
process of triple vector boson production. The SM, and any underlying UV completion would
exhibit crossing symmetry. However, the unitarization corrections in the present model apply
only to s-channel kinematics in 2 → 2 scattering and must not be used for the kinematical
configuration of triple-boson production. This is an artefact of the partial resummation. We
may compare this situation to the resummation of the propagator of an unstable particle which
may also occur in the t-channel. In the context of SM gauge invariance, it is necessary to
include extra diagrams in the unitarized result [104]. In the present case where the complete
theory is not even known, the corresponding ambiguity is an indication of the unavoidable
model dependence of the unitarization procedure.

4.4 Numerical Results: On-Shell

We have implemented the Feynman rules that correspond to the energy-dependent counter-
term operators, as described in the preceding Section, in the Monte-Carlo event generator

21



WHIZARD [105,106,107]2. This allows us to numerically compute unitarized cross sections
and generate corresponding event samples at colliders.

We note that up to the perturbative order that we are calculating, there is no difference
between the T -matrix and K-matrix unitarization prescriptions. A difference would show up
for higher-order or model-specific amplitudes that initially contain an imaginary part.

The results in Figs. 7 to 10 are complementary to Fig. 1. They display the unitarized distri-
bution of the VV invariant mass for the same selected values of the parameters FHD, FS,0, FS,1,
again calculated for the LHC configuration with

√
s = 14 TeV and standard cuts, dijet invari-

ant mass Mjj > 500 GeV, jet rapidity distance ∆ηjj > 2.4, a minimal jet transverse momentum
of pT > 20 GeV, and a minimal (and opposite) jet rapidity of |ηj| < 4.5. We show the distinct
final states W+W+, W+W−, W+Z, and ZZ with the final-state vector bosons taken on-shell.

The plots clearly indicate that the naively calculated numbers with anomalous couplings
and no unitarization grossly overshoot the more realistic T -matrix results. For the chosen
parameters, the effect of the dimension-eight operators is more pronounced than the effect of
the anomalous Higgs coupling, a dimension-six operator. In all channels, the unitarized curves
fall down with energy with the same rate as the SM curves, but enhanced by about one order
of magnitude. There is a distinct threshold region where the cross section interpolates between
the SM curve and the saturated limit. Only within this small window, a pure EFT description
could be meaningful.
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Figure 7: pp→ W+W+jj, unitarized (QCD contributions neglected).
Cuts: Mjj > 500 GeV; ∆ηjj > 2.4; pjT > 20 GeV; |ηj| < 4.5.

2Note that it is not possible to use an automated tool for Feynman rules to include these rules (like e.g.
via [108]) as one also needs a prescription to single out s channels.
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Figure 8: pp→ W+W−jj, unitarized (QCD contributions neglected).
Cuts: Mjj > 500 GeV; ∆ηjj > 2.4; pjT > 20 GeV; |ηj| < 4.5.
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Figure 9: pp→ W+Zjj, unitarized (QCD contributions neglected).
Cuts: Mjj > 500 GeV; ∆ηjj > 2.4; pjT > 20 GeV; |ηj| < 4.5.
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Figure 10: pp→ ZZjj, unitarized (QCD contributions neglected).
Cuts: Mjj > 500 GeV; ∆ηjj > 2.4; pjT > 20 GeV; |ηj| < 4.5.

4.5 Numerical Results: Full Processes

At the LHC, the actual final state consists of six fermions, namely two forward jets and the
decay products of the vector bosons. We present results for the process with same-sign charged
leptons,

pp→ e+µ+νeνµjj (55)

including the complete irreducible background. The events have been generated on the basis
of the complete tree-level amplitude that connects the initial and final state. The plots show
an unweighted partonic event sample that corresponds to 1 ab−1 at the nominal LHC energy
of 14 TeV. We have applied standard VBF cuts, as listed in the figure captions.
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(b) FS,0 = 480 TeV−4
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Figure 11: pp→ e+µ+νeνµjj,
√
s = 14 TeV,L = 1000 fb−1

Cuts: Mjj > 500 GeV; ∆ηjj > 2.4; pjT > 20 GeV; |ηj| < 4.5; p`T > 20 GeV
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In Fig. 11, we show the scalar sum of transverse momentum and the azimuthal distance of
the charged lepton pair, respectively. Both observables are sensitive to the chosen values of the
anomalous couplings. There is a significant difference between the SM prediction (blue/dark)
and the prediction with nonzero operator coefficient and unitarization (red/medium). For
reference, we also display the unphysical results that we would generate without unitarization
(yellow/light).

All numbers have been calculated with the WHIZARD event generator [105] in version 2.2
which implements the T -matrix unitarized model with dimension-six and -eight operators, as
explained above.

5 Summary and Conclusion

We have developed a method to model the high-energy behavior of quasi-elastic vector-boson
scattering processes in a way that it can be applied to collider analyses, covering in particular
hadron colliders where observables cannot always be limited to a narrow energy range. The
method interpolates between the SM with a light Higgs boson as the low-energy limit, its
effective-theory extension, and a high-energy behavior that remains consistent with unitarity
constraints.

It turns out that the only experimentally distinguishable possibilities for vector-boson scat-
tering process are (i) the pure SM, (ii) new particles, as, e.g., in a two-Higgs doublet model, or
(iii) a deviation that smoothly increases with energy and indicates a strongly interacting Higgs
sector. We study the latter possibility. Small deviations that stay within the weakly interacting
regime are mostly indistinguishable from the SM, at least in vector boson scattering.

In this work we do not propose any concrete model beyond the SM. However, for quanti-
tatively establishing the validity of the SM, or for qualifying the significance of any possible
experimental discrepancy, we need an EFT approach that provides parameterizations for de-
viations in all possible directions in model space. For being phenomenologically useful, such
alternative parameterizations must be consistent with unitarity as a limitation to the number
of events that can reasonably contribute to a particular observable.

The problem of modelling high-energy electrowek interactions has already been discussed
three decades ago when multi-TeV colliders were planned for the first time. However, the
present context is somewhat different: a reasonable model must smoothly interpolate high-
energy strong interactions with the now-established light-Higgs scenario. Adapting methods
originally developed for the Higgs-less case, we propose to unitarize the EFT amplitudes by
extending the parameter-free K-matrix formalism. We reformulate this method as a direct
T -matrix scheme, such that it unitarizes any given model without requiring a perturbative
expansion or introducing additional structure in the result. We have described this approach in
detail, including the systematic embedding of the new effects in the machinery of Monte-Carlo
simulation for the full multi-fermion processes.

The underlying T -matrix prescription ensures that any computed results do not overshoot
the physical limit, but it does not have any further physical interpretation. Given sufficient
experimental precision, we should get a handle on the behavior of the invariant-mass distribu-
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tion beyond the maximum that is related to the strong-interaction threshold. Possibilities for
modelling VBS beyond this threshold have been sketched in [11,12] and will be developed in
more detail in a separate paper [109].
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A Notational Conventions

The field content of the EFT is given by fermions, gluons, electroweak vector bosons, and the
Higgs doublet which in a linear gauge consists of the physical Higgs boson and three Goldstone
bosons w+, w−, w3. We do not write fermions or gluons explicitly. For electroweak gauge
bosons, we define

DµH = ∂µH− igWµH− ig′HBµ (56)

Wµν = ∂µWν − ∂νWµ − ig [Wµ,Wν ] (57)

Bµν = ∂µBν − ∂νBµ (58)

with

Wµ = W a
µ

τa

2
, Bµ = −τ

3

2
Bµ (59)

In the linear representation, the SM Higgs field combines with the Goldstone bosons as an elec-
troweak doublet. The Higgs sector has an additional global SU(2)C (custodial) symmetry [66].
In order to make the SU(2)C transformation properties explicit, we parameterize the Higgs
field as the Hermitian matrix

H =
1

2

(
v + h− iw3 −i

√
2w+

−i
√

2w− v + h+ iw3

)
. (60)

The physical Higgs field multiplies the unit matrix, while the Goldstone bosons w+, w3, w− are
the components proportional to the Pauli matrices τ+, τ 3, τ−. SU(2)L transformations UL and
SU(2)R transformations UR, and custodial SU(2)C transformations UC act as

H→ ULH, H→ HU †R, H→ UCHU †C , (61)

respectively. The τ 3 part of SU(2)R coincides with hypercharge U(1)Y transformations, while
τ 1,2-associated transformations are not realized as local gauge symmetries. Under custodial
trunsformations, the Higgs field decomposes into singlet (the physical Higgs) and triplet (Gold-
stones). Conversely, under SU(2)L gauge transformations, the two columns of the Higgs matrix
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transform independently as the conventional complex doublet Φ and its charge conjugate. In
unitarity gauge, the Goldstone bosons disappear, and the matrix reduces to the v + h term.

The bosonic part of the lowest order EFT, i.e., the plain SM Lagrangian, reads

Lmin =− 1

2
tr [WµνW

µν ]− 1

2
tr [BµνB

µν ] (62)

+ tr
[
(DµH)†DµH

]
+ µ2 tr

[
H†H

]
− λ

2

(
tr
[
H†H

])2
, (63)

For a precise definition of higher-dimensional operators, we have to express the free parameters
of the EFT, order by order in the operator dimension, in terms of observable quantities. A
possible choice for such a renormalization scheme, applicable to the operator expansion at
tree-level and beyond, is

g = 2
mW

v
, g′ = 2

√
m2
Z −m2

W

v
, µ2 =

1

2
m2
H , λ =

m2
H

v2
. (64)

for the parameters in the SM Lagrangian, (62), with particle masses and the Higgs vacuum
expectation value v as fixed input. In particular, the definition of g and g′ unambiguously
determines the covariant field strength and the covariant derivative that we use for constructing
higher-dimensional operators. Furthermore, we may fix the kinetic-energy normalization to
their conventional SM values.

We have deliberately excluded fermions here. Light fermions are coupled by gauge bosons.
For our purposes, they act like external currents, and are properly taken into account when
the unitarized amplitudes are embedded into the full process. Heavy fermions are important
in the context of Higgs physics, but absent from the initial state. In the final state, they are
identifiable. Here, we just consider processes which ultimately involve light fermions. In passing,
we note that genuine anomalous interactions of light fermions are experimentally accessible in
processes such as lepton and jet pair production.

B Unitarization, K-Matrix, and All That: Proofs

B.1 Non-Hermitian K-Matrix

If the K-matrix is not Hermitian, we need to find a generalization of (6), i. e.

T =
K ′

1− iK ′/2
(65)

with a suitable K ′. The most straightforward approach is to just throw away the imaginary
parts K ′ = ReK = (K + K†)/2. The interpretation of the Cayley transform as an inverse
stereographic projection suggests a less drastic approach, that retains the imaginary part.
Consider the family {Kκ} of K-matrices that have the same projection with center i1

Kκ

2
− i1 = κ

(
K

2
− i1

)
κ (66a)

κ† = κ > 0 . (66b)
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and choose the unique self adjoint member K ′ ∈ {Kκ} of this family

K ′ = (K ′)† . (66c)

As long3 as ImK/2 < 1, there is a unique solution with a converging power series expansion

κ =
1√

1− ImK/2
(68a)

K ′ = κ(ReK)κ (68b)

resulting in

T = κ(ReK)
1

1− iK†/2
κ−1 = κ−1 1

1− iK†/2
(ReK)κ (69)

For normal K, i. e. KK† = K†K everything commutes and we may write

T =
ReK

1− iK†/2
=

ReK

1− i ReK/2− ImK/2

instead, highlighting the contribution of ImK = (K −K†)/2i.

B.2 Properties of T -matrix unitarized (Linear Projection) operators

The unitarity of the S matrix, SS† = S†S = 1 implies that each interaction matrix, S = 1+ iT ,
has to satisfy

T†T = −i
(
T− T†

)
. (70)

For T -matrix unitarized operators (19) via linear projection, we use

T (T0) =
ReT0

1− i
2
T†0

=
ReT0

1 + 1
4
T0T†0

(
1 +

i

2
T0

)
(71)

to show the unitarity of the corresponding S operator:

SS† = 1− 2Im (T ) + TT†

= 1− (ReT0)2

1 + 1
4
T0T†0

+
(ReT0)2

1 + 1
4
T0T†0

= 1.
(72)

3We can use the Riesz-Dunford functional calculus [81,82,83] to construct projectors on subspaces corre-
sponding to parts of the spectrum of ImK/2

PΣ =

∫

∂Σ

dz

2πi

1

z1− ImK/2
, (67)

where Σ contains the desired part of the spectrum of ImK/2.
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In the same way, we can show the idempotency of the T operation:

T (T (T0)) =
ReT(T0)

1− i
2
T(T0)†

=

ReT0

1+ 1
4

T0T†0

(
1− 1

2
ImT0

)

1− i
2

ReT0 (1− i
2

T†0)
(1− i

2
T†0)(1+ i

2
T0)

=
ReT0

1 + 1
4
T0T†0

(
1 +

i

2
T0

)
= T(T0)

(73)

B.3 Properties of T -matrix unitarized (Thales Projection) operators

In this section we take the definition of the T -matrix unitarized operator from (29), and show,
using

T (T0) =
1

Re
(

1
T0

)
− i

2
1

=
1

Re
(

1
T0

)2

+ 1
4
1

(
Re

(
1

T0

)
+

i

2
1

)
, (74)

the unitarity of the corresponding S operator:

SS† = 1− 2Im (T ) + TT†

= 1− 1

Re
(

1
T0

)2

+ 1
4
1

+
1

Re
(

1
T0

)2

+ 1
4
1

= 1. (75)

Also, it is easy to see that this operation is idempotent:

T (T (T0)) =
1

Re
(

1
T(T0)

)
− i

2
1

=
1

Re
(

Re
(

1
T0

)
− i

2
1
)
− i

2
1

=
1

Re
(

1
T0

)
− i

2
1

= T (T0) .
(76)

C Operator Bases and their Translation

C.1 Introduction to different sets of operator bases

It has become customary to write the EFT operator basis in a form that is algebraically
simple, so each basic operator is a single monomial of the fields with a single coefficient. For
the renormalizable part of the theory, this is justified by the usual renormalization procedure
where all terms are renormalized multiplicatively.

There is a vast literature on choices of operator bases for dimension-6 and -8 operators in
the electroweak sector; we only need a sample operator here to demonstrate our point about
the unitarization procedure, so we only briefly mention the translation between the non-linear
and linear matrix representation of these operators. An extensive discussion of the operator
bases is a different topic and discussed in a follow-up paper [109].
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C.2 Translation between Nonlinear and Linear Matrix representa-
tion

We can compare the effective Lagrangians in Appelquist-Alboteanu parameterization

L4 = α4 Tr [VµVν ] Tr [VµVν ] ,

L5 = α5 Tr [VµV
µ] Tr [VνV

ν ]

from [20,18] in unitarity gauge

Vµ=̂− igW a
µ

τa

2
+ ig′Bµ

τ 3

2

to LS,0 and LS,1. Because we are only interested in the VBS part of these two Lagrangian,
simplifying the covariant derivative from LS,0 and LS,1 as

DµH =
v

2
(−igWµ − ig′Bµ) =

v

2

(
−igW a

µ

τa

2
+ ig′Bµ

τ 3

2

)

=
v

2
Vµ, (77)

(DµH)† = −v
2
Vµ. (78)

leads to

LS,0 =FS,0
v4

16
Tr [VµVν ] Tr [VµVν ] , (79)

LS,1 =FS,1
v4

16
Tr [VµV

µ] Tr [VνV
ν ] . (80)

Therefore we can relate the coefficients of these different notations:

α4 = FS,0
v4

16
, (81)

α5 = FS,1
v4

16
. (82)

So the coefficients for the operators LS,0 and LS,1 are equivalent to values of α4 and α5 of
∼ 0.11, which are within the limits from the latest ATLAS analysis [8] (−0.14 < α4 < 0.16 and
−0.23 < α5 < 0.24).

D Feynman Rules

D.1 Feynman Rules from New Physics Operators

D.1.1 LS
The Lagrangian
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LS,0 =FS,0 tr
[
(DµH)†DνH

]
· tr
[
(DµH)†DνH

]
(83)

LS,1 =FS,1 tr
[
(DµH)†DµH

]
· tr
[
(DνH)†DνH

]
(84)

leads to the following Feynman rules in the unitarity gauge (neglecting all vertices including
a Higgs boson and five or more external fields):

W+
µ1
W+
µ2
W−
µ3
W−
µ4

:
ig4v4

16
[(FS,0 + 2FS,1) (gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3)

+2FS,0gµ1µ2gµ3µ4 ] (85)

Zµ1Zµ2W
+
µ3
W−
µ4

:
ig4v4

16c2
w

[FS,0 (gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3)

+2FS,1gµ1µ2gµ3µ4 ] (86)

Zµ1Zµ2Zµ3Zµ4 :
ig4v4

8c4
w

(FS,0 + FS,1) (gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3) (87)

D.1.2 LHD
The Lagrangian

LHD = FHD tr

[
H†H− v2

4

]
· tr
[
(DµH)†DµH

]
(88)

leads to the following Feynman rules in unitarity gauge (neglecting all vertices with more than
one Higgs):

hW+
µ W

−
ν :

ig2v3

4
FHDgµν (89)

hZµZν :
ig2v3

4s2
w

FHDgµν (90)
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D.2 Feynman Rules: Unitarization Corrections

These “Feynman Rules” are only used for s-channel scattering of V V → V V with the center-
of-mass energy s = (p1 + p2)2 and counterterms Aij(49)

W±
µ1
W±
µ2
→ W±

µ3
W±
µ4

:
g4v4

4

[
(∆A02(s)− 10∆A22(s))

gµ1µ2gµ3µ4
s2

+15∆A22(s)
gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3

s2

]
(91)

W±
µ1
W∓
µ2
→ Zµ3Zµ4 :

g4v4

4c2
w

[(
1

3
(∆A00(s)−∆A20(s))

−10

3
(∆A02(s)−∆A22(s))

)
gµ1µ2gµ3µ4

s2

+5 (∆A02(s)−∆A22(s))
gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3

s2

]
(92)

W±
µ1
Zµ2 → W±

µ3
Zµ4 :

g4v4

4c2
w

[(
1

2
∆A20(s)− 5∆A22(s)

)
gµ1µ2gµ3µ4

s2

+

(
−3

2
∆A11(s) +

15

2
∆A22(s)

)
gµ1µ3gµ2µ4

s2

+

(
3

2
∆A11(s) +

15

2
∆A22(s)

)
gµ1µ4gµ2µ3

s2

]
(93)

W±
µ1
W∓
µ2
→ W±

µ3
W∓
µ4

:
g4v4

4

[(
1

6
(2∆A00(s) + ∆A20(s))

−5

3
(2∆A02(s) + ∆A22(s))

)
gµ1µ2gµ3µ4

s2

+

(
5∆A02(s)− 3

2
∆A11(s) +

5

2
∆A22(s)

)
gµ1µ3gµ2µ4

s2

+

(
5∆A02(s) +

3

2
∆A11(s) +

5

2
∆A22(s)

)
gµ1µ4gµ2µ3

s2

]
(94)

Zµ1Zµ2 → Zµ3Zµ4 :
g4v4

4c4
w

[(
1

3
(∆A00(s) + 2∆A20(s))

−10

3
(∆A02(s) + 2∆A22(s))

)
gµ1µ2gµ3µ4

s2

+5 (∆A02(s) + 2∆A22(s))
gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3

s2

]
(95)
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[49] W. Kilian, M. Krämer and P. M. Zerwas, Anomalous couplings in the Higgsstrahlung
process, Phys. Lett. B 381 (1996) 243 [hep-ph/9603409].

[50] W. Kilian and J. Reuter, The Low-energy structure of little Higgs models, Phys. Rev. D
70 (2004) 015004 [hep-ph/0311095].

[51] G. F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light
Higgs, JHEP 0706 (2007) 045 [hep-ph/0703164].
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