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Abstract: We present a lattice study of the equation of state in Yang-Mills theory based
on the exceptional G2 gauge group. As is well-known, at zero temperature this theory
shares many qualitative features with real-world QCD, including the absence of colored
states in the spectrum and dynamical string breaking at large distances. In agreement with
previous works, we show that at finite temperature this theory features a first-order decon-
fining phase transition, whose nature can be studied by a semi-classical computation. We
also show that the equilibrium thermodynamic observables in the deconfined phase bear
striking quantitative similarities with those found in SU(N) gauge theories: in particular,
these quantities exhibit nearly perfect proportionality to the number of gluon degrees of
freedom, and the trace anomaly reveals a characteristic quadratic dependence on the tem-
perature, also observed in SU(N) Yang-Mills theories (both in four and in three spacetime
dimensions). We compare our lattice data with analytical predictions from effective mod-
els, and discuss their implications for the deconfinement mechanism and high-temperature
properties of strongly interacting, non-supersymmetric gauge theories. Our results give
strong evidence for the conjecture that the thermal deconfining transition is governed by a
universal mechanism, common to all simple gauge groups.
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1 Introduction

Due to its highly non-linear, strongly coupled dynamics, analytical understanding of the
strong nuclear interaction remains incomplete [1]. Essentially, the fact that the spectrum
of physical states is determined by non-perturbative phenomena (confinement and chiral
symmetry breaking) restricts the theoretical toolbox for first-principle investigation of QCD
at low energies to numerical simulations on the lattice—while the applicability of weak-
coupling expansions is limited to high-energy processes.

At present, one of the major research directions in the study of QCD (both theoreti-
cally and experimentally) concerns the behavior of the strong interaction under conditions
of finite temperature and/or density. Asymptotic freedom of non-Abelian gauge theories
suggests that, at sufficiently high temperatures, ordinary hadrons should turn into a qual-
itatively different state of matter, characterized by restoration of chiral symmetry and
liberation of colored degrees of freedom, which interact with each other through a screened
long-range force [2]: the quark-gluon plasma (QGP). After nearly twenty years of dedi-
cated experimental searches through relativistic heavy-nuclei collisions, at the turn of the
millennium the QGP was eventually discovered at the SPS [3] and RHIC [4–7] facilities.

In particular, the measurements performed at RHIC [4–7] and, more recently, at
LHC [8–10] reveal a consistent picture: at temperatures T of a few hundreds MeV, QCD is
indeed in a deconfined phase, but the QGP behaves as a quite strongly coupled fluid [11].
These findings are derived from the observation of elliptic flow [12–16], electromagnetic
spectra [17, 18], quarkonium melting [19–26], enhanced strangeness production [27–32] and
jet quenching [33–44]; for a very recent review, see ref. [45].

These results indicate that the theoretical investigation of the QGP requires non-
perturbative tools, such as computations based on the gauge/string correspondence (whose
applications in QCD-like theories at finite temperature are reviewed in refs. [46, 47]) or lat-
tice simulations [48]. The lattice determination of the deconfinement crossover and chiral
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transition temperature, as well as of the QGP bulk thermodynamic properties (at vanishing
quark chemical potential µ) is settled [49–51] and accurate results are being obtained also for
various parameters describing fluctuations, for the QGP response to strong magnetic fields,
et c. [52]. Due to the Euclidean nature of the lattice formulation, the investigation of phe-
nomena involving Minkowski-time dynamics in the QGP is more challenging, but the past
few years have nevertheless witnessed a lot of conceptual and algorithmic advances, both for
transport properties [53] and for phenomena like the momentum broadening experienced
by hard partons in the QGP [54–63]: it is not unrealistic to think that in the near future
the results of these non-perturbative calculations could be fully integrated in model compu-
tations that provide a phenomenological description of experimentally observed quantities
(for a very recent, state-of-the-art example, see ref. [64]).

Notwithstanding this significant progress towards more and more accurate numerical
predictions, a full theoretical understanding of QCD dynamics at finite temperature is still
missing. From a purely conceptual point of view, the problem of strong interactions in
a thermal environment can be somewhat simplified, by looking at pure-glue non-Abelian
gauge theories. This allows one to disentangle the dynamics related to chiral symme-
try breaking from the problem of confinement and dynamical generation of a mass gap,
retaining—at least at a qualitative or semi-quantitative level—most of the interesting fea-
tures relevant for real-world QCD. As the system is heated up, these theories will interpolate
between two distinct limits: one that can be modeled as a gas of massive, non-interacting
hadrons (glueballs) at low temperature, and one that is described by a gas of free massless
gluons at (infinitely) high temperature. These limits are separated by a finite-temperature
region, in which deconfinement takes place.

In SU(N) gauge theories, the phenomenon of deconfinement at finite temperature can
be interpreted in terms of spontaneous breaking of the well-defined global ZN center sym-
metry [65] (see also ref. [66] for a very recent work on the subject), and is an actual phase
transition: a second-order one for N = 2 colors, and a discontinuous one for all N ≥ 3

(see also refs. [67–69]). While this is consistent with the interpretation of confinement in
non-supersymmetric gauge theories as a phenomenon due to condensation of center vor-
tices [70, 71] (see also ref. [72] for a discussion), it begs the question, what happens in
a theory based on a non-Abelian gauge group with trivial center? In this respect, it is
particularly interesting to consider the G2 gauge theory: since this exceptional group is the
smallest simply connected group with a trivial center, it is an ideal toy model to be studied
on the lattice.

Note that, even though smaller continuous non-Abelian groups with a trivial center
do exist, strictly speaking what actually counts is the fundamental group of the compact
adjoint Lie group associated with the Lie algebra of the gauge group. For example, the
SO(3) group has a trivial center, but (contrary to some inaccurate, if widespread, claims)
this property, by itself, does not make the SO(3) lattice gauge theory a suitable model for
studying confinement without a center,1 nor one to be contrasted with the SU(2) gauge

1Nevertheless, it is worth remarking that the lattice investigation of SO(3) gauge theory has its own
reasons of theoretical interest [73].
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group (which has the same Lie algebra). Indeed, the first homotopy group of SO(3), which is
the compact adjoint Lie group associated with the B1 Lie algebra, is Z2, i.e. the same as the
first homotopy group of the projective special unitary group of degree 2 (whose associated
Lie algebra is A1 = B1). This leaves only G2, F4 and E8 as compact simply-connected Lie
groups with a trivial center; of these, G2, with rank two and dimension 14, is the smallest
and hence the most suitable for a lattice Monte Carlo study. In fact, numerical simulations
of this Yang-Mills theory have already been going on for some years [74–84]. Besides numer-
ical studies, these peculiar features of G2 Yang-Mills theory have also triggered analytical
interest [85–95].

Note that the question, whether G2 Yang-Mills theory is a “confining” theory or not,
depends on the definition of confinement. If one defines confinement as the absence of
non-color-singlet states in the physical spectrum, then G2 Yang-Mills theory is, indeed,
a confining theory. On the other hand, if one defines confinement as the existence of an
asymptotically linear potential between static color sources, then the infrared dynamics of
G2 Yang-Mills theory could rather be described as “screening”. Indeed, previous lattice stud-
ies indicate that, at zero and low temperatures, the G2 Yang-Mills theory has a confining
phase, in which static color sources in the smallest fundamental irreducible representation
7 are confined by string-like objects, up to intermediate distances. At very large distances,
however, the potential associated with a pair of fundamental sources gets screened. This
is a straightforward consequence of representation theory (and, ultimately, of the lack of a
non-trivial N -ality for this group): as eq. (A.15) in the appendix A shows, the represen-
tation 7 appears in the decomposition of the product of three adjoint representations 14,
thus a fundamental G2 quark can be screened by three gluons.

One further reason of interest for a QCD-like lattice theory based on the G2 group is
that it is free from the so-called sign problem [96]: with dynamical fermion fields in the
fundamental representation of the gauge group, the introduction of a finite quark chemical
potential does not make the determinant of the Dirac matrix complex, thus the theory
can be simulated at finite densities [97, 98]. As compared to another well-known QCD-like
theory which shares this property, namely two-color QCD [99–103], one advantage is that
“baryons” in G2 QCD are still fermionic states, like in the real world.

Finally, the possibility that gauge theories based on exceptional gauge groups may be
relevant in walking technicolor scenarios for spontaneous electro-weak symmetry breaking
was studied (via a perturbative analysis) in ref. [104].

In this work, we extend previous lattice studies of G2 Yang-Mills theory at finite tem-
perature [82–84] by computing the equation of state in the temperature range T . 3Tc,
where Tc denotes the critical deconfinement temperature.2 After introducing some basic
definitions and the setup of our simulations in section 2, we present our numerical results
in section 3; then in section 4 we compare them with the predictions of some analytical
calculations, pointing out qualitative and quantitative analogies with SU(N) gauge theo-
ries. Finally, in section 5 we summarize our findings and list possible extensions of the

2Note that this is the temperature range probed experimentally at the LHC [105], although in real-world
QCD deconfinement is a crossover, rather than a sharp, first-order transition.
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present work. Some general properties of the G2 group and of its algebra are reported in
the appendix A.

2 Setup

Our non-perturbative computation of the equation of state in G2 Yang-Mills theory is
based on the standard Wilson regularization of the theory on a four-dimensional, Euclidean,
hypercubic lattice Λ of spacing a [106]. Throughout this article, we denote the Euclidean
time direction by the index 0 (or by a subscript t), and the spatial directions by 1, 2 and 3

(or by a subscript s). Periodic boundary conditions are imposed along the four directions.
Using natural units c = ~ = kB = 1, the physical temperature is given by the inverse
of the length of the shortest side of the system (which we take to be in the direction 0),
T = 1/(aNt), while the other three sides of the hypertorus have equal lengths, denoted by
Ls = aNs. In order to avoid systematic uncertainties caused by finite-volume effects, we
always take LsT � 1; in practice, previous studies of SU(N) Yang-Mills thermodynamics
have shown that, at the temperatures of interest for this work, finite-volume effects are
negligible for LsT & 4 [107–109].

To extract vacuum expectation values at low temperature (in the confining phase), we
carry out simulations on lattices of sizes L4

s: for the parameters of our simulations, this
choice corresponds to temperatures which are sufficiently “deep” in the confining phase—
meaning temperatures, at which the values of the bulk thermodynamic quantities, that we
are interested in, are well below the statistical precision of our data.

The partition function of the lattice system is defined by the multiple group integral

Z =

∫ ∏
x∈Λ

3∏
α=0

dUα(x) e−SW , (2.1)

where dUα(x) denotes the Haar measure for the generic Uα(x) matrix, which represents the
parallel transporter on the oriented bond from x to x+aα̂. The Uα(x) matrices take values
in the representation of the G2 group in terms of real 7× 7 matrices,3 while

SW = − 1

g2

∑
x∈Λ

∑
0≤µ<ν≤3

TrUµ,ν(x) (2.2)

is the gauge-invariant Wilson lattice action [106]. Here, g is the bare lattice coupling and

Uµ,ν(x) = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν (x) (2.3)

denotes the plaquette stemming from site x and lying in the oriented (µ, ν) plane. In the
following, we also introduce the Wilson action parameter β, which for this theory can be
defined as β = 7/g2.

3Actually, for part of our simulations we also used a different algorithm, based on the decomposition of
the G2 group discussed in ref. [110]—see ref. [82] for details.
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As usual, expectation values of gauge-invariant quantities O are then defined as

〈O〉 =
1

Z

∫ ∏
x∈Λ

3∏
α=0

dUα(x)O e−SW (2.4)

and can be computed numerically, via Monte Carlo integration. To this purpose, we gener-
ated ensembles of matrix configurations using an algorithm that performs first a heathbath
update, followed by five to ten overrelaxation steps, on an SU(3) subgroup of G2 (in turn,
both the heathbath and overrelaxation steps are based on three updates of SU(2) sub-
groups [111]). Finally, a G2 transformation is applied, in order to ensure ergodicity. The
parameterization of G2 that we used is described in refs. [112, 113]. After a thermalization
transient, we generate the ensemble to be analyzed by discarding a certain number (which
depends on the physical parameters of the simulation—in particular, on the proximity to
the deconfinement temperature, which affects the autocorrelation time of the system) of
intermediate configurations between those to be used for our analysis. Typically, the num-
ber of configurations for each combination of parameters (β, Ns and Nt) is O(104). This
leads to an ensemble of (approximately) statistically independent configurations, allowing
us to bypass the problem of coping with difficult-to-quantify systematic uncertainties due
to autocorrelations. Throughout this work, all statistical errorbars are computed using the
gamma method; a comparison on a data subset shows that the jackknife procedure gives
roughly equivalent results.

We computed expectation values of hypervolume-averaged, traced Wilson loops at zero
temperature

W (r, L) =
1

6N4
s

∑
x∈Λ

∑
0≤µ<ν≤3

1

7
Tr
{
Lrµ(x)LLν (x+ rµ̂)

[
Lrµ(x+ Lν̂)

]† [LLν (x)
]†} (2.5)

with

Lrµ(x) =

r/a−1∏
n=0

Uµ (x+ naµ̂) , (2.6)

as well as of volume-averaged, traced Polyakov loops at finite temperature

P =
1

N3
s

∑
x∈Vt=0

1

7
TrL1/T

0 (x) (2.7)

(where Vt=0 denotes the spatial time-slice of Λ at t = 0) and of hypervolume-averaged
plaquettes (both at zero and at finite temperature).

From the expectation values of Wilson loops, which we computed with the multilevel
algorithm [114], the heavy-quark potential V (r) can be extracted via

V (r) = − 1

L
ln〈W (r, L)〉. (2.8)

In practice, since we are bound to use loops of finite sizes, in order to avoid possible
contamination from an excited state, we perform both a single- (k1 = 0) and a two-state
(k1 free) fit

〈W (r, L)〉 = e−LV (r) + k1e
−LV1(r), (2.9)
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extracting our results for V from fits in the L range where the results including or ne-
glecting the second addend on the right-hand side of eq. (2.9) are consistent, within their
uncertainties.

We set the scale by carrying out a two-parameter fit of V (r) to the Cornell form

V (r) = σr + V0 −
π

12r
, (2.10)

which is appropriate at the distances probed in this work (gluon screening sets in at much
longer distances), and enables one to extract the values of the string tension in lattice
units σa2, at each value of β. Note that the coefficient of the 1/r term in eq. (2.10) is
uniquely fixed by the central charge of the underlying low-energy effective theory describing
transverse fluctuations of the confining string in four spacetime dimensions [115], while we
neglect possible higher-order (in 1/r) terms [116].

Alternative methods to set the scale are discussed in the recent refs. [117, 118] and in
the works mentioned therein.

The phase structure of the lattice theory is revealed by the expectation value of the
plaquette—averaged over the lattice hypervolume and over the six independent (µ, ν)

planes—at T = 0, that we denote as 〈Up〉0: similarly to what happens in SU(N) gauge
theories, as β is increased from zero to large values, 〈Up〉0 interpolates between a strong-
coupling regime, dominated by lattice discretization effects, and a weak-coupling regime,
analytically connected to the continuum limit. The two regions are separated by a rapid
crossover (or, possibly, a first-order transition) taking place at βc ' 9.45 [82, 83]. This bulk
transition is unphysical, and, in order to extract physical results for the thermodynamics
of the theory, all of our simulations are performed in the region corresponding to “weak”
lattice couplings, β > βc, which is connected to the regime of continuum physics.

In the region of weak couplings, the finite-temperature deconfinement transition is
probed by studying the distribution of values and the Monte Carlo history of the bare
Polyakov loop (after thermalization): in the confining phase, the distribution of P is peaked
near zero, whereas a well-defined peak at a finite value of P develops, when the system is
above the critical deconfinement temperature Tc. In the vicinity of Tc, both the distribution
of P values ρ(P ) (with two local maxima, separated by a region in which ρ(P ) gets sup-
pressed when the physical volume of the lattice is increased) and the typical Monte Carlo
histories of P (featuring tunneling events, which become more and more infrequent when
the lattice volume is increased, between the most typical values of P ) give strong indication
that the deconfining transition is of first order, in agreement with previous studies [82, 83].

The equilibrium thermodynamics quantities of interest in the present work are the
pressure p, the energy density per unit volume ε, the trace of the energy-momentum tensor
∆ (which has the meaning of a trace anomaly, being related to the breaking of conformal
invariance of the classical theory by quantum effects), and the entropy density per unit
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volume s: they can be obtained from the finite-temperature partition function Z via

p = T
∂ lnZ

∂V

∣∣∣∣
T

, (2.11)

ε =
T 2

V

∂ lnZ

∂T

∣∣∣∣
V

, (2.12)

∆ = ε− 3p, (2.13)

s =
1

V
lnZ +

ε

T
. (2.14)

Introducing also the free energy density

f = −T
V

lnZ, (2.15)

the pressure can be readily computed using the p = −f identity, which holds in the ther-
modynamic limit. Using the standard “integral method” of ref. [119], p (or, more precisely,
the difference between the pressure at finite and at zero temperature) can thus be obtained
as

p =
T

V

∫ β

β0

dβ′
∂ lnZ

∂β′
= 6T 4

∫ β

β0

dβ′ (〈Up〉T − 〈Up〉0) , (2.16)

where 〈Up〉T denotes the plaquette expectation value at the temperature T , and β0 corre-
sponds to a point sufficiently deep in the confining phase, i.e. to a temperature at which
the difference between p and its zero-temperature value is negligible. The integral in the
rightmost term of eq. (2.16) is computed numerically, by carrying out simulations at a set
of (finely spaced) β values within the desired integration range, and performing the numer-
ical integration according to the trapezoid rule. Although more sophisticated methods, like
those described in ref. [120, appendix A], could allow us to reduce the systematic uncer-
tainties related to the numerical integration, it turns out that this would have hardly any
impact on the total error budget of our results.

The lattice determination of the trace of the energy-momentum tensor ∆ (in units of
T 4) is even more straightforward, as

∆

T 4
= 6N4

t (〈Up〉0 − 〈Up〉T ) · a∂β
∂a
, (2.17)

but it requires an accurate determination of the relation between β and a. We carried out
the latter non-perturbatively, using the σa2 values extracted from the confining potential,
as discussed above.4

4Note that eq. (2.17) reveals one technical challenge in this computation: on the one hand, as we
mentioned above, the simulations have to be carried out at values of the coupling in the region analytically
connected to the continuum limit, i.e. β > βc. In practice, this corresponds to relatively fine lattice
spacings, or Nt & 5. On the other hand, the N4

t factor appearing on the right-hand side of eq. (2.17) shows
that the physical signal is encoded in a difference of average plaquette values 〈Up〉0 and 〈Up〉T (both of
which remain finite), that becomes increasingly small when the continuum limit is approached. In practice,
the computational costs due to this technical aspect severely restrict the range of Nt values which can be
used, and, as a consequence, the lever arm to control the continuum limit.
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Finally, ε and s can be readily computed as linear combinations of p and ∆, using
eq. (2.13) and the thermodynamic identity

sT = ∆ + 4p. (2.18)

It is worth noting that alternative methods to determine the equation of state have
been recently proposed in ref. [121] and in refs. [122–125].

3 Numerical results

The first set of numerical results that we present in this section are those aimed to the
non-perturbative determination of the scale, i.e. of the relation between the parameter β
and the corresponding lattice spacing a. As discussed above, we derive this relation by
extracting the string tension in lattice units from the area-law decay of large Wilson loops
at zero temperature.

To achieve high precision, this numerical computation is carried out using the multilevel
algorithm [114], which yields exponential enhancement of the signal-to-noise ratio for long
loops. Fig. 1 shows results for the opposite of the logarithm of Wilson loops of different
widths r/a (symbols of different colors) as a function of the loop length in lattice units
L/a. The plot displays the results from our simulations at β = 10.4. The comparison
of results obtained from a naïve, brute-force computation (empty circles) and with our
implementation of the multilevel algorithm (filled squares) clearly shows that the latter are
in complete agreement with the former for short loops, and that the multilevel algorithm
outperforms the brute-force approach for large values of L, where the numerical values
obtained with the latter are affected by dramatic loss of relative precision.

Our results for the string tension in lattice units, as a function of β, are reported in
table 1, which also shows the sizes of the lattices on which the corresponding simulations
were carried out (all these zero-temperature simulations were performed on hypercubic
lattices of size L4

s), the range of r/a values used in the fit (including both extrema), as well
as the results for the constant term in the Cornell potential in lattice units and the reduced
χ2. Note that these are two-parameter fits to eq. (2.10), while, as mentioned in section 2,
the 1/r term is fixed to be the Lüscher term [115]. In principle, for data at small r/a
one could use an improved definition of the lattice distance [126, 127], however this type
of correction becomes rapidly negligible at large distances, and hence should not change
significantly our estimates of σa2, which are dominated by infrared physics.

The values of σa2 thus computed non-perturbatively can be interpolated by a fit to a
suitable functional form, in order to get an expression for a as a function of β in the region
of interest. In principle, this can be done in various ways (see, for example, refs. [127–129]),
which, in particular, can include slightly different parametrizations of the discretization
effects. One of the simplest possibilities is to fit our data for the logarithm of σa2 to a
polynomial of degree npar− 1 in (β− β0), where β0 is a value within the range of simulated
data. Choosing β0 = 10.2, a parabolic fit with three parameters, however, yields a large
χ2

red ' 6.4. Different choices of β0 and/or of npar ≥ 3 give interpolating functions that
are only marginally different (within the uncertainties of the fitted parameters) and do not
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Figure 1. Comparison of Wilson loop expectation values (in logarithmic scale), as a function of
the loop sizes, computed with and without the multilevel algorithm. The plot displays a sample of
our results at a fixed lattice spacing, from simulations at β = 10.4.

β Ls/a r/a range σa2 aV0 χ2
red

9.6 32 [4 : 7] 0.1335(77) 0.740(35) 0.4

9.8 32 [4 : 8] 0.0715(17) 0.7469(78) 1.7

10.0 32 [4 : 8] 0.0471(11) 0.7191(46) 0.12

10.2 32 [4 : 7] 0.03189(77) 0.6697(35) 1.04

10.4 32 [4 : 8] 0.02369(66) 0.6729(30) 0.87

10.8 32 [4 : 9] 0.01682(58) 0.6546(25) 1.82

Table 1. Summary of the fits of our Monte Carlo results for the static quark-antiquark potential,
as a function of r, to the Cornell form eq. (2.10), for the string tension σ and the constant term V0,
both in lattice units. The numerical results for V are obtained from the expectation values of large
Wilson loops computed at zero temperature on lattices of size L4

sÂăusing the multilevel algorithm,
according to the procedure discussed in sect. 2. The interval of distances r included in the fits and
the corresponding reduced-χ2 values are also shown.
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bring χ2
red down to values close to 1. For example, using a cubic, rather than quadratic,

polynomial, the fitted curve changes slightly, and the χ2
red (using all points) changes from 6.4

to 5.2. These unsatisfactory results hint at discretization effects—an indication confirmed
by that fact that, excluding the data corresponding to the coarsest lattice spacing, at
β = 9.6, from the fit, the χ2

red goes down to 2.2—and call for a modelling of our lattice results
via a functional form that could (at least partially) account for lattice cutoff systematics.
Therefore, following ref. [128], we chose to interpolate the values for the string tension in
lattice units computed non-perturbatively by a fit to

√
σa =

c1f(β)

1 + c3f2(β)
, f(β) = e−c2(β−β0), (3.1)

with β0 = 9.9. This yields c1 = 0.139(25), c2 = 0.450(99) and c3 = −0.42(10), with χ2
red =

0.73. Among the systematic uncertainties affecting this scale setting (which we include in
our final results) are, for example, those related to the possibility of adding a c4f

4(β) term
in the denominator, or modifying the functional form for f (for instance, multiplying it by a
polynomial in β): while not necessarily better-motivated from a theoretical point of view,5

these alternative parametrizations do not lead to significant changes in our final results,
hence we keep eq. (3.1), with the parameters listed above, as our final determination of the
scale. The results of this fit are shown in fig. 2, where, in addition to our results, we also
show those obtained in ref. [81], which are essentially compatible with our interpolating
curve (with its uncertainty).

From the results of our three-parameter fit to eq. (3.1), the lattice spacing a (and,
hence, the physical scale of our simulations and the temperature) can be determined at
any β value within the range of interpolation—provided one defines a physical value for
the string tension σ: to make contact with real-world QCD, one can, for example, set
σ = (440 MeV)2. In addition, the derivative of ln (

√
σa) with respect to β is also obtained

as

− c2
1− c3f

2(β)

1 + c3f2(β)
(3.2)

and the inverse of this quantity is later used in the computation of the trace of the energy-
momentum tensor ∆, according to eq. (2.17).

Next, we proceed to simulations at finite temperature, which we carried out on lattices
of sizes N3

s ×Nt (in units of the lattice spacing), where the shortest size Nt defines the tem-
perature via T = 1/(aNt), while Ns & 4Nt. As we already pointed out, by virtue of thermal
screening, an aspect ratio of the order of 4 (or larger) for the “temporal” cross-section of the
system is known to provide a sufficient suppression of finite-volume effects in SU(N) gauge
theories at the temperatures under consideration [108], while sizable corrections to the ther-
modynamic quantities are expected to appear at much higher temperatures [107]. Some
tests on lattices of different spatial volume confirm that this is the case for G2 Yang-Mills
theory, too, and did not give us any evidence of significant finite-volume corrections.

5In particular, the knowledge of terms predicted from one- or two-loop weak-coupling expansions is of
little guidance in this range of couplings, far from the perturbative regime.
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Figure 2. Results for the square root of the string tension in lattice units, as a function of the
Wilson action parameter β. The plot shows our simulation results (red circles) in comparison with
those from ref. [81] (blue squares), as well as the interpolating function described by eq. (3.1) for
the values of the parameters listed in the text (solid black curve), with the associated uncertainty
(dashed black curves).

Ns Nt nβ β-range
16 5 35 [9.62, 10.64]

32 6 60 [9.6, 10.78]

32 8 30 [9.8, 10.7]

Table 2. Parameters of the Monte Carlo simulations carried out in this work: Ns and Nt denote the
lattice sizes along the space-like and time-like directions (in units of the lattice spacing), nβ denotes
the number of β values simulated, for βmin ≤ β ≤ βmax. All simulations at finite temperature
are carried out on lattices of sizes (aNs)

3 × (aNt), while those deep in the confined phase (i.e.,
approximately at T = 0) are performed on lattices of sizes (aNs)

4.

The parameters of our simulations are summarized in table 2. In order to compute the
pressure with respect to its value at a temperature close to zero, according to the method
described in sect. 2, for each set of finite-temperature simulations we also carried out Monte
Carlo simulations on lattices of sizes (aNs)

4, at the same values of the lattice spacing.
The first task consists in identifying, for each value of Nt, the critical coupling corre-

sponding to the transition from the confining to the deconfined phase: by varying β, the
lattice spacing a can be tuned to 1/(NtTc). As mentioned in sect. 2, the transition from one
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Figure 3. The distribution of values for the spatially-averaged Polyakov loop P at three different
temperatures, as obtained from simulations on lattices with Nt = 6 and Ns = 32 at β = 9.76

(blue histograms), at β = 9.765 (red histograms) and at β = 9.77 (green histograms), reveals the
transition from a confining phase at low temperature, in which ρ(P ) has a peak close to zero, to a
deconfining one at high temperature, in which ρ has a global maximum for a finite value of P .

phase to the other can be identified by monitoring how the distribution ρ(P ) of values of
the spatially averaged, bare Polyakov loop P varies with β. The confining phase is charac-
terized by a distribution peaked at zero, while in the deconfined phase ρ(P ) has a maximum
at a finite value of P , and the transition (or crossover) region can be identified as the one in
which ρ(P ) takes a double-peak structure, with approximately equal maxima. An example
of such behavior is shown in fig. 3, where we plotted the distribution of values of Polyakov
loops from lattices with Nt = 6 and Ns = 32, at three different β values, namely 9.76, 9.765

and 9.77 (corresponding to three different values of the lattice spacing, and, hence, of the
temperature).

More precisely, in any finite-volume lattice this identifies a pseudo-critical coupling: as
usual, the existence of a phase transition is only possible for an infinite number of degrees
of freedom, namely in the thermodynamic, infinite-volume, limit. Thus, the actual critical
point corresponding to the thermodynamic phase transition is obtained by extrapolation of
the pseudo-critical couplings to the infinite-volume limit.

A more accurate way to determine the location and nature of the transition is based
on the study of the Binder cumulant [130], defined as

B = 1− |P |
4

3|P |2
, (3.3)
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Figure 4. The values of the Binder cumulant B defined in eq. (3.3), obtained from lattices of
different spatial volume (denoted by symbols of different colors) at fixed Nt (here, Nt = 8), reveal
the location of the (pseudo-)critical β at which the deconfinement transition takes place (in this
case 10.04± 0.03).

which is especially useful in computationally demanding problems (see ref. [131, appendix]
for an example). For a second-order phase transition, the values of B interpolate between
two different limits at “small” and “large” β (i.e. at low and at high temperature, respec-
tively). As the system volume is increased, B(β) tends to become a function with a sharper
and sharper increase in the region corresponding to the critical β. The critical coupling
in the thermodynamic limit can thus be estimated from the crossing of these curves. On
the other hand, for a first-order phase transition B(β) develops a deep minimum near the
transition point [132] (see also ref. [133] for a discussion).

We studied B for different values of the simulations parameters: one example is shown
in figure 4, which refers to simulations on lattices with Nt = 8 sites in the Euclidean time
direction, at different values of β and for different spatial volumes. Note that the values of
B vary rapidly within a narrow β-interval, allowing one to get a rather precise indication
of the (pseudo-)critical point.

For our present purposes, however, the main qualitative features of the thermal decon-
finement transition in G2 Yang-Mills theory are already revealed by how the Monte Carlo
history of the spatially averaged Polyakov loop and the ρ(P ) distribution vary with β and
the lattice volume. For β values equal to (or larger than) the critical one, the former exhibits
tunneling events between different vacua, which become increasingly rare when the lattice
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Figure 5. Distribution of values of the spatially-averaged Polyakov loop P close to the decon-
finement transition, from simulations on lattices of fixed spacing (and Euclidean time extent) and
different spatial volumes, corresponding toNs = 12 (blue histograms) andNs = 16 (red histograms).

volume grows. This suggest that the passage from the confining to the deconfined phase is
a transition of first order. Accordingly, the peaks in the ρ distribution at criticality tend
to become separated by an interval of P values, whose probability density is exponentially
suppressed when the lattice volume increases.

As an example, in fig. 5 we show the distribution of P values obtained from simulations
at the critical point for fixed Nt = 8 and fixed lattice spacing, for different spatial volumes
(12a)3 and (16a)3.

Our observation of a first-order deconfining transition confirms the results of earlier
lattice studies of this model [82, 83].

Having set the scale and determined the critical coupling for different values of Nt, we
proceed to the computation of equilibrium thermodynamic quantities at different lattice
spacings, and to the discussion of their extrapolation to the continuum limit. As pointed
out in sect. 2, the static observables of interest in this work are related to each other by
elementary thermodynamic identities. Since our numerical determination of the equation of
state is based on the integral method introduced in ref. [119], the quantity which is computed
most directly is the trace of the energy-momentum tensor ∆: as shown by eq. (2.17), it
is just given by the difference between the expectation values of the plaquette at zero and
at finite temperature, up to a β-dependent factor. The results from our simulations (at
different values of Nt) for the dimensionless ∆/T 4 ratio are shown in fig. 6, as a function of
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the temperature (in units of the critical temperature). Note that the data from simulation
ensembles at different Nt are close to each other, indicating that discretization effects are
under good control.

To get results in the continuum limit, we first interpolated our results from each Nt data
set with splines, and then tried to carry out an extrapolation to the a→ 0 limit, by fitting
the values interpolated with the splines (at a sufficiently large number of temperatures) as
a function of 1/N2

t , including a costant and a linear term.
The first of these two steps is done as follows: we split the data sets in nint intervals

defined by nint−1 internal knots, and computed nint+3 (or nint+2) basis splines (B-splines):
they define a function basis, such that every spline can be written as a linear combination
of those. The systematics uncertainties involved in the procedure are related to the choice
of the number of knots, and to the spline degree (quadratic or cubic); these uncertainties
can be estimated by comparing the χ2 values obtained for different choices, and turn out
not to be large.

As for the second step (the pointwise extrapolation to the continuum limit), however,
we observed that it leads to results which are mostly compatible with the curve obtained
from the interpolation of the Nt = 6 data set, except for a few (limited) regions, in which
the extrapolation is affected by somewhat larger errorbars—an effect likely due to statis-
tical fluctuations in the ensemble obtained from the finest lattice, which tend to drive the
continuum extrapolation. Since the latter effects are obviously unphysical, for the sake of
clarity of presentation we decided to consider the curve obtained from interpolation of our
Nt = 6 data (with the associated uncertainties) as an estimate of the continuum limit. This
curve corresponds to the brown band plotted in fig. 6.

Our results for the trace anomaly reveal two very interesting features:

1. When expressed per gluon degree of freedom, i.e. dividing by 2 × da (where 2 is the
number of transverse polarizations for a massless spin-1 particle in 3 + 1 spacetime
dimensions, and da is dimension of the gluon representation, i.e. da = 14 for G2, and
da = N2− 1 for SU(N) gauge group), the results for ∆/T 4 agree with those obtained
in SU(N) Yang-Mills theories.

2. In the deconfined phase (at temperatures up to a few times the deconfinement tem-
perature), ∆ is nearly perfectly proportional to T 2.

This is clearly exhibited in fig. 7, where our lattice results for ∆/(2daT
4) at Nt = 6 are

plotted against (Tc/T )2, together with analogous results for the SU(3) and SU(4) theories
(at Nt = 5) from ref. [134].6 The collapse of data obtained in theories with different gauge
groups is manifest, as is the linear dependence on 1/T 2 in the temperature range shown
(implying that ∆ is approximately proportional to T 2).

These features were already observed in SU(N) gauge theories, both in four [134–138]
and in three [139, 140] spacetime dimensions (the latter provide an interesting theoretical
laboratory: see, e.g., ref. [141] and references therein).

6Note that cutoff effects at Nt ≥ 5 are already rather small, so it is meaningful to compare Nt = 5 data
with those obtained from simulations at Nt = 6, at least within the precision of our results.
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Figure 6. Trace of the energy-momentum tensor, in units of T 4, as a function of the temperature
T (in units of Tc). Results obtained from simulations on lattices with different Nt are denoted by
different symbols: black circles for Nt = 5, red diamonds for Nt = 6, orange triangles for Nt = 8.
The errorbars shown in the plot account for the statistical uncertainties in the computation of the
average plaquettes in eq. (2.17), as well as for statistical and systematic uncertainties related to the
non-perturbative determination of the scale and of the critical coupling for each β. The brown band
denotes the interpolation of our results from the ensembles corresponding to Nt = 6. As discussed
in the text, such curve turns out to be essentially compatible with the results obtained from an
attempt to carry out the continuum extrapolation (up to small deviations in the latter, which are
likely due to statistical effects). Thus, we present the brown curve as an approximate estimate of
the continuum limit.

Integrating the plaquette differences used to evaluate ∆/T 4, the pressure (in units of
T 4) is then computed according to eq. (2.16) for each Nt. In principle, one could then
extrapolate the corresponding results to the continuum limit; however, like for the trace
anomaly, it turns out that, at the level of precision of our lattice data, this leads to results
which are essentially compatible with those from our Nt = 6 ensemble (within uncertainties,
including those related to the extrapolation systematics). Therefore, in fig. 8 we show the
results for p/T 4 obtained by numerical integration of the curve interpolating the Nt = 6

data (solid red curve): this curve can be taken as an approximate estimate of the continuum
limit (up to an uncertainty defined by the band within the dashed red curves). As one can
see, at the highest temperatures probed in this work the pressure is growing very slowly
(due to the logarithmic running of the coupling with the typical energy scale of the thermal
ensemble, which is of the order of T ) and tending towards its value in the Stefan-Boltzmann
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displayed by green symbols, obtained in ref. [134] at Nt = 5). All G2 results displayed here were
obtained from simulations at Nt = 6. Note that in this figure the data are plotted against (Tc/T )2,
in order to reveal the approximately perfect proportionality between ∆ and T 2 in the deconfined
phase (at least in the temperature range investigated in this work, up to a few times Tc): with this
choice of axes, this feature manifests itself in the linear behavior observed in the plot.

limit7 ( p

T 4

)
SB

=
14

45
π2, (3.4)

so that at temperatures T . 3Tc the system is still relatively far from a gas of free gluons.
Fig. 8 also shows our results for the energy density in units of the fourth power of the
temperature (ε/T 4, solid blue curve) and for the entropy density in units of the cube of
the temperature (s/T 3, solid green curve), respectively determined according to eq. (2.13)
and to eq. (2.18). Like for the pressure, the uncertainties affecting these two quantities are
denoted by the bands enclosed by the dashed curves.

4 Discussion

The features of this exceptional group (in particular: the fact that it has a trivial center)
make the G2 Yang-Mills model very interesting for a comparison with gauge theories based

7Strictly speaking, the Stefan-Boltzmann value of p/T 4 in the lattice theory at finite Nt is different from
(in particular: larger than) the continuum one: for Nt = 6 and for the Wilson gauge action used in this
work, the correction is approximately 13%. For a detailed derivation, see ref. [140, eqs. (A.5) and (A.6)]
and refs. [142, 143].
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Figure 8. Our estimate for the pressure p in units of T 4 (solid red curve), for the energy density ε
in units of T 4 (solid blue curve) and for the entropy density s in units of T 3 (solid green curve), as
obtained by numerical integration of our results for ∆/T 4 from the Nt = 6 ensemble, and according
to eq. (2.13) and to eq. (2.18), as discussed in the text. The dashed curves indicate the uncertainties
affecting each of these observables. These quantities are shown as a function of the temperature T ,
in units of deconfinement temperature Tc.

on classical simple Lie groups. As we discussed, previous works already showed that at
zero temperature this model bears several qualitative similarities with QCD: the physical
spectrum does not contain colored states, and the potential associated with a pair of static
color sources is linearly rising at intermediate distances—before flattening out at very large
distances, due to dynamical string-breaking. However, a difference with respect to QCD (in
which the color charge is screened by creation of dynamical quark-antiquark pairs, which
are absent in pure Yang-Mills theory) is that in G2 Yang-Mills theory screening is due to
gluons. At finite temperature, there is numerical evidence that this theory has a first-order
deconfinement phase transition (at which the average Polyakov loop modulus jumps from
small to finite values), even though this transition is not associated with the breaking of
center symmetry [82].

Our lattice results confirm the first-order nature of the deconfinement transition in G2

Yang-Mills theory at finite temperature. This is in agreement with analytical studies avail-
able in the literature. In particular, a semiclassical study of the confinement/deconfinement
mechanism in different Yang-Mills theories was presented in ref. [85] (a related study, dis-
cussing the inclusion of fundamental fermionic matter, is reported in ref. [91], while a gen-
eralization to all simple Lie groups has been recently presented in ref. [94]). Generalizing a
previous study for the SU(2) case [144], the authors of ref. [85] showed how the properties
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of the high-temperature phase of a generic Yang-Mills theory can be understood, by study-
ing its N = 1 supersymmetric counterpart on R3 × S1, and by continuously connecting
the supersymmetric model to the pure Yang-Mills theory, via soft supersymmetry-breaking
induced by a finite gluino mass. This analytical study is possible, by virtue of the fact that,
when the S1 compactification length L becomes small, the theory can be reliably investi-
gated by means of semi-classical methods.8 In particular, analyzing the effective potential
describing the eigenvalues of the Polyakov line, it turns out that:

• The phase transition is driven by the competition between terms of perturbative
origin [145–148], Bogomol’nyi-Prasad-Sommerfield monopole-instantons, and Kaluza-
Klein monopole-instantons (which tend to make the Polyakov line eigenvalues collapse,
namely to break center symmetry) and neutral bions (that stabilize the center).9

• This confining/deconfining mechanism is common to all non-Abelian theories, irre-
spective of the underlying gauge group. The order of the deconfining transition,
however, does depend on the gauge group: for the SU(2) case, the mechanism pre-
dicts the existence of a second-order transition, whereas for SU(N ≥ 3) and for G2

the transition is a discontinuous one.

In addition, the results of our lattice simulations also show that the equilibrium ther-
modynamic observables in this theory are quantitatively very similar to those determined in
previous studies of the SU(N) equation of state [134, 136, 137]. In fact, rescaling the var-
ious thermodynamic quantities by the number of gluon degrees of freedom, we found that
the observables per gluon component in the deconfined phase of G2 Yang-Mills theory are
essentially the same as in SU(N) theories. This is consistent with the observation (based on
an analysis of the gluon propagator in Landau gauge) that confinement and deconfinement
should not be qualitatively dependent on the gauge group [87]. The same independence
from the gauge group has also been observed in the numerical study of Polyakov loops in
different representations in SU(N) gauge theories [109]: the quantitative similarities with
results in the SU(3) theory [152–154] are suggestive of common dynamical features.

In particular, our data show that, in the deconfined phase of G2 Yang-Mills theory, the
trace of the stress-energy tensor ∆ is nearly exactly proportional to T 2 for temperatures
up to a few times the critical deconfinement temperature Tc. This peculiar behavior was
first observed in SU(3) Yang-Mills theory [135] (see also ref. [138] for a more recent, high-
precision study) and discussed in refs. [155–159]. Later, it was also observed in numerical
simulations of gauge theories with SU(N > 3) [134, 136, 137]. A dependence on the square
of the temperature is hard to explain in perturbative terms (unless it accidentally results
from cancellations between terms related to different powers of the coupling). Actually,
at those, relatively low, temperatures, most likely the gluon plasma is not weakly coupled
and non-perturbative effects probably play a non-negligible rôle [160, 161]. While one could

8Note that, since periodic boundary conditions are imposed along the compactified direction for all
fields (including fermionic ones), the transition in the supersymmetric theory is a quantum—rather than a
thermal—one.

9For further details about these topological objects, see also refs. [149–151] and references therein.
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argue that this numerical evidence in a relatively limited temperature range may not be too
compelling, it is interesting to note that lattice results reveal the same T 2-dependence also
in 2 + 1 spacetime dimensions [139, 140] (for a discussion, see also ref. [162] and references
therein). Note that, in the latter case, due to the dimensionful nature of the gauge coupling
g, the relation between g2 and the temperature is linear, rather than logarithmic.

Another interesting recent analytical work addressing the thermal properties of G2

Yang-Mills theory was reported in ref. [92] (see also ref. [95]): following an idea discussed
in refs. [90, 155, 163, 164], in this article the thermal behavior of the theory near Tc is
assumed to depend on a condensate for the Polyakov line eigenvalues, and the effective
action due to quantum fluctuations in the presence of this condensate is computed at two
loops. The somewhat surprising result is that the two-loop contribution to the effective
action is proportional to the one at one loop: this holds both for SU(N) and for G2 gauge
groups. In order to derive quantitative predictions for the pressure and for the Polyakov
loop as a function of the temperature, however, non-perturbative contributions should be
included, as discussed in ref. [90]. More precisely, the effective description of the deconfined
phase of Yang-Mills theories presented in ref. [90] is based on the assumption that, at a given
temperature, the system can be modelled by configurations characterized by a constant (i.e.
uniform in space) Polyakov line, and that the partition function can be written in terms of
an effective potential for the Polyakov line eigenvalues. By gauge invariance, the Polyakov
line can be taken to be a diagonal matrix without loss of generality. For SU(N) gauge
groups, the N eigenvalues of this matrix are complex numbers of modulus 1. Since the
determinant of the matrix equals 1, the eigenvalues’ phases are constrained to sum up to 0

mod 2π. It is convenient to define rescaled phases (to be denoted as q), that take values in
the real interval between −1 and 1; one can then write an effective potential V(q, T ), which
includes different types of contributions (of perturbative and non-perturbative nature). For
the G2 gauge group, the construction exploits the fact that G2 is a subgroup of SO(7),
which, in turn, is a subgroup of SU(7). Starting from SU(7), these conditions reduce the
number of independent components of q down to 2, the rank of G2. Thus, the effective
potential can take the form

V(q, T )

T 4
= −14

45
π2 +

4

3
π2V2(q)− 4π2T 2

c

3T 2

[
c1V1(q) + c2V2(q) + c3 + d2V

(7)
2 (q)

]
, (4.1)

where the first term on the right-hand side simply gives the free energy density for the free
gluon gas (according to eq. (3.4) and to the p = −f identity), the next term is the leading
perturbative contribution, which can be expressed in terms of Bernoulli polynomials, while
the terms within the square brackets are expected to mimic effects relevant close to the
deconfinement transition (note the presence of the coefficient proportional to T 2

c , related
to non-perturbative physics, in front of the square brackets): see ref. [90] for the precise
definitions and for a thorough discussion.

The effective potential in eq. (4.1) depends on the unknown coefficients c1, c2, c3 and
d2, which, in principle, could be fixed using our data. We carried out a preliminary study
in this direction, finding that (with certain, mild assumptions) it is indeed possible to fix
values for c1, c2, c3 and d2 yielding ∆/T 4 values compatible with our lattice data. However,
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the quality of such determination is not very good, because the parameters appear to be
cross-correlated and/or poorly constrained. Without imposing additional restrictions, an
accurate determination of these parameters would require data of extremely high precision
(and a genuine, very accurate continuum extrapolation).

After fixing the parameters of the effective potential defined in eq. (4.1), it would be
interesting to test, whether the model correctly predicts the behavior of other observables
computed on the lattice near the deconfining transition: this is a task that we leave for the
future.

5 Conclusions

The present lattice study of the G2 Yang-Mills model at finite temperature confirms that
this gauge theory has a finite-temperature deconfining phase transition. In agreement with
earlier lattice studies [82, 83], we found that the latter is of first order, as predicted using
semi-classical methods applicable to all simple gauge groups [85]. In particular, the nature of
the deconfinement transition, determined by the form of the effective potential experienced
by the Polyakov loop eigenvalues, results from the competition of different topological
objects (and perturbative effects [145]): neutral bions (which generate repulsion among the
eigenvalues) and magnetic bions, as well as monopole-instantons (which generate attraction
among eigenvalues, like the perturbative terms).

The study of the equation of state that we carried out also shows that the equilibrium
thermal properties of G2 gauge theory are qualitatively and quantitatively very similar to
those of all SU(N) theories (up to a trivial proportionality to the number of gluon degrees
of freedom), and are compatible with the predictions from recent analytical studies, like the
one reported in refs. [90, 92]. Recently, analogous conclusions have also been reached for
supersymmetric theories [165, 166], using an approach inspired by ref. [167]. These results
corroborate the idea of universality in the thermal behavior of confining gauge theories. To
summarize with a pun, one could say that the exceptional thermodynamics in the title of
the present paper “is not so exceptional, after all”.

Our findings are also interesting to understand the rôle that different topological ex-
citations play in confinement, and give indications about the non-perturbative dynamics
relevant at temperatures close to deconfinement, where truncated weak-coupling expansions
are no longer quantitatively accurate.

This work could be generalized along various directions. The temperature range that
we investigated could be extended, possibly in combination with the technical refinement
of using an improved version of the gauge action, as was done for SU(3) Yang-Mills theory
in ref. [138]. It is worth remarking that the multilevel algorithm used to set the scale in
the present work has been recently generalized to improved actions [168]. With sufficient
computational power, it would be interesting to compare the behavior of the thermodynamic
quantities in the confined phase with a gas of free glueballs, possibly modeling the spectrum
of excited states in terms of a vibrating bosonic string. This type of comparison was
successfully carried out in ref. [169] for SU(3) Yang-Mills theory in 3 + 1 dimensions and in
ref. [170] for SU(N) theories in 2 + 1 dimensions.
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One could also extend the investigation of the theory, by looking at other observables
in the deconfined phase, in particular going beyond those characterizing the equilibrium
properties of the QCD plasma. While the present study addresses a model which is in-
teresting as a theoretical dōjō, but which is not physically realized in nature, ultimately
our aim is to achieve a deeper understanding of phenomenologically relevant aspects of
strong interactions at finite temperature. In particular, transport properties describing the
real-time evolution of conserved charge densities in the QGP are of the utmost relevance
for experimentalists and theorists alike. The lattice investigation of these quantities, how-
ever, is particularly challenging (see ref. [53] for a detailed discussion), and until recently
has been mostly limited to the SU(3) theory. Given the aspects of universality that seem
to emerge from the present study and from previous works, it would be interesting to in-
vestigate, whether also the spectral functions related to different transport coefficients in
G2 Yang-Mills are qualitatively and quantitatively similar to those extracted in the SU(3)

theory—albeit this may prove computationally very challenging.
Another possible generalization would be to investigate the equation of state in a Yang-

Mills theory based on another exceptional gauge group. The “most natural” candidate would
be the one based on F4: this group has rank 4 and dimension 52 and, like G2, its center
is trivial. The smallest non-trivial irreducible representation of this group, however, is 26-
dimensional, making lattice simulations of this Yang-Mills theory much more demanding
from a computational point of view. We are not aware of any previous lattice studies of F4

gauge theory.
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A General properties of the G2 group and of its algebra

In this appendix we summarize some basic facts about the G2 group and its algebra. Our
discussion mostly follows ref. [74], although (where appropriate) we also provide some ad-
ditional technical details—in particular as it concerns the representation theory.

G2 is the smallest of the five exceptional simple Lie groups, with dim G2 = 14. It is a
subgroup of SO(7) and coincides with the automorphism group of the octonions. Equiva-
lently, it can be defined as the subgroup of GL(7) preserving the canonical differential 3-form
(given by the canonical bilinear form taking the cross product of two vectors as its second
argument). G2 has an SU(3) subgroup, and G2/SU(3) is isomorphic to the six-dimensional
sphere S6 [110]. This allows one to decompose a generic G2 element as the product of a
matrix associated with an element of S6, times an SU(3) matrix: for an explicit realization,
see ref. [82, appendix A]. Another subgroup of G2 is SO(4) [171].
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The Lie algebra of the G2 generators has dimension 14 and rank 2: its Cartan matrix
is [

2 −3

−1 2

]
, (A.1)

so that the Π-system includes a long and a short root, at a relative angle 5π/6 (a unique
property among all simple Lie algebras). There exist two fundamental representations,
which are seven- and fourteen-dimensional, respectively. The weight diagram of the 7-
dimensional fundamental representation is given by the vertices of a regular hexagon, plus
its center. The representation of dimension 14 is the adjoint representation: its weight
diagram is given by the vertices of a hexagram, with the addition of two points at its
center.

The irreducible representations can be unambiguously labelled by two non-negative
integers, (λ1, λ2); all of the irreducible representations can be cast in real form. The di-
mension (d) of a generic irreducible representation of label (λ1, λ2) is given by the Weyl
dimension formula

d =
(2λ1 + 3λ2 + 5) · (λ2 + 1) · (λ1 + 3λ2 + 4) · (λ1 + λ2 + 2) · (λ1 + 1) · (λ1 + 2λ2 + 3)

120
.

(A.2)
The trivial representation corresponds to (0, 0), whereas the fundamental representation of
dimension 7 is associated with labels (1, 0), while the adjoint corresponds to (0, 1). As a
curiosity, note that the dimension of the representation (9, 9) is exactly one million. All
irreducible representations of dimension not larger than 105 are listed in table 3.

Tensor products of irreducible representations are not, in general, irreducible. How-
ever, they can be decomposed into sums of irreducible representations. For G2, the most
straightforward algorithm to compute the decomposition of tensor products of irreducible
representations is the one based on girdles (see ref. [173] and references therein), which can
be briefly summarized as follows.

In the real vector space of dimension equal to the rank n of the group (R2 in this
case) with coordinates x1, . . . , xn, consider t distinct points P (i) =

(
P

(i)
1 , . . . , P

(i)
n

)
, with

i = 1, . . . , t, and define the corresponding set of points S by assigning integer multiplicities
k(i) to each P (i):

S =
{(
P (1); k(1)

)
, . . . ,

(
P (t); k(t)

)}
. (A.3)

A generic set of points S can then be uniquely associated with a Laurent polynomial in n
variables

σ(x1, . . . xn) =

t∑
i=1

k(i)

 n∏
j=1

x
P

(i)
j

j

 , (A.4)

and the operations of addition, subtraction, multiplication and division of sets of points are
then defined by the result of the same operations on the associated polynomials.

The girdle ξ(λ1, . . . λn) of a representation of a group is then a particular set of points,
with certain well-defined multiplicities: for G2, the girdles are irregular dodecagons, that
are symmetric with respect to both the x1 and x2 axes, and whose vertices in the first
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(λ1, λ2) d (λ1, λ2) d (λ1, λ2) d (λ1, λ2) d

(0, 0) 1 (6, 1) 3003 (3, 5) 18304 (4, 6) 53599

(1, 0) 7 (9, 0) 3289 (6, 3) 19019 (7, 4) 55614

(0, 1) 14 (0, 6) 3542 (0, 9) 19096 (2, 8) 56133

(2, 0) 27 (3, 3) 4096 (2, 6) 19278 (11, 2) 56133′

(1, 1) 64 (2, 4) 4914 (8, 2) 19683 (3, 7) 57344

(0, 2) 77 (1, 5) 4928 (14, 0) 20196 (9, 3) 59136

(3, 0) 77′ (7, 1) 4928′ (11, 1) 24192 (18, 0) 59983

(4, 0) 182 (10, 0) 5005 (5, 4) 24948 (14, 1) 61047

(2, 1) 189 (5, 2) 5103 (15, 0) 27132 (0, 12) 67158

(0, 3) 273 (0, 7) 6630 (9, 2) 28652 (6, 5) 69160

(1, 2) 286 (4, 3) 7293 (7, 3) 28672 (1, 10) 74074

(5, 0) 378 (11, 0) 7371 (1, 8) 29667 (12, 2) 76076

(3, 1) 448 (8, 1) 7722 (0, 10) 30107 (19, 0) 76153

(6, 0) 714 (6, 2) 8372 (4, 5) 30107′ (8, 4) 79002

(2, 2) 729 (3, 4) 9177 (3, 6) 33495 (15, 1) 80256

(0, 4) 748 (1, 6) 9660 (12, 1) 33592 (5, 6) 81081

(1, 3) 896 (2, 5) 10206 (2, 7) 33858 (10, 3) 81719

(4, 1) 924 (12, 0) 10556 (16, 0) 35853 (2, 9) 88803

(7, 0) 1254 (0, 8) 11571 (6, 4) 37961 (4, 7) 89726

(3, 2) 1547 (9, 1) 11648 (10, 2) 40579 (3, 8) 93093

(5, 1) 1728 (5, 3) 12096 (8, 3) 41769 (20, 0) 95634

(0, 5) 1729 (7, 2) 13090 (0, 11) 45695 (0, 13) 96019

(2, 3) 2079 (13, 0) 14756 (13, 1) 45696 (7, 5) 99008

(8, 0) 2079′ (4, 4) 15625 (5, 5) 46656

(1, 4) 2261 (10, 1) 17017 (17, 0) 46683

(4, 2) 2926 (1, 7) 17472 (1, 9) 47872

Table 3. The smallest irreducible representations of the G2 group, sorted by increasing dimension
d, up to 105. 1 denotes the trivial representation, while 7 and 14 denote the two fundamental
representations (14 being the adjoint representation). Non-equivalent irreducible representations
of the same dimension are distinguished by a prime sign (we conventionally choose to use the prime
sign for the representation with the largest value of λ1). Note that, in contrast to the claim of
ref. [172], there exists only one irreducible representation of dimension 28652.

quadrant are listed in table 4. The multiplicities associated with the vertices in the other
quadrants are also ±1, and are alternating around the dodecagon.10

The character of a given representation with label (λ1, λ2) is given by the ratio of
polynomials of two girdles:

χ(λ1, λ2) =
ξ(λ1, λ2)

ξ(0, 0)
. (A.5)

10Thus, for example, for the trivial representation the point of coordinates x1 = −1/
(
4
√
3
)
, x2 = 3/4

has multiplicity −1, while the one of coordinates x1 = −1/
√
3, x2 = 1/2 has multiplicity 1, and so on.

– 24 –



i P
(i)
1 P

(i)
2 k(i)

1 (2λ1 + 3λ2 + 5)/
√

48 (λ2 + 1)/4 1

2 (λ1 + 3λ2 + 4)/
√

48 (λ1 + λ2 + 2)/4 −1

3 (λ1 + 1)/
√

48 (λ1 + 2λ2 + 3)/4 1

Table 4. Coordinates and multiplicity coefficients of the points belonging to the girdle associated
with the G2 representation of label (λ1, λ2), within the first quadrant of the R2 plane. Note that,
in each coordinate, the constant term equals the sum of the coefficients of λ1 and λ2.

This allows one to decompose arbitrary tensor products of irreducible representations using
the fact that, since

χ(λ1, λ2)χ(µ1, µ2) =
∑

(ν1,ν2)

q(ν1,ν2)χ(ν1, ν2), (A.6)

one also has
ξ(λ1, λ2)ξ(µ1, µ2)

ξ(0, 0)
=
∑

(ν1,ν2)

q(ν1,ν2)ξ(ν1, ν2), (A.7)

which immediately allows one to identify the q(ν1,ν2) coefficients, since only girdles appear
on the right-hand-side of eq. (A.7).

A numerical implementation of the algorithm described above immediately shows that,
in particular, the following decomposition laws for tensor products of G2 representations
hold:

7⊗ 7 = 1⊕ 7⊕ 14⊕ 27, (A.8)

14⊗ 7 = 7⊕ 27⊕ 64, (A.9)

27⊗ 7 = 7⊕ 14⊕ 27⊕ 64⊕ 77, (A.10)

14⊗ 14 = 1⊕ 14⊕ 27⊕ 77⊕ 77′, (A.11)

27⊗ 14 = 7⊕ 14⊕ 27⊕ 64⊕ 77⊕ 189, (A.12)

77⊗ 14 = 14⊕ 27⊕ 64⊕ 77⊕ 77′ ⊕ 182⊕ 189⊕ 448, (A.13)

77′ ⊗ 14 = 14⊕ 77⊕ 77′ ⊕ 189⊕ 273⊕ 448. (A.14)

Note that, since both the trivial (1) and the smallest fundamental (7) representation appear
on the r.h.s. of eq. (A.8), it is elementary to prove by induction that (at least in principle)
G2 QCD admits color-singlet “hadrons” made of any number nval ≥ 2 of valence quarks:
“diquarks”, “baryons”, “tetraquarks”, “pentaquarks”, “hexaquarks”, “heptaquarks”, et. c.

Using the formulas above, the tensor product of three adjoint representations 14 can
be decomposed as

14⊗ 14⊗ 14 = 1⊕ 7⊕ 14⊕ 14⊕ 14⊕ 14⊕ 14⊕ 27⊕ 27⊕ 27⊕ 64⊕ 64

⊕77⊕ 77⊕ 77⊕ 77⊕ 77′ ⊕ 77′ ⊕ 77′ ⊕ 182⊕ 189⊕ 189⊕ 189

⊕273⊕ 448⊕ 448. (A.15)

The presence of the representation 7 on the right-hand side of eq. (A.15) implies that in
G2 Yang-Mills theory a fundamental color source can be screened by three gluons.
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The G2 Casimir operators are discussed in ref. [174]; in particular, the functionally
independent ones are those of degree 2 and 6. Their eigenvalues can be found in ref. [175,
section 5].

The non-perturbative aspects of a non-Abelian gauge theory are related to the topo-
logical objects that gauge field configurations can sustain. For the G2 group, the homotopy
groups are listed in table 5—see ref. [176]—, where Z1 denotes the trivial group. G2 is
connected, with a trivial fundamental group; its second homotopy group is trivial, too,
while the third is the group of integers, hence G2 gauge theory admits “instantons”.

n πn(G2) n πn(G2) n πn(G2)

0 Z1 6 Z3 12 Z1

1 Z1 7 Z1 13 Z1

2 Z1 8 Z2 14 Z168 ⊕ Z2

3 Z 9 Z6 15 Z6 ⊕ Z2 ⊕ Z2

4 Z1 10 Z1 16 Z8 ⊕ Z2

5 Z1 11 Z⊕ Z2 17 Z240

Table 5. Lowest homotopy groups of the G2 group, from ref. [176].

Finally, using the properties of exact sequences (and the additivity of homotopy groups
of direct products of groups), it is also trivial to show that π2 (G2/[U(1)×U(1)]) is Z⊕Z:
this implies that, like for SU(3) gauge theory, when the global G2 group gets broken to its
Cartan subgroup, two types of ’t Hooft-Polyakov monopoles appear.
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