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Abstract. We introduce the Mellin-Barnes representation of general Feynman integrals and
discuss their evaluation. The Mathematica package AMBRE has been recently extended in order
to cover consistently non-planar Feynman integrals with two loops. Prospects for the near future
are outlined. This write-up is an introduction to new results which have also been presented
elsewhere.

1. Introduction
The evaluation of Feynman integrals is a central numerical problem of perturbative quantum
field theory and is not solved in generality beyond the one-loop case. One has to consider
arbitrary L-loop integrals G(X) with loop momenta kl , with E external legs with momenta pe,
and with N internal lines with masses mi and propagators 1/Di,

G(X) =
1

(iπd/2)L

∫
ddk1 . . . d

dkLX(k1, . . . , kL)

Dn1
1 . . . Dni

i . . . DnN
N

, (1)

with d = 4 − 2ε, Di = q2i −m2
i = [

L∑
l=1

clikl +
E∑

e=1
deipe] −m2

i , and some tensors X(k1, . . . , kL) in

the loop momenta. For several reasons, one is interested in analytical solutions either:

• Analytical results are well suited for the exact cancellation of certain intermediate terms,
arising either from the renormalization procedure, from regularization, or just from the
organization of the calculation.

• Analytical results may stabilize the numerics.

• With analytical results, analytical continuations of representations of Feynman integrals
into regions of physical interest may be performed. Typically, it is easier to determine a
Feynman integral in the Euclidean region, but often it is needed in the Minkowskian.

There are quite different approaches to tackle multi-loop Feynman integrals. Without aiming
at completeness, we like to mention:

• Direct evaluation of a Feynman parameter representation (see e.g. the seminal articles [1, 2],
and for later improvements [3, 4, 5] and references therein)
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• Solving systems of differential or difference equations (see e.g. [6, 7, 8] and refs. therein)

• Expansion by regions (see e.g. [9] and refs. therein)

• Sector decomposition (see e.g. [10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and refs. therein)

• Mellin-Barnes (MB-) representations (see e.g. [20, 21, 22, 23, 24, 25, 26] and refs. therein)

For an overview of most recent developments we recommend [27]. We are concentrating here
on the Mellin-Barnes approach. Quite some work has been devoted to an automation of it, see
[28, 29, 30, 31, 32, 33, 34] and software at the webpage http://projects.hepforge.org/mbtools.
Nevertheless, the formalism is much less developed than e.g. that with differential equations,
where algorithms have been worked out for solving them in terms of certain classes of functions.
An analogue idea would be here using Cauchy’s theorem in order to derive from a Mellin-Barnes
representation multiple sums of residues, and then to sum up these sums analytically [35]. How
this might work with the software of the RISC (Linz) group [36, 37, 38, 39, 40, 41, 42, 43, 44]
around the packages SIGMA [45, 46], EvaluateMultiSums, and SumProduction [47, 48, 49] is
indicated in [50]. For not too involved classes of functions, one may try to apply the packages
SUMMER (http://www.nikhef.nl/∼t68/) or XSUMMER [51]. For automation, several problems have
to be solved:

• Determine if the topology is planar or non-planar – Mathematica package PlanarityTest

[34], see http://prac.us.edu.pl/∼gluza/ambre/planarity/.

• Construct the appropriate Mellin-Barnes representations – Mathematica package AMBRE [29,
30, 31, 50], see http://prac.us.edu.pl/∼gluza/ambre/. Here, also the Mathematica packages
MB [28] and MBresolve [32] are integrated – for the analytic continuation of Mellin-Barnes
integrals in ε; as well as MBasymptotics (2005, http://projects.hepforge.org/mbtools/) – for
the parametric expansions of Mellin-Barnes integrals and barnesroutines by D. Kosower
(2008, http://projects.hepforge.org/mbtools/) – for the automatic application of the first
and second Barnes lemmas.

• Change the MB-integrals into multiple nested sums – Mathematica package MBsums, under
development by M. Ochman (DESY) et al., see [50].

• Finally, try to perform the multiple sums analytically, see [50, 52].

• Alternatively, a purely numerical evaluation of the multi-dimensional Mellin-Barnes integral
may be envisaged. Here it is wishful to cover not only Euclidean cases, but also the
Minkowskian kinematics; this has not been studied so far.

Of course, a solution of the general case is not to be expected. The limitations of the method
have several reasons; we mention here:

• The number of loops;

• The number of different scales due to internal masses and the kinematics;

• The number of external legs;

• A planar or non-planar topology.

A Feynman parameter integral with N internal legs has, essentially, a dimensionality N−1. For
the corresponding MB-integral, the dimensionality will be different, and for complex problems
it often will come out much higher.

2. Mellin-Barnes representations
For the Feynman integral (1) one may derive the following Feynman parameter integral:

G(X) =
(−1)NνΓ

(
Nν − d

2L
)

N∏
i=1

Γ(ni)

∫ N∏
j=1

dxj x
nj−1
j δ(1−

N∑
i=1

xi)
U(x)Nν−d(L+1)/2

F (x)Nν−dL/2 (2)
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The functions U and F are called graph or Symanzik polynomials.
The repeated application of the Mellin-Barnes representation [20]

1

(A+B)λ
=

1

Γ(λ)

1

2πi

∫ +i∞

−i∞
dzΓ(λ+ z)Γ(−z) Bz

Aλ+z
(3)

to the Symanzik polynomials U and F allows to replace the sums of monomials in their definitions
(here: A(x) and B(x)) by products of these monomials and Γ-functions and, subsequently, to
perform the x-integrations. The integration path separates poles of Γ[λ+ z] and Γ[−z]. AMBRE
1.1, 1.2, 2.0 perform so-called loop-by-loop integrations with U = 1 and are efficient enough
for many applications (figure 1, left). For the massless, on-shell non-planar diagram of figure 1,
right, which was first solved in [24], one would have to treat:

U(x) = + x[1]x[2] + x[1]x[4] + x[2]x[4] + x[1]x[5] + x[2]x[5] + x[2]x[6] (4)

+ x[4]x[6] + x[5]x[6] + x[1]x[7] + x[4]x[7] + x[5]x[7] + x[6]x[7],

F (x) = −s x[1]x[2]x[5]− s x[1]x[3]x[5]− s x[2]x[3]x[5]− u x[2]x[4]x[6] (5)

− s x[3]x[5]x[6]− t x[1]x[4]x[7]− s x[3]x[5]x[7]− s x[3]x[6]x[7].

Here it becomes operational to apply the Cheng-Wu theorem [53, 54] which states that (2)
holds also with a modified delta function δ(1 −∑

i∈Ω xi) where Ω is an arbitrary subset of
the lines 1, . . . , N , when the integration over the rest of the variables, i.e. for i /∈ Ω, is
extended to the integration from 0 to ∞. With AMBRE 3.0, non-planar Feynman integrals
with two loops may be efficiently represented by a direct approach with use of the Cheng-
Wu theorem. Planar integrals are treated by the loop-by-loop ansatz with the earlier AMBRE

versions. For the example of the massless non-planar double box mentioned, AMBRE 3.0 derives
without manual interaction the 4-dimensional Mellin-Barnes representation of [24]. It might
look more promising to apply here instead the loop-by-loop approach, but experience shows
that the dimensionality becomes, without further interventions, higher. At the other hand, for
the massive non-planar double box, the loop-by-loop approach gives the MB-presentation derived
first in [25]. We mention here shortly that 3-loop integrals may be treated in a hybrid way by
a loop-by-loop approach, subsequently using AMBRE 1.2 and AMBRE 3.0 [50]; see the example
files MB hybrid 3loopNP massless.nb, MB hybrid 3loopNP massless.m,

out MB hybrid 3loopNP massless at the webpage http://prac.us.edu.pl/∼gluza/ambre/.
Finally we would like to mention that the mathematica package AMBRE 3.0 is released

for public use at the webpage http://prac.us.edu.pl/∼gluza/ambre/. There is no source file
made publicly available so far, but it may be made available on request. We consider this to
be appropriate; for closer information we refer to the webpages http://fh.desy.de/projekte/-
gfitter01/Gfitter01.htm (March 2013) and http://zfitter-gfitter.desy.de/ (April 2014). For a
collection of experts’ views on proper distribution of scientific software in basic research, we
would like to refer to [55, 56], a summary of a round table discussion at ACAT 2014.

3. Summary
We scetched essential features of the Mellin-Barnes approach to Feynman integrals and its
implementation in AMBRE. In the new version AMBRE 3.0 the Cheng-Wu theorem is implemented
and the replacement of the Symanzik polynomials by MB-integrals is performed globally. The
alternative loop-by-loop approach is implemented in AMBRE 2.0 or older versions. Which of the
approaches is more appropriate for a given problem has to be investigated.

A treatment of non-planar three-loop integrals deserves the combined application of AMBRE
1.2 and of AMBRE 3.0 in a hybrid approach. This will be improved in the nearest future. The
analytical summation of series of MB-residues is under study. Concerning the alternative to
analytical summation, namely a numerical evaluation of the MB-integrals, we are restricted
with AMBRE to the Euclidean kinematics so far. The Minkowskian numerics is on our to-do list.
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Figure 1. Left: The planar double box with loop momenta as used for the loop-by-loop
representation. Right: The non-planar double box.
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