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Abstract

We study the inclusive hadroproduction of D0, D+, D⋆+, and D+
s mesons at leading order

in the parton Reggeization approach endowed with universal fragmentation functions fitted to

e+e− annihilation data from CERN LEP1. We have described D-meson transverse momentum

distributions measured in the central region of rapidity by the CDF Collaboration at Tevatron

(|y| < 1) and ALICE Collaboration at LHC (|y| < 0.5) within uncertainties and without free

parameters, using Kimber-Martin-Ryskin unintegrated gluon distribution function in a proton.

The forward D-meson production (|y| > 2.0) measured by the LHCb Collaboration also has been

studied and expected disagreement between our theoretical predictions and data has been obtained.

PACS numbers: 12.38.-t,12.40.Nn,13.85.Ni,14.40.Gx

∗Electronic address: nefedovma@gmail.com
†Electronic address: karpishkov@rambler.ru
‡Electronic address: saleev@samsu.ru
§Electronic address: alexshipilova@samsu.ru

2

mailto:nefedovma@gmail.com
mailto:karpishkov@rambler.ru
mailto:saleev@samsu.ru
mailto:alexshipilova@samsu.ru


I. INTRODUCTION

The study of the open charm production in the high energy hadronic collisions is con-

sidered as a test of general applicability of perturbative quantum chromodynamics (QCD).

In the process of charmed meson production one has µ ≥ m, where µ is the typical energy

scale of the hard interaction, m is the charm quark mass, and αS(µ) ≪ 1. Nevertheless, this

study is also our potential for the observation of a new dynamical regime of perturbative

QCD, namely the high-energy Regge limit, which is characterized by the following condition
√
S ≫ µ ≫ ΛQCD, where

√
S is the invariant collision energy, and ΛQCD is the asymptotic

scale parameter of QCD. In this limit a new small parameter x ∼ µ/
√
S appears.

The small-x effects cause the distinction of the perturbative corrections relative for dif-

ferent processes and different regions of phase space. At first, the higher-order corrections

for the production of heavy final states, such as Higgs bosons, top-quark pairs, dijets with

large invariant masses, or Drell-Yan pairs, by initial-state partons with relatively large mo-

mentum fractions x ∼ 0.1 are dominated by soft and collinear gluons and may increase

the cross sections up to a factor 2. By contrast, relatively light final states, such as small-

transverse-momentum heavy quarkonia, single jets, prompt photons, or dijets with small

invariant masses, are produced by the fusion of partons with small values of x, typically

x ∼ 10−3 because of the large values of
√
S. Radiative corrections to such processes are

dominated by the production of additional hard jets. The only way to treat such processes

in the conventional collinear parton model (CPM) is to calculate higher-order corrections

in the strong coupling constant αS = g2S/4π, which could be a challenging task for some

processes even at the next-to-leading order (NLO) level. To overcome this difficulty and

take into account a sizable part of the higher-order corrections in the small-x regime, the

kT -factorization framework, was introduced [1–3].

Recently the ALICE Collaboration measured the differential cross sections dσ/dpT for

the inclusive production of D0, D+, D⋆+, and D+
s mesons [4–6] in proton-proton collisions at

the CERN LHC (
√
S = 2.76; 7 TeV) as functions of D-meson transverse momentum (pT ) in

the central rapidity region, |y| < 0.5. These measurements extend the CDF Collaboration

data [7] obtained earlier in proton-antiproton collisions at the Fermilab Tevatron at the

|y| < 1.0 and
√
S = 1.96 TeV. The production of D-mesons in the forward rapidity region

of 2.0 < y < 4.5 was investigated at the LHC by LHCb Collaboration and the data in the
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form of dσ/dpT were presented for the different intervals of rapidity [8].

These data have been studied in the next-to-leading order (NLO) in the collinear par-

ton model of QCD within the two approaches: the general-mass variable-flavor-number

(GM-VFN) scheme [9], and the so-called fixed order scheme improved with next-to-leading

logarithms (FONLL scheme) [10]. In the former one, realized in the Refs. [11–13], the large

fragmentation logarithms dominating at pT >> m are resummed through the evolution of

the fragmentation functions (FFs), satisfying the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) [14] evolution equations. At the same time, the full dependence on the charm-

quark mass in the hard-scattering cross section is retained to describe consistently pT ∼ m

region. The D-meson FFs were extracted both at leading and next-to-leading order in the

GM-VFN scheme from the fit of e+e− data taken by the OPAL Collaboration at CERN

LEP1 [15]. Opposite, in the FONLL approach, the NLO D-meson production cross sections

are calculated with a non-perturbative c-quark FF, that is not a subject to DGLAP [14] evo-

lution. The FONLL scheme was implemented in the Refs. [16, 17] and its main ingredients

are the following: the NLO fixed order calculation (FO) with resummation of large trans-

verse momentum logarithms at the next-to-leading level (NLL) for heavy quark production.

For the consistency of the calculation, the NLL formalism should be used to extract the

nonperturbative FFs from e+e− data, and in the Refs. [16, 17] the scheme of calculation of

heavy quark cross section and extraction of the nonperturbative FFs are directly connected

and must be used only together.

The overall agreement of data and calculations obtained in Refs. [11–13, 16, 17] is good,

the D−meson spectra measured by the CDF Collaboration at the Fermilab Tevatron and

ALICE and LHCb Collaborations at the LHC are described within experimental uncertain-

ties.

The aim of the present work is to study theD-meson production at Fermilab Tevatron and

CERN LHC in the framework of high-energy factorization scheme, namely kT -factorization

framework [1] endowed with the fully gauge-invariant amplitudes with Reggeized gluons in

the initial state. This combination we will call the Parton Reggeization Approach (PRA)

everywhere below.

The study of D-meson fragmentation production in terms of kT -factorization [1–3] was

performed also previously in the recent work [18], with off-shell initial gluons and using

the formalism of transverse-momentum dependent parton distributions, whereas the first
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results in this scheme were obtained for the D0 production at Tevatron Run I [19]. The

resulting curve in Ref. [18] describes the ALICE experimental data [5] by its upper limit of

theoretical uncertainty. We suppose PRA to be more theoretically consistent than previous

studies in kT -factorization, being not a recipe but based on a gauge invariant effective theory

for the processes in quasi-multi-Regge kinematics (QMRK) in QCD. Therefore it preserves

the gauge invariance of high-energy particle production amplitudes and allows a consistent

continuation towards the NLO calculations.

Recently, PRA was successfully applied for the analysis of inclusive production of single

jet [20], pair of jets [21], prompt-photon [22, 23], photon plus jet [24], Drell-Yan lepton pairs

[25], bottom-flavored jets [26, 27], charmonium and bottomonium production [28–32] at the

Tevatron and LHC. These studies have demonstrated the advantages of the high-energy

factorization scheme based on PRA in the descriptions of data comparing to the collinear

parton model calculations.

This paper is organized as follows. In Sec. II we present basic formalism of our cal-

culations, the PRA and the fragmentation model. In Sec. III our results are presented

in comparison with the experimental data and discussed. In Sec. IV we summarize our

conclusions.

II. BASIC FORMALISM

The phenomenology of strong interactions at high energies exhibits a dominant role of

gluon fusion into heavy quark and antiquark pair in heavy meson production. As it was

shown in Ref. [11], a significant part of D-meson production cross section comes from gluon

and c-quark fragmentation into D-meson, and the light quark fragmentation turns out to be

negligible. Following this, in our study we will consider the c-quark and gluon fragmentation

into different D-mesons only.

In hadron collisions the cross sections of processes with a hard scale µ can be represented

as a convolution of scale-dependent parton (quark or gluon) distributions and squared hard

parton scattering amplitude. These distributions correspond to the density of partons in

the proton with longitudinal momentum fraction x integrated over transverse momentum

up to kT = µ. Their evolution from some scale µ0, which controls a non-perturbative regime,

to the typical scale µ is described by DGLAP [14] evolution equations which allow to sum
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large logarithms of type log(µ2/Λ2
QCD) (collinear logarithms). The typical scale µ of the

hard-scattering processes is usually of order of the transverse mass mT =
√

m2 + |pT |2 of the
produced particle (or hadron jet) with (invariant) massm and transverse two-momentum pT .

With increasing energy, when the ratio of x ∼ µ/
√
S becomes small, the new large logarithms

log(1/x), soft logarithms, are to appear and can become even more important than the

collinear ones. These logarithms present both in parton distributions and in partonic cross

sections and can be resummed by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach [33].

The approach gives the description of QCD scattering amplitudes in the region of large S and

fixed momentum transfer t, S ≫ |t| (Regge region), with various color states in the t-channel.

Entering this region requires us to reduce approximations to keep the true kinematics of the

process. It becomes possible introducing the unintegrated over transverse momenta parton

distribution functions (UPDFs) Φ(x, t, µ2), which depend on parton transverse momentum

qT while its virtuality is t = −|qT |2. The UPDFs are defined to be related with collinear

ones through the equation:

xG(x, µ2) =
∫ µ2

dtΦ(x, t, µ2). (1)

The UPDFs satisfy the BFKL evolution equation [33] which is suited to resum soft loga-

rithms and appear in the BFKL approach as a particular result in the study of analytical

properties of the forward scattering amplitude. The basis of the BFKL approach is the

gluon Reggeization [34], as at small x the gluons are the dominant partons.

The gluon Reggeization appears considering special types of kinematics of processes at

high-energies. At large
√
S the dominant contributions to cross sections of QCD processes

gives multi-Regge kinematics (MRK). MRK is the kinematics where all particles have limited

(not growing with
√
S) transverse momenta and are combined into jets with limited invariant

mass of each jet and large (growing with
√
S) invariant masses of any pair of the jets. At

leading logarithmic approximation of the BFKL approach (LLA), where the logarithms of

type (αs log(1/x))
n are resummed, only gluons can be produced and each jet is actually a

gluon. At next-to-leading logarithmic approximation (NLA) the terms of αs(αs log(1/x))
n

are collected and a jet can contain a couple of partons (two gluons or quark-antiquark

pair). Such kinematics is called quasi multi-Regge kinematics. Despite of a great number of

contributing Feynman diagrams it turns out that at the Born level in the MRK amplitudes

acquire a simple factorized form. Moreover, radiative corrections to these amplitudes do
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not destroy this form, and their energy dependence is given by Regge factors s
ω(qi)
i , where

si are invariant masses of couples of neighboring jets and ω(qi) can be interpreted as a shift

of gluon spin from unity, dependent from momentum transfer q. This phenomenon is called

gluon Reggeization.

Due to the Reggeization of quarks and gluons, an important role is dedicated to the

vertices of Reggeon-particle interactions. In particular, these vertices are necessary for

the determination of the BFKL kernel. To define them we can notice the two ways: the

”classical” BFKL method [35] is based on analyticity and unitarity of particle production

amplitudes and the properties of the integrals corresponding to the Feynman diagrams with

two particles in the t-channel has been developed. Alternatively, they can be straightfor-

wardly derived from the non-Abelian gauge-invariant effective action for the interactions of

the Reggeized partons with the usual QCD partons, which was firstly introduced in Ref. [36]

for Reggeized gluons only, and then extended by inclusion of Reggeized quark fields in the

Ref. [37]. The full set of the induced and effective vertices together with Feynman rules one

can find in Refs. [37, 38].

Recently, an alternative method to obtain the gauge-invariant 2 → n amplitudes with

off-shell initial-state partons, which is mathematically equivalent to the PRA, was proposed

in Ref. [39]. These 2 → n amplitudes are extracted by using the spinor-helicity represen-

tation with complex momenta from the auxiliary 2 → n + 2 scattering processes which are

constructed to include the 2 → n scattering processes under consideration. This method is

more suitable for the implementation in automatic matrix-element generators, but for our

study the use of Reggeized quarks and gluons is found to be simpler.

As we mentioned above, we will consider the D-meson production by only the c-quark and

gluon fragmentation. The lowest order in αS parton subprocesses of PRA in which gluon or

c-quark are produced are the following: a gluon production via two Reggeized gluon fusion

R+R → g, (2)

and the corresponding quark-antiquark pair production

R+R → c+ c̄, (3)

where R are the Reggeized gluons.

According to the prescription of Ref. [38], the amplitudes of relevant processes (2) and

(3) can be obtained from the Feynman diagrams depicted in Figs. 1 and 2, where the dashed
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lines represent the Reggeized gluons. Of course, the last three Feynman diagrams in Fig. 2

can be combined into the effective particle-Reggeon-Reggeon (PRR) vertex [38].

Let us define four-vectors (n−)µ = P µ
1 /E1 and (n+)µ = P µ

2 /E2, where P µ
1,2 are the four-

momenta of the colliding protons, and E1,2 are their energies. We have (n±)2 = 0, n+·n− = 2,

and S = (P1 + P2)
2 = 4E1E2. For any four-momentum kµ, we define k± = k · n±. The

four-momenta of the Reggeized gluons can be represented as

qµ1 =
q+1
2
(n−)µ + qµ1T ,

qµ2 =
q−2
2
(n+)µ + qµ2T , (4)

where qT = (0,qT , 0) The amplitude of gluon production in fusion of two Reggeized gluons

can be presented as scalar product of Fadin-Kuraev-Lipatov effective PRR vertex Cg,µ
RR(q1, q2)

and polarization four-vector of final gluon εµ(p):

M(R+R → g) = Cg,µ
RR(q1, q2)εµ(p), (5)

where

Cg,µ
RR(q1, q2) = −

√
4παsf

abc q+1 q
−
2

2
√
t1t2

[

(q1 − q2)
µ +

(n+)µ

q+1

(

q22 + q+1 q
−
2

)

− (n−)µ

q−2

(

q21 + q+1 q
−
2

)

]

, (6)

a and b are the color indices of the Reggeized gluons with incoming four-momenta q1 and q2,

and fabc with a = 1, ..., N2
c −1 is the antisymmetric structure constants of color gauge group

SUC(3). The squared amplitude of the partonic subprocess R+R → g is straightforwardly

found from Eq. (6) to be

|M(R+R → g)|2 = 3

2
παsp

2
T . (7)

The amplitude of the process (3) can be presented in a same way, as a sum of three terms

M(R+R → c+ c̄) = M1 +M2 +M3:

M1 = −iπαs

q+1 q
−
2√

t1t2
T aT bŪ(p1)γ

α p̂1 − q̂1
(p1 − q1)2

γβV (p2)(n
+)α(n−)β,

M2 = −iπαs

q+1 q
−
2√

t1t2
T bT aŪ(p1)γ

β p̂1 − q̂2
(p1 − q2)2

γαV (p2)(n
+)α(n−)β, (8)

M3 = 2παs

q+1 q
−
2√

t1t2
T cfabc Ū(p1)γ

µV (p2)

(p1 + p2)2
[(n−)µ(q+2 +

q22
q−1

)− (n+)µ(q−1 +
q21
q+2

) + (q1 − q2)
µ],
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where T a are the generators of the fundamental representation of the color gauge group

SUC(3).

The squared amplitudes can be presented as follows

|M(R+R → c+ c̄)|2 = 256π2α2
s

(

1

2Nc

AAb +
Nc

2(N2
c − 1)

ANAb

)

(9)

AAb =
t1t2

t̂û
−
(

1 +
p+2
û
(q−1 − p−2 ) +

p−2
t̂
(q+2 − p+2 )

)2

(10)

ANAb =
2

S2

(

p+2 (q
−
1 − p−2 )S

û
+

S

2
+

∆

ŝ

)(

p−2 (q
+
2 − p+2 )S

t̂
+

S

2
− ∆

ŝ

)

− t1t2
q−1 q

+
2 ŝ

(

(

1

t̂
− 1

û

)

(q−1 p
+
2 − q+2 p

−
2 ) +

q−1 q
+
2 ŝ

t̂û
− 2

)

(11)

∆ =
S

2

(

û− t̂ + 2q−1 p
+
2 − 2q+2 p

−
2 + t1

q+2 − 2p+2
q+2

− t2
q−1 − 2p−2

q−1

)

(12)

Here the bar indicates averaging (summation) over initial-state (final-state) spins and colors,

t1 = −q21 = |q1T |2, t2 = −q22 = |q2T |2, and

ŝ = (q1 + q2)
2 = (p1 + p2)

2,

t̂ = (q1 − p1)
2 = (q2 − p2)

2,

û = (q2 − p1)
2 = (q1 − p2)

2.

The squared amplitude (9) analytically coincide with the previously obtained in Ref. [1]. We

checked that in the collinear limit, i.e. q(1,2)T → 0, the squared amplitude (9) after averaging

over the azimuthal angles transforms to the squared amplitude of the corresponding parton

subprocess in collinear model, namely g+g → c+ c̄. We perform our analysis in the region of
√
S, pT ≫ mc, that allows us to use zero-mass variable-flavor-number-scheme (ZM VFNS),

where the masses of the charm quarks in the hard-scattering amplitude are neglected.

In the kT -factorization, differential cross section for the 2 → 1 subprocess (2) has the

form:

dσ

dydpT
(p+ p → g +X) =

1

p3T

∫

dφ1

∫

dt1Φ(x1, t1, µ
2)Φ(x2, t2, µ

2)|M(R+R → g)|2, (13)

9



where φ1 is the azimuthal angle between pT and q1T .

Analogous formula for the 2 → 2 subprocess (3) can be written as

dσ

dy1dy2dp1Tdp2T
(p+ p → c(p1) + c̄(p2) +X) =

p1Tp2T
16π3

∫

dφ1

∫

d∆φ
∫

dt1 ×

×Φ(x1, t1, µ
2)Φ(x2, t2, µ

2)
|M(R+R → c+ c̄)|2

(x1x2S)2
, (14)

where x1 = q+1 /P
+
1 , x2 = q−2 /P

−
2 , ∆φ is the azimuthal angle between p1T and p2T , the

rapidity of the final-state parton with four-momentum p is y =
1

2
ln(

p+

p−
). Again, we have

checked a fact that in the limit of t1,2 → 0, we recover the conventional factorization formula

of the collinear parton model from (13) and (14).

The important ingredient of the our scheme is unintegrated gluon distribution function,

which we take as one proposed by Kimber, Martin and Ryskin (KMR) [40]. These distri-

butions are obtained introducing a single-scale auxiliary function which satisfies the unified

BFKL/DGLAP evolution equation, where the leading BFKL logarithms αS log(1/x) are

fully resummed and even a major (kinematical) part of the subleading BFKL effects are

taken into account. This procedure to obtain UPDFs requires less computational efforts

than the precise solution of two-scale evolution equations such as, for instance, Ciafaloni-

Catani-Fiorani-Marchesini equation [41], but we found it to be suitable and adequate to

physics of processes under study.

The usage of the kT -factorization formula and UPDFs with one longitudinal (light-cone)

kinematic variable (x) requires the Reggeization of the t−channel partons. Accordingly to

Refs. [36, 37], Reggeized partons carry only one large light-cone component of the four-

momentum and, therefore, it’s virtuality is dominated by the transverse momentum. Such

kinematics of the t−channel partons corresponds to the MRK of the initial state radiation

and particles, produced in the hard process. In our previous analysis [28–32] devoted to

the similar processes of heavy meson production we proved that these UPDFs give the best

description of the heavy quarkonium pT−spectra measured at the Tevatron [42] and LHC

[43].

In the fragmentation model the transition from the produced gluon or c-quark to the

D-meson is described by fragmentation function Dc,g(z, µ
2). According to corresponding

factorization theorem of QCD and the fragmentation model, the basic formula for the D-
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meson production cross section reads [44]:

dσ(p+ p → D +X)

dpDTdy
=
∑

i

∫ 1

0

dz

z
Di→D(z, µ

2)
dσ(p+ p → i(pi = pD/z) +X)

dpiTdyi
, (15)

where Di→D(z, µ
2) is the fragmentation function for the parton i, produced at the hard scale

µ, splitting into D-meson, z is the longitudinal momentum fraction of a fragmenting particle

carried by the D-meson. In the zero-mass approximation the fragmentation parameter z

can be defined as follows pµD = zpµi , pD and pi are the D−meson and i-parton four-momenta,

and yD = yi. In our calculations we use the LO FFs from Ref. [12], where the fits of non-

perturbative D0, D+, D⋆+, and D+
s FF’s, both at LO and NLO in the MS factorization

scheme, to OPAL data from LEP1 [15] were performed. These FFs satisfy two desirable

properties: at first, their µ−scaling violation is ruled by DGLAP evolution equations; at

second, they are universal.

In the fits of Refs. [11–13], the parameterizations at the initial scale µ0 = mc for the FF’s

were taken as follows:

Dc(z, µ
2
0) = Nc

z(1 − z)2

[(1− z) + ǫc]2
(16)

Dg,q(z, µ
2
0) = 0. (17)

To illustrate a difference of contributions to the D-meson production we show in the Fig. 3

the c−quark and gluon FF’s into D⋆−meson.

As the contribution of gluon fragmentation at µ > µ0 is initiated by the perturbative

transition of gluons to cc̄-pairs encountered by DGLAP evolution equations, the part of

c-quarks produced in the subprocess (3) with their subsequent transition to D-mesons are

already taken into account considering D-meson production via gluon fragmentation. Such

a way, to avoid double counting, we must subtract this contribution, that can be effectively

done by the imposing of the lower cut on ŝ at the threshold of the production of the cc̄

pair in (14), i.e ŝ > 4m2
c . The precise study of double-counting terms and other finite-mass

effects needs a separate consideration and can be a subject of our future works.

III. RESULTS

The first measurement of D-meson production transverse-momentum distributions at

hadron colliders was implemented by the CDF Collaboration at Fermilab Tevatron [7], at
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the collision energy of
√
S = 1.96 TeV. The production of the D0, D+, D⋆+, and D+

s

mesons was studied in the central region of rapidity |y| < 1.0 and with transverse momenta

up to 20 GeV. In the Fig. 4 we introduce these data coming as differential cross sections

dσ/dpT , where the particle and antiparticle contributions are averaged, in comparison with

our predictions in the PRA. The dashed lines represent contributions of the process (2) while

dash-dotted lines correspond to ones of the process (3). The sum of both contributions is

shown as solid line. We estimated a theoretical uncertainty arising from uncertainty of

definition of factorization and renormalization scales by varying them between 1/2mT and

2mT around their central value of mT , the transverse mass of fragmenting parton. The

resulting uncertainty is depicted in the figures by shaded bands. We find a good agreement

between our predictions and experimental data in the large-pT interval ofD-meson transverse

momenta within experimental an theoretical uncertainties. However, our predictions show

a tendency to fall below the data in the lower pT range. It can point to the significance of

c-quark mass effects in the region, where the hard scale of the process is not much larger than

the c-quark mass. The increasing of the collision energy with other kinematic conditions

preserved is supposed to lead to a better agreement between theory and experiment in our

approach as we expect the rise of logarithmic contributions of type log(1/x) to be more

significant than finite-quark-mass effects.

Our expectations are confirmed when we turn to the description of the recent data from

the LHC at its intermediate energy of
√
S = 2.76 TeV and

√
S = 7 TeV collected by

the ALICE Collaboration [4, 5]. The previous NLO predictions made in collinear parton

model in general are in agreement with ALICE data, however, one can find that the FONLL

scheme [17] tend to overestimate data and the GM-VFN [13] is to underestimate. In the

Figs. 5 and 6, we compare our predictions with ALICE data [4, 5] keeping the notations of

curves the same as in the Fig. 4. The current collision energies of LHC is 2-3.5 times larger

compared to Tevatron and the interval of D-meson rapidity is more narrow, |y| < 0.5. We

obtain a good agreement of our predictions with the experiment for the all types ofD-mesons

at the whole range of their transverse momenta. As there is no experimental data for D+
s -

production at the energy of
√
S = 2.76 TeV, we introduce the theoretical prediction only.

Finally, in the Fig. 7 we present our predictions for the planned LHC energy of
√
S = 14 TeV

and the other kinematic conditions as in the Ref. [5].

Considering the D-meson central rapidity production, we find the MRK subprocess (2)
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to remain indeed the dominant one for all collision energies. Such a way, we confirm the

theoretical suggestion mentioned in Sec. II that MRK gives the leading logarithmic approxi-

mation for the high-energy production processes in BFKL approach while the QMRK turns

out to be subleading. However, in the framework of Ref. [18], which seems to be theoretically

close to PRA, this MRK subprocess is absent while the main contribution is coming from

QMRK subprocess.

Not only the central but also the forward rapidity region in pp collisions at the LHC

become available due to the specially designed LHCb detector where the measurements of

differential cross sections ofD0, D+, D⋆+, andD+
s mesons with 2.0 < y < 4.5 at

√
S = 7 TeV

were performed [8]. The observed data divided into 5 rapidity regions have been under study

in both, FONLL and GM-VFN, schemes and were founded to be generally enclosed between

their predictions [13, 17]. We present these data together with our results obtained in the LO

of PRA in the Figs. 8-12. One can find the summary contribution mainly to underestimate

the data from 1.5 to 2 times with a slight exception in the case of D+
s production. This

result is expected and becomes clear if we recall that with grow of rapidity of the particle

produced in the hard scattering process the fraction of longitudinal momenta of initial proton

transferred to this process increases simultaneously. That means, on a one hand, that we

enter the region of large x > 0.1 where the conditions of Reggeization are not satisfied,

and another effects, such as signals of intrinsic charm, can appear. On the other hand, to

balance the large positive rapidity of a produced particle one needs a very small negative

longitudinal momenta to income the hard subprocess from the side of another proton in the

collision. Such a way, we have a very asymmetric case where the one t-channel exchange

is perfectly under the multi-Regge kinematics conditions being strong opposite the second

one. That leads to the situation in which we finely take into account small-x effects although

loosing in large-x. It is illustrated by the Fig. 12 dedicated to the largest rapidity region

4.0 < y < 4.5 where we obtain a better agreement with experimental data in comparison

with other ones of forward production. It proves our assumption that BFKL-type logarithms

exhibit themselves at the already achieved collision energies giving a significant contribution

to the production rates.

Considering the relative contributions of the subprocesses in the forward rapidity region,

we find the QMRK subprocess to decrease with grow of rapidity. That illustrates the fact

that the probability of a production of quark and antiquark both with large close rapidities

13



in a symmetric collision diminishes. The case when one of them has a significant positive

rapidity, and another one – the same negative, contradicts the definition of QMRK process.

IV. CONCLUSIONS

We introduce a comprehensive study of D0, D+, D⋆+, and D+
s -meson fragmentation pro-

duction in proton-(anti)proton collisions with central rapidities at Tevatron Collider and

LHC and in the forward rapidity region for the LHC, in the framework of Parton Reggeiza-

tion Approach. We use the gauge invariant amplitudes of hard parton subprocesses in the

LO level of theory with Reggeized gluons in the initial state in a self-consistent way together

with unintegrated parton distribution functions proposed by Kimber, Martin and Ryskin.

The 2 → 1 hard subprocess of gluon production via a fusion of two Reggeized gluons in

the PRA framework is proposed for the first time in the case of D-meson fragmentation

production and proved to be a dominant one. To describe the non-perturbative transition

of produced gluons and c-quarks into the D-mesons we use the universal fragmentation

functions obtained from the fit of e+e− annihilation data from CERN LEP1. We found our

results for D-meson central-rapidity production to be in the excellent coincidence with ex-

perimental data from the LHC and good agreement with large-transverse-momenta Tevatron

data. The achieved degree of agreement for the LHC exceeds the one obtained by NLO cal-

culations in the conventional collinear parton model and LO calculations in kT -factorization

with Reggeized gluons. The predictions for the D-meson production in the central rapidity

region for the expected LHC energy of
√
S = 14 TeV are also presented. For the forward

rapidity region we compare our results with transverse-momentum D-meson distributions

measured by LHCb Collaboration at LHC, and the expected discrepancies are obtained. We

describe D-meson production without any free parameters or auxiliary approximations.
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FIG. 10: The same as in the Fig. 8 for D⋆+ mesons.
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FIG. 11: The same as in the Fig. 8 for D+
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