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Abstract

A measurement is presented of single- and double-differential dijet cross sections in
diffractive deep-inelasticepscattering at HERA using data collected by the H1 experiment
corresponding to an integrated luminosity of 290 pb−1. The investigated phase space is
spanned by the photon virtuality in the range of 4< Q2 < 100 GeV2 and by the fractional
proton longitudinal momentum lossxIP < 0.03. The resulting cross sections are compared
with next-to-leading order QCD predictions based on diffractive parton distribution func-
tions and the value of the strong coupling constant is extracted.
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1 Introduction

In deep-inelastic scattering (DIS), diffractive reactions of the typeep → eXY, whereX is a
high-mass hadronic final state andY is either the elastically scattered proton or its low-mass
excitation, represent about 10% of the events at HERA and provide rich experimental input
for testing quantum chromodynamics (QCD) in the diffractive regime. These processes can be
understood as probing by a virtual photon emitted from the beam lepton a net colour singlet
carrying vacuum quantum numbers (a pomeron) [1,2]. Due to the colourless exchange the sys-
temsX andY are separated by a rapidity interval free of hadronic activities. In these processes
at least one hard scale is involved such that perturbative QCD (pQCD) can be applied.

According to the QCD collinear factorisation theorem [3], calculations of diffractive cross
sections factorise into process dependent hard scatteringcoefficient functions and a set of pro-
cess independent diffractive parton distribution functions (DPDFs). While the hard scattering
coefficient functions are calculable in pQCD, the DPDFs have to be determined from QCD
fits to the measured inclusive diffractive cross sections. In such QCD fits [4], DGLAP evo-
lution [5–7] of the DPDFs is assumed. The QCD factorisation theorem is proven to hold for
inclusive and dijet diffractive processes [8], assuming high enough photon virtuality such that
higher twist effects can be neglected. The DPDFs are experimentally determined by assuming
an additional factorisation of the DPDFs dependence on the scattered proton momentum from
the dependence on the other variables, ascribed to the structure of the colourless exchange. This
assumption is known as proton vertex factorisation. A pomeron flux in the proton is introduced
and universal parton densities are attributed to the diffractively exchanged object. Many mea-
surements of diffraction in DIS suggest the validity of the proton vertex factorisation assumption
in DIS [4,9–11].

In leading order the inclusive diffractive cross section inep scattering is proportional to
the charge-squared weighted sum of the quark distribution functions in the pomeron, while its
gluon content can be determined only indirectly via scalingviolations. As events with two
jets (dijets) are readily produced in gluon-induced processes, measurements of diffractive dijet
cross sections are sensitive to the value of the strong coupling αs and to the gluon content of
the pomeron. The production of dijets in diffractive DIS has previously been studied at HERA
using either the large rapidity gap (LRG) method [12–14] or by direct detection of the outgoing
proton [15].

In this paper cross section measurements of dijet production in diffractive ep scattering
are presented, based on data collected in the years 2005-2007 with the H1 detector at HERA.
Diffractive events are selected by means of the LRG method, requiring a clear separation in
rapidity of the final state systemsX andY. The measured cross sections are compared to next-
to-leading order (NLO) QCD predictions evaluated with input DPDFs determined in previous
inclusive diffractive measurements by the H1 collaboration [4].

The present analysis is based on the full HERA-II data sampleresulting in significantly
increased statistics with respect to previous analyses. Furthermore, the cross sections are deter-
mined using a regularised unfolding procedure which fully accounts for efficiencies, migrations
and correlations among the measurements. The measured dijet cross sections are used to extract
the strong coupling constantαs in diffractive DIS processes for the first time.
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2 Kinematics
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Figure 1: Leading order diagram for the production of dijetsin diffractive DIS.

A leading order (LO) diagram of boson-gluon fusion, which isthe dominant process for the
production of two jets in diffractive DIS, is depicted in Figure 1. The incoming electron1 of
four-momentumk interacts with the incoming proton of four-momentump via the exchange of
a virtual photon of four-momentumq = k − k′. The outgoing proton or its low-mass dissocia-
tion state carries four-momentump′. The DIS kinematics is described by the following set of
variables:

Q2 = −q2 = (k− k′)2, x =
Q2

2p · q, y =
p · q
p · k, (1)

whereQ2, x andy denote the photon virtuality, the Bjorken-x variable and the inelasticity of the
process, respectively. Conservation laws stipulate the relation Q2 = xys, wheres stands for the
epcentre-of-mass energy squared.

The kinematics of the diffractive exchange is described in terms of the additional quantities

xIP =
q · (p− p′)

q · p , t = (p− p′)2 (2)

with xIP and t being the longitudinal momentum fraction of the incoming proton carried by
the pomeron and the squared four-momentum transfer at the proton vertex, respectively. The
fractional longitudinal momentum of the pomeron transferred to the dijet system is given by

zIP =
q · v

q · (p− p′)
=

x
xIP
, (3)

wherev is the four-momentum of the parton entering the hard interaction.

1In this paper the term "electron" is used generically to refer to both electrons and positrons.
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3 Monte Carlo Models and Fixed Order QCD Calculations

The RAPGAP event generator [16] allows for the simulation ofprocessesep→ eXY includ-
ing both leading (pomeron) and sub-leading (reggeon) exchanges. Assuming the proton vertex
factorisation, the parton densities obtained in the previous QCD analysis of inclusive diffractive
data (H12006 Fit-B) [4] are convoluted with leading order QCD matrix elements. Higher order
QCD radiation effects are modelled via initial and final state parton showers in the leading-
log approximation [17]. Hadronisation is accounted for by making use of the Lund string
model [18] as implemented in PYTHIA [19].

Within the diffractive selection based on the LRG method, the systemY may also be a low
mass dissociative system. Proton dissociation events are simulated in the the range ofMY <

20 GeV using the RAPGAP event generator, whereMY is the mass of the systemY. Resonant
contributions together with the continuum part of theMY distribution are modelled similarly to
the DIFFVM event generator [20]. A small admixture of resolvedγ∗p scattering is included in
fixed LO mode of jet production in the lowQ2 region [21]. The resolved photon contribution
is simulated with the RAPGAP event generator using the SaS-GPDF set [22] as the input
PDF of the photon. QED radiation effects are simulated with the HERACLES [23] program
interfaced to RAPGAP. Besides the Born level contribution,the simulated cross sections include
contributions from initial and final state emission of real photons from the electron, from vertex
corrections as well as from self energy diagrams. As the H12006 Fit-B DPDF set has previously
been observed to underestimate the data in the lowQ2 region, a weighting is applied forQ2 <

7 GeV2, parametrised as the ratio of the data in [4] to the Monte Carlo expectation based on the
H12006 Fit-B DPDF set.

Background arising from non-diffractive DIS processes is also simulated with the RAPGAP
event generator using its inclusive mode together with the CTEQ6L PDF set [24].

The MC simulation is used to correct the data for detector effects. The generated events
undergo the full GEANT [25] simulation of the H1 detector andare analysed in the same way
as the real data. In order to describe the measured distributions, the diffractive MC is reweighted
in several variables as discussed in 4.4.

QCD predictions of the dijet cross sections at the parton level are evaluated at NLO using the
NLOJET++ program [26, 27]. The NLO pQCD predictions are calculated intheMS-scheme
with five active flavors. The two-loop approximation of the renormalisation group equation is
used for the running of the strong coupling constant with a coupling strength ofαs(MZ) = 0.118.
The cross sections are evaluated in intervals ofxIP, effectively replacing the beam proton by a
pomeron (slicing method). The H12006 Fit-B DPDF set is used in the calculation. The renor-
malisation and factorisation scalesµr andµ f are provided by the photon virtuality and the av-
erage transverse momentum of the leading and sub-leading jet, 〈p∗T〉, in theγ∗-p centre-of-mass
frame and are defined asµr = µ f =

√

〈p∗T〉2 + Q2. The uncertainty on the prediction due to
missing higher orders is estimated by simultaneous variation of the renormalisation and factori-
sation scales by factors of 0.5 or 2. An uncertainty on the NLO prediction from the experimental
uncertainties on the DPDF set is obtained using the eigenvector decomposition of the uncertain-
ties of the H12006 Fit-B DPDF set. This uncertainty is propagated to the NLO prediction using
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the sign-improved formulae for error propagation [28]. A significant contribution to the uncer-
tainty of the H12006 Fit-B set originates from the restriction of the input data tozIP < 0.8 and
the extrapolation of the DPDF tozIP > 0.8.

Whereas the measured cross sections are compared to the predictions obtained by the slicing
method, an alternative method of adapting the NLO calculations for diffractive DIS is used in
theαs extraction. In order to provide theory predictions with different values ofαs(MZ), the
fastNLO method [29–31] is used. Cross section predictions are obtained by folding tabulated
matrix elements obtained from NLOJET++ [26,27] with the DPDF parametrisation. The matrix
elements are determined as a function of the observable of interest, the factorisation scaleµF and
the convolution variablex. The relationx = xIPzIP is used when folding with the DPDF. This way
predictions can be obtained for different choices of DPDFs, ofαs and of the renormalisation and
the factorisation scales without having to calculate the matrix elements all over again. Settings
identical to the slicing method are used for parameters suchas renormalisation and factorisation
scales or DPDF set and very good numerical agreement with theslicing method is found. The
uncertainty on the prediction due to missing higher orders is estimated by varying the scales by
a factor f , where 0.5 < f < 2.

Since the measured cross sections are given at the level of stable hadrons, the QCD pre-
dicted cross sections have to be corrected for effects of initial and final state parton showers,
hadronisation and fragmentation. These corrections are determined for each of the measured
cross sections as the ratio of hadron to parton level cross sections, predicted with the RAP-
GAP event generator. Two distinct models of parton showers,the leading-log approximation
and the colour dipole model as implemented in the ARIADNE program [32], are used in this
calculation. In each measurement interval the resulting correction is taken as the average of
the values predicted by the two models and the uncertaintieson the correction factors are taken
as half the difference of the two predictions. The hadron level cross sections are on average
about 5% higher than the parton level cross sections. The total uncertainty on the NLO QCD
predictions is obtained as the quadratic sum of the uncertainties from scale variation, DPDF fit
and hadronisation uncertainties.

4 Experimental Technique

4.1 H1 detector

A detailed description of the detector can be found elsewhere [33]. Here only those detector
components relevant for the present analysis are briefly described. A right-handed coordinate
system with the origin at the nominal interaction point and with thez-axis pointing in the proton
beam direction is conventionally chosen as the laboratory frame. The polar angleθ is measured
with respect to thez-axis, while the direction in thex-y plane is defined by the azimuthal angle
φ. The pseudorapidity is defined asη = − ln tan(θ/2).

The liquid argon (LAr) sampling calorimeter [34] is locatedinside a 1.15 T solenoidal field
and covers the polar angular range 4◦ < θ < 154◦. The energy resolutions for electromag-
netic and hadronic showers as determined in test beam measurements [35, 36] areσ(E)/E ∝
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11%/
√

E/GeV⊕1% andσ(E)/E ∝ 50%/
√

E/GeV⊕2%, respectively. The energy and scatter-
ing angle of the scattered electron is measured in a scintillating fibre calorimeter SpaCal [37,38]
with a resolution ofσ(E)/E ∝ 7%/

√
E/GeV⊕ 1%. The precision of the energy scale is 1%

covering the polar angular range 154◦< θe′ <174◦. The measurement of the polar angle of the
scattered electronθe′ is improved by means of a backward proportional chamber (BPC). The
precision of the polar angle measurement is 1 mrad.

Trajectories of charged particles are measured with the central tracking detector (CTD) lo-
cated inside the LAr calorimeter with a transverse momentumresolution ofσpT/pT ≃ 0.2 % ·
pT/GeV⊕ 1.5% in the polar angular range of 15◦<θ<165◦.

The information from CTD and LAr is used for the reconstruction of the systemX. The
interaction vertex position is determined event-by-eventusing the particle trajectories measured
in CTD.

The following H1 forward detectors are used in the LRG selection of diffractive events. The
forward muon detector (FMD) consists of six proportional chambers which are grouped into two
three-layer sections separated by a toroidal magnet. Although the nominal coverage of FMD is
1.9 < η < 3.7, particles with pseudorapidity up toη ∼ 6.5 can be detected indirectly through
their interactions with the beam transport system and detector support structures. The lead-
scintillator Plug calorimeter is located atz = 4.9 m and covers the range 3.5 < η < 5.5. The
very forward region is covered by the forward tagging system(FTS) comprising scintillators
surrounding the beam pipe. Only one station of FTS, situatedat z = 28 m and covering the
range 6.0 < η < 7.5, is included in the present analysis.

The instantaneous luminosity is monitored based on the rateof the Bethe-Heitler process
ep→ epγ. The final state photon is detected by a photon detector located close to the beam
pipe atz = −103 m. The precision of the integrated luminosity measurement is improved in a
dedicated analysis of the QED Compton process [39].

4.2 Reconstruction of observables

The DIS observablesQ2, x andy are reconstructed using the electron-Σ method [40]. Within
this method, the photon virtualityQ2 is reconstructed based on the measured four-momentum
of the scattered electron, while the inelasticityy and Bjorken-x are determined making use of
combined information from the hadronic final state (HFS) andthe scattered electron.

The four-momenta of the particles attributed to HFS are reconstructed using an algorithm
which combines information provided by the tracking systemand the LAr calorimeter by avoid-
ing double counting of hadronic energy [41,42]. The calibration of the HFS energy scale derived
in [43] is applied. The performance of the calibration was studied by comparing the transverse
momentum balance in data and MC in the kinematic domain of this analysis.

Jets are reconstructed in theγ∗-p centre-of-mass frame using the inclusivekT jet algorithm
[44] with the pT recombination scheme as implemented in the FastJet program[45]. The jet
distance parameter is set toR = 1.0. The transverse momenta and pseudorapidities of the
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leading and sub-leading jets are denoted asp∗T,1, η
∗
1 and p∗T,2, η

∗
2, respectively2. The invariant

mass of the final state systemX is reconstructed as:

MX = c(ηmax)
√

P2
X, (4)

wherePX is the four-momentum of the systemX obtained as a vector sum of all particles
contained in the HFS. The MC simulation is used in order to derive the average correction for
detector lossesc(ηmax), whereηmax is the pseudorapidity of the most forward energy deposition
above 800 MeV in the LAr calorimeter. The momentum fractionsxIP andzIP are reconstructed
as:

xIP =
Q2 + M2

X

ys
(5)

and

zIP =
Q2 + M2

12

Q2 + M2
X

, (6)

whereM12 is the invariant mass of the dijet system.

Cross sections for dijet production in diffractive DIS are measured differentially with respect
to the variablesQ2, y, xIP, zIP, p∗T,1, p∗T,2, 〈p∗T〉 = (p∗T,1 + p∗T,2)/2 and∆η∗ = |η∗1 − η∗2|.

4.3 Event selection

The measurement is based on the H1 data collected in the years2005 to 2007 with a total
integrated luminosity of 290 pb−1. The nominal beam energies of the protons and electrons are
Ep = 920 GeV andEe = 27.6 GeV, respectively.

The longitudinal position of the reconstructed event vertex is restricted to the range−35 <
zvtx < 35 cm. DIS events are selected by the identification of the scattered electron in the
backward calorimeter SpaCal. The isolated energy deposit of electromagnetic structure with
the highest transverse momentum is identified as scattered electron and has to have a measured
energy of at least 9.5 GeV.

Only events accepted by a trigger combining signals inducedby the scattered electron in
the SpaCal with minimum track information of the CTD are usedin the analysis. The trigger
efficiency related to the CTD condition is found to be 98%-99%, depending on the detector
configuration and is reproduced by the MC simulation within 2%. The trigger efficiency related
to the SPACAL condition is better than 99%.

Residual non-DIS background is dominated by photoproduction processes, where a hadron
is misidentified as the scattered electron, whereas the truescattered electron escapes detection
due to its small scattering angle. This background is reduced to a negligible level by demanding
35 <

∑

i(E − pz)i < 75 GeV, where the sum runs over all HFS particles and the scattered
electron candidate. Elastic QED Compton scatteringep→ eγp introduces another background
contribution which is suppressed by rejecting configurations with two back-to-back clusters in
SpaCal.

2Observables in theγ∗-p centre-of-mass frame are labelled with an asterisk.
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Diffractive events are identified with the LRG method which requires an empty interval in
rapidity between the systemsX andY. The low-mass systemY is produced at very large pseu-
dorapidities and escapes detection. The diffractive signature is thus defined by the systemsX
(in the main detector) andY (undetected). The energy of any cluster in the forward region of
the LAr calorimeter is required to be below the noise level of800 MeV, which is ensured by de-
mandingηmax< 3.2. The variableηmax corresponds to the LAr cluster above the noise threshold
which has the largest pseudorapidity. Information provided by the forward detectors FMD, FTS
and the Plug calorimeter is used in order to extend the gap to rapidities beyond the LAr accep-
tance and in order to suppress the proton dissociation contribution. These detectors are required
to show no signal above noise level [46]. At high momentum fractionsxIP, the systemX tends
to extend into the direction of the outgoing systemY and the experimental separation of the sys-
temsX andY is not possible. The LRG selection method is thus applicableonly in the region of
xIP . 0.03. The sample of DIS events satisfying the LRG criteria is dominated by the diffractive
exchange, as the systemX is isolated in the main part of the H1 detector, while the systemY
escapes undetected down the beam pipe. The signal is dominated by proton-elastic processes,
ep→ eXp, however, a small fraction of proton dissociation events isalso accepted by the LRG
selection. The LRG requirements impose restrictions on themass and scattering angle of the
hadronic systemY. These correspond approximately to the requirementsMY < 1.6 GeV and
|t| < 1 GeV2. Migrations in these variables are modelled using MC simulations.

Extended Analysis Phase Space Measurement Cross Section Phase Space

DIS
3 < Q2 < 100 GeV2 4 < Q2 < 100 GeV2

y < 0.7 0.1 < y < 0.7

Diffraction

xIP < 0.04 xIP < 0.03

LRG requirements |t| < 1 GeV2

MY < 1.6 GeV

Dijets

p∗T,1 > 3.0 GeV p∗T,1 > 5.5 GeV

p∗T,2 > 3.0 GeV p∗T,2 > 4.0 GeV

−2 < ηlab
1,2 < 2 −1 < ηlab

1,2 < 2

Table 1: Summary of the extended analysis phase space and thephase space for the dijet cross
sections measurements.

Events are selected in a phase space which is extended compared to the measurement phase
space in order to improve the precision of the measurement byaccounting for migrations at the
phase space boundaries. Events within the DIS phase space ofy < 0.7 and 3< Q2 < 100 GeV2

are selected. The events are required to have at least two jets in the pseudorapidity range−2 <
ηlab

1,2 < 2 and transverse momenta greater than 3 GeV in theγ∗-p centre-of-mass frame.

The measurement phase is defined by the DIS requirements of 0.1 < y < 0.7 and 4< Q2 <

100 GeV2. The pseudorapidity of jets is restricted in the laboratoryframe to−1 < ηlab
1,2 < 2 to

ensure the jets to be contained well within the central detector. The transverse momenta of the
leading and sub-leading jets are required to be larger than 5.5 GeV and 4.0 GeV, respectively.
The extended phase space and the measurement phase space definitions are summarised in
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table 1. The total number of events accepted by the LRG selection criteria together with the
DIS and jet requirements is∼ 50000 and∼ 15000 for the extended and measurement phase
space, respectively.

4.4 Corrections to the data

Cross sections at the level of stable hadrons are obtained from the measured event rates in data
by applying corrections determined using the MC simulation. In figure 2 kinematic distributions
of the observablesQ2, p∗T,1, xIP andzIP as observed in the detector are shown in comparison to
the expectations from the reweighted MC simulation. The overall good description of the data
is achieved after applying a dedicated weighting of the MC simulation in the variableszIP, xIP

andxdi jet =
∑

1,2(E
∗ jet − p∗ jet

z )i/
∑

HFS(E∗ − p∗z)i. Weights are obtained from the reconstructed
kinematic distributions and are applied at the hadron level. This procedure is iterated until a
good description of the shapes of the observables is achieved.

The data are corrected for detector inefficiencies, acceptance and finite resolution using the
regularised unfolding procedure as implemented in TUnfold[47]. A detector response matrix
A, with elementsai j expressing the probability for an observable originating in the generated
MC sample from an intervali to be measured in an intervalj, is determined using the MC
simulation. Migrations from outside the measurement phasespace are included by additional
rows of the detector response matrix. The domains of jets with 3.0 < p∗T,1 < 5.5 GeV and
of events with 0.03 < xIP < 0.04 are found to be the dominating sources of these migrations.
The MC simulation is reweighted in order to describe the dataalso in these regions beyond the
nominal phase space.

Two sources of background are considered in this analysis and are subtracted from the data
using Monte Carlo simulations prior to unfolding: diffractive dijet events withMY > 1.6 GeV
and|t| < 1 GeV2 and background from non-diffractive DIS.

For a background subtracted measurementyj, the corresponding number of events in the
truth bin i, xi, is found by solving a minimisation problem for aχ2 function

χ2 = (y− Ax)TV−1
yy (y− Ax) + τ2x2, (7)

wherex andy are vectors defined byyj andxi, respectively,Vyy is the covariance matrix account-
ing for the statistical uncertainties ofyj andτ is a regularisation parameter introduced in order
to damp statistical fluctuations of the solution. The regularisation parameterτ is determined
using the L-Curve scan [47].

The cross section in each measurement intervali is given by

σi(ep→ ep′X) =
xi

L
(1+ δi,rad), (8)

whereL is the integrated luminosity of the data sample and (1+δi,rad) is the correction for QED
radiation effects in the intervali. These corrections are calculated as a ratio of RAPGAP pre-
dictions with and without QED radiation simulated. The differential cross section is determined
by dividingσi by the area of the corresponding interval.
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4.5 Systematic uncertainties

The systematic uncertainties induced by experimental effects and by model adequateness are
propagated to each measurement interval in the unfolding procedure (eq. 7). A dedicated detec-
tor response matrix is constructed for each variation related to particular sources of uncertain-
ties:

• The energy of the scattered electron is varied by±1% with a resulting uncertainty on the
integrated dijet cross section of 1%.

• The polar angle of the scattered electron is varied by±1 mrad with a resulting uncertainty
on the integrated dijet cross section of 1%.

• The energy of each particle contained in HFS is varied by±1% [43] which translates into
an uncertainty on the integrated dijet cross section of 4%.

• Uncertainties related to the model dependent corrections of the data are accounted for
by varying the shape of the kinematic distributions inQ2, xIP, β, p∗T,1, zIP, xdi jet and∆η∗

in the MC such that the data are still described within the statistical uncertainties. For
this purpose, the multiplicative weights (logQ2)±0.2, x±0.05

IP , β±0.01(1−β±0.01), p∗±0.04
T,1 , z±0.15

IP ,
x±0.15

di jet and (1.5+∆η∗)±0.5 are applied, respectively. The largest resulting uncertainty of 3%
arises from the variation of the shape inp∗T,1. The shape of the distribution int is varied
within the experimental uncertainty on thet-slope [48] by applying a weight ofe±t in
MC, which translates into an uncertainty on the integrated dijet cross section of 1 %. The
integrated cross section uncertainty due to the model dependence of the measurement is
of the order of 5 %.

The following uncertainties on the global normalisation are considered:

• The luminosity of the data is measured with a precision±2.7 % [39].

• The trigger efficiency related to the tracking and SpaCal condition inducesan uncertainty
of 2% and 1%, respectively.

• The uncertainty accounting for the LRG selection efficiency is 7% [49].

• The normalisation of the non-diffractive DIS background modelled by RAPGAP is var-
ied by±50 % and the normalisation of the diffractive background is varied by±100 %,
yielding a resulting uncertainty on the integrated dijet cross section below 1% in both
cases.

The total systematic uncertainty is obtained by adding the individual contributions in quadra-
ture.
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5 Results

The integrated cross section in the measurement phase spacespecified in table 1 is found to be

σdi jet
meas(ep→ eXY) = 73± 2 (stat.) ± 7 (syst.) pb . (9)

The NLO QCD prediction of the total diffractive dijet cross section is

σ
di jet
theo(ep→ eXY) = 77 +25

−20 (scale)+4
−14 (DPDF) ± 3 (had) pb, (10)

in very good agreement with the measurement. The uncertainty on the NLO prediction is found
to be significantly larger than the experimental uncertainty.

Single differential cross sections are given in tables 2 and 3 and are shown in figures 3-6.
The statistical correlations between measurements in different bins are given in tables 6 and 7.
The differential cross sections as a function of the DIS variablesQ2 andy are shown in figure 3,
as a function of the momentum fractionsxIP andzIP are shown in figure 4 and as a function of
the jet variablesp∗T,1, p∗T,2, 〈p∗T〉 and∆η∗ are shown in Figure 5 and 6. For the majority of the
measurements, the data precision is limited by systematic effects. The statistical correlations
are small for the inclusive kinematic variablesQ2 andy and moderate (|ρ| < 0.6) for the other
variables. The figures also include the NLO QCD predictions which describe within their large
uncertainties the data well.

The dynamics of dijet production is further studied in termsof double differential cross
sections in bins ofzIP and of the QCD scale defining observablesQ2 andp∗T,1. The double differ-
ential cross sections are listed in tables 4-5 and are shown in figures 7-10. The corresponding
statistical correlations between measurements in different bins are given in tables 8-9. Figure 7
shows the double differential cross section measured in bins ofzIP andQ2. The ratio of the data
to the theory prediction is shown in figure 8. The data are welldescribed by the NLO prediction
in most of the phase space. The double differential cross section measured in bins ofp∗T,1 andQ2

is shown in figure 9 and the corresponding ratios of the measurements to the NLO predictions
are shown in figure 10.

The present measurement is based on a six times increased luminosity as compared to the
previous H1 measurement of dijet production with LRG [13] and is using a more sophisticated
data correction method. A direct comparison of the present data to other measurements of
dijet production in diffractive DIS is not possible because of different phase space definitions.
Measurements based on the direct detection of a forward proton [15] are limited in statistical
precision due to the restricted geometrical acceptance of the proton taggers.

The experimental uncertainties on both single- and double-differential cross sections are in
general smaller than the theory uncertainties. The data thus have the power to constrain QCD in
diffractive DIS. Here, the double-differential dijet cross sections as a function ofQ2 andp∗T,1 are
used to determine the value of the strong coupling constantαs(MZ) at the scale of the mass of
theZ-boson,MZ. The value ofαs(MZ) is determined by an iterativeχ2-minimisation procedure
using NLO calculations, corrected for hadronisation effects following the method [50]. In the fit,
the uncertainties on the HFS energy scale are treated as 50% correlated and 50% uncorrelated.
All other experimental uncertainties are treated as correlated. Scale uncertainties, hadronisation
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uncertainties and DPDF uncertainties of the NLO calculation are propagated to the fit result as
described in [50].

The fit yields a value ofχ2/ndof = 16.7/14, with ndof being the number of degrees of free-
dom, thus indicating good agreement of theory to data. The nuisance parameters of the cor-
related systematic uncertainties are equally distributedaround zero with absolute values below
one. The value ofαs(MZ) determined in the fit to the dijet cross sections is

αs(MZ) = 0.119± 0.004 (exp)± 0.002 (had)± 0.005 (DPDF)± 0.010 (µr) ± 0.004 (µ f ) (11)

= 0.119± 0.004 (exp)± 0.012 (DPDF, theo)

The largest uncertainties arise from the estimate of the contributions from orders beyond NLO
and from the poor knowledge of the DPDF. The largest contribution to the experimental uncer-
tainty of 0.003 arises from the global normalisation uncertainty.

The result forαs(MZ) is consistent within the uncertainties with the world average [51, 52]
and with values from other jet data in DIS and photoproduction [50,53,54] as well as values of
αs(MZ) determined from jet data at the Tevatron [55,56] and at the LHC [57,58]. Although the
uncertainty of thisαs(MZ) extraction is not competitive with measurements in other processes
the agreement with the other measurements supports the underlying concept of treating dijet
production in diffractive DIS with perturbative QCD calculations.

6 Conclusions

Integrated, single- and double-differential cross sections of diffractive DIS dijet production are
measured with the H1 experiment inep collisions at HERA and compared with NLO QCD
predictions.

The integrated diffractive dijet cross section is found to be well described by the NLO QCD
prediction using the H12006 Fit-B DPDF set. Both shapes and normalisation of the single-
differential cross sections are reproduced by the theory withinthe experimental and theory un-
certainties, confirming at improved precision the conclusions from previous H1 measurements.
Good agreement of the theory with the measurement is also found for the shapes and normali-
sation of the double differential cross sections. The cross section measurements presented here
show experimental uncertainties significantly smaller than the uncertainties of the theory pre-
dictions. From a fit of the NLO prediction to the double differential cross sections inQ2 and
p∗T,1, the strong coupling constant has been determined to beαs(MZ) = 0.119 (4)exp (12)theo.
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Q2 dσ/dQ2 δtot δstat δsys δθ δE δHFS δQ2 δxIP δβ δp∗T,1 δzIP δxdi jet δ∆η∗ δt δbgr 1+ δhad 1+ δrad

[GeV2] [pb/GeV2] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

4÷ 6 8.20 13.2 5.7 11.9 1.0 4.5 −3.9 2.1 1.1 2.8 −5.0 1.9 0.7 1.2 −0.9 0.1 1.05± 0.05 1.05

6÷ 10 4.23 11.8 4.0 11.0 2.6 1.7 −5.0 −0.5 0.5 −0.5 −3.1 −3.2 −1.6 1.6 −1.5 0.3 1.05± 0.04 1.03

10÷ 18 1.92 11.4 4.0 10.7 1.0 1.9 −4.6 −0.9 0.6 −0.8 −3.1 −3.1 −1.5 1.7 −0.9 0.4 1.05± 0.04 1.03

18÷ 34 0.797 11.6 4.8 10.5 1.1 2.1 −5.1 0.1 0.6 −0.1 −2.9 −2.5 −1.3 1.4 −0.6 0.2 1.06± 0.04 1.03

34÷ 100 0.164 12.3 6.2 10.6 0.9 2.3 −5.0 −0.2 0.5 −0.6 −2.7 −2.9 −1.5 1.6 −0.8 0.1 1.06± 0.04 1.03

y dσ/dy δtot δstat δsys δθ δE δHFS δQ2 δxIP δβ δp∗T,1 δzIP δxdi jet δ∆η∗ δt δbgr 1+ δhad 1+ δrad

[pb] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

0.10÷ 0.22 113 18.4 6.5 17.2 2.1 0.2 −8.7 −3.6 −0.2 −4.2 −3.5 −8.9 −3.6 3.9 −1.5 0.6 1.01± 0.06 1.07

0.22÷ 0.34 163 12.7 4.5 11.9 2.0 1.1 −5.9 −2.0 0.5 −1.5 −3.2 −4.1 −2.1 1.4 −0.9 0.6 1.02± 0.04 1.05

0.34÷ 0.46 144 11.2 4.3 10.4 1.6 2.8 −4.2 −0.4 0.8 −0.1 −3.1 −2.3 −1.3 1.0 −1.1 0.3 1.06± 0.04 1.04

0.46÷ 0.58 106 11.2 5.0 10.0 1.2 3.2 −3.2 0.7 0.8 0.9 −3.1 −1.0 −0.6 1.9 −0.3 0.4 1.13± 0.03 1.02

0.58÷ 0.70 76.5 12.4 7.0 10.2 0.7 4.3 −2.3 1.0 0.6 1.6 −3.3 0.3 0.4 1.2 −1.5 0.2 1.17± 0.02 0.97

xIP dσ/dxIP δtot δstat δsys δθ δE δHFS δQ2 δxIP δβ δp∗T,1 δzIP δxdi jet δ∆η∗ δt δbgr 1+ δhad 1+ δrad

[pb] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

−2.30÷ −2.10 14.2 42.0 36.2 21.1 1.8 3.9 −9.3 −2.7 4.0 −3.7 −5.8 −11.4 −4.7 7.6 −1.2 0.7 1.17± 0.13 1.06

−2.10÷ −1.90 53.5 14.7 8.9 11.7 1.6 2.4 −5.6 −0.6 1.2 −0.8 −3.2 −3.7 −1.8 2.3 −1.4 0.0 1.10± 0.08 1.04

−1.90÷ −1.70 111 11.6 5.5 10.2 1.5 1.3 −4.5 −1.1 0.1 −0.2 −3.5 −1.5 −1.0 1.4 −1.1 0.0 1.06± 0.04 1.04

−1.70÷ −1.52 196 10.9 4.9 9.8 1.3 2.5 −3.6 −1.0 −0.5 0.5 −3.4 −0.0 −0.3 −0.5 −0.5 0.8 1.03± 0.03 1.03

zIP dσ/dzIP δtot δstat δsys δθ δE δHFS δQ2 δxIP δβ δp∗T,1 δzIP δxdi jet δ∆η∗ δt δbgr 1+ δhad 1+ δrad

[pb] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

0.00÷ 0.22 70.4 20.3 9.3 18.0 1.4 3.4 −4.0 1.2 −0.5 4.6 −2.4 12.0 4.1 6.5 −0.5 0.8 1.10± 0.03 1.06

0.22÷ 0.40 132 11.9 6.3 10.1 1.5 3.0 −1.2 −0.9 0.3 −0.1 −3.9 −2.3 −2.2 1.0 −0.9 0.4 1.07± 0.02 1.04

0.40÷ 0.60 89.7 14.9 6.8 13.3 1.2 1.6 −9.1 −1.3 0.8 −1.2 −2.8 −3.9 −1.4 0.5 −0.6 0.3 1.10± 0.03 1.02

0.60÷ 0.80 54.8 14.9 7.5 12.9 2.5 1.9 7.6 −1.4 0.9 −1.2 −3.2 −4.2 −1.4 0.2 −2.0 0.1 1.10± 0.10 1.02

0.80÷ 1.00 19.9 45.0 11.4 43.5 0.8 0.6 −42.1 −1.9 1.3 −2.4 −2.5 −5.1 −2.0 3.0 −1.5 0.6 0.57± 0.10 1.00

Table 2: Diffractive DIS dijet cross section measured differentially as a function ofQ2, y, logxIP andzIP. The statisticalδstat and systematic
δsys uncertainties are given together with the total uncertainty δtot. The next 12 columns represent+1σ shifts for the systematic error
contributions from: electron polar angle measurementδθ, electron energy scaleδE, HFS energy scaleδHFS, model uncertaintiesδQ2, δxIP , δβ,
δp∗T,1, δzIP , δxdi jet, δ∆η∗ andδt and the background normalisation uncertaintyδbgr. The global normalisation uncertainty of 7.8% is not listed
explicitly but is included in the total systematic uncertainty δsys. The last two column show the correction factors for hadronisation and QED
radiation, respectively.
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p∗T,1 dσ/dp∗T,1 δtot δstat δsys δθ δE δHFS δQ2 δxIP δβ δp∗T,1 δzIP δxdi jet δ∆η∗ δt δbgr 1+ δhad 1+ δrad

[GeV] [pb/GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

5.50÷ 7.00 30.8 9.6 3.2 9.0 1.4 1.4 −3.1 −0.9 0.5 −0.6 −1.3 −1.7 −0.9 0.6 −0.8 0.1 1.05± 0.05 1.03

7.00÷ 9.00 10.5 11.8 6.1 10.0 1.3 3.0 −4.6 −0.6 0.8 −0.4 −1.4 −1.5 −0.9 1.2 −1.0 0.7 1.06± 0.04 1.04

9.00÷ 15.00 1.07 19.6 12.7 14.9 1.3 2.3 −9.8 −0.1 1.0 −0.1 −4.2 −2.7 −1.1 5.3 −1.5 0.7 1.04± 0.03 1.06

p∗T,2 dσ/dp∗T,2 δtot δstat δsys δθ δE δHFS δQ2 δxIP δβ δp∗T,1 δzIP δxdi jet δ∆η∗ δt δbgr 1+ δhad 1+ δrad

[GeV] [pb/GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

4.00÷ 6.50 22.3 10.4 3.7 9.7 1.5 2.3 −3.8 −1.0 0.7 −0.8 −1.2 −2.0 −1.2 1.2 −0.8 0.1 1.10± 0.06 1.03

6.50÷ 9.00 5.67 12.2 6.9 10.1 1.2 2.0 −4.9 −0.6 0.6 −0.2 −2.6 −1.3 −0.5 1.2 −1.0 0.6 0.97± 0.02 1.04

9.00÷ 15.00 0.539 18.2 12.3 13.4 1.1 1.5 −7.8 0.5 0.6 0.8 −6.2 −2.4 −0.9 2.8 −1.3 0.1 0.97± 0.02 1.06

〈p∗T〉 dσ/d〈p∗T〉 δtot δstat δsys δθ δE δHFS δQ2 δxIP δβ δp∗T,1 δzIP δxdi jet δ∆η∗ δt δbgr 1+ δhad 1+ δrad

[GeV] [pb/GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

4.75÷ 6.50 27.6 9.9 3.5 9.3 1.5 2.0 −3.3 −1.1 0.5 −0.8 −1.0 −1.9 −1.0 0.8 −0.8 0.1 1.09± 0.06 1.03

6.50÷ 9.00 8.52 11.3 5.2 10.0 1.4 2.4 −5.0 −0.4 0.8 −0.1 −1.7 −0.8 −0.4 1.5 −1.1 0.5 1.01± 0.03 1.04

9.00÷ 15.00 0.701 19.7 13.4 14.4 0.7 1.2 −9.2 −0.3 0.7 −0.2 −5.4 −3.5 −1.3 3.8 −0.9 0.5 1.01± 0.03 1.06

∆η∗ dσ/d∆η∗ δtot δstat δsys δθ δE δHFS δQ2 δxIP δβ δp∗T,1 δzIP δxdi jet δ∆η∗ δt δbgr 1+ δhad 1+ δrad

[pb] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

0.00÷ 0.15 51.6 17.9 9.5 15.1 1.6 2.8 −4.4 −1.0 1.0 −0.8 −3.8 −2.3 −1.4 10.6 −1.2 0.1 1.04± 0.03 1.03

0.15÷ 0.40 57.8 14.1 7.3 12.1 1.2 1.0 −5.1 −0.9 0.9 −0.7 −3.0 −2.1 −1.5 6.2 −1.1 0.2 1.05± 0.03 1.04

0.40÷ 0.80 45.1 12.5 5.7 11.1 1.9 2.5 −4.3 −0.9 0.8 −0.5 −3.8 −2.2 −1.2 3.2 −1.3 0.5 1.06± 0.04 1.04

0.80÷ 1.30 33.9 12.3 5.5 10.9 1.7 2.4 −4.7 −1.0 0.5 −0.3 −3.7 −2.4 −1.0 −2.5 −0.6 0.3 1.07± 0.05 1.03

1.30÷ 3.00 9.29 15.0 6.7 13.4 1.2 3.4 −5.3 −1.0 0.2 −0.0 −2.8 −3.4 −1.2 −7.4 −1.1 0.3 1.04± 0.06 1.03

Table 3: Diffractive DIS dijet cross section measured differentially as a function ofp∗T,1, p∗T,2, 〈p∗T〉 and∆η∗. The statisticalδstat and systematic
δsys uncertainties are given together with the total uncertainty δtot. Further details are given in Table 2.
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zIP Q2 d2σ

dzIPdQ2 δtot δstat δsys δθ δE δHFS δQ2 δxIP δβ δp∗T,1 δzIP δxdi jet δ∆η∗ δt δbgr 1+ δhad 1+ δrad

[GeV2] [pb/GeV2] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

0.0÷ 0.3 4÷ 10 7.67 14.8 7.7 12.7 2.0 3.5 −1.0 1.6 −0.3 3.4 −3.3 6.5 2.2 3.1 −1.3 0.5 1.08± 0.03 1.05

10÷ 20 2.40 15.6 10.0 12.1 0.7 2.9 −2.1 −2.0 −0.2 1.1 −3.2 5.7 1.5 4.6 −0.4 0.7 1.08± 0.02 1.05

20÷ 40 0.544 27.6 20.8 18.2 2.2 4.7 −3.3 0.9 −0.2 4.7 −3.5 11.6 2.8 7.3 −0.4 0.2 1.09± 0.02 1.05

40÷ 100 0.0994 41.6 35.7 21.3 1.2 7.3 −3.3 −0.4 −0.1 4.1 −4.1 12.9 3.1 10.0 −3.7 2.0 1.09± 0.02 1.06

0.3÷ 0.5 4÷ 10 8.80 18.4 9.3 15.9 2.0 3.1 −8.6 −0.7 1.2 −1.0 −5.3 −7.4 −3.9 −0.6 −1.5 0.1 1.08± 0.02 1.03

10÷ 20 2.31 19.9 13.6 14.5 2.0 2.4 −6.9 −0.4 0.7 −1.5 −3.3 −7.7 −4.1 −0.0 −0.4 1.0 1.08± 0.02 1.03

20÷ 40 1.12 17.0 12.6 11.4 −0.4 3.2 −3.7 0.2 0.5 −0.7 −3.0 −5.3 −2.8 −0.3 −0.0 0.2 1.08± 0.03 1.02

40÷ 100 0.264 20.1 17.1 10.6 0.7 2.6 −4.4 −0.2 0.4 −0.9 −2.1 −3.4 −2.1 1.4 1.3 0.2 1.07± 0.03 1.03

0.5÷ 0.7 4÷ 10 4.50 17.8 13.3 11.8 3.3 1.9 6.5 −1.4 1.1 −0.7 −3.1 −2.8 −0.4 0.9 −0.7 0.2 1.14± 0.06 1.03

10÷ 20 1.86 15.2 11.8 9.6 0.8 1.0 3.1 −0.5 0.5 −0.4 −3.1 −2.6 −0.6 0.2 −1.8 0.1 1.12± 0.06 1.02

20÷ 40 0.703 16.2 13.5 8.9 2.0 0.8 −0.2 −0.7 0.5 −0.6 −2.2 −2.3 −0.7 0.2 −1.6 0.2 1.12± 0.06 1.02

40÷ 100 0.109 31.9 29.7 11.4 2.2 −0.8 3.2 −0.8 0.1 −1.3 −1.4 −4.0 −1.0 −1.6 −5.6 0.1 1.12± 0.06 1.01

0.7÷ 1.0 4÷ 10 1.99 27.8 11.7 25.2 2.2 2.9 −21.9 −1.6 1.8 −1.9 −3.8 −6.5 −2.6 1.7 −2.9 0.3 0.79± 0.11 1.02

10÷ 20 0.639 26.9 11.2 24.5 1.4 0.4 −22.1 −0.4 1.1 −1.6 −1.7 −5.2 −2.0 2.4 −1.8 0.3 0.81± 0.11 1.01

20÷ 40 0.248 22.4 13.0 18.2 0.9 1.6 −15.3 −0.3 0.9 −1.1 −2.6 −4.3 −1.6 1.1 −0.3 0.0 0.85± 0.11 1.00

40÷ 100 0.0968 18.5 13.3 13.0 0.3 2.1 −9.0 −0.5 0.4 −1.1 −2.2 −3.4 −1.5 1.3 0.4 0.5 0.89± 0.10 1.01

Table 4: Diffractive DIS dijet cross section measured differentially as a function ofzIP and Q2. The statisticalδstat and systematicδsys

uncertainties are given together with the total uncertainty δtot. Further details are given in Table 2.
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p∗T,1 Q2 d2σ

dp∗T,1dQ2 δtot δstat δsys δθ δE δHFS δQ2 δxIP δβ δp∗T,1 δzIP δxdi jet δ∆η∗ δt δbgr 1+ δhad 1+ δrad

[GeV2] [GeV] [pb/GeV3] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

5.5÷ 7.0 4÷ 6 3.35 15.6 9.1 12.7 0.4 5.9 −1.2 2.7 1.1 3.4 −1.3 5.8 2.9 0.6 −1.0 0.1 1.05± 0.05 1.04

6÷ 10 1.84 12.7 7.1 10.5 3.0 0.8 −4.7 −1.5 0.3 −1.0 −1.8 −2.9 −1.3 0.7 −1.6 0.1 1.05± 0.05 1.02

10÷ 18 0.834 12.3 7.2 9.9 1.2 0.9 −3.2 −1.1 0.5 −1.4 −1.6 −3.9 −1.7 0.6 −1.1 0.2 1.05± 0.05 1.02

18÷ 34 0.344 13.3 8.6 10.1 1.5 0.4 −5.1 0.3 0.5 −0.4 −1.4 −2.6 −1.7 1.1 −0.0 0.0 1.06± 0.05 1.03

34÷ 100 0.0613 15.8 11.7 10.6 1.5 0.7 −5.0 −0.4 0.5 −1.1 −1.7 −3.4 −2.0 0.9 −1.6 0.1 1.07± 0.04 1.02

7.0÷ 9.0 4÷ 6 1.23 18.6 15.1 10.9 −0.1 3.0 −6.1 1.3 1.2 1.5 −2.5 0.1 −0.7 0.0 −0.3 0.5 1.06± 0.04 1.05

6÷ 10 0.578 16.4 12.9 10.1 1.9 3.3 −3.9 1.1 0.8 0.0 −0.6 −2.1 −1.3 1.5 −0.8 0.4 1.06± 0.04 1.05

10÷ 18 0.287 16.6 12.6 10.7 0.4 3.1 −6.0 −0.3 0.7 −0.1 −1.3 −0.3 −0.4 2.3 0.7 0.6 1.06± 0.05 1.04

18÷ 34 0.100 20.4 17.6 10.3 0.3 5.2 −3.5 −0.2 0.8 −0.2 −0.5 −1.0 −0.4 0.0 −1.5 0.7 1.07± 0.04 1.04

34÷ 100 0.0276 19.9 17.4 9.6 −0.6 3.7 −3.1 −0.6 0.5 −1.0 −0.6 −1.6 −0.4 1.0 1.5 0.6 1.06± 0.06 1.04

9.0÷ 15.0 4÷ 6 0.122 30.1 26.6 14.2 7.8 0.5 −5.5 −0.1 0.7 0.3 −5.5 −1.2 −0.5 3.3 −2.2 0.8 1.04± 0.03 1.06

6÷ 10 0.0511 30.4 24.7 17.8 1.9 1.1 −12.4 −0.6 1.3 −0.0 −6.3 −2.8 −0.9 6.1 −3.0 0.4 1.03± 0.03 1.05

10÷ 18 0.0207 35.5 30.0 19.0 1.4 1.7 −11.6 −1.1 1.0 −1.4 −6.5 −6.4 −2.9 5.6 −6.0 0.5 1.03± 0.02 1.05

18÷ 34 0.0160 24.5 20.1 14.0 1.6 1.8 −8.2 0.0 0.6 −0.1 −4.6 −2.6 −0.6 5.2 −2.5 0.4 1.04± 0.04 1.06

34÷ 100 0.0034 31.9 27.8 15.7 3.6 0.3 −9.0 1.8 0.7 1.0 −3.5 −3.1 −1.5 6.0 −4.9 1.0 1.05± 0.03 1.07

Table 5: Diffractive DIS dijet cross section measured differentially as a function ofp∗T,1 andQ2. The statisticalδstat and systematicδsys

uncertainties are given together with the total uncertainty δtot.. Further details are given in Table 2.
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Q2 [GeV] #Bin 1 2 3 4 5

4÷ 6 1 100 −5 5

6÷ 10 2 100 1 1

10÷ 18 3 100 −2 1

18÷ 34 4 100 8

34÷ 100 5 100

y #Bin 1 2 3 4 5

0.1÷ 0.2 1 100 −7 8 5 4

0.2÷ 0.3 2 100 −6 8 4

0.3÷ 0.5 3 100 −4 7

0.5÷ 0.6 4 100 −10

0.6÷ 0.7 5 100

xIP #Bin 1 2 3 4

−2.30÷ −2.10 1 100 −55 17 −2

−2.10÷ −1.90 2 100 −41 11

−1.90÷ −1.70 3 100 −31

−1.70÷ −1.52 4 100

zIP #Bin 1 2 3 4 5

0.0÷ 0.2 1 100 −24 8 1

0.2÷ 0.4 2 100 −31 10 −2

0.4÷ 0.6 3 100 −45 17

0.6÷ 0.8 4 100 −52

0.8÷ 1.0 5 100

Table 6: Correlation coefficients between data points for the single-differential measurements
in Q2, y, xIP andzIP. The values are given in per cent.
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p∗T,1 [GeV] #Bin 1 2 3

5.5÷ 7.0 1 100 −26 1

7.0÷ 9.0 2 100 −54

9.0÷ 15.0 3 100

p∗T,2 [GeV] #Bin 1 2 3

4.0÷ 6.5 1 100 −36 13

6.5÷ 9.0 2 100 −46

9.0÷ 15.0 3 100

〈p∗T〉 [GeV] #Bin 1 2 3

4.75÷ 6.50 1 100 −33 12

6.50÷ 9.00 2 100 −49

9.00÷ 15.00 3 100

∆η∗ #Bin 1 2 3 4 5

0.00÷ 0.15 1 100 −49 13 1 2

0.15÷ 0.40 2 100 −29 9 1

0.40÷ 0.80 3 100 −19 7

0.80÷ 1.30 4 100 −20

1.30÷ 3.00 5 100

Table 7: Correlation coefficients between data points for the single-differential measurements
in p∗T,1, p∗T,2, 〈p∗T〉 and∆η∗. The values are given in per cent.
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zIP Q2 [GeV2] #Bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.0÷ 0.3 4÷ 10 1 100 1 −32 3 11 −3

10÷ 20 2 100 −2 1 3 −41 2 19 −5

20÷ 40 3 100 4 2 −37 4 20 1 −4 1

40÷ 100 4 100 3 −37 1 22 1 −5

0.3÷ 0.5 4÷ 10 5 100 −3 −46 2 15

10÷ 20 6 100 −3 3 −53 2 19

20÷ 40 7 100 −3 2 −51 2 −1 17

40÷ 100 8 100 2 −51 21

0.5÷ 0.7 4÷ 10 9 100 −5 −47 2

10÷ 20 10 100 −3 1 −46 1

20÷ 40 11 100 −2 2 −44 1

40÷ 100 12 100 1 −51

0.7÷ 1.0 4÷ 10 13 100 −4

10÷ 20 14 100 −5

20÷ 40 15 100 −2

40÷ 100 16 100

Table 8: Correlation coefficients between data points for the double-differential measurement
in zIP andQ2. The values are given in per cent.

p∗T,1 [GeV] Q2 [GeV2] #Bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5.5÷ 7.0 4÷ 6 1 100 −7 1 −44 2 13 1 1 1

6÷ 10 2 100 −3 3 −57 3 −1 17 1 1 1

10÷ 18 3 100 −2 1 1 3 −59 1 −1 2 1 22 1 1

18÷ 34 4 100 3 −1 −58 1 2 1 2 25 2

34÷ 100 5 100 1 −56 1 2 27

7.0÷ 9.0 4÷ 6 6 100 −7 3 3 1 −60 2 −5 −6 −3

6÷ 10 7 100 −4 2 1 3 −57 −3 −2

10÷ 18 8 100 2 −6 −60 −4 −4

18÷ 34 9 100 1 −7 −3 −6 −62 −3

34÷ 100 10 100 −4 −2 −5 −5 −64

9.0÷ 15.0 4÷ 6 11 100 −5 13 14 7

6÷ 10 12 100 6 3

10÷ 18 13 100 10 9

18÷ 34 14 100 8

34÷ 100 15 100

Table 9: Correlation coefficients between data points for the double-differential measurement
in p∗T,1 andQ2. The values are given in per cent.
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Figure 2: Distributions of the kinematic quantitiesQ2, p∗T,1, xIP andzIP. The data are shown
as black points compared to the sum of MC simulation estimates. The filled area shows the
contribution of non-diffractive DIS, the dotted line shows the diffractive contribution with the
elastically scattered proton added to the non-diffractive DIS and the dashed line displays the
proton dissociation contribution added to the diffractive contribution with the elastically scat-
tered proton and the non-diffractive DIS contribution. The sum of all contributions including
the resolved photon processes is given by the full line. The MC is reweighted to the data. The
ratio of data to the MC prediction is shown in the lower part ofof the individual figures.
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Figure 3: Diffractive dijet differential cross section as a function ofQ2 andy. The inner er-
ror bars on the data points represent the statistical uncertainties, while the outer error bars in-
clude the systematic uncertainties added in quadrature. The NLO QCD prediction based on the
H12006 Fit-B DPDF set is displayed as a white line. The light shaded band indicates the uncer-
tainty arising from hadronisation and the DPDF fit added in quadrature. The outer dark band
shows the full theory uncertainty including the QCD scale uncertainty added in quadrature. The
ratio of the single-differential cross section to the NLO prediction is shown in the lower part of
the individual figures.
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Figure 4: Diffractive dijet differential cross section as a function of logxIP andzIP. The inner
error bars on the data points represent the statistical uncertainties, while the outer error bars
include the systematic uncertainties added in quadrature.Further details are given in figure 3.
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Figure 5: Diffractive dijet differential cross section as a function ofp∗T,1 and p∗T,2. The inner
error bars on the data points represent the statistical uncertainties, while the outer error bars
include the systematic uncertainties added in quadrature.Further details are given in figure 3.
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Figure 6: Diffractive dijet differential cross section as a function of〈p∗T〉 and∆η∗. The inner
error bars on the data points represent the statistical uncertainties, while the outer error bars
include the systematic uncertainties added in quadrature.Further details are given in figure 3.
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Figure 7: Double-differential cross section as a function ofzIP andQ2. The inner error bars
on the data points represent the statistical uncertainties, while the outer error bars include the
systematic uncertainties added in quadrature. Further details are given in figure 3.
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Figure 8: Ratio of the double-differential cross section to the NLO prediction as a function of
zIP andQ2. The inner error bars on the data points represent the statistical uncertainties, while
the outer error bars include the systematic uncertainties added in quadrature. Further details are
given in figure 3.
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Figure 9: Double-differential cross section as a function ofp∗T,1 andQ2. The inner error bars
on the data points represent the statistical uncertainties, while the outer error bars include the
systematic uncertainties added in quadrature. Further details are given in figure 3.
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Figure 10: Ratio of the double-differential cross section to the NLO prediction as a function of
p∗T,1 andQ2. The inner error bars on the data points represent the statistical uncertainties, while
the outer error bars include the systematic uncertainties added in quadrature. Further details are
given in figure 3.
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