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Abstract

We describe a new set of gauge configurations generated within the CLS effort. These
ensembles have Nf = 2 + 1 flavors of non-perturbatively improved Wilson fermions
in the sea with the Lüscher–Weisz action used for the gluons. Open boundary condi-
tions in time are used to address the problem of topological freezing at small lattice
spacings and twisted-mass reweighting for improved stability of the simulations. We
give the bare parameters at which the ensembles have been generated and how these
parameters have been chosen. Details of the algorithmic setup and its performance
are presented as well as measurements of the pion and kaon masses alongside the
scale parameter t0.
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1 Introduction

What can be achieved in lattice QCD computations in terms of observables and their
accuracy depends to a large extent on the availability of suitable ensembles of gauge
field configurations. For reliable results, many sources of error have to be controlled:
Fine lattices are needed for minimal discretization effects, the quark masses have
to be close to their physical values and the volume of the lattices has to be large
enough for finite size effects to be small. The final precision also depends on the
quark flavor content of the sea. On top of these systematic effects come statistical
uncertainties: Simulations have to be long enough such that the statistical errors
can be estimated reliably, and with statistical uncertainties getting smaller, the need
for control over systematic effects increases.

Since the generation of gauge field configurations is computationally the most
demanding part of the whole computation, a careful evaluation of the physics pa-
rameters needs to be made in view of the target precision of the observables — as
far as this is possible at this stage. The goal is to balance the various sources of
systematic and statistical uncertainties in the final result: In light of the findings of
Ref. [1], for example, we do not include a dynamical charm quark in the sea as we
do not anticipate to be able to reach an accuracy comparable to its effect on typical
low-energy observables after taking the continuum limit and the chiral extrapola-
tion. On the contrary, including the charm might introduce large lattice artifacts
and would make the tuning procedure more difficult.

Recent year’s advances have led to a re-evaluation of the requirements for a
reliable lattice computation regarding the control over statistical errors. Notably,
it has been known for a while that the global topological charge freezes on fine
lattices with periodic boundary conditions [2–4]. However, with the advent of the
gradient flow in lattice computations [5, 6] it has been discovered that at moderate
lattice spacing other quantities constructed from smoothed fields evolve even slower
in Monte Carlo time [7,8]. To exclude uncontrolled biases in any observable, Monte
Carlo histories much longer than the exponential autocorrelation time are required,
i.e. much longer than the times observed in these smoothed observables and therefore
longer than previously thought.

In this paper, we give an overview of the first round of the CLS (Coordinated
Lattice Simulations) effort to generate configurations with Nf = 2+1 flavors of non-
perturbatively improved Wilson fermions. In some of its aspects it is a continuation
of the Nf = 2 flavor project: We use a non-perturbatively improved Wilson fermion
action, we do not employ link smearing, simulations are done using a public code
and we focus on small lattice spacings for a controlled continuum limit [9].

By adding the additional flavor to the sea, one naturally aims at higher ac-
curacy than with two flavor simulations. In order to achieve this, there are also
improvements over the previous project. We use open boundary conditions in the
time direction which prevent the topological charge from freezing [5,7] and twisted-
mass reweighting to avoid the sector formation due to zero eigenvalues of the Wilson
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fermions and the resulting instabilities in the simulation [10].
The simulations are performed using the openQCD code version 1.2 [11] whose

general algorithmic setup is described in Ref. [12]. The code provides broad flex-
ibility with respect to the algorithms used, starting from the determinant decom-
position, the molecular dynamics integration and the methods employed for solving
the Dirac equation. In this paper we give the physics and algorithmic parameters of
these simulations and report on our experiences with this new setup. Furthermore
we present first measurements of basic physics observables: the masses of the pion
and the kaon as well as the scale parameter t0 [6] on which we base the tuning of
the runs.

Similar large-scale simulations of QCD have recently been performed by the
PACS-CS simulating improved Wilson fermions [13], the QCDSF collaboration with
Nf = 2 + 1 flavors of NP improved, smeared Wilson fermions [14], the Hadron Spec-
trum collaboration using Nf = 2 + 1 flavors of tree-level improved, smeared Wilson
fermions on anisotropic lattices [15], as well as the ETM collaboration using twisted-
mass fermions [16] and the BMW collaboration with tree-level improved smeared
fermions [17]. Also domain wall fermions are employed by RBC-UKQCD [18] and
overlap fermions by JLQCD [19] as well as smeared rooted staggered fermions by
MILC [20]. Our simulations are unique by their use of open boundary conditions
and, among the simulations with standard Wilson fermions, twisted-mass reweight-
ing as a safeguard against the effects of near-zero modes of the Dirac operator.

The paper is organized as follows: In Section 2 we give the details of the ac-
tion, the tuning strategy and the parameters of the runs. The algorithmic setup is
described in Section 3. Autocorrelations observed in the simulations are the subject
of Section 4, while the two types of reweighting used in the light and the strange
quark sector are discussed in Section 5. This is followed in Section 6 by the mea-
surement of the pseudoscalar masses and the scale parameter t0 and a discussion of
discretization effects in Section 7.

2 Physical parameters

The simulations are done on lattices of size Nt×N3
s , with open boundary conditions

imposed on time slice 0 and Nt−1. Lattices with Nt points in the temporal direction
therefore have a physical time extent of T = (Nt − 1)a in conventional notation,
with a the lattice spacing.

2.1 Action

The general setup of the lattice actions which can be simulated with the openQCD
code has already been given in detail in Ref. [12]. In particular it is described there
how the boundary conditions are imposed. Therefore, here we only give details of
the bulk action. Throughout, the coefficients of the boundary improvement terms
are set to their tree level values.
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For the gauge fields, we use the Lüscher–Weisz action [21] with tree level coef-
ficients — which is different from the earlier reference [12] where the Iwasaki action
has been employed. In the bulk, the plaquette and rectangle terms are multiplied
by their respective coefficients c0 = 5/3 and c1 = −1/12

Sg[U ] =
β

6

(
c0

∑
p

tr{1− U(p)}+ c1

∑
r

tr{1− U(r)}
)
, (2.1)

where the sums run over the plaquettes p and the rectangles r contained in the
lattice and β = 6/g2

0 with the bare gauge coupling g0.
For the fermions, the Wilson Dirac operator [22] including the Sheikholeslami–

Wohlert term needed for O(a) improvement of the action [23] is used

DW(m0) =
1

2

3∑
µ=0

{γµ(∇∗µ +∇µ)− a∇∗µ∇µ}+ acSW

3∑
µ,ν=0

i

4
σµνF̂µν +m0 (2.2)

with ∇µ and ∇∗µ the covariant forward and backward derivatives, respectively. The
improvement term containing the standard discretization of the field strength ten-
sor F̂µν [24] comes with the coefficient cSW whose value has been determined non-
perturbatively in Ref. [25].

The three flavor fermion action then reads

Sf [U, ψ, ψ] = a4

3∑
f=1

∑
x

ψf (x)DW(m0,f )ψf (x) , (2.3)

where we take the up and down quark masses to be degenerate m0,ud ≡ m0,u = m0,d.
The strange-quark mass m0,s is tuned as a function of the light quark mass. In the
following, we frequently quote the hopping parameters κf instead of the bare quark
masses

m0,f =
1

2a
(

1

κf

− 8) . (2.4)

2.2 Choice of parameters

Since we restrict ourselves to Nf = 2 + 1 flavor QCD, which is different from the
full Standard Model, the point of “physical” quark masses is not unique even in the
continuum and we therefore have to fix observables which define it. For the tuning of
our runs, we set the scale through t0 defined by the Wilson flow [6], see Section 6.3.
The quark masses are set using the masses of the pion and the kaon. While this
choice is convenient during the tuning of the runs, it can be changed in the future
once more observables are available.

The lattices at different cutoff are matched via the dimensionless parameters

φ2 = 8t0m
2
π and φ4 = 8t0(m2

K +
1

2
m2
π) , (2.5)
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where all quantities are the ones measured at the parameter values of the ensemble
in question. Note that in leading order of Chiral Perturbation Theory (ChPT)
they are proportional to the sum of the quark masses, φ2 ∝ (mu + md) and φ4 ∝
(mu+md+ms) [26,27]. The advantage of this strategy is that we obtain all quantities
involved with high statistical accuracy from the simulated ensembles, without further
need of renormalization constants or chiral extrapolation.

Particular drawbacks of this strategy are the significant cutoff effects which we
observe in the various definitions of t0/a2 on our largest lattice spacings, as discussed
in Section 7.1. Furthermore, the value of t0 is not an experimentally accessible
observable and only known from other lattice simulations. In the literature one
finds

√
8t0 = 0.4341(33) fm by the ALPHA collaboration using Wilson fermions in

two-flavor QCD [28] and
√

8t0 = 0.4144(59)(37) fm by the BMW collaboration using
Nf =2+1 flavors [29]. In a 2 + 1 + 1 flavor setup with rooted staggered fermions, the
HPQCD collaboration finds

√
8t0 = 0.4016(23) fm [30].

As has been observed in Ref. [28], these numbers exhibit a significant flavor
content effect, which however is monotonic in the number of flavors. Since our
simulation setup is also with Nf = 2 + 1 flavors, we choose the value of Ref. [29]
and the QCD values of mπ = 134.8(3) MeV and mK = 494.2(4) MeV in the isospin
limit [31] which leads to a physical point estimate

φphys
2 = 0.0801(27) , φphys

4 = 1.117(38), (2.6)

where errors have been added in quadrature.
From this choice and our measurements of t0/a2 presented below, we estimate

for our three values of β = 3.4, 3.55 and 3.7 lattice spacings a of a ≈ 0.086 fm,
0.064 fm and 0.05 fm, respectively.

2.3 Quark mass trajectory

In order to achieve O(a) improvement, the bare coupling — as all bare parameters
— has to be improved with a mass-dependent term [24]

g̃2
0 = g2

0

{
1 +

bg

3
a
∑
f

(m0,f −mcr)
}
, (2.7)

with mcr the critical quark mass whose precise value is not known at this stage. To
keep the lattice spacing constant as we change the sea quark masses, this modified
coupling constant g̃0 has to be kept constant.

While the coefficient bg is small at one loop in perturbation theory [32], bg =

0.012Nf g
2
0, a non-perturbative result is not known for any action. To keep g̃0 fixed,

we therefore keep the sum over the subtracted quark masses fixed, a strategy already
proposed in Ref. [14]. Note that this is equivalent to keeping the sum over the bare
quark masses m0,f fixed

a

3∑
f=1

(m0,f −mcr) = const ⇔ a

3∑
f=1

m0,f = const ⇔
3∑

f=1

1

κf

= const . (2.8)
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Up to effects of order O(amud), this also implies a constant sum of improved PCAC
quark masses [33].

We can therefore define chiral trajectories by a point in the φ2–φ4 plane, at
which different lattice spacings are matched and the requirement that the sum of
the bare quark masses is constant. For each value of β, the lattice spacing is constant
along these lines and a continuum limit can be performed for each value of φ2.

As explained in the next section, we match lattices with different lattice spacings
at mπ = mK ≈ 420 MeV, where we will also show first results concerning the size of
the O(am) cutoff effects introduced by this choice.

2.4 Tuning strategy

By choosing the chiral trajectories of Eq. (2.8), the tuning process can be highly
simplified: Keeping β fixed, for each chiral trajectory we match the lattices at the
flavor symmetric point, i.e. where all quarks have equal masses.

Determining the slope of φ4 as a function of φ2 at β = 3.4 from a set of
preliminary runs, not shown here, we estimate the target value on the symmetric
line

φ4

∣∣
mud=ms

= 1.15 . (2.9)

With the final statistics, we are able to reach better than 1% accuracy in this
quantity and a matching of the target value within one standard deviation. In the
chiral limit this translates into an accuracy of about 1 MeV in the strange-quark
mass. In the future, we plan to have more chiral trajectories which will allow us to
study the consequences of the remaining mistuning.

The result of the tuning effort and the resulting trajectory in the φ2–φ4 plane
is shown in Figure 1 with results from the ensembles given in Table 1. Within the
statistical accuracy, we do not observe significant cutoff effects. The one point at
β = 3.7 is still under production and its error therefore not yet trustworthy. We
observe, the quark mass effect on φ4 along this trajectory is moderate, around 5%

between the chiral limit and the symmetric point, as expected from ChPT.

3 Algorithmic parameters

The basic algorithmic setup has already been described in detail in Ref. [12], but
since we are presenting simulations with larger lattices, statistics and a different
action, the various settings needed to be reconsidered. Here we give the parameters
at which the runs were performed and the reasoning behind the various choices.

3.1 Twisted-mass reweighting

Since the Wilson Dirac operator is not protected against eigenvalues below the quark
mass, field space is divided by surfaces of zero eigenvalues. These barriers of infinite
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Figure 1: Position of our ensembles in terms of the dimensionless variables φ2 and φ4

defined in Eq. (2.5). The rightmost points are on the symmetric line mud = ms. The
fact that the point with the smallest φ2 at β = 3.7 is above the range indicated by
coarser lattices might be an effect of mistuning at the symmetric point or an indication for
underestimated errors due to the low statistics indicated by the dashed error bars.

action cannot be crossed during the molecular dynamics evolution, at least if the
equations of motion are integrated exactly.

While at a sufficiently large volume and quark mass this might not be a problem
in practice [34], it can lead to instabilities during the simulation and meta-stabilities
in the thermalization phase. Lüscher and Palombi [10] therefore suggested to intro-
duce a small twisted-mass term into the action during the simulation and compensate
for this by reweighting.

In the present simulations, we use the second version of the reweighting sug-
gested in Ref. [10], which is less affected by fluctuations in the reweighting factor
from the ultraviolet part of the spectrum of the Dirac operator. Contrary to the
original proposal, we do not apply it to the Hermitian Dirac operator Q = γ5DW

but to the Schur complement Q̂ = Qee − QeoQ
−1
oo Qoe of the asymmetric even-odd

preconditioning [35]. This amounts to replacing the determinant of the light quark
pair by

detQ2 = det2Qoo det Q̂2 → det2Qoo det
Q̂2 + µ2

0

Q̂2 + 2µ2
0

det
(
Q̂2 + µ2

0

)
. (3.1)

The reweighting factor which needs to be included in the measurement of primary
observables then reads

W0 = det
(Q̂2 + 2µ2

0) Q̂2

(Q̂2 + µ2
0)2

. (3.2)

The choice of the parameter µ0 will be discussed in Section 5.1.
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id β Ns Nt κu κs mπ[MeV] mK [MeV] mπL

B105 3.40 32 64 0.136970 0.13634079 280 460 3.9
H101 3.40 32 96 0.13675962 0.13675962 420 420 5.8
H102 3.40 32 96 0.136865 0.136549339 350 440 4.9
H105 3.40 32 96 0.136970 0.13634079 280 460 3.9
C101 3.40 48 96 0.137030 0.136222041 220 470 4.7
D100 3.40 64 128 0.137090 0.136103607 130 480 3.7

H200 3.55 32 96 0.137000 0.137000 420 420 4.4
N200 3.55 48 128 0.137140 0.13672086 280 460 4.4
D200 3.55 64 128 0.137200 0.136601748 200 480 4.2

N300 3.70 48 128 0.137000 0.137000 420 420 5.1
N301 3.70 48 128 0.137005 0.137005 410 410 4.9
J303 3.70 64 192 0.137123 0.1367546608 260 470 4.1

Table 1: List of the ensembles. In the id, the letter gives the geometry, the first digit the
coupling and the final two label the quark mass combination. We give rounded values ofmπ

and mK using the t0/a2 of the ensemble and
√
8t0 = 0.4144 fm. Using t0/a2 extrapolated

to the physical light quark masses, we estimate lattice spacing of a ≈ 0.086 fm, 0.064 fm
and 0.05 fm for β = 3.4, 3.55 and 3.7, respectively.

3.2 Determinant factorization

The fluctuations in the forces have to be reduced further than what can be achieved
by introducing an infrared cutoff by the twisted mass µ0. To this end we use Hasen-
busch’s mass factorization [36] with a twisted mass [37] applied to the last term in
Eq. (3.1) [38]

det
(
Q̂2 + µ2

0

)
= det

(
Q̂2 + µ2

Nmf

)
×

Nmf∏
i=1

det
Q̂2 + µ2

i−1

Q̂2 + µ2
i

(3.3)

with a tower of increasing values of µ0 < µ1 < · · · < µNmf
. The values of these masses

can significantly influence the performance of the algorithm. Here we roughly set
them at equal distances on a logarithmic scale as suggested in Ref. [12]. The precise
values of the µi are listed in Table 2, which implicitly gives also the number of factors
in Eq. (3.3).

The combination of twisted-mass reweighting and mass factorization leads to
an effective action for the light quark pair with Nmf + 2 terms

Sud,eff [U, φ0, . . . , φNmf+1] =
(
φ0,

Q̂2 + 2µ2
0

Q̂2 + µ2
0

φ0

)
+

Nmf∑
i=1

(
φi,

Q̂2 + µ2
i

Q̂2 + µ2
i−1

φi
)

+
{(
φNmf+1,

1

Q̂2 + µ2
Nmf

φNmf+1

)
− 2 log detQoo} .

(3.4)
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id aµ0 aµi Nmf,2 Np [ra, rb] N ′p Np,2 Ns,2 MDU 〈Pacc〉

B105r002 0.001 {0.005, 0.05, 0.5} 1 10 [0.0200, 7.00] 3 2 8 1984 0.99
B105r003 0.001 {0.005, 0.05, 0.5} 1 10 [0.0170, 7.80] 3 2 8 4120 0.96
H101r000 0.001 {0.005, 0.05, 0.5} 2 12 [0.0056, 7.50] 5 2 10 4028 0.95
H101r001 0.001 {0.005, 0.05, 0.5} 2 12 [0.0056, 7.50] 5 2 10 4036 0.95
H102r001 0.001 {0.005, 0.05, 0.5} 1 12 [0.0070, 7.40] 6 4 10 4116 0.97
H102r002 0.001 {0.005, 0.05, 0.5} 1 12 [0.0080, 7.60] 6 4 10 4032 0.97
H105r001 0.001 {0.005, 0.05, 0.5} 1 11 [0.0100, 7.30] 4 2 10 4108 0.97
H105r002 0.001 {0.005, 0.05, 0.5} 1 11 [0.0100, 7.30] 4 2 10 4168 0.98
H105r005 0.0005 {0.005, 0.05, 0.5} 1 13 [0.0032, 7.60] 6 3 7 3348 0.89
C101r010 0.0006 {0.007, 0.05, 0.5} 1 12 [0.0085, 7.80] 5 2 9 1404 0.84
C101r013 0.0003 {0.007, 0.05, 0.5} 1 13 [0.0060, 7.80] 6 3 13 868 0.95
C101r014 0.0006 {0.007, 0.05, 0.5} 1 13 [0.0060, 7.80] 6 3 12 2100 0.95
C101r015 0.0003 {0.007, 0.05, 0.5} 1 13 [0.0060, 7.80] 6 3 13 2402 0.90
D100r002 0.0001 {0.00016, 0.0005, 1 14 [0.0030, 8.15] 7 2 18 178 0.69

0.0055, 0.06, 0.7}

H200r000 0.001 {0.005, 0.05, 0.5} 1 12 [0.0050, 6.50] 6 3 10 4000 1.00
H200r001 0.001 {0.005, 0.05, 0.5} 1 12 [0.0050, 6.50] 6 3 10 4000 1.00
N200r000 0.00065 {0.005, 0.05, 0.5} 1 12 [0.0100, 7.10] 6 3 7 3424 0.94
N200r001 0.00065 {0.005, 0.05, 0.5} 1 12 [0.0100, 7.10] 6 3 7 3424 0.94
D200r000 0.0003 {0.00075, 0.005, 1 13 [0.0060, 7.80] 6 2 8 3572 0.94

0.05, 0.5}

N300r002 0.001 {0.01, 0.05, 0.5} 1 13 [0.0050, 7.20] 6 3 6 6162 0.94
N301r000 0.001 {0.01, 0.05, 0.5} 1 13 [0.0050, 6.00] 6 3 6 1944 0.95
N301r001 0.001 {0.01, 0.05, 0.5} 1 13 [0.0050, 6.00] 6 3 6 1852 0.95
J303r003 0.00075 {0.002625, 0.009188, 1 13 [0.0080, 7.00] 7 3 6 2328 0.88

0.032156, 0.112547, 0.5}

Table 2: Parameters of the algorithm: We give the twisted masses used in the reweighting
and mass factorization, the Nmf,2 lightest of which are integrated on the coarsest time
scale, the number of poles Np and the range used in the RHMC, with N ′p put on single
pseudofermions , Np,2 of which are integrated on the outer level. Ns,2 is the number of
steps of the outer level of the MD integrator used for one trajectory. The total length of
the Markov chain and the acceptance rate are also given.
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The single term with the largest twisted mass and the one from the diagonal de-
terminant detQoo are always integrated together and are therefore counted as one
term.

3.3 RHMC

The strange quark is simulated using the RHMC algorithm [39,40], where the matrix
square root is approximated by a rational function

detQ = detQoo det

√
Q̂2 = detQoo det

(
A−1

Np∏
i=1

Q̂2 + µ̄2
i

Q̂2 + ν̄2
i

)
×W1 . (3.5)

Zolotarev’s optimal approximation to the inverse square root in the interval [ra, rb]

with a given number of poles Np determines the parameters A and {µ̄i, ν̄i}. The
strange-quark mass as argument of Q and Q̂ has been suppressed for readability. W1

is the reweighting factor, implicitly defined by Eq. (3.5), which has to be included
in the measurement. The values used in the various runs are specified in Table 2.

The openQCD code gives the option to split the determinant of the rational
function in Eq. (3.5) into several factors. In our simulations, we represent the N ′p
terms with the smallest µ̄i of the product Eq. (3.5) by single pseudofermions, whereas
the determinant of the remaining factors is expressed as a single pseudofermion
integral

Ss,eff [U, φ0, . . . , φN ′p ] =

N ′p−1∑
i=0

(
φi,

Q̂2 + ν̄2
Np−i

Q̂2 + µ̄2
Np−i

φi
)

+
(
φN ′p ,

Np−N ′p∏
j=1

Q̂2 + ν̄2
j

Q̂2 + µ̄2
j

φN ′p
)

− log detQoo ,

(3.6)

Here again, the contribution from the two final terms is always considered to-
gether. This decomposition has several advantages. First of all, the small residues
frequently can be integrated on a larger time scale, due to a small coefficient decreas-
ing the forces. Furthermore, while the multi-shift conjugate gradient algorithm [41]
is efficient for the combined solution of the systems in the last factor with the large
shifts, it turns out to be advantageous to employ the deflated solver for the terms
involving the smaller µ̄i. In this case it is no longer necessary to use a single pseu-
dofermion field for all shifts.

The range of the rational approximation is given by the smallest and the largest
eigenvalue of Q̂2 over typical gauge field configurations. On thermalized configura-
tions, estimates of these numbers can be obtained in openQCD by the power method
applied to Q̂−2 and Q̂2, respectively. Typically, O(20) iterations proved sufficient
for the lower bound, whereas the largest eigenvalue required O(100) iterations. In
particular the smallest eigenvalue turned out to be sensitive to thermalization effects
and exhibit larger fluctuations than expected. This made it necessary to monitor it
carefully at the beginning of each production run.
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3.4 HMC and the integration of the molecular dynamics

In the algorithm the action is split into different components: the gauge action,
the determinants from the Hasenbusch splitting for the light quarks and the various
contributions to the strange-quark determinant from the rational approximation de-
scribed above, Nmf +N ′p + 4 components in total. The complete action is simulated
with the Hybrid Monte Carlo (HMC) algorithm [42]; the classical equations of mo-
tion are solved numerically for trajectories of length τ = 2 in all simulations. This
leads to Metropolis proposals which are accepted with an acceptance rate 〈Pacc〉,
given for our runs in Table 2.

The goal of the splitting of the action, and the forces deriving from it, is the
reduction of the computational cost needed to obtain a high acceptance rate at
the end of the trajectory. The gauge forces are much cheaper to compute than
the fermion forces, whose components differ by orders of magnitude in size and
fluctuations. It is therefore natural to use a hierarchical integration scheme for the
molecular dynamics of the HMC to reflect this [43].

We use the setup described in Ref. [12], i.e., a three-level scheme with the gauge
fields integrated on the innermost level with the fourth order integrator suggested by
Omelyan, Mryglod, and Folk (OMF) [44] and implemented in the openQCD code.
Most of the fermion forces are on the intermediate level, again integrated with the
fourth order integration scheme. Only particularly small components of the fermion
forces, that contribute little to energy violation, are integrated on a larger scale with
the second order OMF integrator [44], whose parameter λ is set to 1/6.

Since one step of an inner level integration scheme is done for each outer step,
there are three parameters which define the scheme: the number of outermost steps
per trajectory Ns,2 and the number of poles Np,2 as well as the number Nmf,2 of
terms of Eq. (3.3) integrated on the outermost level. In the latter two cases the
numbers refer to the terms with the smallest twisted-mass shifts. The values chosen
in our runs can be found in Table 2.

The choice of the trajectory length affects the autocorrelation times and is
therefore not easily studied. In general, longer trajectories have proven to be ben-
eficial [4], but in particular with dynamical fermions one might prefer shorter tra-
jectories because of instabilities of the integrator. As a compromise, we use τ = 2.
Asymptotically, this leads to autocorrelations growing with τint ∝ a−2. Note, how-
ever, that this scaling behavior is also expected if the length of the trajectory is
scaled [45].

3.5 Solver

The extensive use of the locally deflated solver [46–48] is an important part of the
progress that made the presented simulations possible. It removes the largest part of
the cost increase as the quark mass is lowered, thereby circumventing the significant
slowing down observed in the past. The increase in performance of the solver comes
at the price of a more complex setup and many additional parameters which have
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to be chosen.
Fortunately, relatively little tuning of the local deflation subspace was necessary

here and we therefore do not list the parameters in detail. For most runs, we used
deflation blocks of size 44. The parallelization of the Ns = 48 lattices required one
or two dimensions to be set to 6; also blocks of 8× 43 have been used.

The number of deflation modes per block has been chosen between 20 and 32,
in order to balance the higher efficiency provided by the larger subspace and the
cost associated with the application of the preconditioner.

For the smaller lattices with L/a = 32, we set the solver accuracy (the ratio
between the norm of the residue to the norm of the right hand side of the equation)
to 10−11 in the action and 10−10 in the force computation. To ensure the value of
the action and the reversibility of the integration of the equations of motion are
sufficiently precise, more stringent residues have been used for the lattices of larger
volume.

4 Autocorrelations

Markov Chain Monte Carlo algorithms, like the Hybrid Monte Carlo used here,
produce field configurations which exhibit autocorrelations characterized for an ob-
servable A by the autocorrelation function

ΓA(t) = 〈AtA0〉 − 〈A〉2 , (4.1)

where t is the Monte Carlo time. The integral over the normalized autocorrelation
function ρ(t) enters the error analysis. This is the integrated autocorrelation time

τint(A) =
1

2
+
∞∑
t=1

ρA(t) ≡ 1

2
+
∞∑
t=1

ΓA(t)

ΓA(0)
. (4.2)

To estimate τint(A) with a finite variance, it is necessary to cut the summation at
a window W [49, 50]. In order to choose the window for our final error estimates
and to account for the thereby neglected tail, we employ the method described in
Ref. [4]. Its essential input is an estimate for the exponential autocorrelation time,
which we discuss in the following.

4.1 Scaling of the autocorrelations

As we approach the continuum limit, the autocorrelation times are expected to grow
due to critical slowing down. The open boundary conditions used in our setup should
prevent catastrophic scaling due to the freezing of the topological charge. Since we
have chosen the trajectory length constant in all our runs, we expect Langevin
scaling τint ∝ a−2.

In Figure 2 we show autocorrelation times of notoriously slow observables: the
global topological charge and the action density averaged over the plateau region,
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Figure 2: Scaling of the integrated autocorrelation time of Q2(t0) and E(t0). For the
energy, we observe very good scaling, whereas for the charge, significant violations are
observed. At coarser lattices the topological charge decorrelates significantly faster than
predicted by the scaling hypothesis, very similar to the pure gauge case [7].

both constructed from links smoothed by the Wilson flow integrated to flow time t0.
They are both defined in Eq. (6.2). We find a situation similar to that encountered
in pure gauge theory [7]. While the energy density shows very good scaling, the
topological charge decorrelates faster on coarser lattices.

The fast growth of the integrated autocorrelation time of the charge does not
mean that the 1/a2 scaling is not valid. In pure gauge theory, the behavior could
very well be fitted with τint ∝ a−2(c + da2). In this picture, there are significant
cutoff effects to the scaling, but no catastrophic behavior in the a → 0 limit. This
is expected when simulating with open boundary conditions.

4.2 Cost of the simulation

Note, in two-flavor QCD with periodic boundary conditions at a lattice spacing of
roughly a = 0.05 fm [8] the topological charge does not decorrelate slower than the
smoothed energy. Rather, it shows similar autocorrelations for quark masses around
400 MeV. This means that we are not yet in the position to fully profit from the
effect of the open boundary conditions, however, going to finer lattice spacings the
freezing observed in two-flavor QCD at a ≈ 0.03 fm [51] will be avoided.

In the sense of fast decorrelations and minimal requirements on the number of
units of molecular dynamics time (MDU), the presented simulations are not cheap,
nevertheless. The exponential autocorrelation time of τexp ≈ 14(3) t0/a

2 is consistent
with what is found in Fig. 2. For biases to be small and a simulation to be reliable we
need a total Monte–Carlo history of at least O(50)×τexp. For β = 3.4 this translates
to 2000 MDU, whereas for β = 3.55 and β = 3.7 a statistics of 3600 MDU and
6000 MDU, respectively, is necessary. For most of our ensembles listed in Table 1,
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we exceed these numbers, but for some, which are still in production, they are not
yet reached. Those quoted results therefore have to be taken with care in these
cases.

5 Reweighting factors

The simulations are not done with the exact QCD action as given by Eqs. (2.1) and
(2.3), but differ due to the twisted-mass reweighting Eq. (3.4) and the inaccurate
rational function in the RHMC Eq. (3.6). The observables are reweighted to the
target theory, for which the reweighting factor W = W0W1 needs to be computed.
The factorsW0 andW1, as defined in Eqs. (3.2) and (3.5) respectively, contain ratios
of determinants which are estimated stochastically as described below.

Expectation values 〈A〉 of primary observables A can then be computed from
expectation values in the theory with the modified action 〈· · · 〉W , according to

〈A〉 =
〈AW 〉W
〈W 〉W

. (5.1)

5.1 Twisted-mass reweighting factor

The twisted-mass reweighting plays an important role in our setup. From a concep-
tual point of view, it removes barriers of infinite action created by zero eigenvalues of
the Wilson Dirac operator. Together with Hasenbusch factorization, it also reduces
the fluctuations of the forces which makes the simulations cheaper and more reliable
in practice [38].

This situation is especially favoured for a large value of µ0 in Eq. (3.2). It
might, however, also lead to significant fluctuations in the reweighting factor and as
a consequence to a larger statistical error of certain observables.

As a consequence, what constitutes the optimal choice of the parameter µ0 will
in general depend on the observable. As can be seen in Figure 3, W0 is close to
a constant for most configurations; only on some configurations the value will be
much smaller. For observables with little or no correlation to the reweighting factor,
like the gluonic ones we consider below, this effectively amounts to a reduction in
statistics [52]. This reduction is negligible for our ensembles since 〈var(W )〉 � 〈W 〉2
in all cases.

For observables with a strong correlation withW0, the situation is more delicate.
Even after reweighting, this can lead to large fluctuations in the measurements and
significantly increased statistical error. In particular in the case of anticorrelation,
the situation is more problematic due to the stochastic estimation ofW and, possibly,
the observable. The cancellation between, e.g. a large value of the observable and
a small value of W might require a rather precise determination of the two.
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Figure 3: Time history of the reweighting factor (top), the pseudoscalar correlator fPP(x0)

(center) and the product WfPP(x0) (bottom) on two C101 ensembles with different values
of the reweighting parameter, aµ0 = 0.0003 and aµ0 = 0.0006, respectively, evaluated on
time-slice x0 = (T + a)/2. The error bars indicate the uncertainty due to the stochastic
estimation of these quantities.

5.2 Reweighting and the pseudoscalar correlation function

The pseudoscalar correlation function is an observable showing a strong anticorre-
lation between its value and the reweighting factor. This can be easily understood
by noting that at small quark masses both receive significant contributions from the
smallest (in magnitude) eigenmodes of the Hermitian Dirac operator. It is precisely
this region where the reweighting term has the largest effect.

To illustrate the cancellation between the fluctuations in W and fPP(x0), Fig-
ure 3 displays the time series of the two (top and central panel) at x0 = (T + a)/2

together with the product WfPP(x0); see Eq. (6.7) for its definition. Data for C101
and two values of µ0 is shown. As we can see, the larger µ0 leads to larger fluctu-
ations in W and fPP(x0), as expected. In the product, however, they cancel and
the average value 〈WfPP(x0)〉/〈W 〉 is then consistent within the statistical errors
between the two ensembles.

5.3 Computation of W0

Since the determinant ratios needed for the computation of W0(µ0) cannot be com-
puted directly, a stochastic estimator is taken instead. This can either be done by
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directly estimating the determinant ratio in Eq. (3.2) or by first splitting it up and
then using stochastic estimates for the individual factors [53], a strategy already
successful in Hasenbusch’s mass factorization.

Among the many possibilities, we here restrict ourselves to splitting the interval
between µ = 0 and µ = µ0 into Nsp smaller steps µ0 = µ̃0 > µ̃1 > · · · > µ̃Nsp = 0

W0(µ0) =

Nsp∏
i=1

detR(µ̃i−1, µ̃i) ; R(µ1, µ2) =
(Q̂2 + µ2

2)2

(Q̂2 + µ2
1)2

(Q̂2 + 2µ2
1)

(Q̂2 + 2µ2
2)
. (5.2)

Now each of the factors is evaluated stochastically with Nr complex-valued Gaussian
random fields η of unit variance

R̃(µ1, µ2, Nr) =
1

Nr

Nr∑
i=1

exp
{
−
(
ηi, (R

−1(µ1, µ2)− 1)ηi
) }

, (5.3)

such that up to an irrelevant constant factor the determinant is retrieved by aver-
aging over the noise fields

detR(µ1, µ2) ∝ 〈R̃(µ1, µ2, Nr)〉η. (5.4)

Following the initial proposal of Ref. [12], it is sufficient to use a single step
Nsp = 1 with a suitably chosen value ofNr. Its value along with the other parameters
of the reweighting can be found in Table 3. This is the method implemented in
openQCD-1.2.

Once the fluctuations in the reweighting factor increase, it is advisable to use
intermediate µ̃, a possibility given in openQCD-1.4. This is because the distribution
of the results for the reweighting factors become long-tailed once exceptionally small
eigenvalues of the Q̂2 are encountered. In this situation it is very difficult to argue
about the uncertainty of W0 [54]. By splitting the estimate into smaller intervals in
µ̃, the distribution of each of the factors becomes significantly more regular.

For ensemble H105r002 we find precisely such a situation. While with a single
step in µ̃ the smallest reweighting factors show a distribution which is far from
Gaussian, using ten intermediate µ̃ the individual factors can be computed reliably
to O(15%) accuracy using 15 sources each.

5.4 RHMC reweighting factor

Since the rational approximation has been chosen to a good accuracy, the fluctua-
tions in the reweighting factor are small and it turns out to be sufficient to estimate
it with one stochastic source per configuration. The associated variances are given
in Table 3. They are seen to receive a considerable contribution from the stochastic
estimation of W1.

In order to study the effect of more sources, we observe using five instead of one
stochastic estimate reduces the variance of W1 by more than a factor 4, on ensemble
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id Nr
var(W0)
〈W0〉2 · 10

3 var(W1)
〈W1〉2 · 10

5

H101 12 0.00047(9) 5.1(2)
H102 12 0.036(4) 1.88(5)
H105 36 3.2(4) 7.3(2)

H105r005 24 0.0032(9) 3.7(2)
C101 24 1.8(1.1) 1.6(2)

C101r014 24 5.1(2.1) 1.63(10)

H200 24 0.00018(5) 4.7(2)
N200 24 0.4(2) 2.23(7)
D200 48 0.15(5) 4.9(3)

N300 24 0.00018(2) 3.0(1)
J303 24 3.7(3.2) 1.3(2)

Table 3: Parameters of the reweighting. We give the number of sources Nr used to estimate
the twisted-mass reweighting factorW0 — for the RHMC reweighting factorW1 we always
use one source — and the resulting variances of W0 and W1. Nsp = 1 in all cases. H105
refers to runs r001 and r002, whereas C101 to runs r013 and r015. J303 have not reached
sufficient statistics for a reliable result.

H105r005. The same is true for the H200 ensembles. Still, even with one source per
gauge configuration the noise introduced by W1 is negligible for all observables we
investigated.

Note that in some early runs we underestimated the upper bound of the interval
in which the rational function is accurate. Since the accuracy does not deteriorate
quickly outside the interval, the fluctuations of the reweighting factors nevertheless
are sufficiently small.

6 Observables

6.1 Wilson flow

The Wilson flow can be a very useful tool in lattice QCD from which quantities with
a finite continuum limit can be constructed [6, 55, 56]. The gauge fields U(x, µ) are
subjected to the smoothing flow equation

∂tVt(x, µ) = −g2
0{∂x,µSW(Vt)}Vt(x, µ) , Vt(x, µ)

∣∣
t=0

= U(x, µ) , (6.1)

with SW the Wilson action. With clover-type discretization of the field strength
tensor Ĝµν(x, t) constructed from the smooth fields Vt, the time slice energy E(x0, t)
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and the global topological charge Qtop(t) can be constructed

E(x0, t) = − a3

2L3

∑
~x

tr{Ĝµν(x, t) Ĝµν(x, t)} ,

Qtop(t) = − a4

32π2

∑
x

εµναβ tr{Ĝµν(x, t) Ĝαβ(x, t)} .
(6.2)

With the vacuum expectation value of the energy 〈E(t)〉, the scale parameter
t0 is then defined by

t2E(t)
∣∣
t=t0

= 0.3 . (6.3)

Throughout this paper we quote the observables of Eq. (6.2) at flow time t0.

6.2 Effects of the boundary

Due to the open boundary conditions in the temporal direction, time translational
invariance is lost. Sufficiently far away from the boundaries, local observables are
expected to assume their vacuum expectation values up to exponentially small cor-
rections with a decay rate equal to the lightest excitation with vacuum quantum
numbers.

On top of this continuum boundary effect, large discretization errors are ob-
served close to the boundary. As an example we show in Figure 4 the behavior
of the smoothed energy E(t, x0), defined in Eq. (6.2). A further example for the
pseudoscalar correlation function with the sink approaching the boundary can be
found in Ref. [52].

In the case of the energy, it should be noted that it is at this point difficult
to disentangle the discretization effects in the underlying gauge field from the ones
introduced by the Wilson flow and the observable used to define the field strength
tensor, but recent work by Ramos and Sint might clarify this issue [57]. Also the
Dirac operator used in the measurement of the effective mass is only tree-level im-
proved at the boundary. Still, the effects of the finite lattice spacing are very promi-
nent at our coarser lattices, but become much less notable as the continuum limit
is approached.

As can be seen in Figure 4, no sizable dependence on the quark mass is observed
in t20E(x0, t0). This is trivial for the bulk, since its value is equal to 0.3 by definition.
But also the (cutoff) effects close to the boundaries show no quark mass dependence.
Whether this is a generic feature of the sea quark contribution being small or it is
due to our particular choice of chiral trajectory Eq. (2.8) cannot be judged from the
data presented here.

In the context of the present paper we will not discuss these effects in detail,
but perform the measurements in a region where they can be neglected. The deter-
mination of the plateau region is not always clear due to an effect already observed
in Ref. [12]: In precise observables, like the examples above, long-range waves are
visible. They are a consequence of the limited statistics and do not exceed what
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The dotted lines represent fits to Eq. (6.4). They are used to set the lower bound of the
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is expected if the statistical analysis is done properly, however, they do make the
plateau determination more difficult.

For meson correlation functions, these waves have been discussed previously
[58], see Figure 6 for an example from our simulations. In other simulations they
are typically not visible, because time translational invariance is used on the level
of the correlation function by using different source positions in time and averaging
them before computing effective masses. Again, this is not a principal problem.
However, we need to ensure sufficient statistics and that errors are under control
and require a procedure to deal with these waves.

6.3 Measurement of t0

For the determination of t0, we need to determine the plateau in E(x0, t) for t = t0.
Since we are looking at a smoothing radius of

√
8t0, the effects of the boundary

visible in Figure 4 are at the expected length scale. Discretization effects are large
though, and it is therefore difficult to argue about the expected functional form. In
this situation, we use a two-stage procedure: First we fit

E(x0, t) = E(t) + c0e
−mT

2 cosh{−m(x0 −
T

2
)} (6.4)

in the range where this ansatz describes the data. This is only used to determine the
fit range by the condition that in the whole range the statistical uncertainty δE(x0)
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is dominating over the systematic effect from a non-vanishing c0, i.e., we require for
the fit interval [x0,min, T − x0,min]

1

4
δE(x0,min, t) > c0e

−mT
2 cosh{−m(x0,min −

T

2
)} . (6.5)

At the current accuracy of the data, the result of this investigation is that a single
x0,min is sufficient for each value of β, as might be expected from Figure 4. The
effect of the quark mass is negligible. In particular we have

x0,min(β = 3.4)/a = 20 ; x0,min(β = 3.55)/a = 21 ; x0,min(β = 3.7)/a = 24 , (6.6)

and the final value of E(t) in the vicinity of t = t0 is determined by averaging
E(x0, t) in the corresponding interval. The value of t0/a2 is then determined by
Eq. (6.3). The results are listed in Table 4.

In Figure 5 the quark mass dependence of t0 is given for the three available
lattice spacings. Recall, the values are given in terms of the symmetric point which
defines the chiral trajectory at mud = ms. From Taylor expansion around this
point [14] as well as ChPT [27] one expects a constant behavior to the respective
leading order. This is confirmed for the finer lattices to our level of accuracy. Only
at the coarsest lattice spacing, cutoff effects seem to cause some deviation, albeit on
a rather small scale.

6.4 Pseudoscalar masses

The masses of the pseudoscalar particles are computed from the pseudoscalar cor-
relation function projected to zero momentum. With quark fields of flavor r and s,
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id amπ amK t0/a
2 φ2 φ4

H101 0.18273(70) 0.18273(70) 2.8468(61) 0.7605(44) 1.1407(77)
H102 0.15437(70) 0.19164(57) 2.8799(73) 0.5490(44) 1.1206(69)
H105 0.12170(96) 0.20126(63) 2.9031(73) 0.3440(49) 1.1127(80)
C101 0.09751(93) 0.20639(40) 2.9085(51) 0.2212(38) 1.1017(54)

H200 0.13653(52) 0.13653(52) 5.150(23) 0.7680(60) 1.1520(88)
N200 0.09202(61) 0.15059(57) 5.1584(78) 0.3494(48) 1.1105(88)
D200 0.06542(44) 0.15640(25) 5.1681(68) 0.1769(26) 1.0998(39)

N300 0.10593(32) 0.10593(32) 8.580(27) 0.7702(53) 1.1553(79)
J303 0.0648(3) 0.1198(3) 8.63(3) 0.288(3) 1.136(6)

Table 4: Measured values for the pseudoscalar masses, the scale t0/a2 and the two scaling
variables φ2 and φ4. The results in C101 are based on runs r013, r014 and r015. J303 has
a statistics of roughly 20τexp. The values on this ensemble are therefore not reliable.

and the pseudoscalar density P rs = ψ̄rγ5ψ
s, it is given by

fPP(x0, y0) = − a
6

L3

∑
~x,~y

〈P rs(x)P sr(y)〉 . (6.7)

Due to the open boundary conditions in time, the translational invariance in the
temporal direction is broken. However, we find that there is little to gain from
using source fields at different time slices [52]. The U(1) stochastic source fields are
therefore put only at y0 = a and y0 = T − a [59]. In the following we analyze

fPP(x0) ≡ 1

2

{
fPP(x0 + a, a) + fPP(T − a− x0, T − a)

}
. (6.8)

In the continuum limit and for large volume and sink positions far away from
the source and boundary, x0 � 0 and x0 � T , the two-point function is expected
to fall off as [12]

fPP(x0) = A sinh
(
mPS(T̃ − x0)

)
. (6.9)

In line with Ref. [12], T̃ is a free parameter. We follow a similar strategy as in Sec-
tion 6.3 to make sure that in our final fit the excited state contribution is negligible.

We show an example of an effective mass plot in Figure 6, where we can see
that this fit works very well in a wide range of x0. The results for the masses are
listed in Table 4.

6.5 Comparison to simulations with periodic boundary conditions

One possible concern regarding the open boundary conditions is that the region
close to the boundaries is large and as a consequence one loses a sizeable fraction
of the statistics. Which fraction of the lattice needs to be discarded depends on the
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observable and the statistical accuracy of the data, with boundary effects expected
to decay close to the chiral limit as exp(−2mπx0). However, it should be noted that
also the systematic finite volume effects are parametrically similar with contributions
proportional to exp(−mπL): A high accuracy requires large lattices in both, the
temporal and spatial directions, which is also true for simulations with periodic
boundary conditions in time.

In any case, since we observe large cutoff effects close to the boundary, argu-
ments based on continuum physics are problematic at current lattice spacings. This
is already visible in the x0,min/a chosen in the measurement of E(t0), which has only
a minor dependence on the lattice spacing. On our smallest lattices at β = 3.4 with
Nt = 96, the x0,min/a = 20 leads to a plateau average of almost 60% of the total
time extent. On all other ensembles we have an even larger fraction over which we
can take the plateau average.

In our measurements of the pseudoscalar masses we typically start the plateau
at x0,min ≈ T/4, from where on the effects from the excited states can be neglected.
As noted before, moving the source away from the boundary has little effect, since
the plateau is seen to start at the same position. The minimal distance x0,max of
the sink from the boundary is typically around T/6, such that we have in total a
plateau stretching between 50% and 65% of the lattice. Even if the other half of
the lattice was completely decorrelated, this would at most correspond to a factor
of two in statistics.

7 Scaling violations

In the bulk, our action is fully O(a) improved, only for the boundary terms we
use the tree-level values. This guarantees leading scaling violations close to the
continuum limit to be of order a2, but at finite lattice spacings higher order terms
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will always be present as well. How large their contribution is and whether one can
safely neglect them given the statistical uncertainties of the simulation is not a priori
clear. In any case, once the higher order terms become important, they limit the
value of coarser lattices in the continuum extrapolation.

7.1 Cutoff effects in t0

A particularly precise way to study discretization effects is to look at observables
which agree in the continuum limit but differ at finite lattice spacing. To this end,
we take two slightly different definitions of t0: both are given by the implict relation
Eq. (6.3), where in one case we use the conventional “clover” discretization of the
field strength tensor for the the energy density E, Eq. (6.2), in the other case the
plaquette definition is used as given in Ref. [6].

Since the continuum value of t0 has to be the same, the ratio of tclov
0 and tplaq

0

has to be one up to cutoff effects. As they are evaluated on the same gauge field
configurations, the two values of t0 are highly correlated such that their ratio can
be evaluated to exceedingly high accuracy.

As we can see in Figure 7, the ratios at β = 3.7 and β = 3.55 agree with the a2

scaling hypothesis up to very high accuracy, with a total deviation of the ratio from
its continuum value of 4% and 6%, respectively. With the assumption that higher
order effects are negligible at β = 3.7, one concludes that at β = 3.55 higher orders
contribute 0.4% to this observable, while at β = 3.4 an additional O(2%) effect can
be attributed to higher orders on top of the 11% which come from the leading order
scaling violation.

While this additional O(2%) effect originating from the higher order terms is
not of concern for most observables in current lattice computations, it might impact
studies of certain high accuracy observables.

In any case, the large discrepancies between the two definitions of t0 are a
problematic finding in view of the fact that our tuning strategy is entirely based
on this quantity to set the scale. We therefore have to expect that for other scale
setting strategies, the matching of the chiral trajectories will differ on the order of
the ratio observed at the level of 10% at the coarsest lattice spacing.

7.2 Coarser lattices

In order to investigate the value of ensembles at coarser lattice spacings, we have also
generated some β = 3.3 lattices at themud = ms matching point. After some tuning,
κud = κs = 0.136423 is found to match the φ4 = 1.15 point to reasonable accuracy.
However, the observation of large cutoff effects on 96× 243 lattices, indicating this
point no longer being in the assumed a2 scaling region, has led us to abandon this
coupling for now.

This decision is based on Figure 7, where for this parameter point we find
a2/t0 ≈ 0.5 and a ratio of tclov

0 /tplaq
0 ≈ 1.3, which is 16% above the leading order

violations of 1.15. We are therefore clearly no longer in the scaling regime and since
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Figure 7: Ratio of the values of t0 from two different discretizations (plaquette and clover)
of the field strength tensor used in E, which is constructed from the same smoothed gauge
fields at flow time t0 as given in Table 4. From left to right we show the values at β = 3.7,
3.55 and 3.4, with the straight line given by the continuum value and the point at β = 3.7.
The point at β = 3.3 is not shown, it lies at a2/t0 = 0.5 with the ratio on the y-axis at
about 1.3.

we aim with most observables at accuracies much below the 10% level, the points
at this lattice spacing of roughly 0.1 fm, do not meet our precision goals.

Furthermore, the autocorrelations observed in particular in the thin link pla-
quette were very significant and also large fluctuations in the lower spectrum of the
Dirac operator have been observed. This makes these lattices difficult to simulate
and poses another reason to refrain from considering this value of β at this time.

8 Conclusions

The generation of the gauge field configurations described here lays the ground
for many future lattice QCD calculations. It is the first time that open boundary
conditions in time and twisted-mass reweighting have been extensively used in such
large scale calculations.

The two methods have been shown to work well. Keeping in mind simulations
which are on our roadmap for the future, the experience gained with the use of open
boundaries will prove very valuable as the lattice spacing is decreased, while not
being strictly necessary at the lattice spacings under investigation.

We could show, that no particular obstacle is posed by the boundaries them-
selves, however, significant discretization effects are observed in their vicinity. De-
pending on the observable and its correlation with the reweighting factor, we observe
the twisted-mass reweighting is under control. To study this in the future, we have
generated ensembles with different values of the reweighting parameter µ0.
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It is noteworthy that similar data sets previously needed to be accumulated
over many years. However, due to advances in hardware and in algorithms, we
could demonstrate the progress that has been made, by generating the current,
new data set within a year and a half after the parameters of the action had been
determined.

As of now, the covered parameter space is limited: We only have data on one
chiral trajectory, a limited range of quark masses and lattice spacings and typically
only one volume. In order to better control the associated systematic uncertainties,
we therefore plan to extend the current set of ensembles. We are certain the config-
urations presented here will prove useful, and we are excited about the interesting
physics results that will be obtained.
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