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Abstract

The vacuum polarization tensor and the corresponding vacuum polarization function are the basis

for calculations of numerous observables in lattice QCD. Examples are the hadronic contributions

to lepton anomalous magnetic moments, the running of the electroweak and strong couplings and

quark masses. Quantities which are derived from the vacuum polarization tensor often involve a

summation of current correlators over all distances in position space leading thus to the appearance

of short-distance terms. The mechanism of O (a) improvement in the presence of such short-

distance terms is not directly covered by the usual arguments of on-shell improvement of the

action and the operators for a given quantity. If such short-distance contributions appear, the

property of O (a) improvement needs to be reconsidered. We discuss the effects of these short-

distance terms on the vacuum polarization function for twisted mass lattice QCD and find that

even in the presence of such terms automatic O (a) improvement is retained if the theory is tuned

to maximal twist.

Keywords: lattice QCD, twisted mass fermions, hadronic vacuum polarization function, g-2, discretization
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I. INTRODUCTION

The computation of hadronic contributions to observables derived from the vacuum po-

larization function, especially the muon anomalous magnetic moment, ahadµ , have recently

been a major target of the lattice community, see for instance [1–12]. The reason is that

ahadµ is a prime candidate to find indications of physics beyond the standard model. One

basic element to obtain the leading contribution to ahadµ and other quantities derived from

the vacuum polarization function with good accuracy is the property of O (a) improvement

which guarantees that physical quantities scale with a rate of O (a2) towards the continuum

limit.

For twisted mass fermions at maximal twist automatic O (a) improvement has been es-

tablished for physical quantities without short-distance singularities [13] based on symmetry

arguments of the lattice theory, see also [14] for a review. The hadronic vacuum polarization

function in momentum space, Πµν(Q), however, also receives short-distance contributions

arising from the Fourier summation of the 2-point vector current correlator 〈Jµ(x) Jν(y)〉 for

x− y → 0.

Employing Symanzik’s effective theory [15, 16], we show in the following that with our

definition of the hadronic vacuum polarization function and at maximal twist these short-

distance contributions do not spoil the automatic O (a)-improvement of the vacuum polar-

ization function in the twisted mass formulation of lattice QCD (tmLQCD). This finding

is in accordance with a similar analysis performed for the chiral condensate and the topo-

logical susceptibility [17–19], which also involve summations over all lattice points with the

corresponding appearance of short-distance contributions.

To demonstrate the O (a) improvement of the complete vacuum polarization function we

will perform an operator product expansion (OPE) to find the operators appearing at small

distances. An essential step is to also identify all operators that can mix with the ones

in the OPE. This requires the investigation of the symmetry properties of all operators of

equal and lower dimension. The classification of such operators up to mass dimension 6 are

compiled in appendix C. This classification can also be useful to identify the renormalization

pattern of other operators built from twisted mass fermions.

The paper is structured as follows. In Sect. II we state the momentum space definition

of the hadronic vacuum polarization function whose short-distance contributions we investi-
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gate later on. We then briefly outline our strategy to prove automatic O(a) improvement in

Sect. III. In Sect. IV and appendix A we discuss the position space properties of the defini-

tion given in Sect. II. Sect. V and the appendices B and C contain a list of the symmetries of

the twisted mass lattice action and the corresponding classification of possible mixing opera-

tors. The Symanzik expansion constructed from these operators for the vacuum polarization

function of the local vector current is presented in Sect. VI. In Sect. VII the discussion is

extended to the case of the conserved vector current. Our conclusions follow in Sect. VIII.

II. DEFINITION OF THE VACUUM POLARIZATION FUNCTION

To keep the paper self-contained, we give here the expressions of the fermion actions

used in our lattice calculation of the muon anomalous magnetic moment [11] in the twisted

basis for a setup of active, mass-degenerate up and down and non-degenerate strange and

charm quarks (Nf = 2 + 1 + 1). We will restrict the discussion to the valence quark sector.

For details about the sea sector and the simulation setup for Nf = 2 + 1 + 1 twisted mass

lattice QCD we refer to [20, 21].

In the valence sector we formally introduce three doublets of quarks: the light quark

pair χl = (χ+
l , χ

−
l ) = (u, d), a strange quark pair χs = (χ+

s , χ
−
s ) and a charm quark pair

χc = (χ+
c , χ

−
c ). The superscript sign refers to the sign of the twisted quark mass for the

corresponding field in the valence Dirac operator. The action can be written concisely as a

sum over standard twisted mass action terms for the fermion doublets [13],

Sval
F =

∑

q=l,s,c

∑

x

χ̄q(x)
[

DW + iµqγ5τ
3
]

χq(x) . (1)

In the heavy sector, this procedure is based on the method introduced by Osterwalder and

Seiler [22, 23]. µq denotes the bare twisted quark mass for flavor pair q (taken positive) and

τ 3 is the third Pauli matrix acting in the flavor (sub-)space spanned by the quark doublet

χq. Besides S
val
F we assume as usual an action term for the ghost fields corresponding to the

valence sector. Contact to the physical quark content is made by identifying (u, d) ↔

(χ+
l , χ

−
l ), s ↔ χ−s and c ↔ χ+

c . We thus choose these fields to initially construct the

electromagnetic current operator as a Noether current resulting from the infinitesimal vector
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variation

δV χ = iα(x)Qem χ(x)

δV χ̄ = −iα(x) χ̄(x)Qem ,

with Qem = diag (+2/3,−1/3,+2/3, 0, 0,−1/3) related to the electromagnetic charge ma-

trix taking into account our choice of physical fields. This yields the point-split current

operator

JC
µ =

1

2

[

χ̄(x) (γµ − r)Uµ(x)Qem χ(x+ aµ̂) + χ̄(x+ aµ̂) (γµ + r)Uµ(x)
†Qemχ(x)

]

. (2)

The multiplet χ collects all flavor components of the three doublets. With this conserved

current the full polarization tensor in position space is given by

ΠC
µν(x, y) = 〈J

C
µ (x) J

C
ν (y)〉 − a−3 δµν δxy 〈Sν(y)〉 . (3)

Due to the usage of the point-split current operator on the lattice at the sink location y

a contact term appears in Eq. (3) whose presence allows for exact current conservation at

non-zero lattice spacing. The field Sν in the contact term reads

Sν(y) =
1

2

[

χ̄(y) (γν − r)Uν(y)Qem
2 χ(y + aν̂)− χ̄(y + aν̂) (γν + r)Uν(y)

†Qem
2 χ(y)

]

.

(4)

Here, we will first investigate the local variant of the vector current and its correlation

functions. Its interpolating field is given by the usual quark bilinear,

JL
µ (x) = χ̄(x) γµQem χ(x) . (5)

and we define the bare polarization tensor in position space by the 2-point current correlator

ΠL
µν(x, y) = 〈J

L
µ (x) J

L
ν (y)〉 . (6)

In this case there is not any term analogous to Sν(y) in (4) which could render an exact Ward

identity to be satisfied. In the course of extracting a physical polarization function from

the tensor in Eq. (6), the latter will have to be potentially additively and multiplicatively

renormalized. This will be partly discussed later on.

The polarization tensor Πµν(Q) in momentum space at Euclidean momentum Q is ob-

tained via the Fourier transform

Πµν(Q) = a4
∑

x

eiQ·(x+aµ̂/2−y−aν̂/2) Πµν(x, y) (7)
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with spacetime arguments in the Fourier phase shifted by half a lattice spacing. The polar-

ization function Π(Q) is derived from Πµν(Q) using the projector Pµν(Q) on the transverse

part of the tensor,

Pµν(Q) = Q̂µ Q̂ν − δµν Q̂
2

Π(Q) = Pµν(Q) Πµν(Q)/(3 (Q̂2)2) .

(8)

We note that this projection is non-trivial also for the polarization tensor constructed from

conserved currents in Eq. (3), e.g. when stochastic methods are used and the Ward identity

is not exactly fulfilled. Also the local ΠL
µν will in general have a longitudinal component.

Starting from Eq. (8) we define the real and momentum-averaged polarization function

Π(av)(Q̂2) = Re





1

#G(Q)

∑

Q′ ∈G(Q)

Π(Q′)



 . (9)

Q̂ are the lattice momenta and component-wise related to Q via Q̂µ = 2 sin(aQµ/2)/a. G(Q)

is the set which contains all momenta obtained fromQ using discrete rotations and reflections

of the 4-dimensional lattice. We include rotations mixing time and spatial coordinates,

where they are possible, although our configurations feature T = 2L for the lattice time

and spatial extent T and L, respectively. Moreover, in practice we also average over momenta

with the same Q̂2 which are only connected by a spacetime transformation in the continuum.

Correspondingly, #G(Q) denotes the number of elements of this set. This defines our method

to extract the scalar vacuum polarization function as a function of the squared lattice 4-

momentum.

Relations Eq. (14) and Eq. (15) to be given below show that it is not necessary to calculate

the polarization tensor for all combinations of single quark currents as suggested by Eq. (2)

and (3). It is sufficient to restrict to combinations of single quark currents with, say, plus

components of the quark doublets.

In the following we restrict the discussion to the light valence quark sector. In the heavy

valence sector analogous arguments are used and the latter will be covered in a more general

framework in [24].
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III. PROCEDURE

Many applications of the vacuum polarization function require the vacuum polarization

function in momentum space Π(Q̂2). In the following we investigate the scaling properties

of the polarization tensor implied by relation (9) in position space. This will enable us to

draw conclusions on Π(Q̂2).

Given the on-shellO (a) improvement of the vector current correlator at physical distances

in the continuum limit [13] we focus on the impact of contributions to the Fourier sum from

small and zero distance. Formally, we are interested in the quantity

Π(av)(Q̂2) =

[

Pµν(Q) a4
∑

x∈V

eiQ·(x+aµ̂/2−y−aν̂/2) Πµν(x, y)

]av

(10)

for a physical 4-volume V . This Π(av) can be expanded in the continuum limit as

Π(av) =
∑

k≥−6

Ck a
k , (11)

such that

C0 =
1

3(Q2)2
Pµν(Q)

∫

V

d4x 〈Jµ(x) Jν(y)〉 e
iQ(x−y)

+ contributions from operators of dimension 6 . (12)

We will argue that C1 = 0 automatically in tmLQCD at maximal twist, irrespective of the

remaining Ck for k 6= 1. A similar statement holds for all operators sharing the symmetry

class of the polarization tensor with which it can mix such that the polarization function

can be obtained by subtractions without O (a) terms.

To that end we proceed in two steps.

1. We examine the possible mixing of the polarization tensor in position space with

operators of equal and lower dimension; the occurrence of such a mixing requires the

definition of a subtracted operator. The mixing pattern of operators is investigated

for zero distance.

2. We use the Symanzik expansion technique with reference to the twisted mass lattice

action and the subtracted operator to show that all contributions to C1 vanish at

maximal twist.
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At the non-perturbative level the identification of the mixing pattern and of the terms in

the Symanzik expansion relies on the symmetries of the lattice and the continuum theory.

We emphasize, that in the context of tmLQCD automatic O (a) improvement requires the

absence of O (a) terms irrespective of a particular choice of mixing and improvement coef-

ficients. The only parameter ultimately assumed to be tuned is the twist angle such that

maximal twist is realized. See Refs. [20, 21, 25] for details how this has been achieved for

the Nf = 2+ 1+ 1 setup we are interested in here. For our purposes, we only need to recall

that maximal twist corresponds to a vanishing bare quark mass mq = 0 in the Wilson Dirac

operator such that the twisted mass µq takes the role of the physical mass.

We do not go into detail about the vacuum expectation values of operators in the con-

tinuum but assume that a regularization can be chosen (independent of the lattice spacing)

such that they can be calculated as finite quantities.

IV. SYMMETRY PROJECTIONS

Our discussion of operator mixing and the Symanzik expansion proceeds in position space,

yet the position space current correlators given in Eq. (3) and (6) do not have a definite

transformation behavior under the relevant symmetries of the lattice theory. Our definition

of the hadronic vacuum polarization function in momentum space given in Eq. (8) on the

other hand incorporates projections to spacetime as well as light, strange or charm isospin

symmetry sectors. Since it is desirable to have these transformation properties in position

space as well, we show that these projections in momentum space automatically imply the

required properties for the correlators in position space.

a. Spacetime transformation group The momentum projector Pµν(Q) given in Eq. (8)

transforms like a rank-2 tensor. Restricting the set of momenta to a representative set we can

extend the average over G(Q) to the complete spacetime transformation group. As outlined

in appendix A we can realize this average equivalently in position space. This amounts to

defining the projected polarization tensor

[Πµ′ν′(x
′, y′)]

(av)
=

1

NG

∑

R∈G

Λ(R)µ
′

µ Λ(R)ν
′

ν Πµν(Λ(R)x′,Λ(R)y′) , (13)

where Λ(R) are the representation matrices of the lattice rotations and reflections. In this

form the vacuum polarization tensor in position space exhibits the transformation behavior
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of a rank-2 tensor. We will leave out the brackets [ ](av) from position space operators and

assume this exact rank-n tensor transformation behavior for all operators in the following

sections.

In anticipation of the following discussion we note, that in particular we have invariance

of the tensor under spacetime inversion Q → −Q or x → −x. This is one of the key

transformations in the discussion of automatic O (a) improvement. Moreover, with the

definition in Eq. (13) the average over momentum orbits becomes trivial as in the continuum.

b. Isospin For SU(2) isospin relations we use the flavor matrices τ±, τ 3 based on the

Pauli matrices, and τ 0 = 1. Correspondingly, with Jτ = χ̄ γµτ χ we denote the isospin

component of the current for any of the three doublets.

The implications of taking the real part of the polarization tensor in momentum space

can be immediately seen by using the relation

〈Jf1
µ (x) Jf2

ν (y)〉∗ = 〈J f̄2
µ (x) J f̄1

ν (y)〉 (14)

of the current correlator in position space and the corresponding relation

Πf1f2 ∗
µν (Q) = Πf̄2f̄1

µν (−Q) (15)

for the polarization tensor in momentum space. Here (f1, f2) denotes a pair of quark flavor

indices and f̄1/2 is the flavor with opposite sign of the twisted mass parameter compared to

flavor f1/2.

Given the electromagnetic charge matrix we can split the electromagnetic current of the

light quarks into its isospin components

Jem
l =

2

3
Jup −

1

3
Jdown =

1

6
Jτ0 +

1

2
Jτ3 . (16)

Hence, we only need the components with flavor structure τ 0 and τ 3. Using the relation (14)

the correlator of two such isospin currents Ja,b = Jf+σa,b J
f̄ with σa,b ∈ {±1} in momentum
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space can be decomposed according to

Πab
µν(Q) = 〈JaJ b〉

= Πff
µν(Q) + σb Π

ff̄
µν(Q) + σa Π

f̄f
µν(Q) + σaσb Π

f̄ f̄
µν(Q)

= Πff
µν(Q) + σb Π

ff̄
µν(Q) + σa Π

ff̄ ∗
µν (−Q) + σaσb Π

ff ∗
µν (−Q)

[ ](av)

−−−−→ 2Re
(

[

Πff
µν(Q)

](av)
)

(1 + σaσb) + 2Re

(

[

Πff̄
µν(Q)

](av)
)

(σa + σb)

+ 2i Im
(

[

Πff
µν(Q)

](av)
)

(1− σaσb) + 2i Im

(

[

Πff̄
µν(Q)

](av)
)

(−σa + σb) . (17)

As before, [ ](av) denotes the average over equivalent momenta, in particular averaging over

Q and −Q. From Eq. (17) we find that the contributions from the current-current correlator

with equal isospin components for both currents are purely real (σa = σb), whereas the

mixed isospin combinations are purely imaginary (σa = −σb). These latter contributions

are isospin symmetry breaking lattice artefacts in tmLQCD as can be checked by symmetry

arguments along the lines of the following sections. Retaining only the real part of the

averaged momentum space correlator removes these terms explicitly. We thus only need to

consider the correlators 〈Jτ Jτ 〉 with τ ∈ {1, τ 3}.

Knowing that we only need to consider correlators of same isospin, we can infer, that in

position space we always get correlators for flavor pairs (f1, f2), which are symmetrized in

the indices (1, 2) and the bar operation. These combinations, too, are manifestly real.

Finally, the operator in the contact term Eq. (4) contains the squared electromagnetic

charge matrix. Thus, it also consists of two isospin components given by τ 0 and τ 3. Again

the isospin component τ 3 is purely imaginary whereas the component with τ 0 is purely real.

Thus, for the contact term we limit our considerations to the component with τ 0 = 1.

Having shown that the definitions in momentum space imply position space operators

with equivalent transformation behavior under the symmetries of the lattice theory enables

us to study their mixing and the application of the Symanzik program.

V. MIXING OF THE POLARIZATION TENSOR

We start our considerations with the local vector current correlator, which is symmetry

projected as described in the previous section. When renormalizing the correlator it will

in general mix with operators of equal and lower dimension which have otherwise the same
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transformation properties. Moreover, in the Fourier sum we include the contribution where

the spacetime points in the 2-point correlator coincide. These points give rise to expectation

values of four-quark operators and need to be handled separately. They are accounted for

by allowing additional contributions of contact terms, again of equal and lower dimension

and with same transformation properties.

The polarization tensor in position space is of mass dimension 6. We thus write a sub-

tracted polarization tensor in position space as

[

Jτ
µ(x) J

τ
ν (y)

]

sub
=

6
∑

k=0

∑

i≥0

Z
(0)
ki

a6−k
Oki µν(x, y) + a−4 δxy

6
∑

k=0

∑

i≥0

Z
(1)
ki

a2−k
B

(1)
ki µν(y)

+ a−4 ∂̄(x)
µ δxy

6
∑

k=0

∑

i≥0

Z
(2)
ki

a1−k
B

(2)
ki ν(y)

+ a−4 ∂̄(x)
κ ∂̄

(x)
λ δxy

6
∑

k=0

∑

i≥0

Z
(3)
ki

a−k
B

(3)
ki µνκλ(y)

+ . . . . (18)

With index k we label the dimension of the operators and index i runs over the possi-

ble operators within each dimension. As a lattice version of the Dirac δ function we use

a−4 δxy
a→0
−−→ δ(x − y). The parity-odd first lattice derivative ∂̄µ is given by

(

∂f
µ + ∂b

µ

)

/2

with ∂f
µ and ∂b

µ being the lattice forward and backward partial derivatives, respectively. For

definiteness we can set Oki µν = Jτ
µ J

τ
ν for k = 6, i = 0.

When enumerating the operators Oki, B
(n)
ki , we keep explicit factors of Wilson and twisted

quark mass, mq and µq, respectively, as well as of the dimensionless Wilson parameter r at

zeroth and first power. With the parametrization in Eq. (18), i.e. the explicit factoring out

of powers of the lattice spacing and of quark masses, the dimensionless coefficients Z
(n)
ki do

not have a power dependence on the lattice spacing [26, 27]. The detailed form of these

factors would be fixed by a proper set of renormalization conditions. We will not formulate

such conditions, but stay on the level of a general subtracted operator. This is sufficient

for our purposes, since we are primarily interested in the transformation properties of the

operators with the attributed coefficients.

Taking the Fourier transform of Eq. (18), the contributions from the operators B(1)

are momentum independent, while those from B(2) and B(3) generate terms that depend

on the external momentum. For B(2) there are no operators to give rise to O (a) terms.
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The general notation for B
(3)
ki µνκλ is meant to include various Lorentz structures, B

(3)
ki µνκλ ∝

B
(3)
ki δµν δκλ, B

(3)
ki δµκ δνλ, B

(3)
ki µκ δνλ, etc.. The sets of operators for the B(n) that can mix

with the polarization tensor via short-distance contributions can be constructed from the

mass parameters, the Wilson parameter r, quark bilinears and products of those as well as

the lattice covariant derivative and the lattice field strength tensor Cµν as known e.g. from

the Sheikholeslami-Wohlert term [28]. The set is restricted by the symmetries of the lattice

theory. For twisted mass lattice QCD we use the following list of symmetry transformations,

• twisted time reversal

• twisted parity

• charge conjugation

• P ×D × [m0 → −m0]× [r → −r]

• R
1/2
5 ×D × [µq → −µq]

The details of these transformations are described in [14, 29] and for completeness a brief

listing is given in appendix B.

To investigate the mixing pattern for ΠL
µν(x, y) obtained from the correlator of two local

vector currents in the continuum limit, we distinguish the two cases x = y and x 6= y for

the spacetime arguments in the Fourier sum Eq. (7).

ΠL
µν(Q) = a4

∑

x 6=y

〈
[

JL
µ (x)

]

R

[

JL
ν (y)

]

R
〉 eiQ(x−y) + a4 〈

[

JL
µ (y) J

L
ν (y)

]

R
〉

= Π(2)
µν (Q) + Π(4)

µν , (19)

where [ ]R denotes a given renormalization scheme. The two terms in Eq. (19) have to be

considered individually due to their different behavior under renormalization in the contin-

uum limit.

a. x = y Π
(4)
µν is the lattice vacuum expectation value of a four-quark operator of mass

dimension 6. We recall, that τ is either τ 0 or τ 3. Problematic terms can also arise through

singularities in the limit x → y when performing the continuum limit. In the continuum

these terms can be identified by expanding the operator product to have the form of a ratio

〈O(k)(y)〉/||x− y||k of a condensate over a power of the distance ||x− y||k with k a positive
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integer (up to logarithms). Here difficulties are rooted in the integration in the Fourier

transform over a region of extension of the lattice spacing around y.

We capture these short-distance contributions by subtracting from the current-current

correlator in position space all possible local operators of equal and lower dimension, which

are allowed to appear constrained by the lattice symmetries. This involves contributions

in the form of the B
(n)
ki given in Eq. (18). The candidate mixing operators B

(n)
ki have been

separated into those that include and do not include covariant derivatives. They are listed

in tables {I}, {II}, {III} and {IV} in appendix C.

b. x 6= y Π
(2)
µν (Q) is composed of a product of two vector currents in position space at

non-zero distance x 6= y. This makes the situation rather definite here. For this operator

there is neither mixing nor additive renormalization. The local current operators are nor-

malized multiplicatively with a factor ZV , which can be determined non-perturbatively [30]

in a lattice calculation. Thus

[

JL
µ (x)

]

R
= ZV JL

µ (x) (20)
[

Π(2)
µν

]

R
=
∑

x 6=y

[

JL
µ (x)

]

R

[

JL
ν (y)

]

R
. (21)

In the language of Eq. (18) we have Zki 6= 0 only for (k = 6, i = 0) and zero else. For

automatic O (a) improvement of the latter correlator for physical distances x 6= y the on-

shell improvement conditions are sufficient within tmLQCD at maximal twist [13].

VI. SYMANZIK EXPANSION FOR THE LOCAL CASE

The operators allowed in the mixing pattern when using the local light quark current

JL
µ (x) are listed in tables {I}, {II}, {III} and {IV} in appendix C. According to this collection

the subtracted operator reads

[

Jτ
µ(x) J

τ
ν (y)

]

sub
= Jτ

µ(x) J
τ
ν (y) +

Z1

a6
δµν δxy +

Zrm rmq

a5
δµν δxy +

Zm2
m2

q + Zµ2
µ2
q

a4
δµν δxy

+
Zrχ̄χ

a3
r χ̄χ δµν δxy +

Zrm3
rm3

q

a3
δµν δxy

+
1

a4

(

ZQ2

δµν ∂̄
2 + ZQQ ∂̄µ ∂̄ν

)

δxy +
rmq

a3

(

ZrmQ2

δµν ∂̄
2 + ZrmQQ ∂̄µ ∂̄ν

)

δxy

+ operators of dimension ≥ 4 . (22)
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The expansion of the lattice action close to the continuum limit follows from the local

effective action

Seff = S4 + aS5 + a2S6 + a3S7 + . . . , (23)

where Sk ≡
∫

Lk d4x and the terms Lk contain linear combinations of fields with mass

dimension k. We expand its exponential up to O(a3). The corrections to the gauge field

Lagrangian in the continuum limit start with O (a2) and in fact contain only even powers of

the lattice spacing [31]. We thus concentrate on the corrections to the fermion action. The

operators that can appear in L5 and L6 have been listed in Refs. [26, 28].

From the expansion of the operator Eq. (22) and exp (−Seff ) in Eq. (23) the full Symanzik

expansion in momentum space is obtained and reads

Πτ
µν(Q) = a4 〈Jτ

µ(y) J
τ
ν (y)〉0 +

Z̃1

a2
δµν

+
Z̃1

a
〈−S5〉0 δµν +

Z̃rm rmq

a
δµν

+ Z̃1 〈−S6 +
1

2
S2
5〉0 δµν + Z̃rm 〈−rmq S5〉0 δµν +

(

Z̃m2

m2
q + Z̃µ2

µ2
q

)

δµν

+ a Z̃1 〈−S7 + S5S6 −
1

6
S3
5〉0 δµν + a 〈

(

Z̃rm rmq

)

(

−S6 +
1

2
S2
5

)

〉0 δµν

+ a 〈−
(

Z̃m2

m2
q + Z̃µ2

µ2
q

)

S5〉0 δµν + a Z̃rχ̄χ 〈r χ̄χ〉0 δµν + a Z̃rm3

rm3
q δµν

+
(

Z̃Q2

δµν Q̂
2 + Z̃QQ Q̂µ Q̂ν

)

+ armq

(

Z̃rmQ2

δµν Q̂
2 + Z̃rmQQ Q̂µ Q̂ν

)

+
{

O
(

a2
)

, operators of higher dimension
}

. (24)

Since we are working at maximal twist mq → 0, we may drop all terms involving the

untwisted quark mass. Using the R
1/2
5 -symmetry [14] we see that the vacuum expectation

values of S5, S5S6 as well as of µ2
qS5 and χ̄χ vanish as these merely contain R

1/2
5 -odd

operators. Similarly all terms in S7 disappear by either the R
1/2
5 - or the P × [µq → −µq]

symmetry as is demonstrated in appendix D.

We may then conclude that at maximal twist there are no O(a) lattice artefacts stemming

from the contributions in Eq. (24) to Πτ
µν , whose Symanzik expansion we write again for

this case,

Πτ
µν(Q) = a4 〈Jτ

µ(y) J
τ
ν (y)〉0 +

Z̃1

a2
δµν + Z̃1 〈−S6 +

1

2
S2
5〉0 δµν +

(

Z̃µ2

µ2
q

)

δµν

+
(

Z̃Q2

δµν Q
2 + Z̃QQQµQν

)

+
{

O
(

a2
)

, operators of higher dimension
}

.

(25)
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VII. APPLICATION TO THE CONSERVED CURRENT CORRELATOR

The conserved current can be written in the following form

JC
µ (x) = JL

µ (x) +
a

2

[

χ̄ γµ τ
(−→
∇f

µ +
←−
∇f

µ

)

χ
]

(x)−
ar

2

[

χ̄ τ
(−→
∇f

µ −
←−
∇f

µ

)

χ
]

(x) , (26)

where
−→
∇f

µ is the covariant lattice derivative acting to the right. It is a sum of the local

current operator and two local operators of mass dimension 4. This constitutes already the

beginning of its Symanzik expansion. Similarly, for the lattice contact term we have

Sτ
µ(x) = δxy δµν S

τ
ν (y)

Sτ
ν (y) =

a

2

[

χ̄ τ γν

(−→
∇f

ν −
←−
∇f

ν

)

χ
]

(y)−
ar

2

[

χ̄ τ
(−→
∇f

ν +
←−
∇f

ν

)

χ
]

(y)− r χ̄ τ χ(y) . (27)

Hence, both the conserved current as well as the lattice contact term are a sum of local

quark-bilinear operators for which we can use the Symanzik expansion.

Having written the conserved current as the local current plus two operators containing

derivatives that are of dimension 4 implies that there is no principle alteration of the mixing

with lower dimensional operators for 〈JC
µ JC

ν 〉 compared to the local case, since JC
µ JC

ν can be

expressed as a sum of the product of local currents and additional terms of dimension 7 and

8. Moreover, for the short-distance part of the vacuum polarization tensor formed from the

conserved current the appearance of mixing operators is further constrained by the vector

Ward identity. Thus, the considerations for the occurrence of O (a) terms are basically the

same as for local case.

The only addition is the lattice contact term where we have rχ̄ τ χ. As stated earlier, due

to the symmetry projections discussed in Sect. IV, χ̄ τ χ with τ = τ 3 is excluded and only

τ = 1 needs to be considered. At maximal twist, when R
1/2
5 is a symmetry of the continuum

theory, this term will vanish, since it is odd under R
1/2
5 .

Combining the above arguments, the hadronic vacuum polarization function formed from

the conserved vector current according to Eq. (3) and Eq. (8) exhibits no O(a) contributions.

VIII. CONCLUSIONS

A crucial element in obtaining accurate results from lattice QCD calculations is the

suppression of lattice spacing artefacts and a controlled approach towards the continuum
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limit. The lattice community has therefore developed a number of actions and improved

operators that guarantee that physical quantities scale with a rate ofO (a2) to the continuum

limit.

One particular lattice QCD formulation, which we have investigated here, is the twisted

mass formulation [13, 23, 32, 33]. When tuning the twisted mass lattice action to maximal

twist physical quantities are automatically O (a) improved [13]. Indeed, in numerical com-

putations with two dynamical quarks the O (a2) scaling of many physical quantities could

be demonstrated [34–36] showing also that these remaining O (a2) lattice artefacts are often

very small as can be deduced from [25].

However, the arguments that lead to O (a) improvement for twisted mass fermions do not

immediately cover quantities that involve summations over all lattice points leading thus to

short-distance contributions.

Here, we have examined the behavior of the hadronic vacuum polarization function which

serves as a most important basic quantity to compute hadronic contributions to electroweak

observables, quark masses and also the strong coupling constant. In order to see whether

short-distance contributions affect the rate of the continuum limit scaling, we have con-

structed the Symanzik expansion for these short-distance contributions.

We have found that when the theory is tuned to maximal twist, automatic O(a) improve-

ment prevails for the complete vacuum polarization function provided that is is defined as

eigenstate of the symmetry transformations of the lattice action. Thus, continuum limit

extrapolations of our lattice results can safely be performed employing fit functions without

linear terms in the lattice spacing as has been done in [11]. In the course of this work, we

have established the classification of the twisted mass symmetry properties of operators up

to dimension 6, see appendix C for a complete list.

In this paper, we have concentrated on the twisted mass formulation of lattice QCD.

However, it would be important to extend the analysis to other lattice formulations of QCD

to ensure that the short-distance contributions do not spoil the desired O (a) improvement

of the corresponding vacuum polarization function.

Another extension of the present work, which however goes substantially beyond the

scope of this paper, is a potentially generalized analysis of short-distance contributions to a

larger class of operators in twisted mass lattice QCD, which is currently under investigation

[24].
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Appendix A: Spacetime symmetry projections in position space

The momentum projector Pµν(Q) given in (8) transforms like a rank-2-tensor, that is for

any discrete spacetime transformation Λ we have

Pµν(ΛQ) = Λµ′

µ Λν′

ν Pµ′ν′(Q) .

Λ denotes a representation of the essentially hypercubic lattice symmetry group. We can

restrict the set of momenta to a representative set and translate the average over G(Q) to

position space. Moreover, instead of averaging over G(Q) for a specific momentum Q we can

average over the complete spacetime transformation group G 1and define

[Π(Q)](av) =
1

NG(Q)

∑

Q∈G(Q)

Pµν(Q) a4
∑

x

Πµν(x, y) e
iQ(x+aµ̂/2−y−aν̂/2)

=
1

NG

∑

Λ∈G

Pµν(ΛQfix) a
4
∑

x

Πµν(x, y) e
i(ΛQfix)(x+aµ̂/2−y−aν̂/2)

= Pµ′ν′(Qfix) a
4
∑

x

1

NG

∑

Λ∈G

Λµ′

µ Λν′

ν Πµν(x, y) e
iQfix Λ

−1(x+aµ̂/2−y−aν̂/2) (A1)

1 For any momentum Q the number of elements NG(Q) divides the number of elements in the whole group

NG .
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where Qfix is some fixed reference momentum. We can rewrite the transformed spacetime

argument in the Fourier phase in Eq. (A1) as

Λ−1(x+ aµ̂/2) = x′ + aµ̂′/2

µ′ = σΛ(µ)

x′ =







Λ−1x µ− direction not reflected

Λ−1(x+ aµ̂) µ− direction reflected
, (A2)

where σΛ is the permutation generated by Λ. Hence, we obtain

[Π(Q)](av) =
1

3(Q2)2
Pµ′ν′(Qfix) a

4
∑

x′

1

NG

∑

Λ∈G

Λµ′

µ Λν′

ν Πµν(Λx
′,Λy′) eiQfix (x′+aµ̂′/2−y′−aν̂′/2)

=
1

3(Q2)2
Pµ′ν′(Qfix) a

4
∑

x′

[Πµ′ν′(x
′, y′)]

(av)
eiQfix (x′+aµ̂′/2−y′−aν̂′/2) .

(A3)

By construction the operator

[Πµ′ν′(x
′, y′)]

(av)
=

1

NG

∑

Λ∈G

Λµ′

µ Λν′

ν Πµν(Λx
′,Λy′) (A4)

has the same transformation behavior as the projector Pµν ; it transforms like a true rank-2

tensor in position space and the trace of the tensor,
∑

µ′

[Πµ′µ′(x′, y′)](av), is a scalar.
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Appendix B: Symmetry transformations

T1/2 : x→ Tx = (−x0, ~x)

χ(x)→ iτ 1/2 γ0 γ5 χ(Tx)

χ̄(x)→ −iχ̄(Tx) τ 1/2 γ5 γ0

U0(x)→ U0(Tx− a0̂)† , Ui(x)→ Ui(Tx)

T × [µq → −µq] :

with T : x→ Tx = (−x0, ~x)

χ(x)→ i γ0 γ5 χ(Tx)

χ̄(x)→ −iχ̄(Tx) γ5 γ0

U0(x)→ U0(Tx− a0̂)† , Ui(x)→ Ui(Tx)

P1/2 : x→ Px = (x0, −~x)

χ(x)→ iτ 1/2 γ0 χ(Px)

χ̄(x)→ −iχ̄(Px) τ 1/2 γ0

U0(x)→ U0(Px) , Ui(x)→ Ui(Px− âi)†

P × [µq → −µq] :

with P : x→ Px = (x0, −~x)

χ(x)→ i γ0 χ(Px)

χ̄(x)→ −iχ̄(Px) γ0

U0(x)→ U0(Px) , Ui(x)→ Ui(Px− âi)†

C : χ(x)→ C−1 χ̄(x)T

χ̄(x)→ −χ(x)T C

Uµ(x)→ Uµ(x)
∗

with C = iγ0γ2 in representation of [14]

(B1)
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P × D × [m0 → −m0]× [r → −r] :

with D : Uµ(x)→ Uµ(−x− aµ̂)†

χ(x)→ −i χ(−x)

χ̄(x)→ −i χ̄(−x)

R
1/2
5 ×D × [µq → −µq] :

with R
1/2
5 : χ(x)→ i γ5 τ

1/2 χ(x)

χ̄(x)→ i χ̄(x) γ5 τ
1/2

Appendix C: Operator listings

The relevant lattice operators which potentially mix with Πµν at short distances are

listed in the following tables {I}, {II}, {III} and {IV}. The first one contains operators

not involving derivatives whereas the second accommodates the derivative operators. We

note that for obtaining a complete set of operators for any operator Oµν appearing in the

tables the diagonal part δµν Oµµ (without summation over µ) and the trace δµν Oλλ must be

included separately. Since these have the same quantum numbers as Oµν given in the table

(with Iµµ = 1), we do not repeat those quantum numbers.

Furthermore, to save space the common prefactor rk mnm

q µ
nµ

q (k ∈ {0, 1}, nm, nµ ∈ N0),

which is essential for counting the dimension of the operator, is omitted for all but the

first operator. Its quantum numbers can be inferred from the first line of each table and

have to be multiplied with the quantum numbers in the respective column. For the reader’s

convenience we have added an expanded list of non-derivative operators, which contain the

operators up to dimension three relevant for the discussion of O (a) improvement, as an

ancillary file to the arXiv submission.

The powers of τ 3 and γ5 appearing in fermion bilinears such as

rk mnm

q µnµ

q χ̄(τ 3)m(γ5)
lΓχ

with Γ ∈ {1, γµ, σµν , γ5γµ, γ5} and four-quark operators

rk mnm

q µnµ

q χ̄(τ 3)m(γ5)
lΓχχ̄(τ 3)m

′

(γ5)
l′Γχ

can take the values m, m′, l, l′ ∈ {0, 1}.
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operator P1/2 P [−µ] T1/2 T [−µ]

δµν r
k mnm µnµ Iµν (−)nµ Iµν Iµν (−)nµ Iµν

δµν χ̄ (τ3)m γl5 χ(x) (−)m+l Iµν (−)l Iµν (−)m+l Iµν (−)l Iµν
tr [Cµλ Cλν(x)] Iµν Iµν Iµν Iµν

tr
[

Cµλ C̃λν(x)
]

+ [µ↔ ν] −Iµν −Iµν −Iµν −Iµν

χ̄ (τ3)m γl5 σµλ Cλν χ(x) + [µ↔ ν] (−)l+m Iµν (−)l Iµν (−)l+m Iµν (−)l Iµν
χ̄ (τ3)m γl5 σµλ C̃λν χ(x) + [µ↔ ν] (−)l+m+1 Iµν (−)l+1 Iµν (−)l+m+1 Iµν (−)l+1 Iµν
δµν χ̄ (τ3)m γl5 χ χ̄ (τ3)m

′

γl
′

5 χ(x) (−)l+l′+m+m′

Iµν (−)l+l′ Iµν (−)l+l′+m+m′

Iµν (−)l+l′ Iµν
χ̄ (τ3)m γl5 γµ χ χ̄ (τ3)m

′

γl
′

5 γν χ(x) + [µ↔ ν] (−)l+l′+m+m′

Iµν (−)l+l′ Iµν (−)l+l′+m+m′

Iµν (−)l+l′ Iµν
χ̄ (τ3)m γl5 σµλ χ χ̄ (τ3)m

′

γl
′

5 σλν χ(x) + [µ↔ ν] (−)l+l′+m+m′

Iµν (−)l+l′ Iµν (−)l+l′+m+m′

Iµν (−)l+l′ Iµν
δµν χ̄ (τ3)m γl5 t

a χ χ̄ (τ3)m
′

γl
′

5 ta χ(x)

χ̄ (τ3)m γl5 γµ t
a χ χ̄ (τ3)m

′

γl
′

5 γν t
a χ(x) + [µ↔ ν]

χ̄ (τ3)m γl5 σµλ t
a χ χ̄ (τ3)m

′

γl
′

5 σλν t
a χ(x) + [µ↔ ν]

δµν χ̄ τ b γl5 χ χ̄ τ b γl
′

5 χ(x) (−)l+l′ Iµν (−)l+l′ Iµν (−)l+l′ Iµν (−)l+l′ Iµν
χ̄ τ b γl5 γµ χ χ̄ τ b γl

′

5 γν χ(x) + [µ↔ ν] (−)l+l′ Iµν (−)l+l′ Iµν (−)l+l′ Iµν (−)l+l′ Iµν
χ̄ τ b γl5 σµλ χ χ̄ τ b γl

′

5 σλν χ(x) + [µ↔ ν] (−)l+l′ Iµν (−)l+l′ Iµν (−)l+l′ Iµν (−)l+l′ Iµν
δµν χ̄ τ b γl5 t

a χ χ̄ τ b γl
′

5 ta χ(x)

χ̄ τ b γl5 γµ t
a χ χ̄ τ b γl

′

5 γν t
a χ(x) + [µ↔ ν]

χ̄ τ b γl5 σµλ t
a χ χ̄ τ b γl

′

5 σλν t
a χ(x) + [µ↔ ν]

Table I: Transformation properties of operators without co-

variant derivatives up to mass dimension 6 for P1/2, P [−µ],

T1/2 and T [−µ]; [−A] is short-hand for [A→ −A]. Cµν is a

version of the lattice field strength tensor as appearing in the

Sheikholeslami-Wohlert term [28]. Iµν = (−1)δµ0+δν0 .

operator C P D [−m] [−r] R
1/2
5 D [−µ]

δµν r
k mnm µnµ +1 (−)nm+k Iµν (−)nµ

δµν χ̄ (τ3)m γl5 χ(x) +1 (−)l+1 Iµν (−)m

tr [Cµλ Cλν(x)] +1 Iµν +1

tr
[

Cµλ C̃λν(x)
]

+ [µ↔ ν] +1 −Iµν +1

χ̄ (τ3)m γl5 σµλ Cλν χ(x) + [µ↔ ν] +1 (−)l+1Iµν (−)m

χ̄ (τ3)m γl5 σµλ C̃λν χ(x) + [µ↔ ν] +1 (−)lIµν (−)m

δµν χ̄ (τ3)m γl5 χ χ̄ (τ3)m
′

γl
′

5 χ(x) +1 (−)l+l′ Iµν (−)m+m′

χ̄ (τ3)m γl5 γµ χ χ̄ (τ3)m
′

γl
′

5 γν χ(x) + [µ↔ ν] (−)l+l′ (−)l+l′ Iµν (−)m+m′

χ̄ (τ3)m γl5 σµλ χ χ̄ (τ3)m
′

γl
′

5 σλν χ(x) + [µ↔ ν] +1 (−)l+l′ Iµν (−)m+m′

δµν χ̄ (τ3)m γl5 t
a χ χ̄ (τ3)m

′

γl
′

5 ta χ(x)

χ̄ (τ3)m γl5 γµ t
a χ χ̄ (τ3)m

′

γl
′

5 γν t
a χ(x) + [µ↔ ν]

χ̄ (τ3)m γl5 σµλ t
a χ χ̄ (τ3)m

′

γl
′

5 σλν t
a χ(x) + [µ↔ ν]

δµν χ̄ τ b γl5 χ χ̄ τ b γl
′

5 χ(x) +1 (−)l+l′ Iµν +1

χ̄ τ b γl5 γµ χ χ̄ τ b γl
′

5 γν χ(x) + [µ↔ ν] (−)l+l′ (−)l+l′ Iµν +1

χ̄ τ b γl5 σµλ χ χ̄ τ b γl
′

5 σλν χ(x) + [µ↔ ν] +1 (−)l+l′ Iµν +1
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δµν χ̄ τ b γl5 t
a χ χ̄ τ b γl

′

5 ta χ(x)

χ̄ τ b γl5 γµ t
a χ χ̄ τ b γl

′

5 γν t
a χ(x) + [µ↔ ν]

χ̄ τ b γl5 σµλ t
a χ χ̄ τ b γl

′

5 σλν t
a χ(x) + [µ↔ ν]

Table II: Transformation properties of operators without co-

variant derivatives for C, P D [−m] [−r] and R
1/2
5 D [−µ].

operator P1/2 P [−µ] T1/2 T [−µ]

rkmnmµnµ +1 (−)nµ +1 (−)nµ

Tr

(

→

∇µ

→

∇λCλν(x) +
→

∇ν

→

∇λ Cλµ(x)

)

Iµν Iµν Iµν Iµν

Tr

(

→

∇µ

→

∇λ C̃λν(x) +
→

∇ν

→

∇λ C̃λµ(x)

)

−Iµν −Iµν −Iµν −Iµν

χ̄ (τ3)m
(

←

∇µ γν γ
l
5 ± γl5 γν

→

∇µ

)

χ(x) + [µ↔ ν] (−)l+mIµν (−)lIµν (−)l+mIµν (−)lIµν

χ̄ (τ3)m γl5

(

←

∇µ

←

∇ν ±
→

∇µ

→

∇ν

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇µ γν γ
l
5 ± γl5 γν

→

∇µ

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

/∇ γν γ
l
5 ± γl5 γν

→

/∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m γl5

(

←

∇µ

→

∇ν

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇ γν γ
l
5

→

∇µ ∓
←

∇µ γ
l
5 γν

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

∇ν

←

/∇ γl5 ∓ γl5

→

/∇
→

∇ν

→

∇µ

)

χ(x) + [µ↔ ν] (−)l+mIµν (−)lIµν (−)l+mIµν (−)lIµν

χ̄ (τ3)m
(

←

∇µ

←

/∇
←

∇ν γ
l
5 ∓ γl5

→

∇ν

→

/∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇µ

←

∇ν γ
l
5 ∓ γl5

→

∇ν

→

∇µ

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
2 ←
∇µ γν γ

l
5 ∓ γl5 γν

→

∇µ

→

∇
2
)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
←

∇µ

←

∇ γν γ
l
5 ∓ γl5 γν

→

∇
→

∇µ

→

∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

∇
2

γν γ
l
5 ∓ γl5 γν

→

∇
2 →
∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m

(

←

∇µ

←

/∇
2

γν γ
l
5 ∓ γl5 γν

→

/∇
2 →
∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇µ

←

/∇ γν γ
l
5 ∓ γl5 γν

→

/∇
→

∇µ

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m

(

←

/∇
2 ←
∇µ γν γ

l
5 ∓ γl5 γν

→

∇µ

→

/∇
2
)

χ(x) + [µ↔ ν]
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χ̄ (τ3)m
(

←

∇
3

µ γν γ
l
5 ∓ γl5 γν

→

∇
3

µ

)

χ(x) + [µ↔ ν] (−)l+mIµν (−)lIµν (−)l+mIµν (−)lIµν

χ̄ (τ3)m
(

←

∇
2

µ

←

∇ν γµ γ
l
5 ∓ γl5 γµ

→

∇ν

→

∇
2

µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

∇ν

←

∇µ γµ γ
l
5 ∓ γl5 γµ

→

∇µ

→

∇ν

→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇ν

←

∇
2

µ γµ γ
l
5 ∓ γl5 γµ

→

∇
2

µ

→

∇ν

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
2

µ

←

/∇ γµ γν γ
l
5 ∓ γl5 γν γµ

→

/∇
→

∇
2

µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

/∇
←

∇µ γµ γν γ
l
5 ∓ γl5 γν γµ

→

∇µ

→

/∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇
2

µ γµ γν γ
l
5 ∓ γl5 γν γµ

→

∇
2

µ

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

∇ν

→

/∇ γl5 ∓ γl5

←

/∇
→

∇ν

→

∇µ

)

χ(x) + [µ↔ ν] (−)l+m Iµν (−)l Iµν (−)l+m Iµν (−)l Iµν

χ̄ (τ3)m
(

←

∇µ

←

/∇
→

∇ν γ
l
5 ∓ γl5

←

∇ν

→

/∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇µ

→

∇ν γ
l
5 ∓ γl5

←

∇ν

→

∇µ

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
2 →
∇µ γν γ

l
5 ∓ γl5 γν

←

∇µ

→

∇
2
)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
←

∇µ

→

∇ γν γ
l
5 ∓ γl5 γν

←

∇
→

∇µ

→

∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

∇
→

∇ γν γ
l
5 ∓ γl5 γν

←

∇
→

∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

/∇
→

/∇ γν γ
l
5 ∓ γl5 γν

←

/∇
→

/∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇µ

→

/∇ γν γ
l
5 ∓ γl5 γν

←

/∇
→

/∇µ

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m

(

←

/∇
2 →
∇µ γν γ

l
5 ∓ γl5 γν

←

/∇
2 →

/∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
2

µ

→

∇µ γν γ
l
5 ∓ γl5 γν

←

∇µ

→

∇
2

µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
2

µ

→

∇ν γµ γ
l
5 ∓ γl5 γµ

←

∇ν

→

∇
2

µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

∇ν

→

∇µ γµ γ
l
5 ∓ γl5 γµ

←

∇µ

→

∇ν

→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇ν

←

∇µ

→

∇µ γµ γ
l
5 ∓ γl5 γµ

←

∇µ

→

∇µ

→

∇ν

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
2

µ

→

/∇ γµ γν γ
l
5 ∓ γl5 γν γµ

←

/∇
→

∇
2

µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

/∇
→

∇µ γµ γν γ
l
5 ∓ γl5 γν γµ

←

∇µ

→

/∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇µ

→

∇µ γµ γν γ
l
5 ∓ γl5 γν γµ

←

∇µ

→

∇µ

→

/∇

)

χ(x) + [µ↔ ν]
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Table III: Transformation properties of operators including

derivatives for P1/2, P [−µ], T1/2 and T [−µ].

operator C P D [−m] [−r] R
1/2
5 D [−µ]

rkmnmµnµ +1 (−)nm(−)k (−)nµ

Tr

(

→

∇µ

→

∇λCλν(x) +
→

∇ν

→

∇λ Cλµ(x)

)

+1 Iµν +1

Tr

(

→

∇µ

→

∇λ C̃λν(x) +
→

∇ν

→

∇λ C̃λµ(x)

)

N −Iµν +1

χ̄ (τ3)m
(

←

∇µ γν γ
l
5 ± γl5 γν

→

∇µ

)

χ(x) + [µ↔ ν] ±1 (−)lIµν (−)m

χ̄ (τ3)m γl5

(

←

∇µ

←

∇ν ±
→

∇µ

→

∇ν

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇µ γν γ
l
5 ± γl5 γν

→

∇µ

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

/∇ γν γ
l
5 ± γl5 γν

→

/∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m γl5

(

←

∇µ

→

∇ν

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇ γν γ
l
5

→

∇µ ∓
←

∇µ γ
l
5 γν

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

∇ν

←

/∇ γl5 ∓ γl5

→

/∇
→

∇ν

→

∇µ

)

χ(x) + [µ↔ ν] ±1 (−)lIµν (−)m

χ̄ (τ3)m
(

←

∇µ

←

/∇
←

∇ν γ
l
5 ∓ γl5

→

∇ν

→

/∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇µ

←

∇ν γ
l
5 ∓ γl5

→

∇ν

→

∇µ

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
2 ←
∇µ γν γ

l
5 ∓ γl5 γν

→

∇µ

→

∇
2
)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
←

∇µ

←

∇ γν γ
l
5 ∓ γl5 γν

→

∇
→

∇µ

→

∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

∇
2

γν γ
l
5 ∓ γl5 γν

→

∇
2 →
∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m

(

←

∇µ

←

/∇
2

γν γ
l
5 ∓ γl5 γν

→

/∇
2 →
∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇µ

←

/∇ γν γ
l
5 ∓ γl5 γν

→

/∇
→

∇µ

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m

(

←

/∇
2 ←
∇µ γν γ

l
5 ∓ γl5 γν

→

∇µ

→

/∇
2
)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
3

µ γν γ
l
5 ∓ γl5 γν

→

∇
3

µ

)

χ(x) + [µ↔ ν] ±1 (−)lIµν (−)m
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χ̄ (τ3)m
(

←

∇
2

µ

←

∇ν γµ γ
l
5 ∓ γl5 γµ

→

∇ν

→

∇
2

µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

∇ν

←

∇µ γµ γ
l
5 ∓ γl5 γµ

→

∇µ

→

∇ν

→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇ν

←

∇
2

µ γµ γ
l
5 ∓ γl5 γµ

→

∇
2

µ

→

∇ν

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
2

µ

←

/∇ γµ γν γ
l
5 ∓ γl5 γν γµ

→

/∇
→

∇
2

µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

/∇
←

∇µ γµ γν γ
l
5 ∓ γl5 γν γµ

→

∇µ

→

/∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇
2

µ γµ γν γ
l
5 ∓ γl5 γν γµ

→

∇
2

µ

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

∇ν

→

/∇ γl5 ∓ γl5

←

/∇
→

∇ν

→

∇µ

)

χ(x) + [µ↔ ν] ±1 (−)l Iµν (−)m

χ̄ (τ3)m
(

←

∇µ

←

/∇
→

∇ν γ
l
5 ∓ γl5

←

∇ν

→

/∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇µ

→

∇ν γ
l
5 ∓ γl5

←

∇ν

→

∇µ

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
2 →
∇µ γν γ

l
5 ∓ γl5 γν

←

∇µ

→

∇
2
)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
←

∇µ

→

∇ γν γ
l
5 ∓ γl5 γν

←

∇
→

∇µ

→

∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

∇
→

∇ γν γ
l
5 ∓ γl5 γν

←

∇
→

∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

/∇
→

/∇ γν γ
l
5 ∓ γl5 γν

←

/∇
→

/∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇µ

→

/∇ γν γ
l
5 ∓ γl5 γν

←

/∇
→

/∇µ

→

/∇

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m

(

←

/∇
2 →
∇µ γν γ

l
5 ∓ γl5 γν

←

/∇
2 →

/∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
2

µ

→

∇µ γν γ
l
5 ∓ γl5 γν

←

∇µ

→

∇
2

µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
2

µ

→

∇ν γµ γ
l
5 ∓ γl5 γµ

←

∇ν

→

∇
2

µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

∇ν

→

∇µ γµ γ
l
5 ∓ γl5 γµ

←

∇µ

→

∇ν

→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇ν

←

∇µ

→

∇µ γµ γ
l
5 ∓ γl5 γµ

←

∇µ

→

∇µ

→

∇ν

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇
2

µ

→

/∇ γµ γν γ
l
5 ∓ γl5 γν γµ

←

/∇
→

∇
2

µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

∇µ

←

/∇
→

∇µ γµ γν γ
l
5 ∓ γl5 γν γµ

←

∇µ

→

/∇
→

∇µ

)

χ(x) + [µ↔ ν]

χ̄ (τ3)m
(

←

/∇
←

∇µ

→

∇µ γµ γν γ
l
5 ∓ γl5 γν γµ

←

∇µ

→

∇µ

→

/∇

)

χ(x) + [µ↔ ν]

Table IV: Transformation properties of operators including

derivatives for C, P D [−m] [−r] and R
1/2
5 D [−µ].
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Appendix D: Symmetry properties of S7

In Table D we list all possible terms of mass dimension 7 appearing in an expansion of the

effective action to order a3. We discuss their transformation properties under the R
1/2
5 and

P×[µq → −µq] symmetries which are symmetries of the continuum twisted mass action. We

restrict the discussion to operators involving the twisted mass µq only since the bare quark

mass mq = 0 at maximal twist. We note further that neither R
1/2
5 nor P × [µq → −µq] is

affected by commuting two different derivative operators in a given expression such that we

omit the commuted expressions. Gµν and G̃µν denote the continuum field strength tensor

and its dual, respectively.

In the four fermion operators we have included a generic transformation matrix TA =

τµ × ta × Γ where τ ∈ {τ 0, τ 1, τ 2, τ 3}, Γ ∈ {1, γµ, σµν , γ5γµ, γ5} and ta are acting in flavor-,

Dirac- and color-space, respectively. Their index A used as a short-hand notation for flavor-

, Dirac- and color-indices is summed over in the fermion bilinear product. Different Dirac

structures are related via Fierz-identities and have the same transformation properties under

the symmetries. Since TA is appearing twice in all products this introduces an even number

of both flavor- and Dirac-matrices such that the symmetry transformation is the same as

for the trivial product with all matrices equal to the identity.
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operator R
1/2
5 P [−µq] operator R

1/2
5 P [−µq]

µ4
qχ̄χ -1 +1 µ4

qχ̄γ5τ
3χ +1 -1

µ3
qχ̄ /Dχ +1 -1 µ3

qχ̄γ5τ
3 /Dχ -1 +1

µ3
qtr [GµνGµν ] +1 -1 - - -

µ2
qχ̄D

2χ -1 +1 µ2
qχ̄γ5τ

3D2χ +1 -1

µ2
qχ̄σµνGµνχ -1 +1 µ2

qχ̄γ5τ
3σµνGµνχ +1 -1

µq(χ̄T
Aχ)2 +1 -1 µq(χ̄γ5τ

3TAχ) (χ̄TAχ) -1 +1

µq(χ̄γ5τ
3TAχ)2 +1 -1 - - -

µqχ̄ /DσµνGµνχ +1 -1 µqχ̄γ5τ
3 /DσµνGµνχ -1 +1

µqχ̄ /DD2χ +1 -1 µqχ̄γ5τ
3 /DD2χ -1 +1

µqχ̄γµD
3
µχ +1 -1 µqχ̄γ5τ

3γµD
3
µχ -1 +1

µqχ̄γµ[Dν , Gµν ]χ +1 -1 µqχ̄γ5τ
3γµ[Dν , Gµν ]χ -1 +1

(χ̄TAχ)(χ̄ /DTAχ) -1 +1 (χ̄γ5τ
3TAχ)(χ̄ /DTAχ) +1 -1

(χ̄γ5τ
3TAχ)(χ̄γ5τ

3TA /Dχ) -1 +1 - - -

χ̄ /DγµD
3
µχ -1 +1 χ̄γ5τ

3 /DγµD
3
µχ +1 -1

χ̄ /Dγµ[Dν , Gµν ]χ -1 +1 χ̄γ5τ
3 /Dγµ[Dν , Gµν ]χ +1 -1

χ̄D2σµνGµνχ -1 +1 χ̄γ5τ
3D2σµνGµνχ +1 -1

χ̄σκλGκλσµνGµνχ -1 +1 χ̄γ5τ
3σκλGκλσµνGµνχ +1 -1

χ̄(D2)2χ -1 +1 χ̄γ5τ
3(D2)2χ +1 -1

χ̄D4χ -1 +1 χ̄γ5τ
3D4χ +1 -1

χ̄γ5GµνG̃µνχ -1 +1 χ̄τ3GµνG̃µνχ +1 -1

χ̄GµνGµνχ -1 +1 χ̄γ5τ
3GµνGµνχ +1 -1

χ̄χtr [GµνGµν ] -1 +1 χ̄γ5τ
3χtr [GµνGµν ] +1 -1

χ̄GµνG̃µνχ +1 -1 χ̄γ5τ
3GµνG̃µνχ -1 +1

χ̄χtr
[

GµνG̃µν

]

+1 -1 χ̄γ5τ
3χtr

[

GµνG̃µν

]

-1 +1

Table V: Transformation properties of operators appearing in S7.
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