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Abstract

We present a review on recent progress in perturbative calculations for the anomalous magnetic moment of the
muon. We present recent calculations for leptonic contributions to g − 2 and discuss the NNLO contributions to
hadronic vacuum polarisation insertions.

Keywords: QED, g − 2, hadronic contributions

1. Introduction

The anomalous magnetic moment of the muon (g −
2)μ has been both experimentally measured and theoret-
ically calculated with astonishing precision. The differ-
ence between the experimental value [1, 2]

aexp
μ = 0.001 165 920 80(54)(33)[63] (1)

and the theory prediction [3]

atheo
μ = 0.001 165 918 40(59) (2)

has the size of about three standard deviations. On the
theory side the contributions to atheo

μ can be decomposed
into three parts

atheo
μ = aQED

μ + aEW
μ + ahadr

μ , (3)

where aQED
μ , aEW

μ , and ahadr
μ denote the QED, electro-

weak, and hadronic contributions, respectively. The er-
ror on the theory prediction (2) is dominated by the un-
certainty of the hadronic contributions [4, 5].

The electro-weak contributions have been calculated
analytically in Refs. [6, 7, 8, 9, 10] and with the mea-
surement of the mass of the Higgs boson all input pa-
rameters are now sufficiently well known which leads
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to the following contributions up to next-to-leading or-
der

aEW,(1)
μ = (194.80 ± 0.01) × 10−11,

aEW,(2)
μ,bos = −(19.97 ± 0.03) × 10−11,

aEW,(2)
μ, frest ,H

= −(1.50 ± 0.01) × 10−11,

aEW,(2)
μ (e, μ, u, c, d, s) = −(6.91±0.20 ± 0.30) × 10−11,

aEW,(2)
μ (τ, t, b) = −(8.21 ± 0.10) × 10−11,

aEW,(2)
μ, frest ,noH = −(4.64 ± 0.10) × 10−11,

aEW,≥3�
μ = (0±0.20) × 10−11 .

The full result for the electro-weak corrections reads

aEW
μ = (153.6 ± 1.0) × 10−11

with a conservative error estimate.
The QED contributions have been calculated up to

five-loop order in [3, 11]. We want to stress that looking
at the absolute size of the QED corrections (cf Tab. 1)
one finds that the four-loop contribution is of the same
size as the difference between theory and experiment.
Therefore it is mandatory to verify the only existing cal-
culation of these contributions by an independent one.
First steps towards this are presented in Section 2. Cor-
rections to aQED

μ from vacuum polarization insertions
have been calculated up to five-loop order and are dis-
cussed in Section 4. Even though the corrections con-
tained in ahadr

μ are of non-perturbative nature they still
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receive quantum corrections which can be addressed in
perturbation theory and are discussed in Section 3.

2. Leptonic contributions at four-loop order

The pure QED contributions can be further decom-
posed as

aQED
μ =

∑
n=1

(
α

π

)n
A(n)
μ (4)

A(n)
μ = A(n)

1 + A(n)
2 (Me/Mμ) + A(n)

2 (Mμ/Mτ)

+A(n)
3 (Me/Mμ,Mμ/Mτ) (5)

A(4)
2 (Me/Mμ) = n3

l A(43)
2 + n2

l A(42)a
2 + n2

l nhA(42)b
2

+ · · · (6)

where A(n)
1 contains the universal contribution and nl

and nh denote light electron and heavy muon loops, re-
spectively.

In Ref. [13] a first step towards an independent calcu-
lation of the electronic contributions A(4)

2 (Me/Mμ) to the
anomalous moment of the muon has been made. Con-
tributions with at least two closed electron loops have
been calculated. The results are accurate up to terms
Me/Mμ and are shown in the following

A(43)
2 =

1
54

L3
μe −

25
108

L2
μe +

(
317
324
+
π2

27

)
Lμe − 2ζ3

9
− 25π2

162
− 8609

5832
≈ 7.196 66 , (7)

A(42)a
2 = L2

μe

[
π2
(

5
36

− a1

6

)
+
ζ3
4
− 13

24

]
+ Lμe

⎡⎢⎢⎢⎢⎣−a4
1

9
+ π2
⎛⎜⎜⎜⎜⎝−2a2

1

9
+

5a1

3
− 79

54

⎞⎟⎟⎟⎟⎠
− 8a4

3
− 3ζ3 +

11π4

216
+

23
6

]
− 2a5

1

45
+

5a4
1

9
+ π2
⎛⎜⎜⎜⎜⎝−4a3

1

27
+

10a2
1

9

− 235a1

54
− ζ3

8
+

595
162

)
+ π4
(
−31a1

540
− 403

3240

)
+

40a4

3
+

16a5

3
− 37ζ5

6

+
11167ζ3

1152
− 6833

864
≈ −3.624 27 ,

A(42)b
2 =

(
119
108

− π
2

9

)
L2
μe +

(
π2

27
− 61

162

)
Lμe − 4π4

45
+

13π2

27
+

7627
1944

≈ 0.494 05 ,

loop order with α−1(Rb)[×10−11] with α−1(ae)[×10−11]
1 116 140 973.318 (77) 116 140 973.212 (30)
2 413 217.6291 (90) 413 217.6284 (89)
3 30 141.902 48 (41) 30 141.902 39 (40)
4 381.008 (19) 381.008 (19)
5 5.0938 (70) 5.0938 (70)

aμ(QED) 116 584 718.951 (80) 116 584 718.845 (37)

Table 1: QED corrections by loop order using values for α obtain from
the anomalous magnetic moment of the electron [11] and the second
best determination of α from Ref. [12]. The errors are indicated orig-
inate from α, the parametric uncertainty of the mass ratio Me/Mμ and
the error from the numerical integration.

with Lμe = ln(M2
μ/M

2
e ), ζn =

∑
k=1 1/kn, a1 = ln 2

and an = Lin(1/2), n ≥ 4. Excellent agreement with the
results in the literature has been found.

The contributions from τ-leptons to the anomalous
magnetic moment of the muon can very efficiently be
calculated by performing an asymptotic expansion in
the mass ratio z = Mμ/Mτ ≈ 6 · 10−2 leading to a power

group 102 · A(4)
2,μ(Mμ/Mτ)

Ref. [14] Ref. [3]
I(a) 0.00324281(2) 0.0032(0)

I(b) + I(c) + II(b) + II(c) −0.6292808(6) −0.6293(1)
I(d) 0.0367796(4) 0.0368(0)
III 4.5208986(6) 4.504(14)

II(a) + IV(d) −2.316756(5) −2.3197(37)
IV(a) 3.851967(3) 3.8513(11)
IV(b) 0.612661(5) 0.6106(31)
IV(c) −1.83010(1) −1.823(11)

Table 2: Results from Ref. [14] in comparison with Ref. [3]. We refer
to Ref. [3] for the definition of the diagram classes.

series

A(4)
2 (Mμ/Mτ) =

∞∑
n=1

C4,nz2n . (8)

After performing the expansion on the diagram level
one is left with at most the calculation of four-loop vac-
uum diagrams, which have been extensively studied in
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the literature. To obtain a good numerical accuracy it is
sufficient to consider the first three terms in the expan-
sion

102A(4)
2 (Mμ/Mτ) ≈ 4.21670 + 0.03257 + 0.00015

= 4.24941(2)(53) , (9)

where the errors indicated originate from the truncation
of the series in z and the parametric uncertainty of the
mass ratio. We compare the obtained results for the var-
ious diagram classes defined in [3] in Tab. 2. For all
classes excellent agreement has been found.

3. Hadronic vacuum polarization contributions at
NNLO

Contributions from the hadronic vacuum polarization
are calculated by integrating the measured R-ratio

R(s) =
σ(e+e− → hadrons)

σpt
(10)

with σpt = 4πα2/(3s) over a kernel function K(s)

ahad
μ =

1
3

(
α

π

)2 ∫
m2
π

ds
R(s)K(s)

s
(11)

where K(s) is at leading order given by

K(s) =
∫ 1

0
dx

x2(1 − x)
x2 + (1 − x)s/m2

μ

(12)

The kernel function receives higher-order corrections
from perturbation theory. The next-to-leading order cor-
rection has been calculated in [15]. At next-to-next-to-
leading order corrections have recently been calculated
in [16] by performing an asymptotic expansion in an
artificial heavy photon mass. The diagram classes con-
tributing are displayed in Fig. 1. They lead to the indi-
vidual contributions

a(3a)
μ = 0.80 × 10−10 ,

a(3b)
μ = −0.41 × 10−10 ,

a(3b,lbl)
μ = 0.91 × 10−10 ,

a(3c)
μ = −0.06 × 10−10 ,

a(3d)
μ = 0.0005 × 10−10 , (13)

and finally to the sum

ahad,NNLO
μ = 1.24 ± 0.01 × 10−10. (14)

Including this contribution in the theory prediction re-
duces the discrepancy between theory and experiment
by 0.2 standard deviations.

3a 3b 3b-lbl

3c 3c 3d

Figure 1: Diagrams contributing to the hadronic vacuum polarization
at next-to-next-to-leading order.

4. Leptonic vacuum polarization contributions at
five-loop order

Similar to the hadronic vacuum polarization inser-
tions leptonic ones can be calculated by integrating over
the vacuum polarization function Π(q2)

alep−vacpol
μ =

α

π

∫ 1

0
dx(1−x)

1
1 + Π(sx)

, sx = − x2

1 − x
m2
μ .

(15)
This analysis has been done at four loops in [17]. At
five loops the method has first been implemented us-
ing only the leading term in the high-energy expansion
as approximation for Π(q2)[18]. The analysis showed
unexpected deviations from the results in [3] and was
improved in [19] where a Padé approximation was used
for the vacuum polarization. For the construction of the
Padé approximation of the vacuum polarization func-
tion at four loops all available information in the low-
and high-energy and in threshold region has been used.
In this follow-up analysis the discrepancies were re-
solved and we compare all three results in Tab. 3. As can
be seen there is good agreement between the new anal-
ysis and the numerical results for all diagram classes.

5. Conclusions

We reviewed recent progress in perturbative calcu-
lations for the anomalous magnetic moment of the
muon. Much progress has been made to further improve
the theory prediction. Higher-order corrections to the
hadronic vacuum polarization contribution reduced the
difference between experiment and theory by about 0.2
standard deviations.
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Ref. [19] Ref. [18] Refs. [20, 21, 22, 23]
I(a) 20.142 813 20.183 2 20.142 93(23)
I(b) 27.690 061 27.718 8 27.690 38(30)
I(c) 4.742 149 4.817 59 4.742 12(14)
I(d+e) 6.241 470 6.117 77 6.243 32(101)(70 )
I(e) -1.211 249 -1.331 41 -1.208 41(70)
I(f+g+h) 4.446 8 +6

−4 4.391 31 4.446 68(9)(23)(59)
I(i) 0.074 6 +8

−19 0.252 37 0.0 87 1(59)
I(j) -1.246 9 +4

−3 -1.214 29 -1.247 26(12)

Table 3: Comparison of the results from Ref. [19], Ref. [18] and
Refs. [20, 21, 22, 23]. We refer to Ref. [3] for the definition of the
diagram classes.
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