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Abstract

The leading hadronic contributions to the anomalous magnetic moments of the electron and the
τ -lepton are determined by a four-flavour lattice QCD computation with twisted mass fermions.
The continuum limit is taken and systematic uncertainties are quantified. Full agreement with
results obtained by phenomenological analyses is found.
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1. Introduction

The standard model of particle physics (SM) contains three charged leptons l, mainly differing in
mass, the electron, the muon, and the τ -lepton with me : mµ : mτ ≈ 1 : 207 : 3477 [1]. Their
magnetic moments, in particular their so-called anomalous magnetic moments, al = (g − 2)l/2,
control their behaviour in an external magnetic field.
Being the lepton with the smallest mass the electron is stable. This leads to the electron magnetic
moment being one of the most precisely determined quantities in nature. The agreement of the
experimental and the SM value up to eight digits, see e.g. [2] and references therein, constitutes
one of the cornerstone results for quantum field theories to be the correct mechanism for describing
particle interactions. The very good agreement of the electron magnetic moment between experi-
ment and SM calculations is not matched by the muon anomalous magnetic moment. In fact, here
a two to four sigma discrepancy is observed, see e.g. [3]. One reason for the observed discrepancy
could be that the magnetic moment of the muon receives larger non-perturbative contributions
than the one of the electron. On the other hand, it is supposed to be also more sensitive to be-
yond the SM physics, since for a large class of theories new physics contributions are expected to
be proportional to the squared lepton mass. Thus it is a prime candidate for detecting physics
beyond the SM. Due to the large mass of the τ -lepton it would be the optimal lepton for finding
new physics. However, because its lifetime is very short (O

(
10−13

)
s) there currently only exist

bounds on its anomalous magnetic moment from indirect measurements [4].
The QED [5, 6] and the electroweak contributions [7, 8] to the lepton anomalous magnetic moments
have been computed in perturbation theory to impressive five and two loops, respectively. The
main uncertainties remaining in the theoretical determinations of the anomalous magnetic moments
originate thus from the leading-order (LO) hadronic contributions. Since they are particularly
sensitive to those virtual photon momenta that are of O

(
m2
l

)
, these contributions are inherently

non-perturbative and not accessible to perturbation theory. In order to have a prediction of the
anomalous magnetic moments from the SM alone, a non-perturbative method needs to be employed
and the only such approach we presently know is lattice QCD (LQCD) which we use here.
As mentioned before, the hadronic LO contributions to the anomalous magnetic moments of the
three SM leptons, ahvpl , strongly depend on the values of their masses. Since the magnitude of
the lepton masses spans four orders of magnitude, the corresponding contributions to the anoma-
lous magnetic moments differ substantially and probe very different energy regions, see also the
discussion of Fig. 1 in Sect. 3.
In this article we present the results of our four-flavour computations of the quark-connected,
LO hadronic vacuum polarisation contributions to the electron and τ -lepton anomalous magnetic
moments obtained from the (maximally) twisted mass formulation of LQCD. The muon case has
already been covered in [9]. One important feature of the present calculation is that we adopt
exactly the same strategy as for the muon [9] including the same chiral and continuum extrapola-
tions. Thus the results presented here are not only interesting in themselves but also serve as an
important cross-check for our treatment of the hadronic vacuum polarisation function. Addition-
ally to the sytematic uncertainties investigated in our previous paper, we quantify the light-quark
disconnected contributions on one of our Nf = 2+1+1 ensembles. Another very important feature
is that incorporating the complete first two generations of quarks enables us to directly and unam-
biguously compare our results with the values obtained from phenomenological analyses relying on
experimental data and a dispersion relation. We note that the contributions from third-generation
quarks can be neglected, since they are smaller than the current theoretical accuracy, as can be
inferred e.g. from the data tables of Ref. [10]. Recently, the bottom quark contribution to ahvpµ

has been explicitly computed on the lattice [11] confirming it to be one order of magnitude smaller
than the current uncertainty of the phenomenological determinations of ahvpµ .
Additionally to the Nf = 2 + 1 + 1 flavour ensembles [12, 13] at unphysically large pion masses
studied in [9], we computed the dominant light quark contributions to the anomalous magnetic
moments on a Nf = 2 flavour ensemble directly at the physical point [14, 15]. This allows us to
test the chiral extrapolations performed when using the reparametrisation introduced in [16, 17].
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The next section comprises a short repetition of the most important equations needed to follow the
discussion of the results for the LO hadronic vacuum polarisation contributions to the anomalous
magnetic moments of the electron in Sect. 3 and the τ -lepton in Sect. 4. In Sect. 5 we summarise
our results and draw our conclusions.

2. Computation of ahvp
l

The LO hadronic contribution to the lepton anomalous magnetic moments, ahvpl , can be directly
computed in Euclidean space-time according to [18, 19]

ahvpl = α2

∫ ∞

0

dQ2

Q2
w

(
Q2

m2
l

)
ΠR(Q2) , (1)

where α is the fine structure constant, Q2 the Euclidean momentum, ml the lepton mass, and
ΠR(Q2) the renormalised hadronic vacuum polarisation function,

ΠR(Q2) = Π(Q2)−Π(0) .

It is obtained from the hadronic vacuum polarisation tensor

Πµν(Q) =

∫
d4x eiQ·(x−y)〈Jµ(x)Jν(y)〉 = (QµQν −Q2δµν)Π(Q2) , (2)

which is transverse because of the conservation of the electromagnetic current

Jµ(x) =
2

3
u(x)γµu(x)− 1

3
d(x)γµd(x) +

2

3
c(x)γµc(x)− 1

3
s(x)γµs(x) . (3)

Here u stands for the up quark, d for the down quark, c denotes the charm quark, and s the strange
quark. Eq. (2) shows that Πµν(Q) results from the Fourier transformation of the correlator of two
such currents. Taking up and down quarks together, since they are mass-degenerate in our setup,
we decompose the quark-connected part of the hadronic vacuum polarisation tensor according to

Πµν(Q) = Πud
µν(Q) + Πs

µν(Q) + Πc
µν(Q) . (4)

Hence, we can stepwise add the flavour contributions which will be done in the sections below.
Since the definition in Eq. (1) results in a non-linear pion mass dependence for the light quarks,
in [16, 17] a modified definition

ahvpl = α2

∫ ∞

0

dQ2

Q2
w

(
Q2

H2

H2
phys

m2
l

)
ΠR(Q2) (5)

has been proposed. H denotes some hadronic scale determined at unphysically high pion masses.
For all flavours we choose as the hadronic scale the lowest lying ρ-meson state, mV . H = Hphys = 1
reproduces the standard definition in Eq. (1). Up to lattice artefacts the standard definition is
also recovered at the physical value of the pion mass when the ratio H/Hphys becomes one. The
weight function w is known from QED perturbation theory and is peaked at

Q2
peak = (

√
5− 2)

H2

H2
phys

m2
l .

For a thorough description of the lattice calculation and a proof of automatic O(a) improvement
of the vacuum polarisation function we refer to [9] and [20], respectively. In order to discuss
systematic uncertainties later on, we briefly summarise our method of fitting the hadronic vacuum
polarisation function here.
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First, the lowest lying vector meson masses, mi, and decay constants, fi, are determined from
the time dependence of the two-point function of the light, strange, and charm point-split vector
current, individually, at zero spatial momentum. Then Π(Q2) determined in the momentum range
between 0 and Q2

max is split into a low-momentum part for 0 ≤ Q2 ≤ Q2
match and a high-momentum

one for Q2
match < Q2 ≤ Q2

max. The low-momentum fit function is given by

Πlow(Q2) =

M∑

i=1

f2i
m2
i +Q2

+

N−1∑

j=0

aj(Q
2)j , (6)

and the high-momentum piece is parametrised as follows

Πhigh(Q2) = log(Q2)

B−1∑

k=0

bk(Q2)k +

C−1∑

l=0

cl(Q
2)l . (7)

They are combined according to

Π(Q2) = (1−Θ(Q2 −Q2
match))Πlow(Q2) + Θ(Q2 −Q2

match)Πhigh(Q2) , (8)

where Θ(x) is the Heaviside function.
This defines our so-called MNBC fit function. Our standard fit for the light and strange quark
contributions is M1N2B4C1 which means M = 1, N = 2, B = 4, and C = 1 in Eqs. (6) and (7)
above. As value of Q2

match in the Heaviside functions in Eq. (8) we have chosen 2 GeV2. We have
checked that varying the value of Q2

match between 1 GeV2 and 3 GeV2 does not lead to observable
differences as long as the transition between the low- and the high-momentum part of the fit is
smooth. For the upper integration limit we use Q2

max = 100 GeV2, since the integrals are saturated
there as can be seen in Fig. 1 below.
Our analysis has been performed on the same set of gauge field configurations [12, 13] as have been
used in our previous work [9]. A detailed list of the lattice parameters can be found there.

3. The electron (g − 2)

The LO hadronic contribution to the electron anomalous magnetic moment ae is dominated by
momenta below 10−4 GeV2. To a good approximation it can even be determined from the slope
of the vacuum polarisation at zero momentum ae ∝ dΠ/dQ2(Q2 = 0). Therefore, we only use
the low-momentum part, Πlow(Q2), of the hadronic vacuum polarisation function Eq. (6). The
saturation of the integral for one of our ensembles, namely B55.32 featuring mPS ≈ 390 MeV,
a ≈ 0.08 fm and L = 2.5 fm, is shown in Fig. 1 for all three leptons by plotting

Rl(Q
2
max) =

ahvpl (Q2
max)

ahvpl (100 GeV2)
, (9)

where ahvpl (Q2
max) is the LO hadronic contribution to the lepton anomalous magnetic moment

integrated up to Q2
max. Fig. 1 also implies that for the electron we have to rely mostly on the

extrapolation of our vacuum polarisation data to the small momentum region.

3.1. Contribution from up and down quarks

The light quark contribution is depicted in Fig. 2. Here, also the result at the physical value of
the pion mass [14, 15] obtained with the standard definition Eq. (1) can be seen. This is fully
compatible with the value determined by the linear extrapolation of the data obtained from the
reparametrisation Eq. (5).
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Figure 1: Comparison of the dependence on the upper integration bound in Eq. (5) of the four-flavour lepton
anomalous magnetic moments. The blue curve represents the ratio defined in Eq. (9) for the electron, the orange
one for the muon, and the dark red one for the tau. Q2

peak,l denotes the momentum value where the kernel function

in Eq. (5) attains its maximum.

a = 0.061 fm, L = 2.9 fm
a = 0.061 fm, L = 1.9 fm
a = 0.078 fm, L = 3.7 fm
a = 0.078 fm, L = 2.5 fm
a = 0.078 fm, L = 1.9 fm
a = 0.086 fm, L = 2.8 fm

Nf = 2 result
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Figure 2: Light-quark contribution to ahvpe with filled symbols representing points obtained with Eq. (5), open
symbols refer to those obtained with Eq. (1), i. e. H = 1. In particular, the two-flavour result at the physical point
has been computed with the standard definition. The light grey errorband belongs to the linear fit, whereas the
dark grey errorband is attached to the quadratic fit.
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3.2. Adding the strange and the charm quark contributions

When incorporating the heavy, second-generation flavours, we have found that we have to take
O(a2) lattice artefacts into account. Hence, the four-flavour result for ahvpe at the physical point
in the continuum limit is obtained from simultaneously extrapolating in the pion mass, mPS, and
to zero lattice spacing a using

ahvp(mPS, a) = A+B m2
PS + C a2 (10)

with A,B,C denoting the free parameters of the fit. For ahvpe the corresponding fit is shown in
Fig. 3. Our result with only statistical uncertainty is

ahvpe = 1.78(06) · 10−12 . (11)

ae(mPS, 0.086 fm)
ae(mPS, 0.078 fm)
ae(mPS, 0.061 fm)

a = 0.086 fm, L = 2.8 fm
a = 0.078 fm, L = 3.7 fm
a = 0.078 fm, L = 2.5 fm
a = 0.078 fm, L = 1.9 fm
a = 0.061 fm, L = 2.9 fm
a = 0.061 fm, L = 1.9 fm

dispersive analysis
a → 0 result

m2
PS

[
GeV2

]

aN
f
=
2
+
1
+
1

e

0.20.150.10.050 m2
π

2.0e-12

1.8e-12

1.6e-12

1.4e-12

1.2e-12

1.0e-12

8.0e-13

6.0e-13

Figure 3: Chiral and continuum extrapolation of the Nf = 2 + 1 + 1 contribution to ahvpe . The inverted red triangle
shows the value extrapolated to the continuum and to the physical value of the pion mass. It has been displaced to
the left to facilitate the comparison with the dispersive result in the black square [21].

3.3. Systematic uncertainties

In this section we give an account of systematic uncertainties of our result for ahvpe given in
Eq. (11). We have investigated finite size effects (FSE), the dependence of our chiral extrapolation
on the incorporation of large pion masses, vector meson fit ranges, and the dependence of our
results on different vacuum polarisation fit functions. Moreover, for one ensemble the light quark-
disconnected contribution is quantified.

3.3.1. Finite size effects

As described in detail in Ref. [9], the Nf = 2 + 1 + 1 ensembles analysed in this work feature
3.35 < mPS L < 5.93, where L is the spatial extent of the lattice. Restricting our data to the
condition mPSL > 3.8 yields

ahvpe = 1.77(07) · 10−12 (12)

after combined chiral and continuum extrapolation. This matches the result given in Eq. (11) and
thus indicates that FSE are negligible in our computation. This finding is supported by comparing
the results of two ensembles only differing in lattice size provided in Tab. 1. The numbers do not
change when restricting the momenta of the larger ensemble to those of the smaller one. The FSE
attributed to the lowest achievable momentum being 2π

L mixes with FSE entering the choice of
different fit functions. We take a conservative approach and consider these effects separately.
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Ensemble
(
L
a

)3 × T
a ahvpe,ud ahvpe

B35.32 323 × 64 1.44(05) · 10−12 1.66(05) · 10−12

B35.48 483 × 96 1.44(05) · 10−12 1.69(05) · 10−12

Table 1: Comparison of light-quark contribution to ahvpe and total ahvpe from ensembles of different volumes.

3.3.2. Chiral extrapolation

We have checked the validity of the chiral extrapolation by restricting the data, comprising pion
masses between 227 MeV and 491 MeV, to the condition mPS < 400 MeV. The value we obtain

ahvpe = 1.78(07) · 10−12 (13)

only features a slightly larger uncertainty compared to the result in Eq. (11). Thus, we do not
assign a systematic uncertainty to the usage of pion masses above 400 MeV.

3.3.3. Vector meson fit ranges

Our standard computation involves the determination of the masses and decay constants of the
vector meson ground states for the different flavours. Their values depend on the choice of fit
ranges. We have analysed different fit ranges for the two-point functions of the light, strange,
and charm vector currents and propagated the uncertainties to the values for ahvpe . This showed
that excited state contaminations are significant only for mV and fV determined from the light
vector current-current correlator. Variations of the standard fit ranges by 0.1 fm to the left, right
and both simultaneously do not lead to any observable differences in ahvpe for the sγµs- and the
J/ψ correlator. Furthermore, the heavy flavour contributions are approximately one order of
magnitude smaller than the light quark contribution such that their systematic uncertainties would
not noticeably impact the overall uncertainty of ahvpe .
In the left panel of Fig. 4 the dependence of the light quark contribution to the electron anomalous
magnetic moment on the fitrange for the ρ-correlator is plotted. Taking half the difference of the

Figure 4: Dependence of aude on the fitrange of the ρ-correlator (left panel) and on values chosen for M, N in the
vacuum polarisation fit function (right panel). The standard ρ-correlator fit range is [0.7 fm, 1.2 fm] and the standard
fit function corresponds to M1N2.

central values obtained for [0.6 fm, 1.2 fm] and [0.7 fm, 1.2 fm] gives a systematic uncertainty of

∆V = 0.035 · 10−12 . (14)

3.3.4. Number of terms in MN fit function

The number of terms in the fit function Eq. (6) is given by M and N. M1N2 is our standard choice.
Repeating the whole analysis with different numbers of terms leads to the results shown in the right
panel of Fig. 4. We observe that all choices of M and N in Eq. (6) are compatible. Nevertheless,
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we conservatively assign a systematic error by taking half the difference of the central values of
the result of the M2N4 and the M1N2 fit. This leads to a systematic uncertainty of

∆MN = 0.029 · 10−12 . (15)

For the heavy quarks the systematic uncertainties from different values of M and N turn out to be
negligible.

3.3.5. Disconnected contributions

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0 0.2 0.4 0.6 0.8 1 1.2

Z
2 V
Π
(Q

2
)

Q2/GeV2

-0.004

0

0.004

0 0.2 0.4 0.6 0.8 1

connected, combined isospin components
disconnected, isospin 0 component
disconnected, isospin 1 component

Figure 5: Comparison of the light quark contributions to the unsubtracted hadronic vacuum polarisation function
from quark-connected and disconnected diagrams of the local current correlator. ZV has been obtained from the
ratio of the connected part of the conserved and local current-current correlators. The values have been computed
with the analytical continuation method described in [22] without correcting for finite-size effects.

Leaving out the quark-disconnected contributions is a systematic uncertainty we cannot completely
quantify, yet. We have started investigating their magnitude on the B55.32 ensemble mentioned
already before. Using the local vector current we have detected a signal for the light quark part of
the vacuum polarisation function when using 24 stochastic volume sources on 1548 configurations
and 48 stochastic volume sources on 4996 configurations. Employing the one-end trick [23], the
isovector part

Π3
µν(x, y) = 〈J3

µ(x)J3
ν (y)〉 (16)

with J3
µ = 1

2χγµτ
3χ is significantly different from zero. However, this is a pure lattice artefact and

will not contribute in the continuum limit. On the other hand, the more interesting isoscalar part

Π0
µν(x, y) =

1

9
〈J0
µ(x)J0

ν (y)〉 (17)

with J3
µ = 1

2χγµ1χ is compatible with zero. The connected and disconnected pieces of the polari-
sation function for the light flavours are depicted in Fig. 5.
A comparison of the values of ahvpl,ud for all three leptons on the B55.32 ensemble with and without
incorporating the disconnected contributions is presented in Tab. 2. Here, we have combined the
connected pieces obtained from the point-split current correlator with the isoscalar part of the
disconnected contributions obtained from the local current correlator using the renormalisation
constant ZV determined from the ratio of the connected pieces of the conserved and the local
vector current two-point functions. Therefore and because we only have results for one ensemble,
the numbers below can only give hints on the influence of the disconnected pieces. We observe
the tendency that for all three leptons ahvpl,ud decreases when incorporating the disconnected contri-
butions as has been predicted in [24]. However, this is statistically not significant. Furthermore,
we find that the magnitude of the disconnected contributions is comparable to our current uncer-
tainty. Hence, it will be mandatory to compute them when aiming at more precise results. For

8



the muon the value shifts by ≈ 3%, which is also not statistically significant at this stage, but is
in accordance with the upper bound of 4− 5% given in [25].

ahvpe,ud ahvpµ,ud ahvpτ,ud

without disc 1.44(04) · 10−12 5.42(14) · 10−8 1.27(03) · 10−6

with disc 1.39(07) · 10−12 5.26(25) · 10−8 1.24(04) · 10−6

Table 2: Comparison of light-quark contributions to ahvpl with and without disconnected pieces in the low-
momentum region for the B55.32 ensemble. For all contributions the redefinition Eq. (5) and our standard analysis
have been used.

The disconnected heavy flavour contributions need to be considered as well. We plan to check
their size in future calculations. The pure charm quark contributions have been computed in

perturbation theory and shown to be suppressed by a factor
(

q2

4 m2
c

)4
[26], where q2 is the relevant

energy scale of the problem.

3.4. Comparison with the phenomenological value
Adding the quantified systematic uncertainties in quadrature we obtain as final result

ahvpe = 1.782(64)(45) · 10−12 . (18)

This can directly be compared with the phenomenological determination of [21]

ahvpe = 1.866(10)(05) · 10−12 . (19)

They are fully compatible with each other although our lattice result still is afflicted with larger
errors.

4. The τ -lepton (g − 2)

The large mass of the tau lepton, mτ ≈ 1.8 GeV, implies a peak of the weight function in the expres-
sion for the LO hadronic contribution to its magnetic moment in Eq. (1) at Q2

peak = 0.745 GeV2.

This is very different from the peak position of the electron weight function. Hence ahvpτ re-
quires data from a different part of the vacuum polarisation function, in particular, also the high-
momentum piece of our fit function Eq. (7) is important here.

4.1. Contribution from up an down quarks
As for the electron, we start off by showing the contribution of the first-generation flavours to ahvpτ

in Fig. 6. The data show a qualitatively similar behaviour to those of the electron in Fig. 2. Their
values differ, however, by six orders of magnitude. In particular, we find that the data at unphysical
pion masses obtained with Eq. (5), can be linearly extrapolated to the physical pion mass. This
demonstrates again that the method of including H

Hphys
in the weight function is advantageous for

the chiral extrapolation. The value extrapolated in this way agrees with our calculation directly
at the physical pion mass shown as the open square in Fig. 6.

4.2. Adding the strange and the charm quark contributions
As for the electron, we perform the chiral and continuum extrapolation of the complete four-flavour
result using a fit of the form given in Eq. (10). It is shown in Fig. 7. Comparing this with Fig. 3,
we see that the lattice artefacts are much smaller than for the electron such that we would have
obtained a compatible result when omitting the a2 term in Eq. (10). As can be seen in Figs. 8 and
9, for the tau lepton both, the strange and the charm contribution do not show significant cut-off
effects and hence, also for the total contribution a2 effects are small. We nevertheless perform the
continuum extrapolation in order to use exactly the same analysis strategy as for the other leptons.
Our four-flavour result with only statistical uncertainty reads

ahvpτ = 3.41(8) · 10−6 . (20)
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Figure 6: Light-quark contribution to ahvpτ with filled symbols representing points obtained with Eq. (5), open
symbols refer to those obtained with Eq. (1), i. e. H = 1. We note that the two-flavour result at the physical point
has been computed with the standard definition. The light grey errorband belongs to the linear fit (dotted black
line), whereas the dark grey errorband is attached to the quadratic fit (solid green line).
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a = 0.086 fm, L = 2.8 fm
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Figure 7: Chiral and continuum extrapolation of the Nf = 2 + 1 + 1 contribution to ahvpτ . The inverted red triangle
shows the value in the continuum limit at the physical value of the pion mass. It has been displaced to the left to
facilitate the comparison with the dispersive result depicted as black square [27].

4.3. Systematic uncertainties

We have investigated the same systematic uncertainties for our determination of ahvpτ as for the
case of the electron. The influence of the disconnected contributions has already been discussed in
the section of ahvpe .

4.3.1. Finite size effects

Restricting our data to the condition mPSL > 3.8 yields

ahvpτ = 3.40(09) · 10−6 . (21)

This is compatible with the result in Eq. (20). Comparing again the two ensembles at mPS ≈
315 MeV which only differ in the extent of the lattices also indicates negligible finite size effects as
shown in Tab. 3. Hence, we do not assign a FSE related systematic uncertainty.
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Figure 8: Continuum limit of strange quark contribu-

tion to ahvpτ at approximately fixed pion mass.
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data at fixed mPS ≈ 320MeV2
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Figure 9: Continuum limit of charm quark contribution

to ahvpτ at approximately fixed pion mass.

Ensemble
(
L
a

)3 × T
a ahvpτ,ud ahvpτ

B35.32 323 × 64 2.62(06) · 10−6 3.40(07) · 10−6

B35.48 483 × 96 2.60(06) · 10−6 3.41(07) · 10−6

Table 3: Comparison of light-quark contribution to ahvpτ and total ahvpτ from ensembles of different volumes.

4.3.2. Chiral extrapolation

Restricting the analysed ensembles to those featuring pion masses mPS < 400 MeV, we get

ahvpτ = 3.45(09) · 10−6 . (22)

This is again compatible with the value given in Eq. (20). Hence, we do not assign a systematic
uncertainty to the fact that ensembles with pion masses above 400 MeV have been employed when
extrapolating to the phyical value of the pion mass.

4.3.3. Vector meson fit ranges

The situation is similar to the case of the electron reported above. Only the excited state contami-
nation in the ρ-correlator has to be taken into account as systematic uncertainty. In the left panel
of Fig. 10 the dependence of the light quark contribution, audτ , on the fit range chosen to extract
the spectral information from the ρ-correlator is depicted.

Figure 10: Dependence of audτ on the fit range of the ρ-correlator (left panel) and on the values chosen for M, N,
B, and C in the vacuum polarisation fit function (right panel). The standard ρ-correlator fit range is [0.7 fm, 1.2 fm]
and the standard fit function corresponds to M1N2B4C1.

Taking half the difference of the central values obtained for [0.6 fm, 1.2 fm] and our standard fit
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range [0.7 fm, 1.2 fm] results in an estimated systematic uncertainty of

∆V = 0.046 · 10−6 . (23)

4.3.4. Number of terms in MNBC fit function

Due to the large Q2
peak we have to take the whole vacuum polarisation function Eq. (8) into account,

including in particular the high-momentum piece in Eq. (7). Thus, we have four different types
of terms in the fit function that can have different numbers of summands. As for the electron, we
only find observable differences in the light quark sector. But also here the results from different
fits are all compatible as shown in the right panel of Fig. 10. Conservatively, we take half the
difference between the M2N3B4C1 and M1N2B4C1 fit and assign a systematic uncertainty of

∆MNBC = 0.030 · 10−6 (24)

to our choice of the fit function.

4.4. Comparison with the phenomenological value

Including the identified systematic uncertainties added in quadrature, our final four-flavour result
reads

ahvpτ = 3.41(8)(5) · 10−6 . (25)

This agrees with the one obtained by a dispersive analysis [27]

ahvpτ = 3.38(4) · 10−6 . (26)

Compared to the electron even better agreement between the lattice and the phenomenological
result is observed for the τ -lepton. In this case, the uncertainty of our twisted mass LQCD
calculation is only about twice the phenomenological one.

5. Summary and Conclusions

In this article we have presented the first four-flavour LQCD computation of the LO hadronic
vacuum polarisation contributions to the anomalous magnetic moments of the electron and the
τ -lepton. Our results have been obtained with Nf = 2 + 1 + 1 twisted mass fermions mostly at
unphysically large pion masses but, at least for the light quark contribution, also directly at the
physical point. We find that for both, the electron and the tau lepton the chirally extrapolated
values for the light quark contributions agree with the one at the physical point.
For our data at unphysically large values of the pion mass we have investigated the systematic
uncertainties of the method used to obtain our final results. In particular, we have addressed the
effects of non-zero lattice spacings, the finite volumes, the fit range for extracting the vector meson
mass, and using different fit functions for the vacuum polarisation function. As an additional
uncertainty we have investigated the disconnected contributions by using the local vector current.
This led to the first observation of a signal for the disconnected diagrams which, however, is
compatible with zero within our current errors and which we therefore have neglected. This will
no longer be justified once the uncertainties of the connected pieces are reduced.
Our final results are summarised in the table below and agree with the phenomenological deter-
minations of the electron and tau lepton magnetic moments which are also shown there. This
constitutes another evidence that our analysis, also employed for the muon and described in more
detail in [9], is correct.

ahvpe ahvpµ ahvpτ

this work 1.782(64)(45) · 10−12 6.78(24)(18) · 10−8 3.41(8)(5) · 10−6

dispersive analyses 1.866(10)(05) · 10−12 [21] 6.91(01)(05) · 10−8 [28] 3.38(4) · 10−6 [27]

12



As in the case of the muon, also for the electron and tau lepton anomalous magnetic moment the
errors of our calculations are still larger than those from the dispersive analyses quoted above.
However, it can be expected that with future lattice QCD calculations at the physical value of
the pion mass, increased statistics and an even better control over systematic uncertainties the
phenomenological error can be matched, if not even beaten.
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